*** 1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        #less(@x,@y) -> #cklt(#compare(@x,@y))
        merge(@l1,@l2) -> merge#1(@l1,@l2)
        merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
        merge#1(nil(),@l2) -> @l2
        merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
        merge#2(nil(),@x,@xs) -> ::(@x,@xs)
        merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
        merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
        mergesort(@l) -> mergesort#1(@l)
        mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
        mergesort#1(nil()) -> nil()
        mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
        mergesort#2(nil(),@x1) -> ::(@x1,nil())
        mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
        msplit(@l) -> msplit#1(@l)
        msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
        msplit#1(nil()) -> tuple#2(nil(),nil())
        msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
        msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
        msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
      Weak DP Rules:
        
      Weak TRS Rules:
        #cklt(#EQ()) -> #false()
        #cklt(#GT()) -> #false()
        #cklt(#LT()) -> #true()
        #compare(#0(),#0()) -> #EQ()
        #compare(#0(),#neg(@y)) -> #GT()
        #compare(#0(),#pos(@y)) -> #LT()
        #compare(#0(),#s(@y)) -> #LT()
        #compare(#neg(@x),#0()) -> #LT()
        #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
        #compare(#neg(@x),#pos(@y)) -> #LT()
        #compare(#pos(@x),#0()) -> #GT()
        #compare(#pos(@x),#neg(@y)) -> #GT()
        #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
        #compare(#s(@x),#0()) -> #GT()
        #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
      Signature:
        {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2}
      Obligation:
        Innermost
        basic terms: {#cklt,#compare,#less,merge,merge#1,merge#2,merge#3,mergesort,mergesort#1,mergesort#2,mergesort#3,msplit,msplit#1,msplit#2,msplit#3}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        #less#(@x,@y) -> c_1(#cklt#(#compare(@x,@y)),#compare#(@x,@y))
        merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
        merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
        merge#1#(nil(),@l2) -> c_4()
        merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys),#less#(@x,@y))
        merge#2#(nil(),@x,@xs) -> c_6()
        merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
        merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
        mergesort#(@l) -> c_9(mergesort#1#(@l))
        mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
        mergesort#1#(nil()) -> c_11()
        mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
        mergesort#2#(nil(),@x1) -> c_13()
        mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
        msplit#(@l) -> c_15(msplit#1#(@l))
        msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
        msplit#1#(nil()) -> c_17()
        msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#3#(msplit(@xs'),@x1,@x2),msplit#(@xs'))
        msplit#2#(nil(),@x1) -> c_19()
        msplit#3#(tuple#2(@l1,@l2),@x1,@x2) -> c_20()
      Weak DPs
        #cklt#(#EQ()) -> c_21()
        #cklt#(#GT()) -> c_22()
        #cklt#(#LT()) -> c_23()
        #compare#(#0(),#0()) -> c_24()
        #compare#(#0(),#neg(@y)) -> c_25()
        #compare#(#0(),#pos(@y)) -> c_26()
        #compare#(#0(),#s(@y)) -> c_27()
        #compare#(#neg(@x),#0()) -> c_28()
        #compare#(#neg(@x),#neg(@y)) -> c_29(#compare#(@y,@x))
        #compare#(#neg(@x),#pos(@y)) -> c_30()
        #compare#(#pos(@x),#0()) -> c_31()
        #compare#(#pos(@x),#neg(@y)) -> c_32()
        #compare#(#pos(@x),#pos(@y)) -> c_33(#compare#(@x,@y))
        #compare#(#s(@x),#0()) -> c_34()
        #compare#(#s(@x),#s(@y)) -> c_35(#compare#(@x,@y))
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        #less#(@x,@y) -> c_1(#cklt#(#compare(@x,@y)),#compare#(@x,@y))
        merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
        merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
        merge#1#(nil(),@l2) -> c_4()
        merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys),#less#(@x,@y))
        merge#2#(nil(),@x,@xs) -> c_6()
        merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
        merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
        mergesort#(@l) -> c_9(mergesort#1#(@l))
        mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
        mergesort#1#(nil()) -> c_11()
        mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
        mergesort#2#(nil(),@x1) -> c_13()
        mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
        msplit#(@l) -> c_15(msplit#1#(@l))
        msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
        msplit#1#(nil()) -> c_17()
        msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#3#(msplit(@xs'),@x1,@x2),msplit#(@xs'))
        msplit#2#(nil(),@x1) -> c_19()
        msplit#3#(tuple#2(@l1,@l2),@x1,@x2) -> c_20()
      Strict TRS Rules:
        
      Weak DP Rules:
        #cklt#(#EQ()) -> c_21()
        #cklt#(#GT()) -> c_22()
        #cklt#(#LT()) -> c_23()
        #compare#(#0(),#0()) -> c_24()
        #compare#(#0(),#neg(@y)) -> c_25()
        #compare#(#0(),#pos(@y)) -> c_26()
        #compare#(#0(),#s(@y)) -> c_27()
        #compare#(#neg(@x),#0()) -> c_28()
        #compare#(#neg(@x),#neg(@y)) -> c_29(#compare#(@y,@x))
        #compare#(#neg(@x),#pos(@y)) -> c_30()
        #compare#(#pos(@x),#0()) -> c_31()
        #compare#(#pos(@x),#neg(@y)) -> c_32()
        #compare#(#pos(@x),#pos(@y)) -> c_33(#compare#(@x,@y))
        #compare#(#s(@x),#0()) -> c_34()
        #compare#(#s(@x),#s(@y)) -> c_35(#compare#(@x,@y))
      Weak TRS Rules:
        #cklt(#EQ()) -> #false()
        #cklt(#GT()) -> #false()
        #cklt(#LT()) -> #true()
        #compare(#0(),#0()) -> #EQ()
        #compare(#0(),#neg(@y)) -> #GT()
        #compare(#0(),#pos(@y)) -> #LT()
        #compare(#0(),#s(@y)) -> #LT()
        #compare(#neg(@x),#0()) -> #LT()
        #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
        #compare(#neg(@x),#pos(@y)) -> #LT()
        #compare(#pos(@x),#0()) -> #GT()
        #compare(#pos(@x),#neg(@y)) -> #GT()
        #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
        #compare(#s(@x),#0()) -> #GT()
        #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
        #less(@x,@y) -> #cklt(#compare(@x,@y))
        merge(@l1,@l2) -> merge#1(@l1,@l2)
        merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
        merge#1(nil(),@l2) -> @l2
        merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
        merge#2(nil(),@x,@xs) -> ::(@x,@xs)
        merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
        merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
        mergesort(@l) -> mergesort#1(@l)
        mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
        mergesort#1(nil()) -> nil()
        mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
        mergesort#2(nil(),@x1) -> ::(@x1,nil())
        mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
        msplit(@l) -> msplit#1(@l)
        msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
        msplit#1(nil()) -> tuple#2(nil(),nil())
        msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
        msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
        msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
      Signature:
        {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/2,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/2,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
      Obligation:
        Innermost
        basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,4,6,11,13,17,19,20}
      by application of
        Pre({1,4,6,11,13,17,19,20}) = {2,3,5,9,10,15,16,18}.
      Here rules are labelled as follows:
        1:  #less#(@x,@y) ->                             
              c_1(#cklt#(#compare(@x,@y))                
                 ,#compare#(@x,@y))                      
        2:  merge#(@l1,@l2) ->                           
              c_2(merge#1#(@l1,@l2))                     
        3:  merge#1#(::(@x,@xs),@l2) ->                  
              c_3(merge#2#(@l2,@x,@xs))                  
        4:  merge#1#(nil(),@l2) -> c_4()                 
        5:  merge#2#(::(@y,@ys),@x,@xs) ->               
              c_5(merge#3#(#less(@x,@y)                  
                          ,@x                            
                          ,@xs                           
                          ,@y                            
                          ,@ys)                          
                 ,#less#(@x,@y))                         
        6:  merge#2#(nil(),@x,@xs) -> c_6()              
        7:  merge#3#(#false()                            
                    ,@x                                  
                    ,@xs                                 
                    ,@y                                  
                    ,@ys) -> c_7(merge#(::(@x,@xs)       
                                       ,@ys))            
        8:  merge#3#(#true()                             
                    ,@x                                  
                    ,@xs                                 
                    ,@y                                  
                    ,@ys) -> c_8(merge#(@xs              
                                       ,::(@y,@ys)))     
        9:  mergesort#(@l) ->                            
              c_9(mergesort#1#(@l))                      
        10: mergesort#1#(::(@x1,@xs)) ->                 
              c_10(mergesort#2#(@xs,@x1))                
        11: mergesort#1#(nil()) -> c_11()                
        12: mergesort#2#(::(@x2,@xs')                    
                        ,@x1) ->                         
              c_12(mergesort#3#(msplit(::(@x1            
                                         ,::(@x2,@xs'))))
                  ,msplit#(::(@x1,::(@x2,@xs'))))        
        13: mergesort#2#(nil(),@x1) ->                   
              c_13()                                     
        14: mergesort#3#(tuple#2(@l1                     
                                ,@l2)) ->                
              c_14(merge#(mergesort(@l1)                 
                         ,mergesort(@l2))                
                  ,mergesort#(@l1)                       
                  ,mergesort#(@l2))                      
        15: msplit#(@l) ->                               
              c_15(msplit#1#(@l))                        
        16: msplit#1#(::(@x1,@xs)) ->                    
              c_16(msplit#2#(@xs,@x1))                   
        17: msplit#1#(nil()) -> c_17()                   
        18: msplit#2#(::(@x2,@xs'),@x1) ->               
              c_18(msplit#3#(msplit(@xs')                
                            ,@x1                         
                            ,@x2)                        
                  ,msplit#(@xs'))                        
        19: msplit#2#(nil(),@x1) -> c_19()               
        20: msplit#3#(tuple#2(@l1,@l2)                   
                     ,@x1                                
                     ,@x2) -> c_20()                     
        21: #cklt#(#EQ()) -> c_21()                      
        22: #cklt#(#GT()) -> c_22()                      
        23: #cklt#(#LT()) -> c_23()                      
        24: #compare#(#0(),#0()) -> c_24()               
        25: #compare#(#0(),#neg(@y)) ->                  
              c_25()                                     
        26: #compare#(#0(),#pos(@y)) ->                  
              c_26()                                     
        27: #compare#(#0(),#s(@y)) -> c_27()             
        28: #compare#(#neg(@x),#0()) ->                  
              c_28()                                     
        29: #compare#(#neg(@x),#neg(@y)) ->              
              c_29(#compare#(@y,@x))                     
        30: #compare#(#neg(@x),#pos(@y)) ->              
              c_30()                                     
        31: #compare#(#pos(@x),#0()) ->                  
              c_31()                                     
        32: #compare#(#pos(@x),#neg(@y)) ->              
              c_32()                                     
        33: #compare#(#pos(@x),#pos(@y)) ->              
              c_33(#compare#(@x,@y))                     
        34: #compare#(#s(@x),#0()) -> c_34()             
        35: #compare#(#s(@x),#s(@y)) ->                  
              c_35(#compare#(@x,@y))                     
*** 1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
        merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
        merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys),#less#(@x,@y))
        merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
        merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
        mergesort#(@l) -> c_9(mergesort#1#(@l))
        mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
        mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
        mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
        msplit#(@l) -> c_15(msplit#1#(@l))
        msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
        msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#3#(msplit(@xs'),@x1,@x2),msplit#(@xs'))
      Strict TRS Rules:
        
      Weak DP Rules:
        #cklt#(#EQ()) -> c_21()
        #cklt#(#GT()) -> c_22()
        #cklt#(#LT()) -> c_23()
        #compare#(#0(),#0()) -> c_24()
        #compare#(#0(),#neg(@y)) -> c_25()
        #compare#(#0(),#pos(@y)) -> c_26()
        #compare#(#0(),#s(@y)) -> c_27()
        #compare#(#neg(@x),#0()) -> c_28()
        #compare#(#neg(@x),#neg(@y)) -> c_29(#compare#(@y,@x))
        #compare#(#neg(@x),#pos(@y)) -> c_30()
        #compare#(#pos(@x),#0()) -> c_31()
        #compare#(#pos(@x),#neg(@y)) -> c_32()
        #compare#(#pos(@x),#pos(@y)) -> c_33(#compare#(@x,@y))
        #compare#(#s(@x),#0()) -> c_34()
        #compare#(#s(@x),#s(@y)) -> c_35(#compare#(@x,@y))
        #less#(@x,@y) -> c_1(#cklt#(#compare(@x,@y)),#compare#(@x,@y))
        merge#1#(nil(),@l2) -> c_4()
        merge#2#(nil(),@x,@xs) -> c_6()
        mergesort#1#(nil()) -> c_11()
        mergesort#2#(nil(),@x1) -> c_13()
        msplit#1#(nil()) -> c_17()
        msplit#2#(nil(),@x1) -> c_19()
        msplit#3#(tuple#2(@l1,@l2),@x1,@x2) -> c_20()
      Weak TRS Rules:
        #cklt(#EQ()) -> #false()
        #cklt(#GT()) -> #false()
        #cklt(#LT()) -> #true()
        #compare(#0(),#0()) -> #EQ()
        #compare(#0(),#neg(@y)) -> #GT()
        #compare(#0(),#pos(@y)) -> #LT()
        #compare(#0(),#s(@y)) -> #LT()
        #compare(#neg(@x),#0()) -> #LT()
        #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
        #compare(#neg(@x),#pos(@y)) -> #LT()
        #compare(#pos(@x),#0()) -> #GT()
        #compare(#pos(@x),#neg(@y)) -> #GT()
        #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
        #compare(#s(@x),#0()) -> #GT()
        #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
        #less(@x,@y) -> #cklt(#compare(@x,@y))
        merge(@l1,@l2) -> merge#1(@l1,@l2)
        merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
        merge#1(nil(),@l2) -> @l2
        merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
        merge#2(nil(),@x,@xs) -> ::(@x,@xs)
        merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
        merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
        mergesort(@l) -> mergesort#1(@l)
        mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
        mergesort#1(nil()) -> nil()
        mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
        mergesort#2(nil(),@x1) -> ::(@x1,nil())
        mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
        msplit(@l) -> msplit#1(@l)
        msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
        msplit#1(nil()) -> tuple#2(nil(),nil())
        msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
        msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
        msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
      Signature:
        {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/2,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/2,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
      Obligation:
        Innermost
        basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
           -->_1 merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs)):2
           -->_1 merge#1#(nil(),@l2) -> c_4():29
        
        2:S:merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
           -->_1 merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys),#less#(@x,@y)):3
           -->_1 merge#2#(nil(),@x,@xs) -> c_6():30
        
        3:S:merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys),#less#(@x,@y))
           -->_2 #less#(@x,@y) -> c_1(#cklt#(#compare(@x,@y)),#compare#(@x,@y)):28
           -->_1 merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys))):5
           -->_1 merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys)):4
        
        4:S:merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
           -->_1 merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2)):1
        
        5:S:merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
           -->_1 merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2)):1
        
        6:S:mergesort#(@l) -> c_9(mergesort#1#(@l))
           -->_1 mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1)):7
           -->_1 mergesort#1#(nil()) -> c_11():31
        
        7:S:mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
           -->_1 mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs')))):8
           -->_1 mergesort#2#(nil(),@x1) -> c_13():32
        
        8:S:mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
           -->_2 msplit#(@l) -> c_15(msplit#1#(@l)):10
           -->_1 mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2)):9
        
        9:S:mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
           -->_3 mergesort#(@l) -> c_9(mergesort#1#(@l)):6
           -->_2 mergesort#(@l) -> c_9(mergesort#1#(@l)):6
           -->_1 merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2)):1
        
        10:S:msplit#(@l) -> c_15(msplit#1#(@l))
           -->_1 msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1)):11
           -->_1 msplit#1#(nil()) -> c_17():33
        
        11:S:msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
           -->_1 msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#3#(msplit(@xs'),@x1,@x2),msplit#(@xs')):12
           -->_1 msplit#2#(nil(),@x1) -> c_19():34
        
        12:S:msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#3#(msplit(@xs'),@x1,@x2),msplit#(@xs'))
           -->_1 msplit#3#(tuple#2(@l1,@l2),@x1,@x2) -> c_20():35
           -->_2 msplit#(@l) -> c_15(msplit#1#(@l)):10
        
        13:W:#cklt#(#EQ()) -> c_21()
           
        
        14:W:#cklt#(#GT()) -> c_22()
           
        
        15:W:#cklt#(#LT()) -> c_23()
           
        
        16:W:#compare#(#0(),#0()) -> c_24()
           
        
        17:W:#compare#(#0(),#neg(@y)) -> c_25()
           
        
        18:W:#compare#(#0(),#pos(@y)) -> c_26()
           
        
        19:W:#compare#(#0(),#s(@y)) -> c_27()
           
        
        20:W:#compare#(#neg(@x),#0()) -> c_28()
           
        
        21:W:#compare#(#neg(@x),#neg(@y)) -> c_29(#compare#(@y,@x))
           -->_1 #compare#(#s(@x),#s(@y)) -> c_35(#compare#(@x,@y)):27
           -->_1 #compare#(#pos(@x),#pos(@y)) -> c_33(#compare#(@x,@y)):25
           -->_1 #compare#(#s(@x),#0()) -> c_34():26
           -->_1 #compare#(#pos(@x),#neg(@y)) -> c_32():24
           -->_1 #compare#(#pos(@x),#0()) -> c_31():23
           -->_1 #compare#(#neg(@x),#pos(@y)) -> c_30():22
           -->_1 #compare#(#neg(@x),#neg(@y)) -> c_29(#compare#(@y,@x)):21
           -->_1 #compare#(#neg(@x),#0()) -> c_28():20
           -->_1 #compare#(#0(),#s(@y)) -> c_27():19
           -->_1 #compare#(#0(),#pos(@y)) -> c_26():18
           -->_1 #compare#(#0(),#neg(@y)) -> c_25():17
           -->_1 #compare#(#0(),#0()) -> c_24():16
        
        22:W:#compare#(#neg(@x),#pos(@y)) -> c_30()
           
        
        23:W:#compare#(#pos(@x),#0()) -> c_31()
           
        
        24:W:#compare#(#pos(@x),#neg(@y)) -> c_32()
           
        
        25:W:#compare#(#pos(@x),#pos(@y)) -> c_33(#compare#(@x,@y))
           -->_1 #compare#(#s(@x),#s(@y)) -> c_35(#compare#(@x,@y)):27
           -->_1 #compare#(#s(@x),#0()) -> c_34():26
           -->_1 #compare#(#pos(@x),#pos(@y)) -> c_33(#compare#(@x,@y)):25
           -->_1 #compare#(#pos(@x),#neg(@y)) -> c_32():24
           -->_1 #compare#(#pos(@x),#0()) -> c_31():23
           -->_1 #compare#(#neg(@x),#pos(@y)) -> c_30():22
           -->_1 #compare#(#neg(@x),#neg(@y)) -> c_29(#compare#(@y,@x)):21
           -->_1 #compare#(#neg(@x),#0()) -> c_28():20
           -->_1 #compare#(#0(),#s(@y)) -> c_27():19
           -->_1 #compare#(#0(),#pos(@y)) -> c_26():18
           -->_1 #compare#(#0(),#neg(@y)) -> c_25():17
           -->_1 #compare#(#0(),#0()) -> c_24():16
        
        26:W:#compare#(#s(@x),#0()) -> c_34()
           
