We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { #equal(@x, @y) -> #eq(@x, @y)
  , leq#2(nil(), @x, @xs) -> #false()
  , leq#2(::(@y, @ys), @x, @xs) ->
    or(#less(@x, @y), and(#equal(@x, @y), leq(@xs, @ys)))
  , or(@x, @y) -> #or(@x, @y)
  , and(@x, @y) -> #and(@x, @y)
  , isortlist(@l) -> isortlist#1(@l)
  , leq#1(nil(), @l2) -> #true()
  , leq#1(::(@x, @xs), @l2) -> leq#2(@l2, @x, @xs)
  , insert(@x, @l) -> insert#1(@l, @x)
  , insert#2(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys))
  , insert#2(#false(), @x, @y, @ys) -> ::(@y, insert(@x, @ys))
  , leq(@l1, @l2) -> leq#1(@l1, @l2)
  , isortlist#1(nil()) -> nil()
  , isortlist#1(::(@x, @xs)) -> insert(@x, isortlist(@xs))
  , insert#1(nil(), @x) -> ::(@x, nil())
  , insert#1(::(@y, @ys), @x) -> insert#2(leq(@x, @y), @x, @y, @ys)
  , #less(@x, @y) -> #cklt(#compare(@x, @y)) }
Weak Trs:
  { #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
  , #eq(#pos(@x), #0()) -> #false()
  , #eq(#pos(@x), #neg(@y)) -> #false()
  , #eq(nil(), nil()) -> #true()
  , #eq(nil(), ::(@y_1, @y_2)) -> #false()
  , #eq(::(@x_1, @x_2), nil()) -> #false()
  , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
  , #eq(#0(), #pos(@y)) -> #false()
  , #eq(#0(), #0()) -> #true()
  , #eq(#0(), #neg(@y)) -> #false()
  , #eq(#0(), #s(@y)) -> #false()
  , #eq(#neg(@x), #pos(@y)) -> #false()
  , #eq(#neg(@x), #0()) -> #false()
  , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
  , #eq(#s(@x), #0()) -> #false()
  , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
  , #cklt(#EQ()) -> #false()
  , #cklt(#LT()) -> #true()
  , #cklt(#GT()) -> #false()
  , #and(#true(), #true()) -> #true()
  , #and(#true(), #false()) -> #false()
  , #and(#false(), #true()) -> #false()
  , #and(#false(), #false()) -> #false()
  , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
  , #compare(#pos(@x), #0()) -> #GT()
  , #compare(#pos(@x), #neg(@y)) -> #GT()
  , #compare(#0(), #pos(@y)) -> #LT()
  , #compare(#0(), #0()) -> #EQ()
  , #compare(#0(), #neg(@y)) -> #GT()
  , #compare(#0(), #s(@y)) -> #LT()
  , #compare(#neg(@x), #pos(@y)) -> #LT()
  , #compare(#neg(@x), #0()) -> #LT()
  , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
  , #compare(#s(@x), #0()) -> #GT()
  , #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
  , #or(#true(), #true()) -> #true()
  , #or(#true(), #false()) -> #true()
  , #or(#false(), #true()) -> #true()
  , #or(#false(), #false()) -> #false() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We add the following dependency tuples:

Strict DPs:
  { #equal^#(@x, @y) -> c_1(#eq^#(@x, @y))
  , leq#2^#(nil(), @x, @xs) -> c_2()
  , leq#2^#(::(@y, @ys), @x, @xs) ->
    c_3(or^#(#less(@x, @y), and(#equal(@x, @y), leq(@xs, @ys))),
        #less^#(@x, @y),
        and^#(#equal(@x, @y), leq(@xs, @ys)),
        #equal^#(@x, @y),
        leq^#(@xs, @ys))
  , or^#(@x, @y) -> c_4(#or^#(@x, @y))
  , #less^#(@x, @y) ->
    c_17(#cklt^#(#compare(@x, @y)), #compare^#(@x, @y))
  , and^#(@x, @y) -> c_5(#and^#(@x, @y))
  , leq^#(@l1, @l2) -> c_12(leq#1^#(@l1, @l2))
  , isortlist^#(@l) -> c_6(isortlist#1^#(@l))
  , isortlist#1^#(nil()) -> c_13()
  , isortlist#1^#(::(@x, @xs)) ->
    c_14(insert^#(@x, isortlist(@xs)), isortlist^#(@xs))
  , leq#1^#(nil(), @l2) -> c_7()
  , leq#1^#(::(@x, @xs), @l2) -> c_8(leq#2^#(@l2, @x, @xs))
  , insert^#(@x, @l) -> c_9(insert#1^#(@l, @x))
  , insert#1^#(nil(), @x) -> c_15()
  , insert#1^#(::(@y, @ys), @x) ->
    c_16(insert#2^#(leq(@x, @y), @x, @y, @ys), leq^#(@x, @y))
  , insert#2^#(#true(), @x, @y, @ys) -> c_10()
  , insert#2^#(#false(), @x, @y, @ys) -> c_11(insert^#(@x, @ys)) }
Weak DPs:
  { #eq^#(#pos(@x), #pos(@y)) -> c_18(#eq^#(@x, @y))
  , #eq^#(#pos(@x), #0()) -> c_19()
  , #eq^#(#pos(@x), #neg(@y)) -> c_20()
  , #eq^#(nil(), nil()) -> c_21()
  , #eq^#(nil(), ::(@y_1, @y_2)) -> c_22()
  , #eq^#(::(@x_1, @x_2), nil()) -> c_23()
  , #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    c_24(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
         #eq^#(@x_1, @y_1),
         #eq^#(@x_2, @y_2))
  , #eq^#(#0(), #pos(@y)) -> c_25()
  , #eq^#(#0(), #0()) -> c_26()
  , #eq^#(#0(), #neg(@y)) -> c_27()
  , #eq^#(#0(), #s(@y)) -> c_28()
  , #eq^#(#neg(@x), #pos(@y)) -> c_29()
  , #eq^#(#neg(@x), #0()) -> c_30()
  , #eq^#(#neg(@x), #neg(@y)) -> c_31(#eq^#(@x, @y))
  , #eq^#(#s(@x), #0()) -> c_32()
  , #eq^#(#s(@x), #s(@y)) -> c_33(#eq^#(@x, @y))
  , #or^#(#true(), #true()) -> c_53()
  , #or^#(#true(), #false()) -> c_54()
  , #or^#(#false(), #true()) -> c_55()
  , #or^#(#false(), #false()) -> c_56()
  , #and^#(#true(), #true()) -> c_37()
  , #and^#(#true(), #false()) -> c_38()
  , #and^#(#false(), #true()) -> c_39()
  , #and^#(#false(), #false()) -> c_40()
  , #cklt^#(#EQ()) -> c_34()
  , #cklt^#(#LT()) -> c_35()
  , #cklt^#(#GT()) -> c_36()
  , #compare^#(#pos(@x), #pos(@y)) -> c_41(#compare^#(@x, @y))
  , #compare^#(#pos(@x), #0()) -> c_42()
  , #compare^#(#pos(@x), #neg(@y)) -> c_43()
  , #compare^#(#0(), #pos(@y)) -> c_44()
  , #compare^#(#0(), #0()) -> c_45()
  , #compare^#(#0(), #neg(@y)) -> c_46()
  , #compare^#(#0(), #s(@y)) -> c_47()
  , #compare^#(#neg(@x), #pos(@y)) -> c_48()
  , #compare^#(#neg(@x), #0()) -> c_49()
  , #compare^#(#neg(@x), #neg(@y)) -> c_50(#compare^#(@y, @x))
  , #compare^#(#s(@x), #0()) -> c_51()
  , #compare^#(#s(@x), #s(@y)) -> c_52(#compare^#(@x, @y)) }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { #equal^#(@x, @y) -> c_1(#eq^#(@x, @y))
  , leq#2^#(nil(), @x, @xs) -> c_2()
  , leq#2^#(::(@y, @ys), @x, @xs) ->
    c_3(or^#(#less(@x, @y), and(#equal(@x, @y), leq(@xs, @ys))),
        #less^#(@x, @y),
        and^#(#equal(@x, @y), leq(@xs, @ys)),
        #equal^#(@x, @y),
        leq^#(@xs, @ys))
  , or^#(@x, @y) -> c_4(#or^#(@x, @y))
  , #less^#(@x, @y) ->
    c_17(#cklt^#(#compare(@x, @y)), #compare^#(@x, @y))
  , and^#(@x, @y) -> c_5(#and^#(@x, @y))
  , leq^#(@l1, @l2) -> c_12(leq#1^#(@l1, @l2))
  , isortlist^#(@l) -> c_6(isortlist#1^#(@l))
  , isortlist#1^#(nil()) -> c_13()
  , isortlist#1^#(::(@x, @xs)) ->
    c_14(insert^#(@x, isortlist(@xs)), isortlist^#(@xs))
  , leq#1^#(nil(), @l2) -> c_7()
  , leq#1^#(::(@x, @xs), @l2) -> c_8(leq#2^#(@l2, @x, @xs))
  , insert^#(@x, @l) -> c_9(insert#1^#(@l, @x))
  , insert#1^#(nil(), @x) -> c_15()
  , insert#1^#(::(@y, @ys), @x) ->
    c_16(insert#2^#(leq(@x, @y), @x, @y, @ys), leq^#(@x, @y))
  , insert#2^#(#true(), @x, @y, @ys) -> c_10()
  , insert#2^#(#false(), @x, @y, @ys) -> c_11(insert^#(@x, @ys)) }
Weak DPs:
  { #eq^#(#pos(@x), #pos(@y)) -> c_18(#eq^#(@x, @y))
  , #eq^#(#pos(@x), #0()) -> c_19()
  , #eq^#(#pos(@x), #neg(@y)) -> c_20()
  , #eq^#(nil(), nil()) -> c_21()
  , #eq^#(nil(), ::(@y_1, @y_2)) -> c_22()
  , #eq^#(::(@x_1, @x_2), nil()) -> c_23()
  , #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    c_24(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
         #eq^#(@x_1, @y_1),
         #eq^#(@x_2, @y_2))
  , #eq^#(#0(), #pos(@y)) -> c_25()
  , #eq^#(#0(), #0()) -> c_26()
  , #eq^#(#0(), #neg(@y)) -> c_27()
  , #eq^#(#0(), #s(@y)) -> c_28()
  , #eq^#(#neg(@x), #pos(@y)) -> c_29()
  , #eq^#(#neg(@x), #0()) -> c_30()
  , #eq^#(#neg(@x), #neg(@y)) -> c_31(#eq^#(@x, @y))
  , #eq^#(#s(@x), #0()) -> c_32()
  , #eq^#(#s(@x), #s(@y)) -> c_33(#eq^#(@x, @y))
  , #or^#(#true(), #true()) -> c_53()
  , #or^#(#true(), #false()) -> c_54()
  , #or^#(#false(), #true()) -> c_55()
  , #or^#(#false(), #false()) -> c_56()
  , #and^#(#true(), #true()) -> c_37()
  , #and^#(#true(), #false()) -> c_38()
  , #and^#(#false(), #true()) -> c_39()
  , #and^#(#false(), #false()) -> c_40()
  , #cklt^#(#EQ()) -> c_34()
  , #cklt^#(#LT()) -> c_35()
  , #cklt^#(#GT()) -> c_36()
  , #compare^#(#pos(@x), #pos(@y)) -> c_41(#compare^#(@x, @y))
  , #compare^#(#pos(@x), #0()) -> c_42()
  , #compare^#(#pos(@x), #neg(@y)) -> c_43()
  , #compare^#(#0(), #pos(@y)) -> c_44()
  , #compare^#(#0(), #0()) -> c_45()
  , #compare^#(#0(), #neg(@y)) -> c_46()
  , #compare^#(#0(), #s(@y)) -> c_47()
  , #compare^#(#neg(@x), #pos(@y)) -> c_48()
  , #compare^#(#neg(@x), #0()) -> c_49()
  , #compare^#(#neg(@x), #neg(@y)) -> c_50(#compare^#(@y, @x))
  , #compare^#(#s(@x), #0()) -> c_51()
  , #compare^#(#s(@x), #s(@y)) -> c_52(#compare^#(@x, @y)) }
Weak Trs:
  { #equal(@x, @y) -> #eq(@x, @y)
  , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
  , #eq(#pos(@x), #0()) -> #false()
  , #eq(#pos(@x), #neg(@y)) -> #false()
  , #eq(nil(), nil()) -> #true()
  , #eq(nil(), ::(@y_1, @y_2)) -> #false()
  , #eq(::(@x_1, @x_2), nil()) -> #false()
  , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
  , #eq(#0(), #pos(@y)) -> #false()
  , #eq(#0(), #0()) -> #true()
  , #eq(#0(), #neg(@y)) -> #false()
  , #eq(#0(), #s(@y)) -> #false()
  , #eq(#neg(@x), #pos(@y)) -> #false()
  , #eq(#neg(@x), #0()) -> #false()
  , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
  , #eq(#s(@x), #0()) -> #false()
  , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
  , leq#2(nil(), @x, @xs) -> #false()
  , leq#2(::(@y, @ys), @x, @xs) ->
    or(#less(@x, @y), and(#equal(@x, @y), leq(@xs, @ys)))
  , or(@x, @y) -> #or(@x, @y)
  , and(@x, @y) -> #and(@x, @y)
  , isortlist(@l) -> isortlist#1(@l)
  , leq#1(nil(), @l2) -> #true()
  , leq#1(::(@x, @xs), @l2) -> leq#2(@l2, @x, @xs)
  , #cklt(#EQ()) -> #false()
  , #cklt(#LT()) -> #true()
  , #cklt(#GT()) -> #false()
  , insert(@x, @l) -> insert#1(@l, @x)
  , insert#2(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys))
  , insert#2(#false(), @x, @y, @ys) -> ::(@y, insert(@x, @ys))
  , #and(#true(), #true()) -> #true()
  , #and(#true(), #false()) -> #false()
  , #and(#false(), #true()) -> #false()
  , #and(#false(), #false()) -> #false()
  , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
  , #compare(#pos(@x), #0()) -> #GT()
  , #compare(#pos(@x), #neg(@y)) -> #GT()
  , #compare(#0(), #pos(@y)) -> #LT()
  , #compare(#0(), #0()) -> #EQ()
  , #compare(#0(), #neg(@y)) -> #GT()
  , #compare(#0(), #s(@y)) -> #LT()
  , #compare(#neg(@x), #pos(@y)) -> #LT()
  , #compare(#neg(@x), #0()) -> #LT()
  , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
  , #compare(#s(@x), #0()) -> #GT()
  , #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
  , leq(@l1, @l2) -> leq#1(@l1, @l2)
  , isortlist#1(nil()) -> nil()
  , isortlist#1(::(@x, @xs)) -> insert(@x, isortlist(@xs))
  , #or(#true(), #true()) -> #true()
  , #or(#true(), #false()) -> #true()
  , #or(#false(), #true()) -> #true()
  , #or(#false(), #false()) -> #false()
  , insert#1(nil(), @x) -> ::(@x, nil())
  , insert#1(::(@y, @ys), @x) -> insert#2(leq(@x, @y), @x, @y, @ys)
  , #less(@x, @y) -> #cklt(#compare(@x, @y)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We estimate the number of application of {1,2,4,5,6,9,11,14,16} by
applications of Pre({1,2,4,5,6,9,11,14,16}) = {3,7,8,12,13,15}.
Here rules are labeled as follows:

  DPs:
    { 1: #equal^#(@x, @y) -> c_1(#eq^#(@x, @y))
    , 2: leq#2^#(nil(), @x, @xs) -> c_2()
    , 3: leq#2^#(::(@y, @ys), @x, @xs) ->
         c_3(or^#(#less(@x, @y), and(#equal(@x, @y), leq(@xs, @ys))),
             #less^#(@x, @y),
             and^#(#equal(@x, @y), leq(@xs, @ys)),
             #equal^#(@x, @y),
             leq^#(@xs, @ys))
    , 4: or^#(@x, @y) -> c_4(#or^#(@x, @y))
    , 5: #less^#(@x, @y) ->
         c_17(#cklt^#(#compare(@x, @y)), #compare^#(@x, @y))
    , 6: and^#(@x, @y) -> c_5(#and^#(@x, @y))
    , 7: leq^#(@l1, @l2) -> c_12(leq#1^#(@l1, @l2))
    , 8: isortlist^#(@l) -> c_6(isortlist#1^#(@l))
    , 9: isortlist#1^#(nil()) -> c_13()
    , 10: isortlist#1^#(::(@x, @xs)) ->
          c_14(insert^#(@x, isortlist(@xs)), isortlist^#(@xs))
    , 11: leq#1^#(nil(), @l2) -> c_7()
    , 12: leq#1^#(::(@x, @xs), @l2) -> c_8(leq#2^#(@l2, @x, @xs))
    , 13: insert^#(@x, @l) -> c_9(insert#1^#(@l, @x))
    , 14: insert#1^#(nil(), @x) -> c_15()
    , 15: insert#1^#(::(@y, @ys), @x) ->
          c_16(insert#2^#(leq(@x, @y), @x, @y, @ys), leq^#(@x, @y))
    , 16: insert#2^#(#true(), @x, @y, @ys) -> c_10()
    , 17: insert#2^#(#false(), @x, @y, @ys) -> c_11(insert^#(@x, @ys))
    , 18: #eq^#(#pos(@x), #pos(@y)) -> c_18(#eq^#(@x, @y))
    , 19: #eq^#(#pos(@x), #0()) -> c_19()
    , 20: #eq^#(#pos(@x), #neg(@y)) -> c_20()
    , 21: #eq^#(nil(), nil()) -> c_21()
    , 22: #eq^#(nil(), ::(@y_1, @y_2)) -> c_22()
    , 23: #eq^#(::(@x_1, @x_2), nil()) -> c_23()
    , 24: #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
          c_24(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
               #eq^#(@x_1, @y_1),
               #eq^#(@x_2, @y_2))
    , 25: #eq^#(#0(), #pos(@y)) -> c_25()
    , 26: #eq^#(#0(), #0()) -> c_26()
    , 27: #eq^#(#0(), #neg(@y)) -> c_27()
    , 28: #eq^#(#0(), #s(@y)) -> c_28()
    , 29: #eq^#(#neg(@x), #pos(@y)) -> c_29()
    , 30: #eq^#(#neg(@x), #0()) -> c_30()
    , 31: #eq^#(#neg(@x), #neg(@y)) -> c_31(#eq^#(@x, @y))
    , 32: #eq^#(#s(@x), #0()) -> c_32()
    , 33: #eq^#(#s(@x), #s(@y)) -> c_33(#eq^#(@x, @y))
    , 34: #or^#(#true(), #true()) -> c_53()
    , 35: #or^#(#true(), #false()) -> c_54()
    , 36: #or^#(#false(), #true()) -> c_55()
    , 37: #or^#(#false(), #false()) -> c_56()
    , 38: #and^#(#true(), #true()) -> c_37()
    , 39: #and^#(#true(), #false()) -> c_38()
    , 40: #and^#(#false(), #true()) -> c_39()
    , 41: #and^#(#false(), #false()) -> c_40()
    , 42: #cklt^#(#EQ()) -> c_34()
    , 43: #cklt^#(#LT()) -> c_35()
    , 44: #cklt^#(#GT()) -> c_36()
    , 45: #compare^#(#pos(@x), #pos(@y)) -> c_41(#compare^#(@x, @y))
    , 46: #compare^#(#pos(@x), #0()) -> c_42()
    , 47: #compare^#(#pos(@x), #neg(@y)) -> c_43()
    , 48: #compare^#(#0(), #pos(@y)) -> c_44()
    , 49: #compare^#(#0(), #0()) -> c_45()
    , 50: #compare^#(#0(), #neg(@y)) -> c_46()
    , 51: #compare^#(#0(), #s(@y)) -> c_47()
    , 52: #compare^#(#neg(@x), #pos(@y)) -> c_48()
    , 53: #compare^#(#neg(@x), #0()) -> c_49()
    , 54: #compare^#(#neg(@x), #neg(@y)) -> c_50(#compare^#(@y, @x))
    , 55: #compare^#(#s(@x), #0()) -> c_51()
    , 56: #compare^#(#s(@x), #s(@y)) -> c_52(#compare^#(@x, @y)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { leq#2^#(::(@y, @ys), @x, @xs) ->
    c_3(or^#(#less(@x, @y), and(#equal(@x, @y), leq(@xs, @ys))),
        #less^#(@x, @y),
        and^#(#equal(@x, @y), leq(@xs, @ys)),
        #equal^#(@x, @y),
        leq^#(@xs, @ys))
  , leq^#(@l1, @l2) -> c_12(leq#1^#(@l1, @l2))
  , isortlist^#(@l) -> c_6(isortlist#1^#(@l))
  , isortlist#1^#(::(@x, @xs)) ->
    c_14(insert^#(@x, isortlist(@xs)), isortlist^#(@xs))
  , leq#1^#(::(@x, @xs), @l2) -> c_8(leq#2^#(@l2, @x, @xs))
  , insert^#(@x, @l) -> c_9(insert#1^#(@l, @x))
  , insert#1^#(::(@y, @ys), @x) ->
    c_16(insert#2^#(leq(@x, @y), @x, @y, @ys), leq^#(@x, @y))
  , insert#2^#(#false(), @x, @y, @ys) -> c_11(insert^#(@x, @ys)) }
Weak DPs:
  { #equal^#(@x, @y) -> c_1(#eq^#(@x, @y))
  , #eq^#(#pos(@x), #pos(@y)) -> c_18(#eq^#(@x, @y))
  , #eq^#(#pos(@x), #0()) -> c_19()
  , #eq^#(#pos(@x), #neg(@y)) -> c_20()
  , #eq^#(nil(), nil()) -> c_21()
  , #eq^#(nil(), ::(@y_1, @y_2)) -> c_22()
  , #eq^#(::(@x_1, @x_2), nil()) -> c_23()
  , #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    c_24(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
         #eq^#(@x_1, @y_1),
         #eq^#(@x_2, @y_2))
  , #eq^#(#0(), #pos(@y)) -> c_25()
  , #eq^#(#0(), #0()) -> c_26()
  , #eq^#(#0(), #neg(@y)) -> c_27()
  , #eq^#(#0(), #s(@y)) -> c_28()
  , #eq^#(#neg(@x), #pos(@y)) -> c_29()
  , #eq^#(#neg(@x), #0()) -> c_30()
  , #eq^#(#neg(@x), #neg(@y)) -> c_31(#eq^#(@x, @y))
  , #eq^#(#s(@x), #0()) -> c_32()
  , #eq^#(#s(@x), #s(@y)) -> c_33(#eq^#(@x, @y))
  , leq#2^#(nil(), @x, @xs) -> c_2()
  , or^#(@x, @y) -> c_4(#or^#(@x, @y))
  , #less^#(@x, @y) ->
    c_17(#cklt^#(#compare(@x, @y)), #compare^#(@x, @y))
  , and^#(@x, @y) -> c_5(#and^#(@x, @y))
  , #or^#(#true(), #true()) -> c_53()
  , #or^#(#true(), #false()) -> c_54()
  , #or^#(#false(), #true()) -> c_55()
  , #or^#(#false(), #false()) -> c_56()
  , #and^#(#true(), #true()) -> c_37()
  , #and^#(#true(), #false()) -> c_38()
  , #and^#(#false(), #true()) -> c_39()
  , #and^#(#false(), #false()) -> c_40()
  , isortlist#1^#(nil()) -> c_13()
  , leq#1^#(nil(), @l2) -> c_7()
  , insert#1^#(nil(), @x) -> c_15()
  , insert#2^#(#true(), @x, @y, @ys) -> c_10()
  , #cklt^#(#EQ()) -> c_34()
  , #cklt^#(#LT()) -> c_35()
  , #cklt^#(#GT()) -> c_36()
  , #compare^#(#pos(@x), #pos(@y)) -> c_41(#compare^#(@x, @y))
  , #compare^#(#pos(@x), #0()) -> c_42()
  , #compare^#(#pos(@x), #neg(@y)) -> c_43()
  , #compare^#(#0(), #pos(@y)) -> c_44()
  , #compare^#(#0(), #0()) -> c_45()
  , #compare^#(#0(), #neg(@y)) -> c_46()
  , #compare^#(#0(), #s(@y)) -> c_47()
  , #compare^#(#neg(@x), #pos(@y)) -> c_48()
  , #compare^#(#neg(@x), #0()) -> c_49()
  , #compare^#(#neg(@x), #neg(@y)) -> c_50(#compare^#(@y, @x))
  , #compare^#(#s(@x), #0()) -> c_51()
  , #compare^#(#s(@x), #s(@y)) -> c_52(#compare^#(@x, @y)) }
Weak Trs:
  { #equal(@x, @y) -> #eq(@x, @y)
  , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
  , #eq(#pos(@x), #0()) -> #false()
  , #eq(#pos(@x), #neg(@y)) -> #false()
  , #eq(nil(), nil()) -> #true()
  , #eq(nil(), ::(@y_1, @y_2)) -> #false()
  , #eq(::(@x_1, @x_2), nil()) -> #false()
  , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
  , #eq(#0(), #pos(@y)) -> #false()
  , #eq(#0(), #0()) -> #true()
  , #eq(#0(), #neg(@y)) -> #false()
  , #eq(#0(), #s(@y)) -> #false()
  , #eq(#neg(@x), #pos(@y)) -> #false()
  , #eq(#neg(@x), #0()) -> #false()
  , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
  , #eq(#s(@x), #0()) -> #false()
  , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
  , leq#2(nil(), @x, @xs) -> #false()
  , leq#2(::(@y, @ys), @x, @xs) ->