        
        27:W:#compare#(#s(@x),#s(@y)) -> c_35(#compare#(@x,@y))
           -->_1 #compare#(#s(@x),#s(@y)) -> c_35(#compare#(@x,@y)):27
           -->_1 #compare#(#s(@x),#0()) -> c_34():26
           -->_1 #compare#(#pos(@x),#pos(@y)) -> c_33(#compare#(@x,@y)):25
           -->_1 #compare#(#pos(@x),#neg(@y)) -> c_32():24
           -->_1 #compare#(#pos(@x),#0()) -> c_31():23
           -->_1 #compare#(#neg(@x),#pos(@y)) -> c_30():22
           -->_1 #compare#(#neg(@x),#neg(@y)) -> c_29(#compare#(@y,@x)):21
           -->_1 #compare#(#neg(@x),#0()) -> c_28():20
           -->_1 #compare#(#0(),#s(@y)) -> c_27():19
           -->_1 #compare#(#0(),#pos(@y)) -> c_26():18
           -->_1 #compare#(#0(),#neg(@y)) -> c_25():17
           -->_1 #compare#(#0(),#0()) -> c_24():16
        
        28:W:#less#(@x,@y) -> c_1(#cklt#(#compare(@x,@y)),#compare#(@x,@y))
           -->_2 #compare#(#s(@x),#s(@y)) -> c_35(#compare#(@x,@y)):27
           -->_2 #compare#(#s(@x),#0()) -> c_34():26
           -->_2 #compare#(#pos(@x),#pos(@y)) -> c_33(#compare#(@x,@y)):25
           -->_2 #compare#(#pos(@x),#neg(@y)) -> c_32():24
           -->_2 #compare#(#pos(@x),#0()) -> c_31():23
           -->_2 #compare#(#neg(@x),#pos(@y)) -> c_30():22
           -->_2 #compare#(#neg(@x),#neg(@y)) -> c_29(#compare#(@y,@x)):21
           -->_2 #compare#(#neg(@x),#0()) -> c_28():20
           -->_2 #compare#(#0(),#s(@y)) -> c_27():19
           -->_2 #compare#(#0(),#pos(@y)) -> c_26():18
           -->_2 #compare#(#0(),#neg(@y)) -> c_25():17
           -->_2 #compare#(#0(),#0()) -> c_24():16
           -->_1 #cklt#(#LT()) -> c_23():15
           -->_1 #cklt#(#GT()) -> c_22():14
           -->_1 #cklt#(#EQ()) -> c_21():13
        
        29:W:merge#1#(nil(),@l2) -> c_4()
           
        
        30:W:merge#2#(nil(),@x,@xs) -> c_6()
           
        
        31:W:mergesort#1#(nil()) -> c_11()
           
        
        32:W:mergesort#2#(nil(),@x1) -> c_13()
           
        
        33:W:msplit#1#(nil()) -> c_17()
           
        
        34:W:msplit#2#(nil(),@x1) -> c_19()
           
        
        35:W:msplit#3#(tuple#2(@l1,@l2),@x1,@x2) -> c_20()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        31: mergesort#1#(nil()) -> c_11()   
        32: mergesort#2#(nil(),@x1) ->      
              c_13()                        
        33: msplit#1#(nil()) -> c_17()      
        34: msplit#2#(nil(),@x1) -> c_19()  
        35: msplit#3#(tuple#2(@l1,@l2)      
                     ,@x1                   
                     ,@x2) -> c_20()        
        29: merge#1#(nil(),@l2) -> c_4()    
        30: merge#2#(nil(),@x,@xs) -> c_6() 
        28: #less#(@x,@y) ->                
              c_1(#cklt#(#compare(@x,@y))   
                 ,#compare#(@x,@y))         
        13: #cklt#(#EQ()) -> c_21()         
        14: #cklt#(#GT()) -> c_22()         
        15: #cklt#(#LT()) -> c_23()         
        27: #compare#(#s(@x),#s(@y)) ->     
              c_35(#compare#(@x,@y))        
        25: #compare#(#pos(@x),#pos(@y)) -> 
              c_33(#compare#(@x,@y))        
        21: #compare#(#neg(@x),#neg(@y)) -> 
              c_29(#compare#(@y,@x))        
        16: #compare#(#0(),#0()) -> c_24()  
        17: #compare#(#0(),#neg(@y)) ->     
              c_25()                        
        18: #compare#(#0(),#pos(@y)) ->     
              c_26()                        
        19: #compare#(#0(),#s(@y)) -> c_27()
        20: #compare#(#neg(@x),#0()) ->     
              c_28()                        
        22: #compare#(#neg(@x),#pos(@y)) -> 
              c_30()                        
        23: #compare#(#pos(@x),#0()) ->     
              c_31()                        
        24: #compare#(#pos(@x),#neg(@y)) -> 
              c_32()                        
        26: #compare#(#s(@x),#0()) -> c_34()
*** 1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
        merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
        merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys),#less#(@x,@y))
        merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
        merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
        mergesort#(@l) -> c_9(mergesort#1#(@l))
        mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
        mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
        mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
        msplit#(@l) -> c_15(msplit#1#(@l))
        msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
        msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#3#(msplit(@xs'),@x1,@x2),msplit#(@xs'))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        #cklt(#EQ()) -> #false()
        #cklt(#GT()) -> #false()
        #cklt(#LT()) -> #true()
        #compare(#0(),#0()) -> #EQ()
        #compare(#0(),#neg(@y)) -> #GT()
        #compare(#0(),#pos(@y)) -> #LT()
        #compare(#0(),#s(@y)) -> #LT()
        #compare(#neg(@x),#0()) -> #LT()
        #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
        #compare(#neg(@x),#pos(@y)) -> #LT()
        #compare(#pos(@x),#0()) -> #GT()
        #compare(#pos(@x),#neg(@y)) -> #GT()
        #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
        #compare(#s(@x),#0()) -> #GT()
        #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
        #less(@x,@y) -> #cklt(#compare(@x,@y))
        merge(@l1,@l2) -> merge#1(@l1,@l2)
        merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
        merge#1(nil(),@l2) -> @l2
        merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
        merge#2(nil(),@x,@xs) -> ::(@x,@xs)
        merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
        merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
        mergesort(@l) -> mergesort#1(@l)
        mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
        mergesort#1(nil()) -> nil()
        mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
        mergesort#2(nil(),@x1) -> ::(@x1,nil())
        mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
        msplit(@l) -> msplit#1(@l)
        msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
        msplit#1(nil()) -> tuple#2(nil(),nil())
        msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
        msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
        msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
      Signature:
        {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/2,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/2,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
      Obligation:
        Innermost
        basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
    Applied Processor:
      SimplifyRHS
    Proof:
      Consider the dependency graph
        1:S:merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
           -->_1 merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs)):2
        
        2:S:merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
           -->_1 merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys),#less#(@x,@y)):3
        
        3:S:merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys),#less#(@x,@y))
           -->_1 merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys))):5
           -->_1 merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys)):4
        
        4:S:merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
           -->_1 merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2)):1
        
        5:S:merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
           -->_1 merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2)):1
        
        6:S:mergesort#(@l) -> c_9(mergesort#1#(@l))
           -->_1 mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1)):7
        
        7:S:mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
           -->_1 mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs')))):8
        
        8:S:mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
           -->_2 msplit#(@l) -> c_15(msplit#1#(@l)):10
           -->_1 mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2)):9
        
        9:S:mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
           -->_3 mergesort#(@l) -> c_9(mergesort#1#(@l)):6
           -->_2 mergesort#(@l) -> c_9(mergesort#1#(@l)):6
           -->_1 merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2)):1
        
        10:S:msplit#(@l) -> c_15(msplit#1#(@l))
           -->_1 msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1)):11
        
        11:S:msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
           -->_1 msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#3#(msplit(@xs'),@x1,@x2),msplit#(@xs')):12
        
        12:S:msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#3#(msplit(@xs'),@x1,@x2),msplit#(@xs'))
           -->_2 msplit#(@l) -> c_15(msplit#1#(@l)):10
        
      Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
        merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys))
        msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
*** 1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
        merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
        merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys))
        merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
        merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
        mergesort#(@l) -> c_9(mergesort#1#(@l))
        mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
        mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
        mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
        msplit#(@l) -> c_15(msplit#1#(@l))
        msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
        msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        #cklt(#EQ()) -> #false()
        #cklt(#GT()) -> #false()
        #cklt(#LT()) -> #true()
        #compare(#0(),#0()) -> #EQ()
        #compare(#0(),#neg(@y)) -> #GT()
        #compare(#0(),#pos(@y)) -> #LT()
        #compare(#0(),#s(@y)) -> #LT()
        #compare(#neg(@x),#0()) -> #LT()
        #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
        #compare(#neg(@x),#pos(@y)) -> #LT()
        #compare(#pos(@x),#0()) -> #GT()
        #compare(#pos(@x),#neg(@y)) -> #GT()
        #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
        #compare(#s(@x),#0()) -> #GT()
        #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
        #less(@x,@y) -> #cklt(#compare(@x,@y))
        merge(@l1,@l2) -> merge#1(@l1,@l2)
        merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
        merge#1(nil(),@l2) -> @l2
        merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
        merge#2(nil(),@x,@xs) -> ::(@x,@xs)
        merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
        merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
        mergesort(@l) -> mergesort#1(@l)
        mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
        mergesort#1(nil()) -> nil()
        mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
        mergesort#2(nil(),@x1) -> ::(@x1,nil())
        mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
        msplit(@l) -> msplit#1(@l)
        msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
        msplit#1(nil()) -> tuple#2(nil(),nil())
        msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
        msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
        msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
      Signature:
        {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
      Obligation:
        Innermost
        basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
    Applied Processor:
      Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    Proof:
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
      
      Problem (R)
        Strict DP Rules:
          merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
          merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
          merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys))
          merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
          merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
        Strict TRS Rules:
          
        Weak DP Rules:
          mergesort#(@l) -> c_9(mergesort#1#(@l))
          mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
          mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
          mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
          msplit#(@l) -> c_15(msplit#1#(@l))
          msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
          msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
        Weak TRS Rules:
          #cklt(#EQ()) -> #false()
          #cklt(#GT()) -> #false()
          #cklt(#LT()) -> #true()
          #compare(#0(),#0()) -> #EQ()
          #compare(#0(),#neg(@y)) -> #GT()
          #compare(#0(),#pos(@y)) -> #LT()
          #compare(#0(),#s(@y)) -> #LT()
          #compare(#neg(@x),#0()) -> #LT()
          #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
          #compare(#neg(@x),#pos(@y)) -> #LT()
          #compare(#pos(@x),#0()) -> #GT()
          #compare(#pos(@x),#neg(@y)) -> #GT()
          #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
          #compare(#s(@x),#0()) -> #GT()
          #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
          #less(@x,@y) -> #cklt(#compare(@x,@y))
          merge(@l1,@l2) -> merge#1(@l1,@l2)
          merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
          merge#1(nil(),@l2) -> @l2
          merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
          merge#2(nil(),@x,@xs) -> ::(@x,@xs)
          merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
          merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
          mergesort(@l) -> mergesort#1(@l)
          mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
          mergesort#1(nil()) -> nil()
          mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
          mergesort#2(nil(),@x1) -> ::(@x1,nil())
          mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
          msplit(@l) -> msplit#1(@l)
          msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
          msplit#1(nil()) -> tuple#2(nil(),nil())
          msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
          msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
          msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
        Signature:
          {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
        Obligation:
          Innermost
          basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
      
      Problem (S)
        Strict DP Rules:
          mergesort#(@l) -> c_9(mergesort#1#(@l))
          mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
          mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
          mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
          msplit#(@l) -> c_15(msplit#1#(@l))
          msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
          msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
        Strict TRS Rules:
          
        Weak DP Rules:
          merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
          merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
          merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys))
          merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
          merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
        Weak TRS Rules:
          #cklt(#EQ()) -> #false()
          #cklt(#GT()) -> #false()
          #cklt(#LT()) -> #true()
          #compare(#0(),#0()) -> #EQ()
          #compare(#0(),#neg(@y)) -> #GT()
          #compare(#0(),#pos(@y)) -> #LT()
          #compare(#0(),#s(@y)) -> #LT()
          #compare(#neg(@x),#0()) -> #LT()
          #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
          #compare(#neg(@x),#pos(@y)) -> #LT()
          #compare(#pos(@x),#0()) -> #GT()
          #compare(#pos(@x),#neg(@y)) -> #GT()
          #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
          #compare(#s(@x),#0()) -> #GT()
          #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
          #less(@x,@y) -> #cklt(#compare(@x,@y))
          merge(@l1,@l2) -> merge#1(@l1,@l2)
          merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
          merge#1(nil(),@l2) -> @l2
          merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
          merge#2(nil(),@x,@xs) -> ::(@x,@xs)
          merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
          merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
          mergesort(@l) -> mergesort#1(@l)
          mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
          mergesort#1(nil()) -> nil()
          mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
          mergesort#2(nil(),@x1) -> ::(@x1,nil())
          mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
          msplit(@l) -> msplit#1(@l)
          msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
          msplit#1(nil()) -> tuple#2(nil(),nil())
          msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
          msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
          msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
        Signature:
          {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
        Obligation:
          Innermost
          basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
  *** 1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
          merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
          merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys))
          merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
          merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
        Strict TRS Rules:
          
        Weak DP Rules:
          mergesort#(@l) -> c_9(mergesort#1#(@l))
          mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
          mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
          mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
          msplit#(@l) -> c_15(msplit#1#(@l))
          msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
          msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
        Weak TRS Rules:
          #cklt(#EQ()) -> #false()
          #cklt(#GT()) -> #false()
          #cklt(#LT()) -> #true()
          #compare(#0(),#0()) -> #EQ()
          #compare(#0(),#neg(@y)) -> #GT()
          #compare(#0(),#pos(@y)) -> #LT()
          #compare(#0(),#s(@y)) -> #LT()
          #compare(#neg(@x),#0()) -> #LT()
          #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
          #compare(#neg(@x),#pos(@y)) -> #LT()
          #compare(#pos(@x),#0()) -> #GT()
          #compare(#pos(@x),#neg(@y)) -> #GT()
          #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
          #compare(#s(@x),#0()) -> #GT()
          #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
          #less(@x,@y) -> #cklt(#compare(@x,@y))
          merge(@l1,@l2) -> merge#1(@l1,@l2)
          merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
          merge#1(nil(),@l2) -> @l2
          merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
          merge#2(nil(),@x,@xs) -> ::(@x,@xs)
          merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
          merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
          mergesort(@l) -> mergesort#1(@l)
          mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
          mergesort#1(nil()) -> nil()
          mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
          mergesort#2(nil(),@x1) -> ::(@x1,nil())
          mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
          msplit(@l) -> msplit#1(@l)
          msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
          msplit#1(nil()) -> tuple#2(nil(),nil())
          msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
          msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
          msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
        Signature:
          {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
        Obligation:
          Innermost
          basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
             -->_1 merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs)):2
          
          2:S:merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
             -->_1 merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys)):3
          
          3:S:merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys))
             -->_1 merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys))):5
             -->_1 merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys)):4
          
          4:S:merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
             -->_1 merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2)):1
          
          5:S:merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
             -->_1 merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2)):1
          
          6:W:mergesort#(@l) -> c_9(mergesort#1#(@l))
             -->_1 mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1)):7
          
          7:W:mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
             -->_1 mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs')))):8
          
          8:W:mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
             -->_1 mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2)):9
             -->_2 msplit#(@l) -> c_15(msplit#1#(@l)):10
          
          9:W:mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
             -->_3 mergesort#(@l) -> c_9(mergesort#1#(@l)):6
             -->_2 mergesort#(@l) -> c_9(mergesort#1#(@l)):6
             -->_1 merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2)):1
          
          10:W:msplit#(@l) -> c_15(msplit#1#(@l))
             -->_1 msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1)):11
          
          11:W:msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
             -->_1 msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs')):12
          
          12:W:msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
             -->_1 msplit#(@l) -> c_15(msplit#1#(@l)):10
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          10: msplit#(@l) ->                
                c_15(msplit#1#(@l))         
          12: msplit#2#(::(@x2,@xs'),@x1) ->
                c_18(msplit#(@xs'))         
          11: msplit#1#(::(@x1,@xs)) ->     
                c_16(msplit#2#(@xs,@x1))    
  *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
          merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
          merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys))
          merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
          merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
        Strict TRS Rules:
          
        Weak DP Rules:
          mergesort#(@l) -> c_9(mergesort#1#(@l))
          mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
          mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
          mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
        Weak TRS Rules:
          #cklt(#EQ()) -> #false()
          #cklt(#GT()) -> #false()
          #cklt(#LT()) -> #true()
          #compare(#0(),#0()) -> #EQ()
          #compare(#0(),#neg(@y)) -> #GT()
          #compare(#0(),#pos(@y)) -> #LT()
          #compare(#0(),#s(@y)) -> #LT()
          #compare(#neg(@x),#0()) -> #LT()
          #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
          #compare(#neg(@x),#pos(@y)) -> #LT()
          #compare(#pos(@x),#0()) -> #GT()
          #compare(#pos(@x),#neg(@y)) -> #GT()
          #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
          #compare(#s(@x),#0()) -> #GT()
          #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
          #less(@x,@y) -> #cklt(#compare(@x,@y))
          merge(@l1,@l2) -> merge#1(@l1,@l2)
          merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
          merge#1(nil(),@l2) -> @l2
          merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
          merge#2(nil(),@x,@xs) -> ::(@x,@xs)
          merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
          merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
          mergesort(@l) -> mergesort#1(@l)
          mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
          mergesort#1(nil()) -> nil()
          mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
          mergesort#2(nil(),@x1) -> ::(@x1,nil())
          mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
          msplit(@l) -> msplit#1(@l)
          msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
          msplit#1(nil()) -> tuple#2(nil(),nil())
          msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
          msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
          msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
        Signature:
          {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
        Obligation:
          Innermost
          basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
      Applied Processor:
        SimplifyRHS
      Proof:
        Consider the dependency graph
          1:S:merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
             -->_1 merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs)):2
          
          2:S:merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
             -->_1 merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys)):3
          
          3:S:merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys))
             -->_1 merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys))):5
             -->_1 merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys)):4
          
          4:S:merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
             -->_1 merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2)):1
          
          5:S:merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
             -->_1 merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2)):1
          
          6:W:mergesort#(@l) -> c_9(mergesort#1#(@l))
             -->_1 mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1)):7
          
          7:W:mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
             -->_1 mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs')))):8
          
          8:W:mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
             -->_1 mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2)):9
          
          9:W:mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
             -->_3 mergesort#(@l) -> c_9(mergesort#1#(@l)):6
             -->_2 mergesort#(@l) -> c_9(mergesort#1#(@l)):6
             -->_1 merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))))
  *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
          merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
          merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys))
          merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
          merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
        Strict TRS Rules:
          