    or(#less(@x, @y), and(#equal(@x, @y), leq(@xs, @ys)))
  , or(@x, @y) -> #or(@x, @y)
  , and(@x, @y) -> #and(@x, @y)
  , isortlist(@l) -> isortlist#1(@l)
  , leq#1(nil(), @l2) -> #true()
  , leq#1(::(@x, @xs), @l2) -> leq#2(@l2, @x, @xs)
  , #cklt(#EQ()) -> #false()
  , #cklt(#LT()) -> #true()
  , #cklt(#GT()) -> #false()
  , insert(@x, @l) -> insert#1(@l, @x)
  , insert#2(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys))
  , insert#2(#false(), @x, @y, @ys) -> ::(@y, insert(@x, @ys))
  , #and(#true(), #true()) -> #true()
  , #and(#true(), #false()) -> #false()
  , #and(#false(), #true()) -> #false()
  , #and(#false(), #false()) -> #false()
  , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
  , #compare(#pos(@x), #0()) -> #GT()
  , #compare(#pos(@x), #neg(@y)) -> #GT()
  , #compare(#0(), #pos(@y)) -> #LT()
  , #compare(#0(), #0()) -> #EQ()
  , #compare(#0(), #neg(@y)) -> #GT()
  , #compare(#0(), #s(@y)) -> #LT()
  , #compare(#neg(@x), #pos(@y)) -> #LT()
  , #compare(#neg(@x), #0()) -> #LT()
  , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
  , #compare(#s(@x), #0()) -> #GT()
  , #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
  , leq(@l1, @l2) -> leq#1(@l1, @l2)
  , isortlist#1(nil()) -> nil()
  , isortlist#1(::(@x, @xs)) -> insert(@x, isortlist(@xs))
  , #or(#true(), #true()) -> #true()
  , #or(#true(), #false()) -> #true()
  , #or(#false(), #true()) -> #true()
  , #or(#false(), #false()) -> #false()
  , insert#1(nil(), @x) -> ::(@x, nil())
  , insert#1(::(@y, @ys), @x) -> insert#2(leq(@x, @y), @x, @y, @ys)
  , #less(@x, @y) -> #cklt(#compare(@x, @y)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ #equal^#(@x, @y) -> c_1(#eq^#(@x, @y))
, #eq^#(#pos(@x), #pos(@y)) -> c_18(#eq^#(@x, @y))
, #eq^#(#pos(@x), #0()) -> c_19()
, #eq^#(#pos(@x), #neg(@y)) -> c_20()
, #eq^#(nil(), nil()) -> c_21()
, #eq^#(nil(), ::(@y_1, @y_2)) -> c_22()
, #eq^#(::(@x_1, @x_2), nil()) -> c_23()
, #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
  c_24(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
       #eq^#(@x_1, @y_1),
       #eq^#(@x_2, @y_2))
, #eq^#(#0(), #pos(@y)) -> c_25()
, #eq^#(#0(), #0()) -> c_26()
, #eq^#(#0(), #neg(@y)) -> c_27()
, #eq^#(#0(), #s(@y)) -> c_28()
, #eq^#(#neg(@x), #pos(@y)) -> c_29()
, #eq^#(#neg(@x), #0()) -> c_30()
, #eq^#(#neg(@x), #neg(@y)) -> c_31(#eq^#(@x, @y))
, #eq^#(#s(@x), #0()) -> c_32()
, #eq^#(#s(@x), #s(@y)) -> c_33(#eq^#(@x, @y))
, leq#2^#(nil(), @x, @xs) -> c_2()
, or^#(@x, @y) -> c_4(#or^#(@x, @y))
, #less^#(@x, @y) ->
  c_17(#cklt^#(#compare(@x, @y)), #compare^#(@x, @y))
, and^#(@x, @y) -> c_5(#and^#(@x, @y))
, #or^#(#true(), #true()) -> c_53()
, #or^#(#true(), #false()) -> c_54()
, #or^#(#false(), #true()) -> c_55()
, #or^#(#false(), #false()) -> c_56()
, #and^#(#true(), #true()) -> c_37()
, #and^#(#true(), #false()) -> c_38()
, #and^#(#false(), #true()) -> c_39()
, #and^#(#false(), #false()) -> c_40()
, isortlist#1^#(nil()) -> c_13()
, leq#1^#(nil(), @l2) -> c_7()
, insert#1^#(nil(), @x) -> c_15()
, insert#2^#(#true(), @x, @y, @ys) -> c_10()
, #cklt^#(#EQ()) -> c_34()
, #cklt^#(#LT()) -> c_35()
, #cklt^#(#GT()) -> c_36()
, #compare^#(#pos(@x), #pos(@y)) -> c_41(#compare^#(@x, @y))
, #compare^#(#pos(@x), #0()) -> c_42()
, #compare^#(#pos(@x), #neg(@y)) -> c_43()
, #compare^#(#0(), #pos(@y)) -> c_44()
, #compare^#(#0(), #0()) -> c_45()
, #compare^#(#0(), #neg(@y)) -> c_46()
, #compare^#(#0(), #s(@y)) -> c_47()
, #compare^#(#neg(@x), #pos(@y)) -> c_48()
, #compare^#(#neg(@x), #0()) -> c_49()
, #compare^#(#neg(@x), #neg(@y)) -> c_50(#compare^#(@y, @x))
, #compare^#(#s(@x), #0()) -> c_51()
, #compare^#(#s(@x), #s(@y)) -> c_52(#compare^#(@x, @y)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { leq#2^#(::(@y, @ys), @x, @xs) ->
    c_3(or^#(#less(@x, @y), and(#equal(@x, @y), leq(@xs, @ys))),
        #less^#(@x, @y),
        and^#(#equal(@x, @y), leq(@xs, @ys)),
        #equal^#(@x, @y),
        leq^#(@xs, @ys))
  , leq^#(@l1, @l2) -> c_12(leq#1^#(@l1, @l2))
  , isortlist^#(@l) -> c_6(isortlist#1^#(@l))
  , isortlist#1^#(::(@x, @xs)) ->
    c_14(insert^#(@x, isortlist(@xs)), isortlist^#(@xs))
  , leq#1^#(::(@x, @xs), @l2) -> c_8(leq#2^#(@l2, @x, @xs))
  , insert^#(@x, @l) -> c_9(insert#1^#(@l, @x))
  , insert#1^#(::(@y, @ys), @x) ->
    c_16(insert#2^#(leq(@x, @y), @x, @y, @ys), leq^#(@x, @y))
  , insert#2^#(#false(), @x, @y, @ys) -> c_11(insert^#(@x, @ys)) }
Weak Trs:
  { #equal(@x, @y) -> #eq(@x, @y)
  , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
  , #eq(#pos(@x), #0()) -> #false()
  , #eq(#pos(@x), #neg(@y)) -> #false()
  , #eq(nil(), nil()) -> #true()
  , #eq(nil(), ::(@y_1, @y_2)) -> #false()
  , #eq(::(@x_1, @x_2), nil()) -> #false()
  , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
  , #eq(#0(), #pos(@y)) -> #false()
  , #eq(#0(), #0()) -> #true()
  , #eq(#0(), #neg(@y)) -> #false()
  , #eq(#0(), #s(@y)) -> #false()
  , #eq(#neg(@x), #pos(@y)) -> #false()
  , #eq(#neg(@x), #0()) -> #false()
  , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
  , #eq(#s(@x), #0()) -> #false()
  , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
  , leq#2(nil(), @x, @xs) -> #false()
  , leq#2(::(@y, @ys), @x, @xs) ->
    or(#less(@x, @y), and(#equal(@x, @y), leq(@xs, @ys)))
  , or(@x, @y) -> #or(@x, @y)
  , and(@x, @y) -> #and(@x, @y)
  , isortlist(@l) -> isortlist#1(@l)
  , leq#1(nil(), @l2) -> #true()
  , leq#1(::(@x, @xs), @l2) -> leq#2(@l2, @x, @xs)
  , #cklt(#EQ()) -> #false()
  , #cklt(#LT()) -> #true()
  , #cklt(#GT()) -> #false()
  , insert(@x, @l) -> insert#1(@l, @x)
  , insert#2(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys))
  , insert#2(#false(), @x, @y, @ys) -> ::(@y, insert(@x, @ys))
  , #and(#true(), #true()) -> #true()
  , #and(#true(), #false()) -> #false()
  , #and(#false(), #true()) -> #false()
  , #and(#false(), #false()) -> #false()
  , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
  , #compare(#pos(@x), #0()) -> #GT()
  , #compare(#pos(@x), #neg(@y)) -> #GT()
  , #compare(#0(), #pos(@y)) -> #LT()
  , #compare(#0(), #0()) -> #EQ()
  , #compare(#0(), #neg(@y)) -> #GT()
  , #compare(#0(), #s(@y)) -> #LT()
  , #compare(#neg(@x), #pos(@y)) -> #LT()
  , #compare(#neg(@x), #0()) -> #LT()
  , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
  , #compare(#s(@x), #0()) -> #GT()
  , #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
  , leq(@l1, @l2) -> leq#1(@l1, @l2)
  , isortlist#1(nil()) -> nil()
  , isortlist#1(::(@x, @xs)) -> insert(@x, isortlist(@xs))
  , #or(#true(), #true()) -> #true()
  , #or(#true(), #false()) -> #true()
  , #or(#false(), #true()) -> #true()
  , #or(#false(), #false()) -> #false()
  , insert#1(nil(), @x) -> ::(@x, nil())
  , insert#1(::(@y, @ys), @x) -> insert#2(leq(@x, @y), @x, @y, @ys)
  , #less(@x, @y) -> #cklt(#compare(@x, @y)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

Due to missing edges in the dependency-graph, the right-hand sides
of following rules could be simplified:

  { leq#2^#(::(@y, @ys), @x, @xs) ->
    c_3(or^#(#less(@x, @y), and(#equal(@x, @y), leq(@xs, @ys))),
        #less^#(@x, @y),
        and^#(#equal(@x, @y), leq(@xs, @ys)),
        #equal^#(@x, @y),
        leq^#(@xs, @ys)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { leq#2^#(::(@y, @ys), @x, @xs) -> c_1(leq^#(@xs, @ys))
  , leq^#(@l1, @l2) -> c_2(leq#1^#(@l1, @l2))
  , isortlist^#(@l) -> c_3(isortlist#1^#(@l))
  , isortlist#1^#(::(@x, @xs)) ->
    c_4(insert^#(@x, isortlist(@xs)), isortlist^#(@xs))
  , leq#1^#(::(@x, @xs), @l2) -> c_5(leq#2^#(@l2, @x, @xs))
  , insert^#(@x, @l) -> c_6(insert#1^#(@l, @x))
  , insert#1^#(::(@y, @ys), @x) ->
    c_7(insert#2^#(leq(@x, @y), @x, @y, @ys), leq^#(@x, @y))
  , insert#2^#(#false(), @x, @y, @ys) -> c_8(insert^#(@x, @ys)) }
Weak Trs:
  { #equal(@x, @y) -> #eq(@x, @y)
  , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
  , #eq(#pos(@x), #0()) -> #false()
  , #eq(#pos(@x), #neg(@y)) -> #false()
  , #eq(nil(), nil()) -> #true()
  , #eq(nil(), ::(@y_1, @y_2)) -> #false()
  , #eq(::(@x_1, @x_2), nil()) -> #false()
  , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
  , #eq(#0(), #pos(@y)) -> #false()
  , #eq(#0(), #0()) -> #true()
  , #eq(#0(), #neg(@y)) -> #false()
  , #eq(#0(), #s(@y)) -> #false()
  , #eq(#neg(@x), #pos(@y)) -> #false()
  , #eq(#neg(@x), #0()) -> #false()
  , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
  , #eq(#s(@x), #0()) -> #false()
  , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
  , leq#2(nil(), @x, @xs) -> #false()
  , leq#2(::(@y, @ys), @x, @xs) ->
    or(#less(@x, @y), and(#equal(@x, @y), leq(@xs, @ys)))
  , or(@x, @y) -> #or(@x, @y)
  , and(@x, @y) -> #and(@x, @y)
  , isortlist(@l) -> isortlist#1(@l)
  , leq#1(nil(), @l2) -> #true()
  , leq#1(::(@x, @xs), @l2) -> leq#2(@l2, @x, @xs)
  , #cklt(#EQ()) -> #false()
  , #cklt(#LT()) -> #true()
  , #cklt(#GT()) -> #false()
  , insert(@x, @l) -> insert#1(@l, @x)
  , insert#2(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys))
  , insert#2(#false(), @x, @y, @ys) -> ::(@y, insert(@x, @ys))
  , #and(#true(), #true()) -> #true()
  , #and(#true(), #false()) -> #false()
  , #and(#false(), #true()) -> #false()
  , #and(#false(), #false()) -> #false()
  , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
  , #compare(#pos(@x), #0()) -> #GT()
  , #compare(#pos(@x), #neg(@y)) -> #GT()
  , #compare(#0(), #pos(@y)) -> #LT()
  , #compare(#0(), #0()) -> #EQ()
  , #compare(#0(), #neg(@y)) -> #GT()
  , #compare(#0(), #s(@y)) -> #LT()
  , #compare(#neg(@x), #pos(@y)) -> #LT()
  , #compare(#neg(@x), #0()) -> #LT()
  , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
  , #compare(#s(@x), #0()) -> #GT()
  , #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
  , leq(@l1, @l2) -> leq#1(@l1, @l2)
  , isortlist#1(nil()) -> nil()
  , isortlist#1(::(@x, @xs)) -> insert(@x, isortlist(@xs))
  , #or(#true(), #true()) -> #true()
  , #or(#true(), #false()) -> #true()
  , #or(#false(), #true()) -> #true()
  , #or(#false(), #false()) -> #false()
  , insert#1(nil(), @x) -> ::(@x, nil())
  , insert#1(::(@y, @ys), @x) -> insert#2(leq(@x, @y), @x, @y, @ys)
  , #less(@x, @y) -> #cklt(#compare(@x, @y)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We decompose the input problem according to the dependency graph
into the upper component

  { isortlist^#(@l) -> c_3(isortlist#1^#(@l))
  , isortlist#1^#(::(@x, @xs)) ->
    c_4(insert^#(@x, isortlist(@xs)), isortlist^#(@xs)) }

and lower component

  { leq#2^#(::(@y, @ys), @x, @xs) -> c_1(leq^#(@xs, @ys))
  , leq^#(@l1, @l2) -> c_2(leq#1^#(@l1, @l2))
  , leq#1^#(::(@x, @xs), @l2) -> c_5(leq#2^#(@l2, @x, @xs))
  , insert^#(@x, @l) -> c_6(insert#1^#(@l, @x))
  , insert#1^#(::(@y, @ys), @x) ->
    c_7(insert#2^#(leq(@x, @y), @x, @y, @ys), leq^#(@x, @y))
  , insert#2^#(#false(), @x, @y, @ys) -> c_8(insert^#(@x, @ys)) }

Further, following extension rules are added to the lower
component.

{ isortlist^#(@l) -> isortlist#1^#(@l)
, isortlist#1^#(::(@x, @xs)) -> isortlist^#(@xs)
, isortlist#1^#(::(@x, @xs)) -> insert^#(@x, isortlist(@xs)) }

TcT solves the upper component with certificate YES(O(1),O(n^1)).

Sub-proof:
----------
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(n^1)).
  