        Weak DP Rules:
          mergesort#(@l) -> c_9(mergesort#1#(@l))
          mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
          mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))))
          mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
        Weak TRS Rules:
          #cklt(#EQ()) -> #false()
          #cklt(#GT()) -> #false()
          #cklt(#LT()) -> #true()
          #compare(#0(),#0()) -> #EQ()
          #compare(#0(),#neg(@y)) -> #GT()
          #compare(#0(),#pos(@y)) -> #LT()
          #compare(#0(),#s(@y)) -> #LT()
          #compare(#neg(@x),#0()) -> #LT()
          #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
          #compare(#neg(@x),#pos(@y)) -> #LT()
          #compare(#pos(@x),#0()) -> #GT()
          #compare(#pos(@x),#neg(@y)) -> #GT()
          #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
          #compare(#s(@x),#0()) -> #GT()
          #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
          #less(@x,@y) -> #cklt(#compare(@x,@y))
          merge(@l1,@l2) -> merge#1(@l1,@l2)
          merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
          merge#1(nil(),@l2) -> @l2
          merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
          merge#2(nil(),@x,@xs) -> ::(@x,@xs)
          merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
          merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
          mergesort(@l) -> mergesort#1(@l)
          mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
          mergesort#1(nil()) -> nil()
          mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
          mergesort#2(nil(),@x1) -> ::(@x1,nil())
          mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
          msplit(@l) -> msplit#1(@l)
          msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
          msplit#1(nil()) -> tuple#2(nil(),nil())
          msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
          msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
          msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
        Signature:
          {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/1,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
        Obligation:
          Innermost
          basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
      Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
      Proof:
        We decompose the input problem according to the dependency graph into the upper component
          mergesort#(@l) -> c_9(mergesort#1#(@l))
          mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
          mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))))
          mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
        and a lower component
          merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
          merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
          merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys))
          merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
          merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
        Further, following extension rules are added to the lower component.
          mergesort#(@l) -> mergesort#1#(@l)
          mergesort#1#(::(@x1,@xs)) -> mergesort#2#(@xs,@x1)
          mergesort#2#(::(@x2,@xs'),@x1) -> mergesort#3#(msplit(::(@x1,::(@x2,@xs'))))
          mergesort#3#(tuple#2(@l1,@l2)) -> merge#(mergesort(@l1),mergesort(@l2))
          mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l1)
          mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l2)
    *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
          Strict TRS Rules:
            
          Weak DP Rules:
            mergesort#(@l) -> c_9(mergesort#1#(@l))
            mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
            mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))))
          Weak TRS Rules:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            merge(@l1,@l2) -> merge#1(@l1,@l2)
            merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
            merge#1(nil(),@l2) -> @l2
            merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
            merge#2(nil(),@x,@xs) -> ::(@x,@xs)
            merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
            merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
            mergesort(@l) -> mergesort#1(@l)
            mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
            mergesort#1(nil()) -> nil()
            mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
            mergesort#2(nil(),@x1) -> ::(@x1,nil())
            mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
            msplit(@l) -> msplit#1(@l)
            msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
            msplit#1(nil()) -> tuple#2(nil(),nil())
            msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
            msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
            msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
          Signature:
            {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/1,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
          Obligation:
            Innermost
            basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            1: mergesort#3#(tuple#2(@l1     
                                   ,@l2)) ->
                 c_14(merge#(mergesort(@l1) 
                            ,mergesort(@l2))
                     ,mergesort#(@l1)       
                     ,mergesort#(@l2))      
            
          Consider the set of all dependency pairs
            1: mergesort#3#(tuple#2(@l1                      
                                   ,@l2)) ->                 
                 c_14(merge#(mergesort(@l1)                  
                            ,mergesort(@l2))                 
                     ,mergesort#(@l1)                        
                     ,mergesort#(@l2))                       
            2: mergesort#(@l) ->                             
                 c_9(mergesort#1#(@l))                       
            3: mergesort#1#(::(@x1,@xs)) ->                  
                 c_10(mergesort#2#(@xs,@x1))                 
            4: mergesort#2#(::(@x2,@xs')                     
                           ,@x1) ->                          
                 c_12(mergesort#3#(msplit(::(@x1             
                                            ,::(@x2,@xs')))))
          Processor NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
          SPACE(?,?)on application of the dependency pairs
            {1}
          These cover all (indirect) predecessors of dependency pairs
            {1,2,3,4}
          their number of applications is equally bounded.
          The dependency pairs are shifted into the weak component.
      *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
            Strict TRS Rules:
              
            Weak DP Rules:
              mergesort#(@l) -> c_9(mergesort#1#(@l))
              mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
              mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))))
            Weak TRS Rules:
              #cklt(#EQ()) -> #false()
              #cklt(#GT()) -> #false()
              #cklt(#LT()) -> #true()
              #compare(#0(),#0()) -> #EQ()
              #compare(#0(),#neg(@y)) -> #GT()
              #compare(#0(),#pos(@y)) -> #LT()
              #compare(#0(),#s(@y)) -> #LT()
              #compare(#neg(@x),#0()) -> #LT()
              #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
              #compare(#neg(@x),#pos(@y)) -> #LT()
              #compare(#pos(@x),#0()) -> #GT()
              #compare(#pos(@x),#neg(@y)) -> #GT()
              #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
              #compare(#s(@x),#0()) -> #GT()
              #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
              #less(@x,@y) -> #cklt(#compare(@x,@y))
              merge(@l1,@l2) -> merge#1(@l1,@l2)
              merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
              merge#1(nil(),@l2) -> @l2
              merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
              merge#2(nil(),@x,@xs) -> ::(@x,@xs)
              merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
              merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
              mergesort(@l) -> mergesort#1(@l)
              mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
              mergesort#1(nil()) -> nil()
              mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
              mergesort#2(nil(),@x1) -> ::(@x1,nil())
              mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
              msplit(@l) -> msplit#1(@l)
              msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
              msplit#1(nil()) -> tuple#2(nil(),nil())
              msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
              msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
              msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
            Signature:
              {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/1,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
            Obligation:
              Innermost
              basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
          Applied Processor:
            NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
            The following argument positions are considered usable:
              uargs(c_9) = {1},
              uargs(c_10) = {1},
              uargs(c_12) = {1},
              uargs(c_14) = {1,2,3}
            
            Following symbols are considered usable:
              {msplit,msplit#1,msplit#2,msplit#3,#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}
            TcT has computed the following interpretation:
                        p(#0) = [0]                           
                                [0]                           
                                [0]                           
                       p(#EQ) = [0]                           
                                [1]                           
                                [0]                           
                       p(#GT) = [0]                           
                                [0]                           
                                [0]                           
                       p(#LT) = [0]                           
                                [0]                           
                                [0]                           
                     p(#cklt) = [1 0 1]      [1]              
                                [0 1 0] x1 + [0]              
                                [1 1 1]      [1]              
                  p(#compare) = [1 0 0]      [0 1 1]      [0] 
                                [0 0 1] x1 + [1 0 0] x2 + [1] 
                                [1 0 1]      [0 1 0]      [1] 
                    p(#false) = [0]                           
                                [0]                           
                                [0]                           
                     p(#less) = [0 0 0]      [0 0 0]      [0] 
                                [0 1 1] x1 + [0 0 1] x2 + [1] 
                                [1 0 1]      [1 0 1]      [0] 
                      p(#neg) = [1]                           
                                [1]                           
                                [0]                           
                      p(#pos) = [0]                           
                                [1]                           
                                [1]                           
                        p(#s) = [0 1 0]      [1]              
                                [0 0 0] x1 + [1]              
                                [0 0 0]      [0]              
                     p(#true) = [1]                           
                                [0]                           
                                [0]                           
                        p(::) = [0 1 0]      [0]              
                                [0 0 1] x2 + [0]              
                                [0 0 1]      [1]              
                     p(merge) = [1 0 0]      [0 1 1]      [0] 
                                [0 0 1] x1 + [0 0 1] x2 + [1] 
                                [0 0 0]      [0 0 0]      [1] 
                   p(merge#1) = [0 0 0]      [0]              
                                [0 0 1] x1 + [0]              
                                [0 0 0]      [0]              
                   p(merge#2) = [0 0 0]      [0]              
                                [1 0 0] x1 + [0]              
                                [0 0 0]      [0]              
                   p(merge#3) = [0 1 1]      [0 0 0]      [0] 
                                [0 0 1] x1 + [0 0 1] x4 + [0] 
                                [1 1 0]      [0 0 0]      [0] 
                 p(mergesort) = [0 0 0]      [1]              
                                [0 0 0] x1 + [0]              
                                [0 0 1]      [1]              
               p(mergesort#1) = [0 0 1]      [0]              
                                [0 0 0] x1 + [1]              
                                [0 0 1]      [1]              
               p(mergesort#2) = [0 0 0]      [0]              
                                [0 0 1] x1 + [0]              
                                [1 0 0]      [0]              
               p(mergesort#3) = [0 0 1]      [0]              
                                [0 0 0] x1 + [0]              
                                [0 0 0]      [0]              
                    p(msplit) = [1 0 0]      [0]              
                                [0 0 1] x1 + [0]              
                                [0 0 0]      [1]              
                  p(msplit#1) = [1 0 0]      [0]              
                                [0 0 1] x1 + [0]              
                                [0 0 0]      [1]              
                  p(msplit#2) = [0 1 0]      [0]              
                                [0 0 1] x1 + [1]              
                                [0 0 0]      [1]              
                  p(msplit#3) = [0 1 0]      [0]              
                                [0 1 1] x1 + [1]              
                                [0 0 0]      [1]              
                       p(nil) = [0]                           
                                [0]                           
                                [0]                           
                   p(tuple#2) = [0 1 0]      [0 1 0]      [0] 
                                [0 0 1] x1 + [0 0 1] x2 + [0] 
                                [0 0 0]      [0 0 0]      [1] 
                    p(#cklt#) = [0]                           
                                [0]                           
                                [0]                           
                 p(#compare#) = [0]                           
                                [0]                           
                                [0]                           
                    p(#less#) = [0]                           
                                [0]                           
                                [0]                           
                    p(merge#) = [0]                           
                                [1]                           
                                [0]                           
                  p(merge#1#) = [0]                           
                                [0]                           
                                [0]                           
                  p(merge#2#) = [0]                           
                                [0]                           
                                [0]                           
                  p(merge#3#) = [0]                           
                                [0]                           
                                [0]                           
                p(mergesort#) = [0 1 0]      [0]              
                                [0 0 0] x1 + [0]              
                                [0 0 0]      [0]              
              p(mergesort#1#) = [0 1 0]      [0]              
                                [1 0 1] x1 + [0]              
                                [1 0 1]      [1]              
              p(mergesort#2#) = [0 0 1]      [0]              
                                [0 0 0] x1 + [1]              
                                [0 1 0]      [0]              
              p(mergesort#3#) = [1 0 0]      [1]              
                                [0 1 0] x1 + [1]              
                                [0 0 1]      [1]              
                   p(msplit#) = [0]                           
                                [0]                           
                                [0]                           
                 p(msplit#1#) = [0]                           
                                [0]                           
                                [0]                           
                 p(msplit#2#) = [0]                           
                                [0]                           
                                [0]                           
                 p(msplit#3#) = [0]                           
                                [0]                           
                                [0]                           
                       p(c_1) = [0]                           
                                [0]                           
                                [0]                           
                       p(c_2) = [0]                           
                                [0]                           
                                [0]                           
                       p(c_3) = [0]                           
                                [0]                           
                                [0]                           
                       p(c_4) = [0]                           
                                [0]                           
                                [0]                           
                       p(c_5) = [0]                           
                                [0]                           
                                [0]                           
                       p(c_6) = [0]                           
                                [0]                           
                                [0]                           
                       p(c_7) = [0]                           
                                [0]                           
                                [0]                           
                       p(c_8) = [0]                           
                                [0]                           
                                [0]                           
                       p(c_9) = [1 0 0]      [0]              
                                [0 0 0] x1 + [0]              
                                [0 0 0]      [0]              
                      p(c_10) = [1 0 0]      [0]              
                                [0 1 0] x1 + [0]              
                                [0 0 1]      [0]              
                      p(c_11) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_12) = [1 0 0]      [0]              
                                [0 0 0] x1 + [1]              
                                [0 0 0]      [0]              
                      p(c_13) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_14) = [1 0 0]      [1 0 0]      [1 0
                                0]      [0]                   
                                [0 0 0] x1 + [0 0 0] x2 + [0 0
                                0] x3 + [0]                   
                                [0 0 0]      [0 0 0]      [0 0
                                0]      [0]                   
                      p(c_15) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_16) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_17) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_18) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_19) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_20) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_21) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_22) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_23) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_24) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_25) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_26) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_27) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_28) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_29) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_30) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_31) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_32) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_33) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_34) = [0]                           
                                [0]                           
                                [0]                           
                      p(c_35) = [0]                           
                                [0]                           
                                [0]                           
            
            Following rules are strictly oriented:
            mergesort#3#(tuple#2(@l1,@l2)) = [0 1 0]       [0 1 0]       [1]
                                             [0 0 1] @l1 + [0 0 1] @l2 + [1]
                                             [0 0 0]       [0 0 0]       [2]
                                           > [0 1 0]       [0 1 0]       [0]
                                             [0 0 0] @l1 + [0 0 0] @l2 + [0]
                                             [0 0 0]       [0 0 0]       [0]
                                           = c_14(merge#(mergesort(@l1)     
                                                        ,mergesort(@l2))    
                                                 ,mergesort#(@l1)           
                                                 ,mergesort#(@l2))          
            
            
            Following rules are (at-least) weakly oriented:
                            mergesort#(@l) =  [0 1 0]      [0]                            
                                              [0 0 0] @l + [0]                            
                                              [0 0 0]      [0]                            
                                           >= [0 1 0]      [0]                            
                                              [0 0 0] @l + [0]                            
                                              [0 0 0]      [0]                            
                                           =  c_9(mergesort#1#(@l))                       
            
                 mergesort#1#(::(@x1,@xs)) =  [0 0 1]       [0]                           
                                              [0 1 1] @xs + [1]                           
                                              [0 1 1]       [2]                           
                                           >= [0 0 1]       [0]                           
                                              [0 0 0] @xs + [1]                           
                                              [0 1 0]       [0]                           
                                           =  c_10(mergesort#2#(@xs,@x1))                 
            
            mergesort#2#(::(@x2,@xs'),@x1) =  [0 0 1]        [1]                          
                                              [0 0 0] @xs' + [1]                          
                                              [0 0 1]        [0]                          
                                           >= [0 0 1]        [1]                          
                                              [0 0 0] @xs' + [1]                          
                                              [0 0 0]        [0]                          
                                           =  c_12(mergesort#3#(msplit(::(@x1             
                                                                         ,::(@x2,@xs')))))
            
                                msplit(@l) =  [1 0 0]      [0]                            
                                              [0 0 1] @l + [0]                            
                                              [0 0 0]      [1]                            
                                           >= [1 0 0]      [0]                            
                                              [0 0 1] @l + [0]                            
                                              [0 0 0]      [1]                            
                                           =  msplit#1(@l)                                
            
                     msplit#1(::(@x1,@xs)) =  [0 1 0]       [0]                           
                                              [0 0 1] @xs + [1]                           
                                              [0 0 0]       [1]                           
                                           >= [0 1 0]       [0]                           
                                              [0 0 1] @xs + [1]                           
                                              [0 0 0]       [1]                           
                                           =  msplit#2(@xs,@x1)                           
            
                           msplit#1(nil()) =  [0]                                         
                                              [0]                                         
                                              [1]                                         
                                           >= [0]                                         
                                              [0]                                         
                                              [1]                                         
                                           =  tuple#2(nil(),nil())                        
            
                msplit#2(::(@x2,@xs'),@x1) =  [0 0 1]        [0]                          
                                              [0 0 1] @xs' + [2]                          
                                              [0 0 0]        [1]                          
                                           >= [0 0 1]        [0]                          
                                              [0 0 1] @xs' + [2]                          
                                              [0 0 0]        [1]                          
                                           =  msplit#3(msplit(@xs'),@x1,@x2)              
            
                       msplit#2(nil(),@x1) =  [0]                                         
                                              [1]                                         
                                              [1]                                         
                                           >= [0]                                         
                                              [1]                                         
                                              [1]                                         
                                           =  tuple#2(::(@x1,nil()),nil())                
            
                 msplit#3(tuple#2(@l1,@l2) =  [0 0 1]       [0 0 1]       [0]             
                                      ,@x1    [0 0 1] @l1 + [0 0 1] @l2 + [2]             
                                     ,@x2)    [0 0 0]       [0 0 0]       [1]             
                                           >= [0 0 1]       [0 0 1]       [0]             
                                              [0 0 1] @l1 + [0 0 1] @l2 + [2]             
                                              [0 0 0]       [0 0 0]       [1]             
                                           =  tuple#2(::(@x1,@l1),::(@x2,@l2))            
            
      *** 1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              mergesort#(@l) -> c_9(mergesort#1#(@l))
              mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
              mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))))
              mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
            Weak TRS Rules:
              #cklt(#EQ()) -> #false()
              #cklt(#GT()) -> #false()
              #cklt(#LT()) -> #true()
              #compare(#0(),#0()) -> #EQ()
              #compare(#0(),#neg(@y)) -> #GT()
              #compare(#0(),#pos(@y)) -> #LT()
              #compare(#0(),#s(@y)) -> #LT()
              #compare(#neg(@x),#0()) -> #LT()
              #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
              #compare(#neg(@x),#pos(@y)) -> #LT()
              #compare(#pos(@x),#0()) -> #GT()
              #compare(#pos(@x),#neg(@y)) -> #GT()
              #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
              #compare(#s(@x),#0()) -> #GT()
              #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
              #less(@x,@y) -> #cklt(#compare(@x,@y))
              merge(@l1,@l2) -> merge#1(@l1,@l2)
              merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
              merge#1(nil(),@l2) -> @l2
              merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
              merge#2(nil(),@x,@xs) -> ::(@x,@xs)
              merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
              merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
              mergesort(@l) -> mergesort#1(@l)
              mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
              mergesort#1(nil()) -> nil()
              mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
              mergesort#2(nil(),@x1) -> ::(@x1,nil())
              mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
              msplit(@l) -> msplit#1(@l)
              msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
              msplit#1(nil()) -> tuple#2(nil(),nil())
              msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
              msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
              msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
            Signature:
              {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/1,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
            Obligation:
              Innermost
              basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              mergesort#(@l) -> c_9(mergesort#1#(@l))
              mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
              mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))))
              mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
            Weak TRS Rules:
              #cklt(#EQ()) -> #false()
              #cklt(#GT()) -> #false()
              #cklt(#LT()) -> #true()
              #compare(#0(),#0()) -> #EQ()
              #compare(#0(),#neg(@y)) -> #GT()
              #compare(#0(),#pos(@y)) -> #LT()
              #compare(#0(),#s(@y)) -> #LT()
              #compare(#neg(@x),#0()) -> #LT()
              #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
              #compare(#neg(@x),#pos(@y)) -> #LT()
              #compare(#pos(@x),#0()) -> #GT()
              #compare(#pos(@x),#neg(@y)) -> #GT()
              #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
              #compare(#s(@x),#0()) -> #GT()
              #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
              #less(@x,@y) -> #cklt(#compare(@x,@y))
              merge(@l1,@l2) -> merge#1(@l1,@l2)
              merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
              merge#1(nil(),@l2) -> @l2
              merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
              merge#2(nil(),@x,@xs) -> ::(@x,@xs)
              merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
              merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
              mergesort(@l) -> mergesort#1(@l)
              mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
              mergesort#1(nil()) -> nil()
              mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
              mergesort#2(nil(),@x1) -> ::(@x1,nil())
              mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
              msplit(@l) -> msplit#1(@l)
              msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
              msplit#1(nil()) -> tuple#2(nil(),nil())
              msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
              msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
              msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
            Signature:
              {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/1,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
            Obligation:
              Innermost
              basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:W:mergesort#(@l) -> c_9(mergesort#1#(@l))
                 -->_1 mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1)):2
              
              2:W:mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
                 -->_1 mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs'))))):3
              
              3:W:mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))))
                 -->_1 mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2)):4
              
              4:W:mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
                 -->_3 mergesort#(@l) -> c_9(mergesort#1#(@l)):1
                 -->_2 mergesort#(@l) -> c_9(mergesort#1#(@l)):1
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              1: mergesort#(@l) ->                             
                   c_9(mergesort#1#(@l))                       
              4: mergesort#3#(tuple#2(@l1                      
                                     ,@l2)) ->                 
                   c_14(merge#(mergesort(@l1)                  
                              ,mergesort(@l2))                 
                       ,mergesort#(@l1)                        
                       ,mergesort#(@l2))                       
              3: mergesort#2#(::(@x2,@xs')                     
                             ,@x1) ->                          
                   c_12(mergesort#3#(msplit(::(@x1             
                                              ,::(@x2,@xs')))))
              2: mergesort#1#(::(@x1,@xs)) ->                  
                   c_10(mergesort#2#(@xs,@x1))                 
      *** 1.1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              #cklt(#EQ()) -> #false()
              #cklt(#GT()) -> #false()
              #cklt(#LT()) -> #true()
              #compare(#0(),#0()) -> #EQ()
              #compare(#0(),#neg(@y)) -> #GT()
              #compare(#0(),#pos(@y)) -> #LT()
              #compare(#0(),#s(@y)) -> #LT()
              #compare(#neg(@x),#0()) -> #LT()
              #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
              #compare(#neg(@x),#pos(@y)) -> #LT()
              #compare(#pos(@x),#0()) -> #GT()
              #compare(#pos(@x),#neg(@y)) -> #GT()
              #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
              #compare(#s(@x),#0()) -> #GT()
              #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
              #less(@x,@y) -> #cklt(#compare(@x,@y))
              merge(@l1,@l2) -> merge#1(@l1,@l2)
              merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
              merge#1(nil(),@l2) -> @l2
              merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
              merge#2(nil(),@x,@xs) -> ::(@x,@xs)
              merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
              merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
              mergesort(@l) -> mergesort#1(@l)
              mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
              mergesort#1(nil()) -> nil()
              mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
              mergesort#2(nil(),@x1) -> ::(@x1,nil())
              mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
              msplit(@l) -> msplit#1(@l)
              msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
              msplit#1(nil()) -> tuple#2(nil(),nil())
              msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
              msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
              msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
            Signature:
              {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/1,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
            Obligation:
              Innermost
              basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
          Applied Processor:
            EmptyProcessor
          Proof:
            The problem is already closed. The intended complexity is O(1).
      