  Strict DPs:
    { isortlist^#(@l) -> c_3(isortlist#1^#(@l))
    , isortlist#1^#(::(@x, @xs)) ->
      c_4(insert^#(@x, isortlist(@xs)), isortlist^#(@xs)) }
  Weak Trs:
    { #equal(@x, @y) -> #eq(@x, @y)
    , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
    , #eq(#pos(@x), #0()) -> #false()
    , #eq(#pos(@x), #neg(@y)) -> #false()
    , #eq(nil(), nil()) -> #true()
    , #eq(nil(), ::(@y_1, @y_2)) -> #false()
    , #eq(::(@x_1, @x_2), nil()) -> #false()
    , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
      #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
    , #eq(#0(), #pos(@y)) -> #false()
    , #eq(#0(), #0()) -> #true()
    , #eq(#0(), #neg(@y)) -> #false()
    , #eq(#0(), #s(@y)) -> #false()
    , #eq(#neg(@x), #pos(@y)) -> #false()
    , #eq(#neg(@x), #0()) -> #false()
    , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
    , #eq(#s(@x), #0()) -> #false()
    , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
    , leq#2(nil(), @x, @xs) -> #false()
    , leq#2(::(@y, @ys), @x, @xs) ->
      or(#less(@x, @y), and(#equal(@x, @y), leq(@xs, @ys)))
    , or(@x, @y) -> #or(@x, @y)
    , and(@x, @y) -> #and(@x, @y)
    , isortlist(@l) -> isortlist#1(@l)
    , leq#1(nil(), @l2) -> #true()
    , leq#1(::(@x, @xs), @l2) -> leq#2(@l2, @x, @xs)
    , #cklt(#EQ()) -> #false()
    , #cklt(#LT()) -> #true()
    , #cklt(#GT()) -> #false()
    , insert(@x, @l) -> insert#1(@l, @x)
    , insert#2(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys))
    , insert#2(#false(), @x, @y, @ys) -> ::(@y, insert(@x, @ys))
    , #and(#true(), #true()) -> #true()
    , #and(#true(), #false()) -> #false()
    , #and(#false(), #true()) -> #false()
    , #and(#false(), #false()) -> #false()
    , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
    , #compare(#pos(@x), #0()) -> #GT()
    , #compare(#pos(@x), #neg(@y)) -> #GT()
    , #compare(#0(), #pos(@y)) -> #LT()
    , #compare(#0(), #0()) -> #EQ()
    , #compare(#0(), #neg(@y)) -> #GT()
    , #compare(#0(), #s(@y)) -> #LT()
    , #compare(#neg(@x), #pos(@y)) -> #LT()
    , #compare(#neg(@x), #0()) -> #LT()
    , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
    , #compare(#s(@x), #0()) -> #GT()
    , #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
    , leq(@l1, @l2) -> leq#1(@l1, @l2)
    , isortlist#1(nil()) -> nil()
    , isortlist#1(::(@x, @xs)) -> insert(@x, isortlist(@xs))
    , #or(#true(), #true()) -> #true()
    , #or(#true(), #false()) -> #true()
    , #or(#false(), #true()) -> #true()
    , #or(#false(), #false()) -> #false()
    , insert#1(nil(), @x) -> ::(@x, nil())
    , insert#1(::(@y, @ys), @x) -> insert#2(leq(@x, @y), @x, @y, @ys)
    , #less(@x, @y) -> #cklt(#compare(@x, @y)) }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(n^1))
  
  We use the processor 'matrix interpretation of dimension 1' to
  orient following rules strictly.
  
  DPs:
    { 2: isortlist#1^#(::(@x, @xs)) ->
         c_4(insert^#(@x, isortlist(@xs)), isortlist^#(@xs)) }
  Trs:
    { leq#1(nil(), @l2) -> #true()
    , #cklt(#LT()) -> #true()
    , #and(#true(), #true()) -> #true()
    , isortlist#1(nil()) -> nil()
    , isortlist#1(::(@x, @xs)) -> insert(@x, isortlist(@xs))
    , #or(#false(), #true()) -> #true()
    , insert#1(nil(), @x) -> ::(@x, nil()) }
  
  Sub-proof:
  ----------
    The following argument positions are usable:
      Uargs(c_3) = {1}, Uargs(c_4) = {1, 2}
    
    TcT has computed the following constructor-based matrix
    interpretation satisfying not(EDA).
    
                [#equal](x1, x2) = [0]                                    
                                                                          
                   [#eq](x1, x2) = [0]                                    
                                                                          
             [leq#2](x1, x2, x3) = [3]                                    
                                                                          
                    [or](x1, x2) = [1] x1 + [0]                           
                                                                          
                         [#true] = [2]                                    
                                                                          
                   [and](x1, x2) = [3]                                    
                                                                          
                 [isortlist](x1) = [2] x1 + [3]                           
                                                                          
                 [leq#1](x1, x2) = [3]                                    
                                                                          
                     [#cklt](x1) = [2] x1 + [1]                           
                                                                          
                [insert](x1, x2) = [2] x1 + [1] x2 + [7]                  
                                                                          
                      [#pos](x1) = [1] x1 + [0]                           
                                                                          
                           [#EQ] = [1]                                    
                                                                          
      [insert#2](x1, x2, x3, x4) = [3] x1 + [2] x2 + [1] x3 + [1] x4 + [2]
                                                                          
                  [#and](x1, x2) = [3]                                    
                                                                          
              [#compare](x1, x2) = [1]                                    
                                                                          
                           [nil] = [4]                                    
                                                                          
                   [leq](x1, x2) = [3]                                    
                                                                          
                        [#false] = [3]                                    
                                                                          
                    [::](x1, x2) = [1] x1 + [1] x2 + [4]                  
                                                                          
               [isortlist#1](x1) = [2] x1 + [3]                           
                                                                          
                           [#LT] = [1]                                    
                                                                          
                   [#or](x1, x2) = [1] x1 + [0]                           
                                                                          
              [insert#1](x1, x2) = [1] x1 + [2] x2 + [7]                  
                                                                          
                            [#0] = [2]                                    
                                                                          
                      [#neg](x1) = [1] x1 + [0]                           
                                                                          
                 [#less](x1, x2) = [3]                                    
                                                                          
                        [#s](x1) = [1] x1 + [0]                           
                                                                          
                           [#GT] = [1]                                    
                                                                          
               [isortlist^#](x1) = [1] x1 + [1]                           
                                                                          
             [isortlist#1^#](x1) = [1] x1 + [1]                           
                                                                          
              [insert^#](x1, x2) = [0]                                    
                                                                          
                       [c_3](x1) = [1] x1 + [0]                           
                                                                          
                   [c_4](x1, x2) = [6] x1 + [1] x2 + [0]                  
    
    The order satisfies the following ordering constraints:
    
                           [#equal(@x, @y)] =  [0]                                                    
                                            >= [0]                                                    
                                            =  [#eq(@x, @y)]                                          
                                                                                                      
                  [#eq(#pos(@x), #pos(@y))] =  [0]                                                    
                                            >= [0]                                                    
                                            =  [#eq(@x, @y)]                                          
                                                                                                      
                      [#eq(#pos(@x), #0())] =  [0]                                                    
                                            ?  [3]                                                    
                                            =  [#false()]                                             
                                                                                                      
                  [#eq(#pos(@x), #neg(@y))] =  [0]                                                    
                                            ?  [3]                                                    
                                            =  [#false()]                                             
                                                                                                      
                        [#eq(nil(), nil())] =  [0]                                                    
                                            ?  [2]                                                    
                                            =  [#true()]                                              
                                                                                                      
               [#eq(nil(), ::(@y_1, @y_2))] =  [0]                                                    
                                            ?  [3]                                                    
                                            =  [#false()]                                             
                                                                                                      
               [#eq(::(@x_1, @x_2), nil())] =  [0]                                                    
                                            ?  [3]                                                    
                                            =  [#false()]                                             
                                                                                                      
      [#eq(::(@x_1, @x_2), ::(@y_1, @y_2))] =  [0]                                                    
                                            ?  [3]                                                    
                                            =  [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))]               
                                                                                                      
                      [#eq(#0(), #pos(@y))] =  [0]                                                    
                                            ?  [3]                                                    
                                            =  [#false()]                                             
                                                                                                      
                          [#eq(#0(), #0())] =  [0]                                                    
                                            ?  [2]                                                    
                                            =  [#true()]                                              
                                                                                                      
                      [#eq(#0(), #neg(@y))] =  [0]                                                    
                                            ?  [3]                                                    
                                            =  [#false()]                                             
                                                                                                      
                        [#eq(#0(), #s(@y))] =  [0]                                                    
                                            ?  [3]                                                    
                                            =  [#false()]                                             
                                                                                                      
                  [#eq(#neg(@x), #pos(@y))] =  [0]                                                    
                                            ?  [3]                                                    
                                            =  [#false()]                                             
                                                                                                      
                      [#eq(#neg(@x), #0())] =  [0]                                                    
                                            ?  [3]                                                    
                                            =  [#false()]                                             
                                                                                                      
                  [#eq(#neg(@x), #neg(@y))] =  [0]                                                    
                                            >= [0]                                                    
                                            =  [#eq(@x, @y)]                                          
                                                                                                      
                        [#eq(#s(@x), #0())] =  [0]                                                    
                                            ?  [3]                                                    
                                            =  [#false()]                                             
                                                                                                      
                      [#eq(#s(@x), #s(@y))] =  [0]                                                    
                                            >= [0]                                                    
                                            =  [#eq(@x, @y)]                                          
                                                                                                      
                    [leq#2(nil(), @x, @xs)] =  [3]                                                    
                                            >= [3]                                                    
                                            =  [#false()]                                             
                                                                                                      
              [leq#2(::(@y, @ys), @x, @xs)] =  [3]                                                    
                                            >= [3]                                                    
                                            =  [or(#less(@x, @y), and(#equal(@x, @y), leq(@xs, @ys)))]
                                                                                                      
                               [or(@x, @y)] =  [1] @x + [0]                                           
                                            >= [1] @x + [0]                                           
                                            =  [#or(@x, @y)]                                          
                                                                                                      
                              [and(@x, @y)] =  [3]                                                    
                                            >= [3]                                                    
                                            =  [#and(@x, @y)]                                         
                                                                                                      
                            [isortlist(@l)] =  [2] @l + [3]                                           
                                            >= [2] @l + [3]                                           
                                            =  [isortlist#1(@l)]                                      
                                                                                                      
                        [leq#1(nil(), @l2)] =  [3]                                                    
                                            >  [2]                                                    
                                            =  [#true()]                                              
                                                                                                      
                  [leq#1(::(@x, @xs), @l2)] =  [3]                                                    
                                            >= [3]                                                    
                                            =  [leq#2(@l2, @x, @xs)]                                  
                                                                                                      
                             [#cklt(#EQ())] =  [3]                                                    
                                            >= [3]                                                    
                                            =  [#false()]                                             
                                                                                                      
                             [#cklt(#LT())] =  [3]                                                    
                                            >  [2]                                                    
                                            =  [#true()]                                              
                                                                                                      
                             [#cklt(#GT())] =  [3]                                                    
                                            >= [3]                                                    
                                            =  [#false()]                                             
                                                                                                      
                           [insert(@x, @l)] =  [2] @x + [1] @l + [7]                                  
                                            >= [2] @x + [1] @l + [7]                                  
                                            =  [insert#1(@l, @x)]                                     
                                                                                                      
           [insert#2(#true(), @x, @y, @ys)] =  [2] @x + [1] @y + [1] @ys + [8]                        
                                            >= [1] @x + [1] @y + [1] @ys + [8]                        
                                            =  [::(@x, ::(@y, @ys))]                                  
                                                                                                      
          [insert#2(#false(), @x, @y, @ys)] =  [2] @x + [1] @y + [1] @ys + [11]                       
                                            >= [2] @x + [1] @y + [1] @ys + [11]                       
                                            =  [::(@y, insert(@x, @ys))]                              
                                                                                                      
                   [#and(#true(), #true())] =  [3]                                                    
                                            >  [2]                                                    
                                            =  [#true()]                                              
                                                                                                      
                  [#and(#true(), #false())] =  [3]                                                    
                                            >= [3]                                                    
                                            =  [#false()]                                             
                                                                                                      
                  [#and(#false(), #true())] =  [3]                                                    
                                            >= [3]                                                    
                                            =  [#false()]                                             
                                                                                                      
                 [#and(#false(), #false())] =  [3]                                                    
                                            >= [3]                                                    
                                            =  [#false()]                                             
                                                                                                      
             [#compare(#pos(@x), #pos(@y))] =  [1]                                                    
                                            >= [1]                                                    
                                            =  [#compare(@x, @y)]                                     
                                                                                                      
                 [#compare(#pos(@x), #0())] =  [1]                                                    
                                            >= [1]                                                    
                                            =  [#GT()]                                                
                                                                                                      
             [#compare(#pos(@x), #neg(@y))] =  [1]                                                    
                                            >= [1]                                                    
                                            =  [#GT()]                                                
                                                                                                      
                 [#compare(#0(), #pos(@y))] =  [1]                                                    
                                            >= [1]                                                    
                                            =  [#LT()]                                                
                                                                                                      
                     [#compare(#0(), #0())] =  [1]                                                    
                                            >= [1]                                                    
                                            =  [#EQ()]                                                
                                                                                                      
                 [#compare(#0(), #neg(@y))] =  [1]                                                    
                                            >= [1]                                                    
                                            =  [#GT()]                                                
                                                                                                      
                   [#compare(#0(), #s(@y))] =  [1]                                                    
                                            >= [1]                                                    
                                            =  [#LT()]                                                
                                                                                                      
             [#compare(#neg(@x), #pos(@y))] =  [1]                                                    
                                            >= [1]                                                    
                                            =  [#LT()]                                                
                                                                                                      
                 [#compare(#neg(@x), #0())] =  [1]                                                    
                                            >= [1]                                                    
                                            =  [#LT()]                                                
                                                                                                      
             [#compare(#neg(@x), #neg(@y))] =  [1]                                                    
                                            >= [1]                                                    
                                            =  [#compare(@y, @x)]                                     
                                                                                                      
                   [#compare(#s(@x), #0())] =  [1]                                                    
                                            >= [1]                                                    
                                            =  [#GT()]                                                
                                                                                                      
                 [#compare(#s(@x), #s(@y))] =  [1]                                                    
                                            >= [1]                                                    
                                            =  [#compare(@x, @y)]                                     
                                                                                                      
                            [leq(@l1, @l2)] =  [3]                                                    
                                            >= [3]                                                    
                                            =  [leq#1(@l1, @l2)]                                      
                                                                                                      
                       [isortlist#1(nil())] =  [11]                                                   
                                            >  [4]                                                    
                                            =  [nil()]                                                
                                                                                                      
                 [isortlist#1(::(@x, @xs))] =  [2] @x + [2] @xs + [11]                                
                                            >  [2] @x + [2] @xs + [10]                                
                                            =  [insert(@x, isortlist(@xs))]                           
                                                                                                      
                    [#or(#true(), #true())] =  [2]                                                    
                                            >= [2]                                                    
                                            =  [#true()]                                              
                                                                                                      
                   [#or(#true(), #false())] =  [2]                                                    
                                            >= [2]                                                    
                                            =  [#true()]                                              
                                                                                                      
                   [#or(#false(), #true())] =  [3]                                                    
                                            >  [2]                                                    
                                            =  [#true()]                                              
                                                                                                      
                  [#or(#false(), #false())] =  [3]                                                    
                                            >= [3]                                                    
                                            =  [#false()]                                             
                                                                                                      
                      [insert#1(nil(), @x)] =  [2] @x + [11]                                          
                                            >  [1] @x + [8]                                           
                                            =  [::(@x, nil())]                                        
                                                                                                      
                [insert#1(::(@y, @ys), @x)] =  [2] @x + [1] @y + [1] @ys + [11]                       
                                            >= [2] @x + [1] @y + [1] @ys + [11]                       
                                            =  [insert#2(leq(@x, @y), @x, @y, @ys)]                   
                                                                                                      
                            [#less(@x, @y)] =  [3]                                                    
                                            >= [3]                                                    
                                            =  [#cklt(#compare(@x, @y))]                              
                                                                                                      
                          [isortlist^#(@l)] =  [1] @l + [1]                                           
                                            >= [1] @l + [1]                                           
                                            =  [c_3(isortlist#1^#(@l))]                               
                                                                                                      
               [isortlist#1^#(::(@x, @xs))] =  [1] @x + [1] @xs + [5]                                 
                                            >  [1] @xs + [1]                                          
                                            =  [c_4(insert^#(@x, isortlist(@xs)), isortlist^#(@xs))]  
                                                                                                      
  
  We return to the main proof. Consider the set of all dependency
  pairs
  
  :
    { 1: isortlist^#(@l) -> c_3(isortlist#1^#(@l))
    , 2: isortlist#1^#(::(@x, @xs)) ->
         c_4(insert^#(@x, isortlist(@xs)), isortlist^#(@xs)) }
  
  Processor 'matrix interpretation of dimension 1' induces the
  complexity certificate YES(?,O(n^1)) on application of dependency
  pairs {2}. These cover all (indirect) predecessors of dependency
  pairs {1,2}, their number of application is equally bounded. The
  dependency pairs are shifted into the weak component.
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(1)).
  
  Weak DPs:
    { isortlist^#(@l) -> c_3(isortlist#1^#(@l))
    , isortlist#1^#(::(@x, @xs)) ->
      c_4(insert^#(@x, isortlist(@xs)), isortlist^#(@xs)) }
  Weak Trs:
    { #equal(@x, @y) -> #eq(@x, @y)
    , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
    , #eq(#pos(@x), #0()) -> #false()
    , #eq(#pos(@x), #neg(@y)) -> #false()
    , #eq(nil(), nil()) -> #true()
    , #eq(nil(), ::(@y_1, @y_2)) -> #false()
    , #eq(::(@x_1, @x_2), nil()) -> #false()
    , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
      #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
    , #eq(#0(), #pos(@y)) -> #false()
    , #eq(#0(), #0()) -> #true()
    , #eq(#0(), #neg(@y)) -> #false()
    , #eq(#0(), #s(@y)) -> #false()
    , #eq(#neg(@x), #pos(@y)) -> #false()
    , #eq(#neg(@x), #0()) -> #false()
    , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
    , #eq(#s(@x), #0()) -> #false()
    , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
    , leq#2(nil(), @x, @xs) -> #false()
    , leq#2(::(@y, @ys), @x, @xs) ->
      or(#less(@x, @y), and(#equal(@x, @y), leq(@xs, @ys)))
    , or(@x, @y) -> #or(@x, @y)
    , and(@x, @y) -> #and(@x, @y)
    , isortlist(@l) -> isortlist#1(@l)
    , leq#1(nil(), @l2) -> #true()
    , leq#1(::(@x, @xs), @l2) -> leq#2(@l2, @x, @xs)
    , #cklt(#EQ()) -> #false()
    , #cklt(#LT()) -> #true()
    , #cklt(#GT()) -> #false()
    , insert(@x, @l) -> insert#1(@l, @x)
    , insert#2(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys))
    , insert#2(#false(), @x, @y, @ys) -> ::(@y, insert(@x, @ys))
    , #and(#true(), #true()) -> #true()
    , #and(#true(), #false()) -> #false()
    , #and(#false(), #true()) -> #false()
    , #and(#false(), #false()) -> #false()
    , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
    , #compare(#pos(@x), #0()) -> #GT()
    , #compare(#pos(@x), #neg(@y)) -> #GT()
    , #compare(#0(), #pos(@y)) -> #LT()
    , #compare(#0(), #0()) -> #EQ()
    , #compare(#0(), #neg(@y)) -> #GT()
    , #compare(#0(), #s(@y)) -> #LT()
    , #compare(#neg(@x), #pos(@y)) -> #LT()
    , #compare(#neg(@x), #0()) -> #LT()
    , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
    , #compare(#s(@x), #0()) -> #GT()
    , #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
    , leq(@l1, @l2) -> leq#1(@l1, @l2)
    , isortlist#1(nil()) -> nil()
    , isortlist#1(::(@x, @xs)) -> insert(@x, isortlist(@xs))
    , #or(#true(), #true()) -> #true()
    , #or(#true(), #false()) -> #true()
    , #or(#false(), #true()) -> #true()
    , #or(#false(), #false()) -> #false()
    , insert#1(nil(), @x) -> ::(@x, nil())
    , insert#1(::(@y, @ys), @x) -> insert#2(leq(@x, @y), @x, @y, @ys)
    , #less(@x, @y) -> #cklt(#compare(@x, @y)) }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(1))
  
  The following weak DPs constitute a sub-graph of the DG that is
  closed under successors. The DPs are removed.
  
  { isortlist^#(@l) -> c_3(isortlist#1^#(@l))
  , isortlist#1^#(::(@x, @xs)) ->
    c_4(insert^#(@x, isortlist(@xs)), isortlist^#(@xs)) }
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(1)).
  