    *** 1.1.1.1.1.1.1.1.2 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
            merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
            merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys))
            merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
            merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
          Strict TRS Rules:
            
          Weak DP Rules:
            mergesort#(@l) -> mergesort#1#(@l)
            mergesort#1#(::(@x1,@xs)) -> mergesort#2#(@xs,@x1)
            mergesort#2#(::(@x2,@xs'),@x1) -> mergesort#3#(msplit(::(@x1,::(@x2,@xs'))))
            mergesort#3#(tuple#2(@l1,@l2)) -> merge#(mergesort(@l1),mergesort(@l2))
            mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l1)
            mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l2)
          Weak TRS Rules:
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            merge(@l1,@l2) -> merge#1(@l1,@l2)
            merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
            merge#1(nil(),@l2) -> @l2
            merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
            merge#2(nil(),@x,@xs) -> ::(@x,@xs)
            merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
            merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
            mergesort(@l) -> mergesort#1(@l)
            mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
            mergesort#1(nil()) -> nil()
            mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
            mergesort#2(nil(),@x1) -> ::(@x1,nil())
            mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
            msplit(@l) -> msplit#1(@l)
            msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
            msplit#1(nil()) -> tuple#2(nil(),nil())
            msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
            msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
            msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
          Signature:
            {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/1,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
          Obligation:
            Innermost
            basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            4: merge#3#(#false()                       
                       ,@x                             
                       ,@xs                            
                       ,@y                             
                       ,@ys) -> c_7(merge#(::(@x,@xs)  
                                          ,@ys))       
            5: merge#3#(#true()                        
                       ,@x                             
                       ,@xs                            
                       ,@y                             
                       ,@ys) -> c_8(merge#(@xs         
                                          ,::(@y,@ys)))
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
              merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
              merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys))
              merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
              merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
            Strict TRS Rules:
              
            Weak DP Rules:
              mergesort#(@l) -> mergesort#1#(@l)
              mergesort#1#(::(@x1,@xs)) -> mergesort#2#(@xs,@x1)
              mergesort#2#(::(@x2,@xs'),@x1) -> mergesort#3#(msplit(::(@x1,::(@x2,@xs'))))
              mergesort#3#(tuple#2(@l1,@l2)) -> merge#(mergesort(@l1),mergesort(@l2))
              mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l1)
              mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l2)
            Weak TRS Rules:
              #cklt(#EQ()) -> #false()
              #cklt(#GT()) -> #false()
              #cklt(#LT()) -> #true()
              #compare(#0(),#0()) -> #EQ()
              #compare(#0(),#neg(@y)) -> #GT()
              #compare(#0(),#pos(@y)) -> #LT()
              #compare(#0(),#s(@y)) -> #LT()
              #compare(#neg(@x),#0()) -> #LT()
              #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
              #compare(#neg(@x),#pos(@y)) -> #LT()
              #compare(#pos(@x),#0()) -> #GT()
              #compare(#pos(@x),#neg(@y)) -> #GT()
              #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
              #compare(#s(@x),#0()) -> #GT()
              #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
              #less(@x,@y) -> #cklt(#compare(@x,@y))
              merge(@l1,@l2) -> merge#1(@l1,@l2)
              merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
              merge#1(nil(),@l2) -> @l2
              merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
              merge#2(nil(),@x,@xs) -> ::(@x,@xs)
              merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
              merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
              mergesort(@l) -> mergesort#1(@l)
              mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
              mergesort#1(nil()) -> nil()
              mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
              mergesort#2(nil(),@x1) -> ::(@x1,nil())
              mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
              msplit(@l) -> msplit#1(@l)
              msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
              msplit#1(nil()) -> tuple#2(nil(),nil())
              msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
              msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
              msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
            Signature:
              {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/1,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
            Obligation:
              Innermost
              basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
          Applied Processor:
            NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation:
            The following argument positions are considered usable:
              uargs(c_2) = {1},
              uargs(c_3) = {1},
              uargs(c_5) = {1},
              uargs(c_7) = {1},
              uargs(c_8) = {1}
            
            Following symbols are considered usable:
              {merge,merge#1,merge#2,merge#3,mergesort,mergesort#1,mergesort#2,mergesort#3,msplit,msplit#1,msplit#2,msplit#3,#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}
            TcT has computed the following interpretation:
                        p(#0) = [1]                  
                       p(#EQ) = [0]                  
                       p(#GT) = [1]                  
                       p(#LT) = [2]                  
                     p(#cklt) = [7] x1 + [0]         
                  p(#compare) = [2] x1 + [2] x2 + [2]
                    p(#false) = [0]                  
                     p(#less) = [4] x1 + [0]         
                      p(#neg) = [0]                  
                      p(#pos) = [1] x1 + [0]         
                        p(#s) = [1]                  
                     p(#true) = [0]                  
                        p(::) = [1] x2 + [2]         
                     p(merge) = [1] x1 + [1] x2 + [0]
                   p(merge#1) = [1] x1 + [1] x2 + [0]
                   p(merge#2) = [1] x1 + [1] x3 + [2]
                   p(merge#3) = [1] x3 + [1] x5 + [4]
                 p(mergesort) = [2] x1 + [0]         
               p(mergesort#1) = [2] x1 + [0]         
               p(mergesort#2) = [2] x1 + [4]         
               p(mergesort#3) = [2] x1 + [0]         
                    p(msplit) = [1] x1 + [0]         
                  p(msplit#1) = [1] x1 + [0]         
                  p(msplit#2) = [1] x1 + [2]         
                  p(msplit#3) = [1] x1 + [4]         
                       p(nil) = [0]                  
                   p(tuple#2) = [1] x1 + [1] x2 + [0]
                    p(#cklt#) = [4] x1 + [2]         
                 p(#compare#) = [1] x1 + [1] x2 + [2]
                    p(#less#) = [4] x1 + [1]         
                    p(merge#) = [1] x1 + [1] x2 + [0]
                  p(merge#1#) = [1] x1 + [1] x2 + [0]
                  p(merge#2#) = [1] x1 + [1] x3 + [2]
                  p(merge#3#) = [1] x3 + [1] x5 + [4]
                p(mergesort#) = [2] x1 + [1]         
              p(mergesort#1#) = [2] x1 + [1]         
              p(mergesort#2#) = [2] x1 + [5]         
              p(mergesort#3#) = [2] x1 + [1]         
                   p(msplit#) = [0]                  
                 p(msplit#1#) = [0]                  
                 p(msplit#2#) = [2] x2 + [0]         
                 p(msplit#3#) = [2] x2 + [0]         
                       p(c_1) = [1] x2 + [4]         
                       p(c_2) = [1] x1 + [0]         
                       p(c_3) = [1] x1 + [0]         
                       p(c_4) = [2]                  
                       p(c_5) = [1] x1 + [0]         
                       p(c_6) = [2]                  
                       p(c_7) = [1] x1 + [0]         
                       p(c_8) = [1] x1 + [0]         
                       p(c_9) = [1] x1 + [1]         
                      p(c_10) = [1]                  
                      p(c_11) = [0]                  
                      p(c_12) = [1]                  
                      p(c_13) = [2]                  
                      p(c_14) = [1] x2 + [1] x3 + [4]
                      p(c_15) = [2]                  
                      p(c_16) = [4] x1 + [4]         
                      p(c_17) = [0]                  
                      p(c_18) = [2] x1 + [1]         
                      p(c_19) = [1]                  
                      p(c_20) = [1]                  
                      p(c_21) = [4]                  
                      p(c_22) = [0]                  
                      p(c_23) = [0]                  
                      p(c_24) = [0]                  
                      p(c_25) = [1]                  
                      p(c_26) = [0]                  
                      p(c_27) = [0]                  
                      p(c_28) = [0]                  
                      p(c_29) = [1]                  
                      p(c_30) = [1]                  
                      p(c_31) = [1]                  
                      p(c_32) = [0]                  
                      p(c_33) = [2]                  
                      p(c_34) = [1]                  
                      p(c_35) = [2] x1 + [1]         
            
            Following rules are strictly oriented:
            merge#3#(#false(),@x,@xs,@y,@ys) = [1] @xs + [1] @ys + [4]    
                                             > [1] @xs + [1] @ys + [2]    
                                             = c_7(merge#(::(@x,@xs),@ys))
            
             merge#3#(#true(),@x,@xs,@y,@ys) = [1] @xs + [1] @ys + [4]    
                                             > [1] @xs + [1] @ys + [2]    
                                             = c_8(merge#(@xs,::(@y,@ys)))
            
            
            Following rules are (at-least) weakly oriented:
                            merge#(@l1,@l2) =  [1] @l1 + [1] @l2 + [0]               
                                            >= [1] @l1 + [1] @l2 + [0]               
                                            =  c_2(merge#1#(@l1,@l2))                
            
                   merge#1#(::(@x,@xs),@l2) =  [1] @l2 + [1] @xs + [2]               
                                            >= [1] @l2 + [1] @xs + [2]               
                                            =  c_3(merge#2#(@l2,@x,@xs))             
            
                merge#2#(::(@y,@ys),@x,@xs) =  [1] @xs + [1] @ys + [4]               
                                            >= [1] @xs + [1] @ys + [4]               
                                            =  c_5(merge#3#(#less(@x,@y)             
                                                           ,@x                       
                                                           ,@xs                      
                                                           ,@y                       
                                                           ,@ys))                    
            
                             mergesort#(@l) =  [2] @l + [1]                          
                                            >= [2] @l + [1]                          
                                            =  mergesort#1#(@l)                      
            
                  mergesort#1#(::(@x1,@xs)) =  [2] @xs + [5]                         
                                            >= [2] @xs + [5]                         
                                            =  mergesort#2#(@xs,@x1)                 
            
             mergesort#2#(::(@x2,@xs'),@x1) =  [2] @xs' + [9]                        
                                            >= [2] @xs' + [9]                        
                                            =  mergesort#3#(msplit(::(@x1            
                                                                     ,::(@x2,@xs'))))
            
             mergesort#3#(tuple#2(@l1,@l2)) =  [2] @l1 + [2] @l2 + [1]               
                                            >= [2] @l1 + [2] @l2 + [0]               
                                            =  merge#(mergesort(@l1)                 
                                                     ,mergesort(@l2))                
            
             mergesort#3#(tuple#2(@l1,@l2)) =  [2] @l1 + [2] @l2 + [1]               
                                            >= [2] @l1 + [1]                         
                                            =  mergesort#(@l1)                       
            
             mergesort#3#(tuple#2(@l1,@l2)) =  [2] @l1 + [2] @l2 + [1]               
                                            >= [2] @l2 + [1]                         
                                            =  mergesort#(@l2)                       
            
                             merge(@l1,@l2) =  [1] @l1 + [1] @l2 + [0]               
                                            >= [1] @l1 + [1] @l2 + [0]               
                                            =  merge#1(@l1,@l2)                      
            
                    merge#1(::(@x,@xs),@l2) =  [1] @l2 + [1] @xs + [2]               
                                            >= [1] @l2 + [1] @xs + [2]               
                                            =  merge#2(@l2,@x,@xs)                   
            
                         merge#1(nil(),@l2) =  [1] @l2 + [0]                         
                                            >= [1] @l2 + [0]                         
                                            =  @l2                                   
            
                 merge#2(::(@y,@ys),@x,@xs) =  [1] @xs + [1] @ys + [4]               
                                            >= [1] @xs + [1] @ys + [4]               
                                            =  merge#3(#less(@x,@y)                  
                                                      ,@x                            
                                                      ,@xs                           
                                                      ,@y                            
                                                      ,@ys)                          
            
                      merge#2(nil(),@x,@xs) =  [1] @xs + [2]                         
                                            >= [1] @xs + [2]                         
                                            =  ::(@x,@xs)                            
            
            merge#3(#false(),@x,@xs,@y,@ys) =  [1] @xs + [1] @ys + [4]               
                                            >= [1] @xs + [1] @ys + [4]               
                                            =  ::(@y,merge(::(@x,@xs),@ys))          
            
             merge#3(#true(),@x,@xs,@y,@ys) =  [1] @xs + [1] @ys + [4]               
                                            >= [1] @xs + [1] @ys + [4]               
                                            =  ::(@x,merge(@xs,::(@y,@ys)))          
            
                              mergesort(@l) =  [2] @l + [0]                          
                                            >= [2] @l + [0]                          
                                            =  mergesort#1(@l)                       
            
                   mergesort#1(::(@x1,@xs)) =  [2] @xs + [4]                         
                                            >= [2] @xs + [4]                         
                                            =  mergesort#2(@xs,@x1)                  
            
                         mergesort#1(nil()) =  [0]                                   
                                            >= [0]                                   
                                            =  nil()                                 
            
              mergesort#2(::(@x2,@xs'),@x1) =  [2] @xs' + [8]                        
                                            >= [2] @xs' + [8]                        
                                            =  mergesort#3(msplit(::(@x1             
                                                                    ,::(@x2,@xs')))) 
            
                     mergesort#2(nil(),@x1) =  [4]                                   
                                            >= [2]                                   
                                            =  ::(@x1,nil())                         
            
              mergesort#3(tuple#2(@l1,@l2)) =  [2] @l1 + [2] @l2 + [0]               
                                            >= [2] @l1 + [2] @l2 + [0]               
                                            =  merge(mergesort(@l1)                  
                                                    ,mergesort(@l2))                 
            
                                 msplit(@l) =  [1] @l + [0]                          
                                            >= [1] @l + [0]                          
                                            =  msplit#1(@l)                          
            
                      msplit#1(::(@x1,@xs)) =  [1] @xs + [2]                         
                                            >= [1] @xs + [2]                         
                                            =  msplit#2(@xs,@x1)                     
            
                            msplit#1(nil()) =  [0]                                   
                                            >= [0]                                   
                                            =  tuple#2(nil(),nil())                  
            
                 msplit#2(::(@x2,@xs'),@x1) =  [1] @xs' + [4]                        
                                            >= [1] @xs' + [4]                        
                                            =  msplit#3(msplit(@xs'),@x1,@x2)        
            
                        msplit#2(nil(),@x1) =  [2]                                   
                                            >= [2]                                   
                                            =  tuple#2(::(@x1,nil()),nil())          
            
                  msplit#3(tuple#2(@l1,@l2) =  [1] @l1 + [1] @l2 + [4]               
                                       ,@x1                                          
                                      ,@x2)                                          
                                            >= [1] @l1 + [1] @l2 + [4]               
                                            =  tuple#2(::(@x1,@l1),::(@x2,@l2))      
            
      *** 1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
              merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
              merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys))
            Strict TRS Rules:
              
            Weak DP Rules:
              merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
              merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
              mergesort#(@l) -> mergesort#1#(@l)
              mergesort#1#(::(@x1,@xs)) -> mergesort#2#(@xs,@x1)
              mergesort#2#(::(@x2,@xs'),@x1) -> mergesort#3#(msplit(::(@x1,::(@x2,@xs'))))
              mergesort#3#(tuple#2(@l1,@l2)) -> merge#(mergesort(@l1),mergesort(@l2))
              mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l1)
              mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l2)
            Weak TRS Rules:
              #cklt(#EQ()) -> #false()
              #cklt(#GT()) -> #false()
              #cklt(#LT()) -> #true()
              #compare(#0(),#0()) -> #EQ()
              #compare(#0(),#neg(@y)) -> #GT()
              #compare(#0(),#pos(@y)) -> #LT()
              #compare(#0(),#s(@y)) -> #LT()
              #compare(#neg(@x),#0()) -> #LT()
              #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
              #compare(#neg(@x),#pos(@y)) -> #LT()
              #compare(#pos(@x),#0()) -> #GT()
              #compare(#pos(@x),#neg(@y)) -> #GT()
              #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
              #compare(#s(@x),#0()) -> #GT()
              #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
              #less(@x,@y) -> #cklt(#compare(@x,@y))
              merge(@l1,@l2) -> merge#1(@l1,@l2)
              merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
              merge#1(nil(),@l2) -> @l2
              merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
              merge#2(nil(),@x,@xs) -> ::(@x,@xs)
              merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
              merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
              mergesort(@l) -> mergesort#1(@l)
              mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
              mergesort#1(nil()) -> nil()
              mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
              mergesort#2(nil(),@x1) -> ::(@x1,nil())
              mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
              msplit(@l) -> msplit#1(@l)
              msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
              msplit#1(nil()) -> tuple#2(nil(),nil())
              msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
              msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
              msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
            Signature:
              {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/1,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
            Obligation:
              Innermost
              basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.1.2.2 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
              merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
              merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys))
            Strict TRS Rules:
              
            Weak DP Rules:
              merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
              merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
              mergesort#(@l) -> mergesort#1#(@l)
              mergesort#1#(::(@x1,@xs)) -> mergesort#2#(@xs,@x1)
              mergesort#2#(::(@x2,@xs'),@x1) -> mergesort#3#(msplit(::(@x1,::(@x2,@xs'))))
              mergesort#3#(tuple#2(@l1,@l2)) -> merge#(mergesort(@l1),mergesort(@l2))
              mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l1)
              mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l2)
            Weak TRS Rules:
              #cklt(#EQ()) -> #false()
              #cklt(#GT()) -> #false()
              #cklt(#LT()) -> #true()
              #compare(#0(),#0()) -> #EQ()
              #compare(#0(),#neg(@y)) -> #GT()
              #compare(#0(),#pos(@y)) -> #LT()
              #compare(#0(),#s(@y)) -> #LT()
              #compare(#neg(@x),#0()) -> #LT()
              #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
              #compare(#neg(@x),#pos(@y)) -> #LT()
              #compare(#pos(@x),#0()) -> #GT()
              #compare(#pos(@x),#neg(@y)) -> #GT()
              #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
              #compare(#s(@x),#0()) -> #GT()
              #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
              #less(@x,@y) -> #cklt(#compare(@x,@y))
              merge(@l1,@l2) -> merge#1(@l1,@l2)
              merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
              merge#1(nil(),@l2) -> @l2
              merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
              merge#2(nil(),@x,@xs) -> ::(@x,@xs)
              merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
              merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
              mergesort(@l) -> mergesort#1(@l)
              mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
              mergesort#1(nil()) -> nil()
              mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
              mergesort#2(nil(),@x1) -> ::(@x1,nil())
              mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
              msplit(@l) -> msplit#1(@l)
              msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
              msplit#1(nil()) -> tuple#2(nil(),nil())
              msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
              msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
              msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
            Signature:
              {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/1,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
            Obligation:
              Innermost
              basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              1: merge#(@l1,@l2) ->      
                   c_2(merge#1#(@l1,@l2))
              
            Consider the set of all dependency pairs
              1:  merge#(@l1,@l2) ->                                  
                    c_2(merge#1#(@l1,@l2))                            
              2:  merge#1#(::(@x,@xs),@l2) ->                         
                    c_3(merge#2#(@l2,@x,@xs))                         
              3:  merge#2#(::(@y,@ys),@x,@xs) ->                      
                    c_5(merge#3#(#less(@x,@y)                         
                                ,@x                                   
                                ,@xs                                  
                                ,@y                                   
                                ,@ys))                                
              4:  merge#3#(#false()                                   
                          ,@x                                         
                          ,@xs                                        
                          ,@y                                         
                          ,@ys) -> c_7(merge#(::(@x,@xs)              
                                             ,@ys))                   
              5:  merge#3#(#true()                                    
                          ,@x                                         
                          ,@xs                                        
                          ,@y                                         
                          ,@ys) -> c_8(merge#(@xs                     
                                             ,::(@y,@ys)))            
              6:  mergesort#(@l) ->                                   
                    mergesort#1#(@l)                                  
              7:  mergesort#1#(::(@x1,@xs)) ->                        
                    mergesort#2#(@xs,@x1)                             
              8:  mergesort#2#(::(@x2,@xs')                           
                              ,@x1) ->                                
                    mergesort#3#(msplit(::(@x1                        
                                          ,::(@x2,@xs'))))            
              9:  mergesort#3#(tuple#2(@l1                            
                                      ,@l2)) -> merge#(mergesort(@l1) 
                                                      ,mergesort(@l2))
              10: mergesort#3#(tuple#2(@l1                            
                                      ,@l2)) -> mergesort#(@l1)       
              11: mergesort#3#(tuple#2(@l1                            
                                      ,@l2)) -> mergesort#(@l2)       
            Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
            SPACE(?,?)on application of the dependency pairs
              {1}
            These cover all (indirect) predecessors of dependency pairs
              {1,2,3,4,5}
            their number of applications is equally bounded.
            The dependency pairs are shifted into the weak component.
        *** 1.1.1.1.1.1.1.1.2.2.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
                merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
                merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys))
              Strict TRS Rules:
                
              Weak DP Rules:
                merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
                merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
                mergesort#(@l) -> mergesort#1#(@l)
                mergesort#1#(::(@x1,@xs)) -> mergesort#2#(@xs,@x1)
                mergesort#2#(::(@x2,@xs'),@x1) -> mergesort#3#(msplit(::(@x1,::(@x2,@xs'))))
                mergesort#3#(tuple#2(@l1,@l2)) -> merge#(mergesort(@l1),mergesort(@l2))
                mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l1)
                mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l2)
              Weak TRS Rules:
                #cklt(#EQ()) -> #false()
                #cklt(#GT()) -> #false()
                #cklt(#LT()) -> #true()
                #compare(#0(),#0()) -> #EQ()
                #compare(#0(),#neg(@y)) -> #GT()
                #compare(#0(),#pos(@y)) -> #LT()
                #compare(#0(),#s(@y)) -> #LT()
                #compare(#neg(@x),#0()) -> #LT()
                #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
                #compare(#neg(@x),#pos(@y)) -> #LT()
                #compare(#pos(@x),#0()) -> #GT()
                #compare(#pos(@x),#neg(@y)) -> #GT()
                #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
                #compare(#s(@x),#0()) -> #GT()
                #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
                #less(@x,@y) -> #cklt(#compare(@x,@y))
                merge(@l1,@l2) -> merge#1(@l1,@l2)
                merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
                merge#1(nil(),@l2) -> @l2
                merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
                merge#2(nil(),@x,@xs) -> ::(@x,@xs)
                merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
                merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
                mergesort(@l) -> mergesort#1(@l)
                mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
                mergesort#1(nil()) -> nil()
                mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
                mergesort#2(nil(),@x1) -> ::(@x1,nil())
                mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
                msplit(@l) -> msplit#1(@l)
                msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
                msplit#1(nil()) -> tuple#2(nil(),nil())
                msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
                msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
                msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
              Signature:
                {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/1,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
              Obligation:
                Innermost
                basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
            Applied Processor:
              NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a matrix interpretation of kind constructor based matrix interpretation:
              The following argument positions are considered usable:
                uargs(c_2) = {1},
                uargs(c_3) = {1},
                uargs(c_5) = {1},
                uargs(c_7) = {1},
                uargs(c_8) = {1}
              
              Following symbols are considered usable:
                {merge,merge#1,merge#2,merge#3,mergesort,mergesort#1,mergesort#2,mergesort#3,msplit,msplit#1,msplit#2,msplit#3,#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}
              TcT has computed the following interpretation:
                          p(#0) = [0]                  
                         p(#EQ) = [2]                  
                         p(#GT) = [1]                  
                         p(#LT) = [2]                  
                       p(#cklt) = [2] x1 + [4]         
                    p(#compare) = [7] x1 + [1]         
                      p(#false) = [0]                  
                       p(#less) = [0]                  
                        p(#neg) = [0]                  
                        p(#pos) = [2]                  
                          p(#s) = [0]                  
                       p(#true) = [0]                  
                          p(::) = [1] x2 + [1]         
                       p(merge) = [1] x1 + [1] x2 + [0]
                     p(merge#1) = [1] x1 + [1] x2 + [0]
                     p(merge#2) = [1] x1 + [1] x3 + [1]
                     p(merge#3) = [1] x3 + [1] x5 + [2]
                   p(mergesort) = [1] x1 + [0]         
                 p(mergesort#1) = [1] x1 + [0]         
                 p(mergesort#2) = [1] x1 + [1]         
                 p(mergesort#3) = [1] x1 + [0]         
                      p(msplit) = [1] x1 + [0]         
                    p(msplit#1) = [1] x1 + [0]         
                    p(msplit#2) = [1] x1 + [1]         
                    p(msplit#3) = [1] x1 + [2]         
                         p(nil) = [0]                  
                     p(tuple#2) = [1] x1 + [1] x2 + [0]
                      p(#cklt#) = [0]                  
                   p(#compare#) = [1] x2 + [1]         
                      p(#less#) = [1] x1 + [0]         
                      p(merge#) = [4] x1 + [2] x2 + [2]
                    p(merge#1#) = [4] x1 + [2] x2 + [0]
                    p(merge#2#) = [2] x1 + [4] x3 + [4]
                    p(merge#3#) = [4] x3 + [2] x5 + [6]
                  p(mergesort#) = [4] x1 + [2]         
                p(mergesort#1#) = [4] x1 + [2]         
                p(mergesort#2#) = [4] x1 + [6]         
                p(mergesort#3#) = [4] x1 + [2]         
                     p(msplit#) = [2] x1 + [4]         
                   p(msplit#1#) = [1] x1 + [4]         
                   p(msplit#2#) = [1] x1 + [4] x2 + [4]
                   p(msplit#3#) = [1] x1 + [0]         
                         p(c_1) = [1] x2 + [2]         
                         p(c_2) = [1] x1 + [1]         
                         p(c_3) = [1] x1 + [0]         
                         p(c_4) = [1]                  
                         p(c_5) = [1] x1 + [0]         
                         p(c_6) = [1]                  
                         p(c_7) = [1] x1 + [0]         
                         p(c_8) = [1] x1 + [2]         
                         p(c_9) = [2]                  
                        p(c_10) = [1] x1 + [1]         
                        p(c_11) = [1]                  
                        p(c_12) = [1] x1 + [0]         
                        p(c_13) = [0]                  
                        p(c_14) = [1] x1 + [1] x2 + [4]
                        p(c_15) = [0]                  
                        p(c_16) = [1]                  
                        p(c_17) = [0]                  
                        p(c_18) = [1]                  
                        p(c_19) = [1]                  
                        p(c_20) = [0]                  
                        p(c_21) = [1]                  
                        p(c_22) = [2]                  
                        p(c_23) = [0]                  
                        p(c_24) = [0]                  
                        p(c_25) = [0]                  
                        p(c_26) = [0]                  
                        p(c_27) = [0]                  
                        p(c_28) = [0]                  
                        p(c_29) = [0]                  
                        p(c_30) = [1]                  
                        p(c_31) = [2]                  
                        p(c_32) = [0]                  
                        p(c_33) = [1] x1 + [2]         
                        p(c_34) = [1]                  
                        p(c_35) = [4] x1 + [0]         
              
              Following rules are strictly oriented:
              merge#(@l1,@l2) = [4] @l1 + [2] @l2 + [2]
                              > [4] @l1 + [2] @l2 + [1]
                              = c_2(merge#1#(@l1,@l2)) 
              
              
              Following rules are (at-least) weakly oriented:
                      merge#1#(::(@x,@xs),@l2) =  [2] @l2 + [4] @xs + [4]               
                                               >= [2] @l2 + [4] @xs + [4]               
                                               =  c_3(merge#2#(@l2,@x,@xs))             
              
                   merge#2#(::(@y,@ys),@x,@xs) =  [4] @xs + [2] @ys + [6]               
                                               >= [4] @xs + [2] @ys + [6]               
                                               =  c_5(merge#3#(#less(@x,@y)             
                                                              ,@x                       
                                                              ,@xs                      
                                                              ,@y                       
                                                              ,@ys))                    
              
              merge#3#(#false(),@x,@xs,@y,@ys) =  [4] @xs + [2] @ys + [6]               
                                               >= [4] @xs + [2] @ys + [6]               
                                               =  c_7(merge#(::(@x,@xs),@ys))           
              
               merge#3#(#true(),@x,@xs,@y,@ys) =  [4] @xs + [2] @ys + [6]               
                                               >= [4] @xs + [2] @ys + [6]               
                                               =  c_8(merge#(@xs,::(@y,@ys)))           
              
                                mergesort#(@l) =  [4] @l + [2]                          
                                               >= [4] @l + [2]                          
                                               =  mergesort#1#(@l)                      
              
                     mergesort#1#(::(@x1,@xs)) =  [4] @xs + [6]                         
                                               >= [4] @xs + [6]                         
                                               =  mergesort#2#(@xs,@x1)                 
              
                mergesort#2#(::(@x2,@xs'),@x1) =  [4] @xs' + [10]                       
                                               >= [4] @xs' + [10]                       
                                               =  mergesort#3#(msplit(::(@x1            
                                                                        ,::(@x2,@xs'))))
              
                mergesort#3#(tuple#2(@l1,@l2)) =  [4] @l1 + [4] @l2 + [2]               
                                               >= [4] @l1 + [2] @l2 + [2]               
                                               =  merge#(mergesort(@l1)                 
                                                        ,mergesort(@l2))                
              
                mergesort#3#(tuple#2(@l1,@l2)) =  [4] @l1 + [4] @l2 + [2]               
                                               >= [4] @l1 + [2]                         
                                               =  mergesort#(@l1)                       
              
                mergesort#3#(tuple#2(@l1,@l2)) =  [4] @l1 + [4] @l2 + [2]               
                                               >= [4] @l2 + [2]                         
                                               =  mergesort#(@l2)                       
              
                                merge(@l1,@l2) =  [1] @l1 + [1] @l2 + [0]               
                                               >= [1] @l1 + [1] @l2 + [0]               
                                               =  merge#1(@l1,@l2)                      
              
                       merge#1(::(@x,@xs),@l2) =  [1] @l2 + [1] @xs + [1]               
                                               >= [1] @l2 + [1] @xs + [1]               
                                               =  merge#2(@l2,@x,@xs)                   
              
                            merge#1(nil(),@l2) =  [1] @l2 + [0]                         
                                               >= [1] @l2 + [0]                         
                                               =  @l2                                   
              
                    merge#2(::(@y,@ys),@x,@xs) =  [1] @xs + [1] @ys + [2]               
                                               >= [1] @xs + [1] @ys + [2]               
                                               =  merge#3(#less(@x,@y)                  
                                                         ,@x                            
                                                         ,@xs                           
                                                         ,@y                            
                                                         ,@ys)                          
              
                         merge#2(nil(),@x,@xs) =  [1] @xs + [1]                         
                                               >= [1] @xs + [1]                         
                                               =  ::(@x,@xs)                            
              
               merge#3(#false(),@x,@xs,@y,@ys) =  [1] @xs + [1] @ys + [2]               
                                               >= [1] @xs + [1] @ys + [2]               
                                               =  ::(@y,merge(::(@x,@xs),@ys))          
              
                merge#3(#true(),@x,@xs,@y,@ys) =  [1] @xs + [1] @ys + [2]               
                                               >= [1] @xs + [1] @ys + [2]               
                                               =  ::(@x,merge(@xs,::(@y,@ys)))          
              
                                 mergesort(@l) =  [1] @l + [0]                          
                                               >= [1] @l + [0]                          
                                               =  mergesort#1(@l)                       
              
                      mergesort#1(::(@x1,@xs)) =  [1] @xs + [1]                         
                                               >= [1] @xs + [1]                         
                                               =  mergesort#2(@xs,@x1)                  
              
                            mergesort#1(nil()) =  [0]                                   
                                               >= [0]                                   
                                               =  nil()                                 
              
                 mergesort#2(::(@x2,@xs'),@x1) =  [1] @xs' + [2]                        
                                               >= [1] @xs' + [2]                        
                                               =  mergesort#3(msplit(::(@x1             
                                                                       ,::(@x2,@xs')))) 
              
                        mergesort#2(nil(),@x1) =  [1]                                   
                                               >= [1]                                   
                                               =  ::(@x1,nil())                         
              
                 mergesort#3(tuple#2(@l1,@l2)) =  [1] @l1 + [1] @l2 + [0]               
                                               >= [1] @l1 + [1] @l2 + [0]               
                                               =  merge(mergesort(@l1)                  
                                                       ,mergesort(@l2))                 
              
                                    msplit(@l) =  [1] @l + [0]                          
                                               >= [1] @l + [0]                          
                                               =  msplit#1(@l)                          
              
                         msplit#1(::(@x1,@xs)) =  [1] @xs + [1]                         
                                               >= [1] @xs + [1]                         
                                               =  msplit#2(@xs,@x1)                     
              
                               msplit#1(nil()) =  [0]                                   
                                               >= [0]                                   
                                               =  tuple#2(nil(),nil())                  
              
                    msplit#2(::(@x2,@xs'),@x1) =  [1] @xs' + [2]                        
                                               >= [1] @xs' + [2]                        
                                               =  msplit#3(msplit(@xs'),@x1,@x2)        
              
                           msplit#2(nil(),@x1) =  [1]                                   
                                               >= [1]                                   
                                               =  tuple#2(::(@x1,nil()),nil())          
              
                     msplit#3(tuple#2(@l1,@l2) =  [1] @l1 + [1] @l2 + [2]               
                                          ,@x1                                          
                                         ,@x2)                                          
                                               >= [1] @l1 + [1] @l2 + [2]               
                                               =  tuple#2(::(@x1,@l1),::(@x2,@l2))      
              
        *** 1.1.1.1.1.1.1.1.2.2.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
                merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys))
              Strict TRS Rules:
                
              Weak DP Rules:
                merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
                merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
                merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
                mergesort#(@l) -> mergesort#1#(@l)
                mergesort#1#(::(@x1,@xs)) -> mergesort#2#(@xs,@x1)
                mergesort#2#(::(@x2,@xs'),@x1) -> mergesort#3#(msplit(::(@x1,::(@x2,@xs'))))
                mergesort#3#(tuple#2(@l1,@l2)) -> merge#(mergesort(@l1),mergesort(@l2))
                mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l1)
                mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l2)
              Weak TRS Rules:
                #cklt(#EQ()) -> #false()
                #cklt(#GT()) -> #false()
                #cklt(#LT()) -> #true()
                #compare(#0(),#0()) -> #EQ()
                #compare(#0(),#neg(@y)) -> #GT()
                #compare(#0(),#pos(@y)) -> #LT()
                #compare(#0(),#s(@y)) -> #LT()
                #compare(#neg(@x),#0()) -> #LT()
                #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
                #compare(#neg(@x),#pos(@y)) -> #LT()
                #compare(#pos(@x),#0()) -> #GT()
                #compare(#pos(@x),#neg(@y)) -> #GT()
                #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
                #compare(#s(@x),#0()) -> #GT()
                #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
                #less(@x,@y) -> #cklt(#compare(@x,@y))
                merge(@l1,@l2) -> merge#1(@l1,@l2)
                merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
                merge#1(nil(),@l2) -> @l2
                merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
                merge#2(nil(),@x,@xs) -> ::(@x,@xs)
                merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
                merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
                mergesort(@l) -> mergesort#1(@l)
                mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
                mergesort#1(nil()) -> nil()
                mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
                mergesort#2(nil(),@x1) -> ::(@x1,nil())
                mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
                msplit(@l) -> msplit#1(@l)
                msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
                msplit#1(nil()) -> tuple#2(nil(),nil())
                msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
                msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
                msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
              Signature:
                {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/1,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
              Obligation:
                Innermost
                basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.1.1.2.2.2 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
                merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
                merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys))
                merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
                merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
                mergesort#(@l) -> mergesort#1#(@l)
                mergesort#1#(::(@x1,@xs)) -> mergesort#2#(@xs,@x1)
                mergesort#2#(::(@x2,@xs'),@x1) -> mergesort#3#(msplit(::(@x1,::(@x2,@xs'))))
                mergesort#3#(tuple#2(@l1,@l2)) -> merge#(mergesort(@l1),mergesort(@l2))
                mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l1)
                mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l2)
              Weak TRS Rules:
                #cklt(#EQ()) -> #false()
                #cklt(#GT()) -> #false()
                #cklt(#LT()) -> #true()
                #compare(#0(),#0()) -> #EQ()
                #compare(#0(),#neg(@y)) -> #GT()
                #compare(#0(),#pos(@y)) -> #LT()
                #compare(#0(),#s(@y)) -> #LT()
                #compare(#neg(@x),#0()) -> #LT()
                #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
                #compare(#neg(@x),#pos(@y)) -> #LT()
                #compare(#pos(@x),#0()) -> #GT()
                #compare(#pos(@x),#neg(@y)) -> #GT()
                #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
                #compare(#s(@x),#0()) -> #GT()
                #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
                #less(@x,@y) -> #cklt(#compare(@x,@y))
                merge(@l1,@l2) -> merge#1(@l1,@l2)
                merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
                merge#1(nil(),@l2) -> @l2
                merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
                merge#2(nil(),@x,@xs) -> ::(@x,@xs)
                merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
                merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
                mergesort(@l) -> mergesort#1(@l)
                mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
                mergesort#1(nil()) -> nil()
                mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
                mergesort#2(nil(),@x1) -> ::(@x1,nil())
                mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
                msplit(@l) -> msplit#1(@l)
                msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
                msplit#1(nil()) -> tuple#2(nil(),nil())
                msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
                msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
                msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
              Signature:
                {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/1,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
              Obligation:
                Innermost
                basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
            Applied Processor:
              RemoveWeakSuffixes
            Proof:
              Consider the dependency graph
                1:W:merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
                   -->_1 merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs)):2
                