  Weak Trs:
    { #equal(@x, @y) -> #eq(@x, @y)
    , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
    , #eq(#pos(@x), #0()) -> #false()
    , #eq(#pos(@x), #neg(@y)) -> #false()
    , #eq(nil(), nil()) -> #true()
    , #eq(nil(), ::(@y_1, @y_2)) -> #false()
    , #eq(::(@x_1, @x_2), nil()) -> #false()
    , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
      #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
    , #eq(#0(), #pos(@y)) -> #false()
    , #eq(#0(), #0()) -> #true()
    , #eq(#0(), #neg(@y)) -> #false()
    , #eq(#0(), #s(@y)) -> #false()
    , #eq(#neg(@x), #pos(@y)) -> #false()
    , #eq(#neg(@x), #0()) -> #false()
    , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
    , #eq(#s(@x), #0()) -> #false()
    , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
    , leq#2(nil(), @x, @xs) -> #false()
    , leq#2(::(@y, @ys), @x, @xs) ->
      or(#less(@x, @y), and(#equal(@x, @y), leq(@xs, @ys)))
    , or(@x, @y) -> #or(@x, @y)
    , and(@x, @y) -> #and(@x, @y)
    , isortlist(@l) -> isortlist#1(@l)
    , leq#1(nil(), @l2) -> #true()
    , leq#1(::(@x, @xs), @l2) -> leq#2(@l2, @x, @xs)
    , #cklt(#EQ()) -> #false()
    , #cklt(#LT()) -> #true()
    , #cklt(#GT()) -> #false()
    , insert(@x, @l) -> insert#1(@l, @x)
    , insert#2(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys))
    , insert#2(#false(), @x, @y, @ys) -> ::(@y, insert(@x, @ys))
    , #and(#true(), #true()) -> #true()
    , #and(#true(), #false()) -> #false()
    , #and(#false(), #true()) -> #false()
    , #and(#false(), #false()) -> #false()
    , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
    , #compare(#pos(@x), #0()) -> #GT()
    , #compare(#pos(@x), #neg(@y)) -> #GT()
    , #compare(#0(), #pos(@y)) -> #LT()
    , #compare(#0(), #0()) -> #EQ()
    , #compare(#0(), #neg(@y)) -> #GT()
    , #compare(#0(), #s(@y)) -> #LT()
    , #compare(#neg(@x), #pos(@y)) -> #LT()
    , #compare(#neg(@x), #0()) -> #LT()
    , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
    , #compare(#s(@x), #0()) -> #GT()
    , #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
    , leq(@l1, @l2) -> leq#1(@l1, @l2)
    , isortlist#1(nil()) -> nil()
    , isortlist#1(::(@x, @xs)) -> insert(@x, isortlist(@xs))
    , #or(#true(), #true()) -> #true()
    , #or(#true(), #false()) -> #true()
    , #or(#false(), #true()) -> #true()
    , #or(#false(), #false()) -> #false()
    , insert#1(nil(), @x) -> ::(@x, nil())
    , insert#1(::(@y, @ys), @x) -> insert#2(leq(@x, @y), @x, @y, @ys)
    , #less(@x, @y) -> #cklt(#compare(@x, @y)) }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(1))
  
  No rule is usable, rules are removed from the input problem.
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(1)).
  
  Rules: Empty
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(1))
  
  Empty rules are trivially bounded

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { leq#2^#(::(@y, @ys), @x, @xs) -> c_1(leq^#(@xs, @ys))
  , leq^#(@l1, @l2) -> c_2(leq#1^#(@l1, @l2))
  , leq#1^#(::(@x, @xs), @l2) -> c_5(leq#2^#(@l2, @x, @xs))
  , insert^#(@x, @l) -> c_6(insert#1^#(@l, @x))
  , insert#1^#(::(@y, @ys), @x) ->
    c_7(insert#2^#(leq(@x, @y), @x, @y, @ys), leq^#(@x, @y))
  , insert#2^#(#false(), @x, @y, @ys) -> c_8(insert^#(@x, @ys)) }
Weak DPs:
  { isortlist^#(@l) -> isortlist#1^#(@l)
  , isortlist#1^#(::(@x, @xs)) -> isortlist^#(@xs)
  , isortlist#1^#(::(@x, @xs)) -> insert^#(@x, isortlist(@xs)) }
Weak Trs:
  { #equal(@x, @y) -> #eq(@x, @y)
  , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
  , #eq(#pos(@x), #0()) -> #false()
  , #eq(#pos(@x), #neg(@y)) -> #false()
  , #eq(nil(), nil()) -> #true()
  , #eq(nil(), ::(@y_1, @y_2)) -> #false()
  , #eq(::(@x_1, @x_2), nil()) -> #false()
  , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
  , #eq(#0(), #pos(@y)) -> #false()
  , #eq(#0(), #0()) -> #true()
  , #eq(#0(), #neg(@y)) -> #false()
  , #eq(#0(), #s(@y)) -> #false()
  , #eq(#neg(@x), #pos(@y)) -> #false()
  , #eq(#neg(@x), #0()) -> #false()
  , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
  , #eq(#s(@x), #0()) -> #false()
  , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
  , leq#2(nil(), @x, @xs) -> #false()
  , leq#2(::(@y, @ys), @x, @xs) ->
    or(#less(@x, @y), and(#equal(@x, @y), leq(@xs, @ys)))
  , or(@x, @y) -> #or(@x, @y)
  , and(@x, @y) -> #and(@x, @y)
  , isortlist(@l) -> isortlist#1(@l)
  , leq#1(nil(), @l2) -> #true()
  , leq#1(::(@x, @xs), @l2) -> leq#2(@l2, @x, @xs)
  , #cklt(#EQ()) -> #false()
  , #cklt(#LT()) -> #true()
  , #cklt(#GT()) -> #false()
  , insert(@x, @l) -> insert#1(@l, @x)
  , insert#2(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys))
  , insert#2(#false(), @x, @y, @ys) -> ::(@y, insert(@x, @ys))
  , #and(#true(), #true()) -> #true()
  , #and(#true(), #false()) -> #false()
  , #and(#false(), #true()) -> #false()
  , #and(#false(), #false()) -> #false()
  , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
  , #compare(#pos(@x), #0()) -> #GT()
  , #compare(#pos(@x), #neg(@y)) -> #GT()
  , #compare(#0(), #pos(@y)) -> #LT()
  , #compare(#0(), #0()) -> #EQ()
  , #compare(#0(), #neg(@y)) -> #GT()
  , #compare(#0(), #s(@y)) -> #LT()
  , #compare(#neg(@x), #pos(@y)) -> #LT()
  , #compare(#neg(@x), #0()) -> #LT()
  , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
  , #compare(#s(@x), #0()) -> #GT()
  , #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
  , leq(@l1, @l2) -> leq#1(@l1, @l2)
  , isortlist#1(nil()) -> nil()
  , isortlist#1(::(@x, @xs)) -> insert(@x, isortlist(@xs))
  , #or(#true(), #true()) -> #true()
  , #or(#true(), #false()) -> #true()
  , #or(#false(), #true()) -> #true()
  , #or(#false(), #false()) -> #false()
  , insert#1(nil(), @x) -> ::(@x, nil())
  , insert#1(::(@y, @ys), @x) -> insert#2(leq(@x, @y), @x, @y, @ys)
  , #less(@x, @y) -> #cklt(#compare(@x, @y)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 1: leq#2^#(::(@y, @ys), @x, @xs) -> c_1(leq^#(@xs, @ys))
  , 5: insert#1^#(::(@y, @ys), @x) ->
       c_7(insert#2^#(leq(@x, @y), @x, @y, @ys), leq^#(@x, @y))
  , 7: isortlist^#(@l) -> isortlist#1^#(@l)
  , 8: isortlist#1^#(::(@x, @xs)) -> isortlist^#(@xs)
  , 9: isortlist#1^#(::(@x, @xs)) -> insert^#(@x, isortlist(@xs)) }
Trs:
  { leq#1(nil(), @l2) -> #true()
  , isortlist#1(nil()) -> nil()
  , #or(#true(), #true()) -> #true()
  , #or(#true(), #false()) -> #true()
  , #or(#false(), #true()) -> #true() }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_5) = {1},
    Uargs(c_6) = {1}, Uargs(c_7) = {1, 2}, Uargs(c_8) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
                [#equal](x1, x2) = [0]                           
                                                                 
                   [#eq](x1, x2) = [0]                           
                                                                 
             [leq#2](x1, x2, x3) = [2]                           
                                                                 
                    [or](x1, x2) = [2]                           
                                                                 
                         [#true] = [0]                           
                                                                 
                   [and](x1, x2) = [0]                           
                                                                 
                 [isortlist](x1) = [1] x1 + [3]                  
                                                                 
                 [leq#1](x1, x2) = [2]                           
                                                                 
                     [#cklt](x1) = [0]                           
                                                                 
                [insert](x1, x2) = [1] x1 + [1] x2 + [1]         
                                                                 
                      [#pos](x1) = [1] x1 + [0]                  
                                                                 
                           [#EQ] = [0]                           
                                                                 
      [insert#2](x1, x2, x3, x4) = [1] x2 + [1] x3 + [1] x4 + [2]
                                                                 
                  [#and](x1, x2) = [0]                           
                                                                 
              [#compare](x1, x2) = [0]                           
                                                                 
                           [nil] = [3]                           
                                                                 
                   [leq](x1, x2) = [2]                           
                                                                 
                        [#false] = [2]                           
                                                                 
                    [::](x1, x2) = [1] x1 + [1] x2 + [1]         
                                                                 
               [isortlist#1](x1) = [1] x1 + [3]                  
                                                                 
                           [#LT] = [0]                           
                                                                 
                   [#or](x1, x2) = [2]                           
                                                                 
              [insert#1](x1, x2) = [1] x1 + [1] x2 + [1]         
                                                                 
                            [#0] = [0]                           
                                                                 
                      [#neg](x1) = [1] x1 + [0]                  
                                                                 
                 [#less](x1, x2) = [0]                           
                                                                 
                        [#s](x1) = [1] x1 + [0]                  
                                                                 
                           [#GT] = [0]                           
                                                                 
           [leq#2^#](x1, x2, x3) = [1] x1 + [0]                  
                                                                 
                 [leq^#](x1, x2) = [1] x2 + [0]                  
                                                                 
               [isortlist^#](x1) = [6] x1 + [7]                  
                                                                 
             [isortlist#1^#](x1) = [6] x1 + [6]                  
                                                                 
               [leq#1^#](x1, x2) = [1] x2 + [0]                  
                                                                 
              [insert^#](x1, x2) = [2] x2 + [4]                  
                                                                 
            [insert#1^#](x1, x2) = [2] x1 + [4]                  
                                                                 
    [insert#2^#](x1, x2, x3, x4) = [2] x1 + [2] x4 + [0]         
                                                                 