                2:W:merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
                   -->_1 merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys)):3
                
                3:W:merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys))
                   -->_1 merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys))):5
                   -->_1 merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys)):4
                
                4:W:merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
                   -->_1 merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2)):1
                
                5:W:merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
                   -->_1 merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2)):1
                
                6:W:mergesort#(@l) -> mergesort#1#(@l)
                   -->_1 mergesort#1#(::(@x1,@xs)) -> mergesort#2#(@xs,@x1):7
                
                7:W:mergesort#1#(::(@x1,@xs)) -> mergesort#2#(@xs,@x1)
                   -->_1 mergesort#2#(::(@x2,@xs'),@x1) -> mergesort#3#(msplit(::(@x1,::(@x2,@xs')))):8
                
                8:W:mergesort#2#(::(@x2,@xs'),@x1) -> mergesort#3#(msplit(::(@x1,::(@x2,@xs'))))
                   -->_1 mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l2):11
                   -->_1 mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l1):10
                   -->_1 mergesort#3#(tuple#2(@l1,@l2)) -> merge#(mergesort(@l1),mergesort(@l2)):9
                
                9:W:mergesort#3#(tuple#2(@l1,@l2)) -> merge#(mergesort(@l1),mergesort(@l2))
                   -->_1 merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2)):1
                
                10:W:mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l1)
                   -->_1 mergesort#(@l) -> mergesort#1#(@l):6
                
                11:W:mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l2)
                   -->_1 mergesort#(@l) -> mergesort#1#(@l):6
                
              The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                6:  mergesort#(@l) ->                                   
                      mergesort#1#(@l)                                  
                11: mergesort#3#(tuple#2(@l1                            
                                        ,@l2)) -> mergesort#(@l2)       
                8:  mergesort#2#(::(@x2,@xs')                           
                                ,@x1) ->                                
                      mergesort#3#(msplit(::(@x1                        
                                            ,::(@x2,@xs'))))            
                7:  mergesort#1#(::(@x1,@xs)) ->                        
                      mergesort#2#(@xs,@x1)                             
                10: mergesort#3#(tuple#2(@l1                            
                                        ,@l2)) -> mergesort#(@l1)       
                9:  mergesort#3#(tuple#2(@l1                            
                                        ,@l2)) -> merge#(mergesort(@l1) 
                                                        ,mergesort(@l2))
                1:  merge#(@l1,@l2) ->                                  
                      c_2(merge#1#(@l1,@l2))                            
                5:  merge#3#(#true()                                    
                            ,@x                                         
                            ,@xs                                        
                            ,@y                                         
                            ,@ys) -> c_8(merge#(@xs                     
                                               ,::(@y,@ys)))            
                3:  merge#2#(::(@y,@ys),@x,@xs) ->                      
                      c_5(merge#3#(#less(@x,@y)                         
                                  ,@x                                   
                                  ,@xs                                  
                                  ,@y                                   
                                  ,@ys))                                
                2:  merge#1#(::(@x,@xs),@l2) ->                         
                      c_3(merge#2#(@l2,@x,@xs))                         
                4:  merge#3#(#false()                                   
                            ,@x                                         
                            ,@xs                                        
                            ,@y                                         
                            ,@ys) -> c_7(merge#(::(@x,@xs)              
                                               ,@ys))                   
        *** 1.1.1.1.1.1.1.1.2.2.2.1 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                #cklt(#EQ()) -> #false()
                #cklt(#GT()) -> #false()
                #cklt(#LT()) -> #true()
                #compare(#0(),#0()) -> #EQ()
                #compare(#0(),#neg(@y)) -> #GT()
                #compare(#0(),#pos(@y)) -> #LT()
                #compare(#0(),#s(@y)) -> #LT()
                #compare(#neg(@x),#0()) -> #LT()
                #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
                #compare(#neg(@x),#pos(@y)) -> #LT()
                #compare(#pos(@x),#0()) -> #GT()
                #compare(#pos(@x),#neg(@y)) -> #GT()
                #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
                #compare(#s(@x),#0()) -> #GT()
                #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
                #less(@x,@y) -> #cklt(#compare(@x,@y))
                merge(@l1,@l2) -> merge#1(@l1,@l2)
                merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
                merge#1(nil(),@l2) -> @l2
                merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
                merge#2(nil(),@x,@xs) -> ::(@x,@xs)
                merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
                merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
                mergesort(@l) -> mergesort#1(@l)
                mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
                mergesort#1(nil()) -> nil()
                mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
                mergesort#2(nil(),@x1) -> ::(@x1,nil())
                mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
                msplit(@l) -> msplit#1(@l)
                msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
                msplit#1(nil()) -> tuple#2(nil(),nil())
                msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
                msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
                msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
              Signature:
                {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/1,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
              Obligation:
                Innermost
                basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
            Applied Processor:
              EmptyProcessor
            Proof:
              The problem is already closed. The intended complexity is O(1).
        
  *** 1.1.1.1.1.2 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          mergesort#(@l) -> c_9(mergesort#1#(@l))
          mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
          mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
          mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
          msplit#(@l) -> c_15(msplit#1#(@l))
          msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
          msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
        Strict TRS Rules:
          
        Weak DP Rules:
          merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
          merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
          merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys))
          merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
          merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
        Weak TRS Rules:
          #cklt(#EQ()) -> #false()
          #cklt(#GT()) -> #false()
          #cklt(#LT()) -> #true()
          #compare(#0(),#0()) -> #EQ()
          #compare(#0(),#neg(@y)) -> #GT()
          #compare(#0(),#pos(@y)) -> #LT()
          #compare(#0(),#s(@y)) -> #LT()
          #compare(#neg(@x),#0()) -> #LT()
          #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
          #compare(#neg(@x),#pos(@y)) -> #LT()
          #compare(#pos(@x),#0()) -> #GT()
          #compare(#pos(@x),#neg(@y)) -> #GT()
          #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
          #compare(#s(@x),#0()) -> #GT()
          #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
          #less(@x,@y) -> #cklt(#compare(@x,@y))
          merge(@l1,@l2) -> merge#1(@l1,@l2)
          merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
          merge#1(nil(),@l2) -> @l2
          merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
          merge#2(nil(),@x,@xs) -> ::(@x,@xs)
          merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
          merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
          mergesort(@l) -> mergesort#1(@l)
          mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
          mergesort#1(nil()) -> nil()
          mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
          mergesort#2(nil(),@x1) -> ::(@x1,nil())
          mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
          msplit(@l) -> msplit#1(@l)
          msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
          msplit#1(nil()) -> tuple#2(nil(),nil())
          msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
          msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
          msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
        Signature:
          {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
        Obligation:
          Innermost
          basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:mergesort#(@l) -> c_9(mergesort#1#(@l))
             -->_1 mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1)):2
          
          2:S:mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
             -->_1 mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs')))):3
          
          3:S:mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
             -->_2 msplit#(@l) -> c_15(msplit#1#(@l)):5
             -->_1 mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2)):4
          
          4:S:mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
             -->_1 merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2)):8
             -->_3 mergesort#(@l) -> c_9(mergesort#1#(@l)):1
             -->_2 mergesort#(@l) -> c_9(mergesort#1#(@l)):1
          
          5:S:msplit#(@l) -> c_15(msplit#1#(@l))
             -->_1 msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1)):6
          
          6:S:msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
             -->_1 msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs')):7
          
          7:S:msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
             -->_1 msplit#(@l) -> c_15(msplit#1#(@l)):5
          
          8:W:merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2))
             -->_1 merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs)):9
          
          9:W:merge#1#(::(@x,@xs),@l2) -> c_3(merge#2#(@l2,@x,@xs))
             -->_1 merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys)):10
          
          10:W:merge#2#(::(@y,@ys),@x,@xs) -> c_5(merge#3#(#less(@x,@y),@x,@xs,@y,@ys))
             -->_1 merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys))):12
             -->_1 merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys)):11
          
          11:W:merge#3#(#false(),@x,@xs,@y,@ys) -> c_7(merge#(::(@x,@xs),@ys))
             -->_1 merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2)):8
          
          12:W:merge#3#(#true(),@x,@xs,@y,@ys) -> c_8(merge#(@xs,::(@y,@ys)))
             -->_1 merge#(@l1,@l2) -> c_2(merge#1#(@l1,@l2)):8
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          8:  merge#(@l1,@l2) ->                      
                c_2(merge#1#(@l1,@l2))                
          12: merge#3#(#true()                        
                      ,@x                             
                      ,@xs                            
                      ,@y                             
                      ,@ys) -> c_8(merge#(@xs         
                                         ,::(@y,@ys)))
          10: merge#2#(::(@y,@ys),@x,@xs) ->          
                c_5(merge#3#(#less(@x,@y)             
                            ,@x                       
                            ,@xs                      
                            ,@y                       
                            ,@ys))                    
          9:  merge#1#(::(@x,@xs),@l2) ->             
                c_3(merge#2#(@l2,@x,@xs))             
          11: merge#3#(#false()                       
                      ,@x                             
                      ,@xs                            
                      ,@y                             
                      ,@ys) -> c_7(merge#(::(@x,@xs)  
                                         ,@ys))       
  *** 1.1.1.1.1.2.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          mergesort#(@l) -> c_9(mergesort#1#(@l))
          mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
          mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
          mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
          msplit#(@l) -> c_15(msplit#1#(@l))
          msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
          msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          #cklt(#EQ()) -> #false()
          #cklt(#GT()) -> #false()
          #cklt(#LT()) -> #true()
          #compare(#0(),#0()) -> #EQ()
          #compare(#0(),#neg(@y)) -> #GT()
          #compare(#0(),#pos(@y)) -> #LT()
          #compare(#0(),#s(@y)) -> #LT()
          #compare(#neg(@x),#0()) -> #LT()
          #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
          #compare(#neg(@x),#pos(@y)) -> #LT()
          #compare(#pos(@x),#0()) -> #GT()
          #compare(#pos(@x),#neg(@y)) -> #GT()
          #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
          #compare(#s(@x),#0()) -> #GT()
          #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
          #less(@x,@y) -> #cklt(#compare(@x,@y))
          merge(@l1,@l2) -> merge#1(@l1,@l2)
          merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
          merge#1(nil(),@l2) -> @l2
          merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
          merge#2(nil(),@x,@xs) -> ::(@x,@xs)
          merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
          merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
          mergesort(@l) -> mergesort#1(@l)
          mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
          mergesort#1(nil()) -> nil()
          mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
          mergesort#2(nil(),@x1) -> ::(@x1,nil())
          mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
          msplit(@l) -> msplit#1(@l)
          msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
          msplit#1(nil()) -> tuple#2(nil(),nil())
          msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
          msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
          msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
        Signature:
          {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/3,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
        Obligation:
          Innermost
          basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
      Applied Processor:
        SimplifyRHS
      Proof:
        Consider the dependency graph
          1:S:mergesort#(@l) -> c_9(mergesort#1#(@l))
             -->_1 mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1)):2
          
          2:S:mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
             -->_1 mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs')))):3
          
          3:S:mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
             -->_2 msplit#(@l) -> c_15(msplit#1#(@l)):5
             -->_1 mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2)):4
          
          4:S:mergesort#3#(tuple#2(@l1,@l2)) -> c_14(merge#(mergesort(@l1),mergesort(@l2)),mergesort#(@l1),mergesort#(@l2))
             -->_3 mergesort#(@l) -> c_9(mergesort#1#(@l)):1
             -->_2 mergesort#(@l) -> c_9(mergesort#1#(@l)):1
          
          5:S:msplit#(@l) -> c_15(msplit#1#(@l))
             -->_1 msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1)):6
          
          6:S:msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
             -->_1 msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs')):7
          
          7:S:msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
             -->_1 msplit#(@l) -> c_15(msplit#1#(@l)):5
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          mergesort#3#(tuple#2(@l1,@l2)) -> c_14(mergesort#(@l1),mergesort#(@l2))
  *** 1.1.1.1.1.2.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          mergesort#(@l) -> c_9(mergesort#1#(@l))
          mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
          mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
          mergesort#3#(tuple#2(@l1,@l2)) -> c_14(mergesort#(@l1),mergesort#(@l2))
          msplit#(@l) -> c_15(msplit#1#(@l))
          msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
          msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          #cklt(#EQ()) -> #false()
          #cklt(#GT()) -> #false()
          #cklt(#LT()) -> #true()
          #compare(#0(),#0()) -> #EQ()
          #compare(#0(),#neg(@y)) -> #GT()
          #compare(#0(),#pos(@y)) -> #LT()
          #compare(#0(),#s(@y)) -> #LT()
          #compare(#neg(@x),#0()) -> #LT()
          #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
          #compare(#neg(@x),#pos(@y)) -> #LT()
          #compare(#pos(@x),#0()) -> #GT()
          #compare(#pos(@x),#neg(@y)) -> #GT()
          #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
          #compare(#s(@x),#0()) -> #GT()
          #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
          #less(@x,@y) -> #cklt(#compare(@x,@y))
          merge(@l1,@l2) -> merge#1(@l1,@l2)
          merge#1(::(@x,@xs),@l2) -> merge#2(@l2,@x,@xs)
          merge#1(nil(),@l2) -> @l2
          merge#2(::(@y,@ys),@x,@xs) -> merge#3(#less(@x,@y),@x,@xs,@y,@ys)
          merge#2(nil(),@x,@xs) -> ::(@x,@xs)
          merge#3(#false(),@x,@xs,@y,@ys) -> ::(@y,merge(::(@x,@xs),@ys))
          merge#3(#true(),@x,@xs,@y,@ys) -> ::(@x,merge(@xs,::(@y,@ys)))
          mergesort(@l) -> mergesort#1(@l)
          mergesort#1(::(@x1,@xs)) -> mergesort#2(@xs,@x1)
          mergesort#1(nil()) -> nil()
          mergesort#2(::(@x2,@xs'),@x1) -> mergesort#3(msplit(::(@x1,::(@x2,@xs'))))
          mergesort#2(nil(),@x1) -> ::(@x1,nil())
          mergesort#3(tuple#2(@l1,@l2)) -> merge(mergesort(@l1),mergesort(@l2))
          msplit(@l) -> msplit#1(@l)
          msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
          msplit#1(nil()) -> tuple#2(nil(),nil())
          msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
          msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
          msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
        Signature:
          {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/2,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
        Obligation:
          Innermost
          basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
      Applied Processor:
        UsableRules
      Proof:
        We replace rewrite rules by usable rules:
          msplit(@l) -> msplit#1(@l)
          msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
          msplit#1(nil()) -> tuple#2(nil(),nil())
          msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
          msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
          msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
          mergesort#(@l) -> c_9(mergesort#1#(@l))
          mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
          mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
          mergesort#3#(tuple#2(@l1,@l2)) -> c_14(mergesort#(@l1),mergesort#(@l2))
          msplit#(@l) -> c_15(msplit#1#(@l))
          msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
          msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
  *** 1.1.1.1.1.2.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          mergesort#(@l) -> c_9(mergesort#1#(@l))
          mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
          mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
          mergesort#3#(tuple#2(@l1,@l2)) -> c_14(mergesort#(@l1),mergesort#(@l2))
          msplit#(@l) -> c_15(msplit#1#(@l))
          msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
          msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          msplit(@l) -> msplit#1(@l)
          msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
          msplit#1(nil()) -> tuple#2(nil(),nil())
          msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
          msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
          msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
        Signature:
          {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/2,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
        Obligation:
          Innermost
          basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
      Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
      Proof:
        We decompose the input problem according to the dependency graph into the upper component
          mergesort#(@l) -> c_9(mergesort#1#(@l))
          mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
          mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
          mergesort#3#(tuple#2(@l1,@l2)) -> c_14(mergesort#(@l1),mergesort#(@l2))
        and a lower component
          msplit#(@l) -> c_15(msplit#1#(@l))
          msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
          msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
        Further, following extension rules are added to the lower component.
          mergesort#(@l) -> mergesort#1#(@l)
          mergesort#1#(::(@x1,@xs)) -> mergesort#2#(@xs,@x1)
          mergesort#2#(::(@x2,@xs'),@x1) -> mergesort#3#(msplit(::(@x1,::(@x2,@xs'))))
          mergesort#2#(::(@x2,@xs'),@x1) -> msplit#(::(@x1,::(@x2,@xs')))
          mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l1)
          mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l2)
    *** 1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            mergesort#(@l) -> c_9(mergesort#1#(@l))
            mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
            mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
            mergesort#3#(tuple#2(@l1,@l2)) -> c_14(mergesort#(@l1),mergesort#(@l2))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            msplit(@l) -> msplit#1(@l)
            msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
            msplit#1(nil()) -> tuple#2(nil(),nil())
            msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
            msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
            msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
          Signature:
            {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/2,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
          Obligation:
            Innermost
            basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            3: mergesort#2#(::(@x2,@xs')                    
                           ,@x1) ->                         
                 c_12(mergesort#3#(msplit(::(@x1            
                                            ,::(@x2,@xs'))))
                     ,msplit#(::(@x1,::(@x2,@xs'))))        
            
          Consider the set of all dependency pairs
            1: mergesort#(@l) ->                                  
                 c_9(mergesort#1#(@l))                            
            2: mergesort#1#(::(@x1,@xs)) ->                       
                 c_10(mergesort#2#(@xs,@x1))                      
            3: mergesort#2#(::(@x2,@xs')                          
                           ,@x1) ->                               
                 c_12(mergesort#3#(msplit(::(@x1                  
                                            ,::(@x2,@xs'))))      
                     ,msplit#(::(@x1,::(@x2,@xs'))))              
            4: mergesort#3#(tuple#2(@l1                           
                                   ,@l2)) -> c_14(mergesort#(@l1) 
                                                 ,mergesort#(@l2))
          Processor NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
          SPACE(?,?)on application of the dependency pairs
            {3}
          These cover all (indirect) predecessors of dependency pairs
            {1,2,3,4}
          their number of applications is equally bounded.
          The dependency pairs are shifted into the weak component.
      *** 1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              mergesort#(@l) -> c_9(mergesort#1#(@l))
              mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
              mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
              mergesort#3#(tuple#2(@l1,@l2)) -> c_14(mergesort#(@l1),mergesort#(@l2))
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              msplit(@l) -> msplit#1(@l)
              msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
              msplit#1(nil()) -> tuple#2(nil(),nil())
              msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
              msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
              msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
            Signature:
              {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/2,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
            Obligation:
              Innermost
              basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
          Applied Processor:
            NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
            The following argument positions are considered usable:
              uargs(c_9) = {1},
              uargs(c_10) = {1},
              uargs(c_12) = {1},
              uargs(c_14) = {1,2}
            
            Following symbols are considered usable:
              {msplit,msplit#1,msplit#2,msplit#3,#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}
            TcT has computed the following interpretation:
                        p(#0) = [0]                          
                                [0]                          
                                [0]                          
                       p(#EQ) = [0]                          
                                [0]                          
                                [0]                          
                       p(#GT) = [0]                          
                                [0]                          
                                [0]                          
                       p(#LT) = [0]                          
                                [0]                          
                                [0]                          
                     p(#cklt) = [0]                          
                                [0]                          
                                [0]                          
                  p(#compare) = [0]                          
                                [0]                          
                                [0]                          
                    p(#false) = [0]                          
                                [0]                          
                                [0]                          
                     p(#less) = [0]                          
                                [0]                          
                                [0]                          
                      p(#neg) = [0]                          
                                [0]                          
                                [0]                          
                      p(#pos) = [0]                          
                                [0]                          
                                [0]                          
                        p(#s) = [0]                          
                                [0]                          
                                [0]                          
                     p(#true) = [0]                          
                                [0]                          
                                [0]                          
                        p(::) = [0 1 0]      [0]             
                                [0 0 1] x2 + [0]             
                                [0 0 1]      [1]             
                     p(merge) = [0]                          
                                [0]                          
                                [0]                          
                   p(merge#1) = [0]                          
                                [0]                          
                                [0]                          
                   p(merge#2) = [0]                          
                                [0]                          
                                [0]                          
                   p(merge#3) = [0]                          
                                [0]                          
                                [0]                          
                 p(mergesort) = [0]                          
                                [0]                          
                                [0]                          
               p(mergesort#1) = [0]                          
                                [0]                          
                                [0]                          
               p(mergesort#2) = [0]                          
                                [0]                          
                                [0]                          
               p(mergesort#3) = [0]                          
                                [0]                          
                                [0]                          
                    p(msplit) = [1 0 0]      [0]             
                                [0 0 1] x1 + [0]             
                                [0 0 0]      [1]             
                  p(msplit#1) = [1 0 0]      [0]             
                                [0 0 1] x1 + [0]             
                                [0 0 0]      [1]             
                  p(msplit#2) = [0 1 0]      [0]             
                                [0 0 1] x1 + [1]             
                                [0 0 0]      [1]             
                  p(msplit#3) = [0 1 0]      [0]             
                                [0 1 1] x1 + [1]             
                                [0 0 0]      [1]             
                       p(nil) = [0]                          
                                [0]                          
                                [0]                          
                   p(tuple#2) = [0 1 0]      [0 1 0]      [0]
                                [0 0 1] x1 + [0 0 1] x2 + [0]
                                [0 0 0]      [0 0 0]      [1]
                    p(#cklt#) = [0]                          
                                [0]                          
                                [0]                          
                 p(#compare#) = [0]                          
                                [0]                          
                                [0]                          
                    p(#less#) = [0]                          
                                [0]                          
                                [0]                          
                    p(merge#) = [0]                          
                                [0]                          
                                [0]                          
                  p(merge#1#) = [0]                          
                                [0]                          
                                [0]                          
                  p(merge#2#) = [0]                          
                                [0]                          
                                [0]                          
                  p(merge#3#) = [0]                          
                                [0]                          
                                [0]                          
                p(mergesort#) = [0 1 0]      [0]             
                                [1 1 1] x1 + [1]             
                                [0 0 0]      [1]             
              p(mergesort#1#) = [0 1 0]      [0]             
                                [1 0 0] x1 + [1]             
                                [0 0 0]      [0]             
              p(mergesort#2#) = [0 0 1]      [0 0 0]      [0]
                                [0 0 1] x1 + [0 0 0] x2 + [1]
                                [0 0 0]      [1 0 1]      [0]
              p(mergesort#3#) = [1 0 0]      [0]             
                                [1 1 0] x1 + [0]             
                                [0 0 1]      [1]             
                   p(msplit#) = [0 0 0]      [1]             
                                [1 0 1] x1 + [1]             
                                [0 1 0]      [1]             
                 p(msplit#1#) = [0]                          
                                [0]                          
                                [0]                          
                 p(msplit#2#) = [0]                          
                                [0]                          
                                [0]                          
                 p(msplit#3#) = [0]                          
                                [0]                          
                                [0]                          
                       p(c_1) = [0]                          
                                [0]                          
                                [0]                          
                       p(c_2) = [0]                          
                                [0]                          
                                [0]                          
                       p(c_3) = [0]                          
                                [0]                          
                                [0]                          
                       p(c_4) = [0]                          
                                [0]                          
                                [0]                          
                       p(c_5) = [0]                          
                                [0]                          
                                [0]                          
                       p(c_6) = [0]                          
                                [0]                          
                                [0]                          
                       p(c_7) = [0]                          
                                [0]                          
                                [0]                          
                       p(c_8) = [0]                          
                                [0]                          
                                [0]                          
                       p(c_9) = [1 0 0]      [0]             
                                [0 1 0] x1 + [0]             
                                [0 0 0]      [1]             
                      p(c_10) = [1 0 0]      [0]             
                                [0 0 0] x1 + [1]             
                                [0 0 0]      [0]             
                      p(c_11) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_12) = [1 0 0]      [0]             
                                [0 0 1] x1 + [0]             
                                [0 0 0]      [0]             
                      p(c_13) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_14) = [1 0 0]      [1 0 0]      [0]
                                [1 0 0] x1 + [1 0 0] x2 + [0]
                                [0 0 1]      [0 0 0]      [1]
                      p(c_15) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_16) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_17) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_18) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_19) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_20) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_21) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_22) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_23) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_24) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_25) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_26) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_27) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_28) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_29) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_30) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_31) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_32) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_33) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_34) = [0]                          
                                [0]                          
                                [0]                          
                      p(c_35) = [0]                          
                                [0]                          
                                [0]                          
            
            Following rules are strictly oriented:
            mergesort#2#(::(@x2,@xs'),@x1) = [0 0 0]       [0 0 1]        [1]           
                                             [0 0 0] @x1 + [0 0 1] @xs' + [2]           
                                             [1 0 1]       [0 0 0]        [0]           
                                           > [0 0 1]        [0]                         
                                             [0 0 0] @xs' + [2]                         
                                             [0 0 0]        [0]                         
                                           = c_12(mergesort#3#(msplit(::(@x1            
                                                                        ,::(@x2,@xs'))))
                                                 ,msplit#(::(@x1,::(@x2,@xs'))))        
            
            
            Following rules are (at-least) weakly oriented:
                            mergesort#(@l) =  [0 1 0]      [0]                
                                              [1 1 1] @l + [1]                
                                              [0 0 0]      [1]                
                                           >= [0 1 0]      [0]                
                                              [1 0 0] @l + [1]                
                                              [0 0 0]      [1]                
                                           =  c_9(mergesort#1#(@l))           
            
                 mergesort#1#(::(@x1,@xs)) =  [0 0 1]       [0]               
                                              [0 1 0] @xs + [1]               
                                              [0 0 0]       [0]               
                                           >= [0 0 1]       [0]               
                                              [0 0 0] @xs + [1]               
                                              [0 0 0]       [0]               
                                           =  c_10(mergesort#2#(@xs,@x1))     
            
            mergesort#3#(tuple#2(@l1,@l2)) =  [0 1 0]       [0 1 0]       [0] 
                                              [0 1 1] @l1 + [0 1 1] @l2 + [0] 
                                              [0 0 0]       [0 0 0]       [2] 
                                           >= [0 1 0]       [0 1 0]       [0] 
                                              [0 1 0] @l1 + [0 1 0] @l2 + [0] 
                                              [0 0 0]       [0 0 0]       [2] 
                                           =  c_14(mergesort#(@l1)            
                                                  ,mergesort#(@l2))           
            
                                msplit(@l) =  [1 0 0]      [0]                
                                              [0 0 1] @l + [0]                
                                              [0 0 0]      [1]                
                                           >= [1 0 0]      [0]                
                                              [0 0 1] @l + [0]                
                                              [0 0 0]      [1]                
                                           =  msplit#1(@l)                    
            
                     msplit#1(::(@x1,@xs)) =  [0 1 0]       [0]               
                                              [0 0 1] @xs + [1]               
                                              [0 0 0]       [1]               
                                           >= [0 1 0]       [0]               
                                              [0 0 1] @xs + [1]               
                                              [0 0 0]       [1]               
                                           =  msplit#2(@xs,@x1)               
            
                           msplit#1(nil()) =  [0]                             
                                              [0]                             
                                              [1]                             
                                           >= [0]                             
                                              [0]                             
                                              [1]                             
                                           =  tuple#2(nil(),nil())            
            
                msplit#2(::(@x2,@xs'),@x1) =  [0 0 1]        [0]              
                                              [0 0 1] @xs' + [2]              
                                              [0 0 0]        [1]              
                                           >= [0 0 1]        [0]              
                                              [0 0 1] @xs' + [2]              
                                              [0 0 0]        [1]              
                                           =  msplit#3(msplit(@xs'),@x1,@x2)  
            
                       msplit#2(nil(),@x1) =  [0]                             
                                              [1]                             
                                              [1]                             
                                           >= [0]                             
                                              [1]                             
                                              [1]                             
                                           =  tuple#2(::(@x1,nil()),nil())    
            
                 msplit#3(tuple#2(@l1,@l2) =  [0 0 1]       [0 0 1]       [0] 
                                      ,@x1    [0 0 1] @l1 + [0 0 1] @l2 + [2] 
                                     ,@x2)    [0 0 0]       [0 0 0]       [1] 
                                           >= [0 0 1]       [0 0 1]       [0] 
                                              [0 0 1] @l1 + [0 0 1] @l2 + [2] 
                                              [0 0 0]       [0 0 0]       [1] 
                                           =  tuple#2(::(@x1,@l1),::(@x2,@l2))
            
      *** 1.1.1.1.1.2.1.1.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              mergesort#(@l) -> c_9(mergesort#1#(@l))
              mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
              mergesort#3#(tuple#2(@l1,@l2)) -> c_14(mergesort#(@l1),mergesort#(@l2))
            Strict TRS Rules:
              
            Weak DP Rules:
              mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
            Weak TRS Rules:
              msplit(@l) -> msplit#1(@l)
              msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
              msplit#1(nil()) -> tuple#2(nil(),nil())
              msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
              msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
              msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
            Signature:
              {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/2,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
            Obligation:
              Innermost
              basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.2.1.1.1.1.2 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              mergesort#(@l) -> c_9(mergesort#1#(@l))
              mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
              mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
              mergesort#3#(tuple#2(@l1,@l2)) -> c_14(mergesort#(@l1),mergesort#(@l2))
            Weak TRS Rules:
              msplit(@l) -> msplit#1(@l)
              msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
              msplit#1(nil()) -> tuple#2(nil(),nil())
              msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
              msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
              msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
            Signature:
              {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/2,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
            Obligation:
              Innermost
              basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:W:mergesort#(@l) -> c_9(mergesort#1#(@l))
                 -->_1 mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1)):2
              
              2:W:mergesort#1#(::(@x1,@xs)) -> c_10(mergesort#2#(@xs,@x1))
                 -->_1 mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs')))):3
              
              3:W:mergesort#2#(::(@x2,@xs'),@x1) -> c_12(mergesort#3#(msplit(::(@x1,::(@x2,@xs')))),msplit#(::(@x1,::(@x2,@xs'))))
                 -->_1 mergesort#3#(tuple#2(@l1,@l2)) -> c_14(mergesort#(@l1),mergesort#(@l2)):4
              
              4:W:mergesort#3#(tuple#2(@l1,@l2)) -> c_14(mergesort#(@l1),mergesort#(@l2))
                 -->_2 mergesort#(@l) -> c_9(mergesort#1#(@l)):1
                 -->_1 mergesort#(@l) -> c_9(mergesort#1#(@l)):1
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              1: mergesort#(@l) ->                                  
                   c_9(mergesort#1#(@l))                            
              4: mergesort#3#(tuple#2(@l1                           
                                     ,@l2)) -> c_14(mergesort#(@l1) 
                                                   ,mergesort#(@l2))
              3: mergesort#2#(::(@x2,@xs')                          
                             ,@x1) ->                               
                   c_12(mergesort#3#(msplit(::(@x1                  
                                              ,::(@x2,@xs'))))      
                       ,msplit#(::(@x1,::(@x2,@xs'))))              
              2: mergesort#1#(::(@x1,@xs)) ->                       
                   c_10(mergesort#2#(@xs,@x1))                      
      *** 1.1.1.1.1.2.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              msplit(@l) -> msplit#1(@l)
              msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
              msplit#1(nil()) -> tuple#2(nil(),nil())
              msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
              msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
              msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
            Signature:
              {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/2,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
            Obligation:
              Innermost
              basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
          Applied Processor:
            EmptyProcessor
          Proof:
            The problem is already closed. The intended complexity is O(1).
      
    *** 1.1.1.1.1.2.1.1.1.2 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            msplit#(@l) -> c_15(msplit#1#(@l))
            msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
            msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
          Strict TRS Rules:
            
          Weak DP Rules:
            mergesort#(@l) -> mergesort#1#(@l)
            mergesort#1#(::(@x1,@xs)) -> mergesort#2#(@xs,@x1)
            mergesort#2#(::(@x2,@xs'),@x1) -> mergesort#3#(msplit(::(@x1,::(@x2,@xs'))))
            mergesort#2#(::(@x2,@xs'),@x1) -> msplit#(::(@x1,::(@x2,@xs')))
            mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l1)
            mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l2)
          Weak TRS Rules:
            msplit(@l) -> msplit#1(@l)
            msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
            msplit#1(nil()) -> tuple#2(nil(),nil())
            msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
            msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
            msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
          Signature:
            {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/2,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
          Obligation:
            Innermost
            basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            2: msplit#1#(::(@x1,@xs)) ->     
                 c_16(msplit#2#(@xs,@x1))    
            3: msplit#2#(::(@x2,@xs'),@x1) ->
                 c_18(msplit#(@xs'))         
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.2.1.1.1.2.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              msplit#(@l) -> c_15(msplit#1#(@l))
              msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
              msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
            Strict TRS Rules:
              
            Weak DP Rules:
              mergesort#(@l) -> mergesort#1#(@l)
              mergesort#1#(::(@x1,@xs)) -> mergesort#2#(@xs,@x1)
              mergesort#2#(::(@x2,@xs'),@x1) -> mergesort#3#(msplit(::(@x1,::(@x2,@xs'))))
              mergesort#2#(::(@x2,@xs'),@x1) -> msplit#(::(@x1,::(@x2,@xs')))
              mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l1)
              mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l2)
            Weak TRS Rules:
              msplit(@l) -> msplit#1(@l)
              msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
              msplit#1(nil()) -> tuple#2(nil(),nil())
              msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
              msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
              msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
            Signature:
              {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/2,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
            Obligation:
              Innermost
              basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
          Applied Processor:
            NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation:
            The following argument positions are considered usable:
              uargs(c_15) = {1},
              uargs(c_16) = {1},
              uargs(c_18) = {1}
            
            Following symbols are considered usable:
              {msplit,msplit#1,msplit#2,msplit#3,#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}
            TcT has computed the following interpretation:
                        p(#0) = [0]                                             
                       p(#EQ) = [2]                                             
                       p(#GT) = [4]                                             
                       p(#LT) = [2]                                             
                     p(#cklt) = [4] x1 + [2]                                    
                  p(#compare) = [1] x1 + [0]                                    
                    p(#false) = [0]                                             
                     p(#less) = [8] x2 + [4]                                    
                      p(#neg) = [1] x1 + [0]                                    
                      p(#pos) = [0]                                             
                        p(#s) = [1]                                             
                     p(#true) = [0]                                             
                        p(::) = [1] x2 + [1]                                    
                     p(merge) = [1] x2 + [0]                                    
                   p(merge#1) = [8] x2 + [1]                                    
                   p(merge#2) = [2] x1 + [0]                                    
                   p(merge#3) = [1] x1 + [2] x2 + [1] x3 + [2] x4 + [8] x5 + [2]
                 p(mergesort) = [0]                                             
               p(mergesort#1) = [8] x1 + [1]                                    
               p(mergesort#2) = [1] x1 + [1]                                    
               p(mergesort#3) = [1]                                             
                    p(msplit) = [1] x1 + [8]                                    
                  p(msplit#1) = [1] x1 + [8]                                    
                  p(msplit#2) = [1] x1 + [9]                                    
                  p(msplit#3) = [1] x1 + [2]                                    
                       p(nil) = [0]                                             
                   p(tuple#2) = [1] x1 + [1] x2 + [8]                           
                    p(#cklt#) = [0]                                             
                 p(#compare#) = [1] x1 + [1]                                    
                    p(#less#) = [1] x1 + [1]                                    
                    p(merge#) = [1] x2 + [2]                                    
                  p(merge#1#) = [2] x2 + [0]                                    
                  p(merge#2#) = [1] x2 + [2] x3 + [1]                           
                  p(merge#3#) = [1] x2 + [2] x4 + [4] x5 + [0]                  
                p(mergesort#) = [1] x1 + [9]                                    
              p(mergesort#1#) = [1] x1 + [9]                                    
              p(mergesort#2#) = [1] x1 + [10]                                   
              p(mergesort#3#) = [1] x1 + [1]                                    
                   p(msplit#) = [1] x1 + [4]                                    
                 p(msplit#1#) = [1] x1 + [4]                                    
                 p(msplit#2#) = [1] x1 + [4]                                    
                 p(msplit#3#) = [1] x1 + [2] x2 + [1]                           
                       p(c_1) = [2] x1 + [1] x2 + [0]                           
                       p(c_2) = [1] x1 + [1]                                    
                       p(c_3) = [2] x1 + [1]                                    
                       p(c_4) = [1]                                             
                       p(c_5) = [0]                                             
                       p(c_6) = [1]                                             
                       p(c_7) = [1] x1 + [1]                                    
                       p(c_8) = [1]                                             
                       p(c_9) = [8]                                             
                      p(c_10) = [1] x1 + [1]                                    
                      p(c_11) = [1]                                             
                      p(c_12) = [1]                                             
                      p(c_13) = [0]                                             
                      p(c_14) = [1] x1 + [2]                                    
                      p(c_15) = [1] x1 + [0]                                    
                      p(c_16) = [1] x1 + [0]                                    
                      p(c_17) = [1]                                             
                      p(c_18) = [1] x1 + [0]                                    
                      p(c_19) = [1]                                             
                      p(c_20) = [0]                                             
                      p(c_21) = [1]                                             
                      p(c_22) = [4]                                             
                      p(c_23) = [0]                                             
                      p(c_24) = [1]                                             
                      p(c_25) = [1]                                             
                      p(c_26) = [2]                                             
                      p(c_27) = [0]                                             
                      p(c_28) = [0]                                             
                      p(c_29) = [1]                                             
                      p(c_30) = [0]                                             
                      p(c_31) = [0]                                             
                      p(c_32) = [1]                                             
                      p(c_33) = [1] x1 + [1]                                    
                      p(c_34) = [0]                                             
                      p(c_35) = [1] x1 + [0]                                    
            
            Following rules are strictly oriented:
                 msplit#1#(::(@x1,@xs)) = [1] @xs + [5]           
                                        > [1] @xs + [4]           
                                        = c_16(msplit#2#(@xs,@x1))
            
            msplit#2#(::(@x2,@xs'),@x1) = [1] @xs' + [5]          
                                        > [1] @xs' + [4]          
                                        = c_18(msplit#(@xs'))     
            
            
            Following rules are (at-least) weakly oriented:
                            mergesort#(@l) =  [1] @l + [9]                          
                                           >= [1] @l + [9]                          
                                           =  mergesort#1#(@l)                      
            
                 mergesort#1#(::(@x1,@xs)) =  [1] @xs + [10]                        
                                           >= [1] @xs + [10]                        
                                           =  mergesort#2#(@xs,@x1)                 
            
            mergesort#2#(::(@x2,@xs'),@x1) =  [1] @xs' + [11]                       
                                           >= [1] @xs' + [11]                       
                                           =  mergesort#3#(msplit(::(@x1            
                                                                    ,::(@x2,@xs'))))
            
            mergesort#2#(::(@x2,@xs'),@x1) =  [1] @xs' + [11]                       
                                           >= [1] @xs' + [6]                        
                                           =  msplit#(::(@x1,::(@x2,@xs')))         
            
            mergesort#3#(tuple#2(@l1,@l2)) =  [1] @l1 + [1] @l2 + [9]               
                                           >= [1] @l1 + [9]                         
                                           =  mergesort#(@l1)                       
            
            mergesort#3#(tuple#2(@l1,@l2)) =  [1] @l1 + [1] @l2 + [9]               
                                           >= [1] @l2 + [9]                         
                                           =  mergesort#(@l2)                       
            
                               msplit#(@l) =  [1] @l + [4]                          
                                           >= [1] @l + [4]                          
                                           =  c_15(msplit#1#(@l))                   
            
                                msplit(@l) =  [1] @l + [8]                          
                                           >= [1] @l + [8]                          
                                           =  msplit#1(@l)                          
            
                     msplit#1(::(@x1,@xs)) =  [1] @xs + [9]                         
                                           >= [1] @xs + [9]                         
                                           =  msplit#2(@xs,@x1)                     
            
                           msplit#1(nil()) =  [8]                                   
                                           >= [8]                                   
                                           =  tuple#2(nil(),nil())                  
            
                msplit#2(::(@x2,@xs'),@x1) =  [1] @xs' + [10]                       
                                           >= [1] @xs' + [10]                       
                                           =  msplit#3(msplit(@xs'),@x1,@x2)        
            
                       msplit#2(nil(),@x1) =  [9]                                   
                                           >= [9]                                   
                                           =  tuple#2(::(@x1,nil()),nil())          
            
                 msplit#3(tuple#2(@l1,@l2) =  [1] @l1 + [1] @l2 + [10]              
                                      ,@x1                                          
                                     ,@x2)                                          
                                           >= [1] @l1 + [1] @l2 + [10]              
                                           =  tuple#2(::(@x1,@l1),::(@x2,@l2))      
            
      *** 1.1.1.1.1.2.1.1.1.2.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              msplit#(@l) -> c_15(msplit#1#(@l))
            Strict TRS Rules:
              
            Weak DP Rules:
              mergesort#(@l) -> mergesort#1#(@l)
              mergesort#1#(::(@x1,@xs)) -> mergesort#2#(@xs,@x1)
              mergesort#2#(::(@x2,@xs'),@x1) -> mergesort#3#(msplit(::(@x1,::(@x2,@xs'))))
              mergesort#2#(::(@x2,@xs'),@x1) -> msplit#(::(@x1,::(@x2,@xs')))
              mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l1)
              mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l2)
              msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
              msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
            Weak TRS Rules:
              msplit(@l) -> msplit#1(@l)
              msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
              msplit#1(nil()) -> tuple#2(nil(),nil())
              msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
              msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
              msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
            Signature:
              {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/2,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
            Obligation:
              Innermost
              basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.2.1.1.1.2.2 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              msplit#(@l) -> c_15(msplit#1#(@l))
            Strict TRS Rules:
              
            Weak DP Rules:
              mergesort#(@l) -> mergesort#1#(@l)
              mergesort#1#(::(@x1,@xs)) -> mergesort#2#(@xs,@x1)
              mergesort#2#(::(@x2,@xs'),@x1) -> mergesort#3#(msplit(::(@x1,::(@x2,@xs'))))
              mergesort#2#(::(@x2,@xs'),@x1) -> msplit#(::(@x1,::(@x2,@xs')))
              mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l1)
              mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l2)
              msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
              msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
            Weak TRS Rules:
              msplit(@l) -> msplit#1(@l)
              msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
              msplit#1(nil()) -> tuple#2(nil(),nil())
              msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
              msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
              msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
            Signature:
              {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/2,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
            Obligation:
              Innermost
              basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              1: msplit#(@l) ->       
                   c_15(msplit#1#(@l))
              
            Consider the set of all dependency pairs
              1: msplit#(@l) ->                                
                   c_15(msplit#1#(@l))                         
              2: mergesort#(@l) ->                             
                   mergesort#1#(@l)                            
              3: mergesort#1#(::(@x1,@xs)) ->                  
                   mergesort#2#(@xs,@x1)                       
              4: mergesort#2#(::(@x2,@xs')                     
                             ,@x1) ->                          
                   mergesort#3#(msplit(::(@x1                  
                                         ,::(@x2,@xs'))))      
              5: mergesort#2#(::(@x2,@xs')                     
                             ,@x1) -> msplit#(::(@x1           
                                                ,::(@x2,@xs')))
              6: mergesort#3#(tuple#2(@l1                      
                                     ,@l2)) -> mergesort#(@l1) 
              7: mergesort#3#(tuple#2(@l1                      
                                     ,@l2)) -> mergesort#(@l2) 
              8: msplit#1#(::(@x1,@xs)) ->                     
                   c_16(msplit#2#(@xs,@x1))                    
              9: msplit#2#(::(@x2,@xs'),@x1) ->                
                   c_18(msplit#(@xs'))                         
            Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
            SPACE(?,?)on application of the dependency pairs
              {1}
            These cover all (indirect) predecessors of dependency pairs
              {1,8,9}
            their number of applications is equally bounded.
            The dependency pairs are shifted into the weak component.
        *** 1.1.1.1.1.2.1.1.1.2.2.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                msplit#(@l) -> c_15(msplit#1#(@l))
              Strict TRS Rules:
                
              Weak DP Rules:
                mergesort#(@l) -> mergesort#1#(@l)
                mergesort#1#(::(@x1,@xs)) -> mergesort#2#(@xs,@x1)
                mergesort#2#(::(@x2,@xs'),@x1) -> mergesort#3#(msplit(::(@x1,::(@x2,@xs'))))
                mergesort#2#(::(@x2,@xs'),@x1) -> msplit#(::(@x1,::(@x2,@xs')))
                mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l1)
                mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l2)
                msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
                msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
              Weak TRS Rules:
                msplit(@l) -> msplit#1(@l)
                msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
                msplit#1(nil()) -> tuple#2(nil(),nil())
                msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
                msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
                msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
              Signature:
                {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/2,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
              Obligation:
                Innermost
                basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
            Applied Processor:
              NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a matrix interpretation of kind constructor based matrix interpretation:
              The following argument positions are considered usable:
                uargs(c_15) = {1},
                uargs(c_16) = {1},
                uargs(c_18) = {1}
              
              Following symbols are considered usable:
                {msplit,msplit#1,msplit#2,msplit#3,#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}
              TcT has computed the following interpretation:
                          p(#0) = [0]                           
                         p(#EQ) = [0]                           
                         p(#GT) = [2]                           
                         p(#LT) = [0]                           
                       p(#cklt) = [2] x1 + [0]                  
                    p(#compare) = [1] x2 + [1]                  
                      p(#false) = [2]                           
                       p(#less) = [2] x2 + [1]                  
                        p(#neg) = [1]                           
                        p(#pos) = [4]                           
                          p(#s) = [1] x1 + [0]                  
                       p(#true) = [2]                           
                          p(::) = [1] x2 + [1]                  
                       p(merge) = [4] x1 + [1]                  
                     p(merge#1) = [8] x2 + [0]                  
                     p(merge#2) = [1] x1 + [2] x3 + [0]         
                     p(merge#3) = [2] x1 + [2] x2 + [1] x4 + [0]
                   p(mergesort) = [2] x1 + [0]                  
                 p(mergesort#1) = [8] x1 + [1]                  
                 p(mergesort#2) = [2] x1 + [1]                  
                 p(mergesort#3) = [4]                           
                      p(msplit) = [1] x1 + [1]                  
                    p(msplit#1) = [1] x1 + [1]                  
                    p(msplit#2) = [1] x1 + [2]                  
                    p(msplit#3) = [1] x1 + [2]                  
                         p(nil) = [0]                           
                     p(tuple#2) = [1] x1 + [1] x2 + [1]         
                      p(#cklt#) = [2] x1 + [2]                  
                   p(#compare#) = [1] x1 + [2] x2 + [1]         
                      p(#less#) = [2] x1 + [8] x2 + [0]         
                      p(merge#) = [8] x1 + [1]                  
                    p(merge#1#) = [2] x1 + [2]                  
                    p(merge#2#) = [1]                           
                    p(merge#3#) = [1] x2 + [2] x3 + [1] x5 + [4]
                  p(mergesort#) = [1] x1 + [1]                  
                p(mergesort#1#) = [1] x1 + [1]                  
                p(mergesort#2#) = [1] x1 + [2]                  
                p(mergesort#3#) = [1] x1 + [0]                  
                     p(msplit#) = [1] x1 + [1]                  
                   p(msplit#1#) = [1] x1 + [0]                  
                   p(msplit#2#) = [1] x1 + [0]                  
                   p(msplit#3#) = [0]                           
                         p(c_1) = [2] x1 + [2]                  
                         p(c_2) = [1] x1 + [2]                  
                         p(c_3) = [2] x1 + [0]                  
                         p(c_4) = [2]                           
                         p(c_5) = [0]                           
                         p(c_6) = [1]                           
                         p(c_7) = [1] x1 + [1]                  
                         p(c_8) = [1]                           
                         p(c_9) = [4] x1 + [1]                  
                        p(c_10) = [1]                           
                        p(c_11) = [1]                           
                        p(c_12) = [2] x1 + [8]                  
                        p(c_13) = [1]                           
                        p(c_14) = [2] x2 + [2]                  
                        p(c_15) = [1] x1 + [0]                  
                        p(c_16) = [1] x1 + [1]                  
                        p(c_17) = [1]                           
                        p(c_18) = [1] x1 + [0]                  
                        p(c_19) = [1]                           
                        p(c_20) = [1]                           
                        p(c_21) = [4]                           
                        p(c_22) = [1]                           
                        p(c_23) = [0]                           
                        p(c_24) = [0]                           
                        p(c_25) = [8]                           
                        p(c_26) = [1]                           
                        p(c_27) = [2]                           
                        p(c_28) = [1]                           
                        p(c_29) = [2]                           
                        p(c_30) = [1]                           
                        p(c_31) = [1]                           
                        p(c_32) = [1]                           
                        p(c_33) = [1]                           
                        p(c_34) = [2]                           
                        p(c_35) = [8]                           
              
              Following rules are strictly oriented:
              msplit#(@l) = [1] @l + [1]       
                          > [1] @l + [0]       
                          = c_15(msplit#1#(@l))
              
              
              Following rules are (at-least) weakly oriented:
                              mergesort#(@l) =  [1] @l + [1]                          
                                             >= [1] @l + [1]                          
                                             =  mergesort#1#(@l)                      
              
                   mergesort#1#(::(@x1,@xs)) =  [1] @xs + [2]                         
                                             >= [1] @xs + [2]                         
                                             =  mergesort#2#(@xs,@x1)                 
              
              mergesort#2#(::(@x2,@xs'),@x1) =  [1] @xs' + [3]                        
                                             >= [1] @xs' + [3]                        
                                             =  mergesort#3#(msplit(::(@x1            
                                                                      ,::(@x2,@xs'))))
              
              mergesort#2#(::(@x2,@xs'),@x1) =  [1] @xs' + [3]                        
                                             >= [1] @xs' + [3]                        
                                             =  msplit#(::(@x1,::(@x2,@xs')))         
              
              mergesort#3#(tuple#2(@l1,@l2)) =  [1] @l1 + [1] @l2 + [1]               
                                             >= [1] @l1 + [1]                         
                                             =  mergesort#(@l1)                       
              
              mergesort#3#(tuple#2(@l1,@l2)) =  [1] @l1 + [1] @l2 + [1]               
                                             >= [1] @l2 + [1]                         
                                             =  mergesort#(@l2)                       
              
                      msplit#1#(::(@x1,@xs)) =  [1] @xs + [1]                         
                                             >= [1] @xs + [1]                         
                                             =  c_16(msplit#2#(@xs,@x1))              
              
                 msplit#2#(::(@x2,@xs'),@x1) =  [1] @xs' + [1]                        
                                             >= [1] @xs' + [1]                        
                                             =  c_18(msplit#(@xs'))                   
              
                                  msplit(@l) =  [1] @l + [1]                          
                                             >= [1] @l + [1]                          
                                             =  msplit#1(@l)                          
              
                       msplit#1(::(@x1,@xs)) =  [1] @xs + [2]                         
                                             >= [1] @xs + [2]                         
                                             =  msplit#2(@xs,@x1)                     
              
                             msplit#1(nil()) =  [1]                                   
                                             >= [1]                                   
                                             =  tuple#2(nil(),nil())                  
              
                  msplit#2(::(@x2,@xs'),@x1) =  [1] @xs' + [3]                        
                                             >= [1] @xs' + [3]                        
                                             =  msplit#3(msplit(@xs'),@x1,@x2)        
              
                         msplit#2(nil(),@x1) =  [2]                                   
                                             >= [2]                                   
                                             =  tuple#2(::(@x1,nil()),nil())          
              
                   msplit#3(tuple#2(@l1,@l2) =  [1] @l1 + [1] @l2 + [3]               
                                        ,@x1                                          
                                       ,@x2)                                          
                                             >= [1] @l1 + [1] @l2 + [3]               
                                             =  tuple#2(::(@x1,@l1),::(@x2,@l2))      
              
        *** 1.1.1.1.1.2.1.1.1.2.2.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                mergesort#(@l) -> mergesort#1#(@l)
                mergesort#1#(::(@x1,@xs)) -> mergesort#2#(@xs,@x1)
                mergesort#2#(::(@x2,@xs'),@x1) -> mergesort#3#(msplit(::(@x1,::(@x2,@xs'))))
                mergesort#2#(::(@x2,@xs'),@x1) -> msplit#(::(@x1,::(@x2,@xs')))
                mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l1)
                mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l2)
                msplit#(@l) -> c_15(msplit#1#(@l))
                msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
                msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
              Weak TRS Rules:
                msplit(@l) -> msplit#1(@l)
                msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
                msplit#1(nil()) -> tuple#2(nil(),nil())
                msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
                msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
                msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
              Signature:
                {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/2,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
              Obligation:
                Innermost
                basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.2.1.1.1.2.2.2 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                mergesort#(@l) -> mergesort#1#(@l)
                mergesort#1#(::(@x1,@xs)) -> mergesort#2#(@xs,@x1)
                mergesort#2#(::(@x2,@xs'),@x1) -> mergesort#3#(msplit(::(@x1,::(@x2,@xs'))))
                mergesort#2#(::(@x2,@xs'),@x1) -> msplit#(::(@x1,::(@x2,@xs')))
                mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l1)
                mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l2)
                msplit#(@l) -> c_15(msplit#1#(@l))
                msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
                msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
              Weak TRS Rules:
                msplit(@l) -> msplit#1(@l)
                msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
                msplit#1(nil()) -> tuple#2(nil(),nil())
                msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
                msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
                msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
              Signature:
                {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/2,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
              Obligation:
                Innermost
                basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
            Applied Processor:
              RemoveWeakSuffixes
            Proof:
              Consider the dependency graph
                1:W:mergesort#(@l) -> mergesort#1#(@l)
                   -->_1 mergesort#1#(::(@x1,@xs)) -> mergesort#2#(@xs,@x1):2
                
                2:W:mergesort#1#(::(@x1,@xs)) -> mergesort#2#(@xs,@x1)
                   -->_1 mergesort#2#(::(@x2,@xs'),@x1) -> msplit#(::(@x1,::(@x2,@xs'))):4
                   -->_1 mergesort#2#(::(@x2,@xs'),@x1) -> mergesort#3#(msplit(::(@x1,::(@x2,@xs')))):3
                
                3:W:mergesort#2#(::(@x2,@xs'),@x1) -> mergesort#3#(msplit(::(@x1,::(@x2,@xs'))))
                   -->_1 mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l2):6
                   -->_1 mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l1):5
                
                4:W:mergesort#2#(::(@x2,@xs'),@x1) -> msplit#(::(@x1,::(@x2,@xs')))
                   -->_1 msplit#(@l) -> c_15(msplit#1#(@l)):7
                
                5:W:mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l1)
                   -->_1 mergesort#(@l) -> mergesort#1#(@l):1
                
                6:W:mergesort#3#(tuple#2(@l1,@l2)) -> mergesort#(@l2)
                   -->_1 mergesort#(@l) -> mergesort#1#(@l):1
                
                7:W:msplit#(@l) -> c_15(msplit#1#(@l))
                   -->_1 msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1)):8
                
                8:W:msplit#1#(::(@x1,@xs)) -> c_16(msplit#2#(@xs,@x1))
                   -->_1 msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs')):9
                
                9:W:msplit#2#(::(@x2,@xs'),@x1) -> c_18(msplit#(@xs'))
                   -->_1 msplit#(@l) -> c_15(msplit#1#(@l)):7
                
              The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                1: mergesort#(@l) ->                             
                     mergesort#1#(@l)                            
                6: mergesort#3#(tuple#2(@l1                      
                                       ,@l2)) -> mergesort#(@l2) 
                3: mergesort#2#(::(@x2,@xs')                     
                               ,@x1) ->                          
                     mergesort#3#(msplit(::(@x1                  
                                           ,::(@x2,@xs'))))      
                2: mergesort#1#(::(@x1,@xs)) ->                  
                     mergesort#2#(@xs,@x1)                       
                5: mergesort#3#(tuple#2(@l1                      
                                       ,@l2)) -> mergesort#(@l1) 
                4: mergesort#2#(::(@x2,@xs')                     
                               ,@x1) -> msplit#(::(@x1           
                                                  ,::(@x2,@xs')))
                7: msplit#(@l) ->                                
                     c_15(msplit#1#(@l))                         
                9: msplit#2#(::(@x2,@xs'),@x1) ->                
                     c_18(msplit#(@xs'))                         
                8: msplit#1#(::(@x1,@xs)) ->                     
                     c_16(msplit#2#(@xs,@x1))                    
        *** 1.1.1.1.1.2.1.1.1.2.2.2.1 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                msplit(@l) -> msplit#1(@l)
                msplit#1(::(@x1,@xs)) -> msplit#2(@xs,@x1)
                msplit#1(nil()) -> tuple#2(nil(),nil())
                msplit#2(::(@x2,@xs'),@x1) -> msplit#3(msplit(@xs'),@x1,@x2)
                msplit#2(nil(),@x1) -> tuple#2(::(@x1,nil()),nil())
                msplit#3(tuple#2(@l1,@l2),@x1,@x2) -> tuple#2(::(@x1,@l1),::(@x2,@l2))
              Signature:
                {#cklt/1,#compare/2,#less/2,merge/2,merge#1/2,merge#2/3,merge#3/5,mergesort/1,mergesort#1/1,mergesort#2/2,mergesort#3/1,msplit/1,msplit#1/1,msplit#2/2,msplit#3/3,#cklt#/1,#compare#/2,#less#/2,merge#/2,merge#1#/2,merge#2#/3,merge#3#/5,mergesort#/1,mergesort#1#/1,mergesort#2#/2,mergesort#3#/1,msplit#/1,msplit#1#/1,msplit#2#/2,msplit#3#/3} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,tuple#2/2,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/1,c_10/1,c_11/0,c_12/2,c_13/0,c_14/2,c_15/1,c_16/1,c_17/0,c_18/1,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/0,c_32/0,c_33/1,c_34/0,c_35/1}
              Obligation:
                Innermost
                basic terms: {#cklt#,#compare#,#less#,merge#,merge#1#,merge#2#,merge#3#,mergesort#,mergesort#1#,mergesort#2#,mergesort#3#,msplit#,msplit#1#,msplit#2#,msplit#3#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil,tuple#2}
            Applied Processor:
              EmptyProcessor
            Proof:
              The problem is already closed. The intended complexity is O(1).