                       [c_1](x1) = [1] x1 + [0]                  
                                                                 
                       [c_2](x1) = [1] x1 + [0]                  
                                                                 
                       [c_5](x1) = [1] x1 + [0]                  
                                                                 
                       [c_6](x1) = [1] x1 + [0]                  
                                                                 
                   [c_7](x1, x2) = [1] x1 + [2] x2 + [0]         
                                                                 
                       [c_8](x1) = [1] x1 + [0]                  
  
  The order satisfies the following ordering constraints:
  
                         [#equal(@x, @y)] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#eq(@x, @y)]                                             
                                                                                                       
                [#eq(#pos(@x), #pos(@y))] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#eq(@x, @y)]                                             
                                                                                                       
                    [#eq(#pos(@x), #0())] =  [0]                                                       
                                          ?  [2]                                                       
                                          =  [#false()]                                                
                                                                                                       
                [#eq(#pos(@x), #neg(@y))] =  [0]                                                       
                                          ?  [2]                                                       
                                          =  [#false()]                                                
                                                                                                       
                      [#eq(nil(), nil())] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#true()]                                                 
                                                                                                       
             [#eq(nil(), ::(@y_1, @y_2))] =  [0]                                                       
                                          ?  [2]                                                       
                                          =  [#false()]                                                
                                                                                                       
             [#eq(::(@x_1, @x_2), nil())] =  [0]                                                       
                                          ?  [2]                                                       
                                          =  [#false()]                                                
                                                                                                       
    [#eq(::(@x_1, @x_2), ::(@y_1, @y_2))] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))]                  
                                                                                                       
                    [#eq(#0(), #pos(@y))] =  [0]                                                       
                                          ?  [2]                                                       
                                          =  [#false()]                                                
                                                                                                       
                        [#eq(#0(), #0())] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#true()]                                                 
                                                                                                       
                    [#eq(#0(), #neg(@y))] =  [0]                                                       
                                          ?  [2]                                                       
                                          =  [#false()]                                                
                                                                                                       
                      [#eq(#0(), #s(@y))] =  [0]                                                       
                                          ?  [2]                                                       
                                          =  [#false()]                                                
                                                                                                       
                [#eq(#neg(@x), #pos(@y))] =  [0]                                                       
                                          ?  [2]                                                       
                                          =  [#false()]                                                
                                                                                                       
                    [#eq(#neg(@x), #0())] =  [0]                                                       
                                          ?  [2]                                                       
                                          =  [#false()]                                                
                                                                                                       
                [#eq(#neg(@x), #neg(@y))] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#eq(@x, @y)]                                             
                                                                                                       
                      [#eq(#s(@x), #0())] =  [0]                                                       
                                          ?  [2]                                                       
                                          =  [#false()]                                                
                                                                                                       
                    [#eq(#s(@x), #s(@y))] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#eq(@x, @y)]                                             
                                                                                                       
                  [leq#2(nil(), @x, @xs)] =  [2]                                                       
                                          >= [2]                                                       
                                          =  [#false()]                                                
                                                                                                       
            [leq#2(::(@y, @ys), @x, @xs)] =  [2]                                                       
                                          >= [2]                                                       
                                          =  [or(#less(@x, @y), and(#equal(@x, @y), leq(@xs, @ys)))]   
                                                                                                       
                             [or(@x, @y)] =  [2]                                                       
                                          >= [2]                                                       
                                          =  [#or(@x, @y)]                                             
                                                                                                       
                            [and(@x, @y)] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#and(@x, @y)]                                            
                                                                                                       
                          [isortlist(@l)] =  [1] @l + [3]                                              
                                          >= [1] @l + [3]                                              
                                          =  [isortlist#1(@l)]                                         
                                                                                                       
                      [leq#1(nil(), @l2)] =  [2]                                                       
                                          >  [0]                                                       
                                          =  [#true()]                                                 
                                                                                                       
                [leq#1(::(@x, @xs), @l2)] =  [2]                                                       
                                          >= [2]                                                       
                                          =  [leq#2(@l2, @x, @xs)]                                     
                                                                                                       
                           [#cklt(#EQ())] =  [0]                                                       
                                          ?  [2]                                                       
                                          =  [#false()]                                                
                                                                                                       
                           [#cklt(#LT())] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#true()]                                                 
                                                                                                       
                           [#cklt(#GT())] =  [0]                                                       
                                          ?  [2]                                                       
                                          =  [#false()]                                                
                                                                                                       
                         [insert(@x, @l)] =  [1] @x + [1] @l + [1]                                     
                                          >= [1] @x + [1] @l + [1]                                     
                                          =  [insert#1(@l, @x)]                                        
                                                                                                       
         [insert#2(#true(), @x, @y, @ys)] =  [1] @x + [1] @y + [1] @ys + [2]                           
                                          >= [1] @x + [1] @y + [1] @ys + [2]                           
                                          =  [::(@x, ::(@y, @ys))]                                     
                                                                                                       
        [insert#2(#false(), @x, @y, @ys)] =  [1] @x + [1] @y + [1] @ys + [2]                           
                                          >= [1] @x + [1] @y + [1] @ys + [2]                           
                                          =  [::(@y, insert(@x, @ys))]                                 
                                                                                                       
                 [#and(#true(), #true())] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#true()]                                                 
                                                                                                       
                [#and(#true(), #false())] =  [0]                                                       
                                          ?  [2]                                                       
                                          =  [#false()]                                                
                                                                                                       
                [#and(#false(), #true())] =  [0]                                                       
                                          ?  [2]                                                       
                                          =  [#false()]                                                
                                                                                                       
               [#and(#false(), #false())] =  [0]                                                       
                                          ?  [2]                                                       
                                          =  [#false()]                                                
                                                                                                       
           [#compare(#pos(@x), #pos(@y))] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#compare(@x, @y)]                                        
                                                                                                       
               [#compare(#pos(@x), #0())] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#GT()]                                                   
                                                                                                       
           [#compare(#pos(@x), #neg(@y))] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#GT()]                                                   
                                                                                                       
               [#compare(#0(), #pos(@y))] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#LT()]                                                   
                                                                                                       
                   [#compare(#0(), #0())] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#EQ()]                                                   
                                                                                                       
               [#compare(#0(), #neg(@y))] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#GT()]                                                   
                                                                                                       
                 [#compare(#0(), #s(@y))] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#LT()]                                                   
                                                                                                       
           [#compare(#neg(@x), #pos(@y))] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#LT()]                                                   
                                                                                                       
               [#compare(#neg(@x), #0())] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#LT()]                                                   
                                                                                                       
           [#compare(#neg(@x), #neg(@y))] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#compare(@y, @x)]                                        
                                                                                                       
                 [#compare(#s(@x), #0())] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#GT()]                                                   
                                                                                                       
               [#compare(#s(@x), #s(@y))] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#compare(@x, @y)]                                        
                                                                                                       
                          [leq(@l1, @l2)] =  [2]                                                       
                                          >= [2]                                                       
                                          =  [leq#1(@l1, @l2)]                                         
                                                                                                       
                     [isortlist#1(nil())] =  [6]                                                       
                                          >  [3]                                                       
                                          =  [nil()]                                                   
                                                                                                       
               [isortlist#1(::(@x, @xs))] =  [1] @x + [1] @xs + [4]                                    
                                          >= [1] @x + [1] @xs + [4]                                    
                                          =  [insert(@x, isortlist(@xs))]                              
                                                                                                       
                  [#or(#true(), #true())] =  [2]                                                       
                                          >  [0]                                                       
                                          =  [#true()]                                                 
                                                                                                       
                 [#or(#true(), #false())] =  [2]                                                       
                                          >  [0]                                                       
                                          =  [#true()]                                                 
                                                                                                       
                 [#or(#false(), #true())] =  [2]                                                       
                                          >  [0]                                                       
                                          =  [#true()]                                                 
                                                                                                       
                [#or(#false(), #false())] =  [2]                                                       
                                          >= [2]                                                       
                                          =  [#false()]                                                
                                                                                                       
                    [insert#1(nil(), @x)] =  [1] @x + [4]                                              
                                          >= [1] @x + [4]                                              
                                          =  [::(@x, nil())]                                           
                                                                                                       
              [insert#1(::(@y, @ys), @x)] =  [1] @x + [1] @y + [1] @ys + [2]                           
                                          >= [1] @x + [1] @y + [1] @ys + [2]                           
                                          =  [insert#2(leq(@x, @y), @x, @y, @ys)]                      
                                                                                                       
                          [#less(@x, @y)] =  [0]                                                       
                                          >= [0]                                                       
                                          =  [#cklt(#compare(@x, @y))]                                 
                                                                                                       
          [leq#2^#(::(@y, @ys), @x, @xs)] =  [1] @y + [1] @ys + [1]                                    
                                          >  [1] @ys + [0]                                             
                                          =  [c_1(leq^#(@xs, @ys))]                                    
                                                                                                       
                        [leq^#(@l1, @l2)] =  [1] @l2 + [0]                                             
                                          >= [1] @l2 + [0]                                             
                                          =  [c_2(leq#1^#(@l1, @l2))]                                  
                                                                                                       
                        [isortlist^#(@l)] =  [6] @l + [7]                                              
                                          >  [6] @l + [6]                                              
                                          =  [isortlist#1^#(@l)]                                       
                                                                                                       
             [isortlist#1^#(::(@x, @xs))] =  [6] @x + [6] @xs + [12]                                   
                                          >  [6] @xs + [7]                                             
                                          =  [isortlist^#(@xs)]                                        
                                                                                                       
             [isortlist#1^#(::(@x, @xs))] =  [6] @x + [6] @xs + [12]                                   
                                          >  [2] @xs + [10]                                            
                                          =  [insert^#(@x, isortlist(@xs))]                            
                                                                                                       
              [leq#1^#(::(@x, @xs), @l2)] =  [1] @l2 + [0]                                             
                                          >= [1] @l2 + [0]                                             
                                          =  [c_5(leq#2^#(@l2, @x, @xs))]                              
                                                                                                       
                       [insert^#(@x, @l)] =  [2] @l + [4]                                              
                                          >= [2] @l + [4]                                              
                                          =  [c_6(insert#1^#(@l, @x))]                                 
                                                                                                       
            [insert#1^#(::(@y, @ys), @x)] =  [2] @y + [2] @ys + [6]                                    
                                          >  [2] @y + [2] @ys + [4]                                    
                                          =  [c_7(insert#2^#(leq(@x, @y), @x, @y, @ys), leq^#(@x, @y))]
                                                                                                       
      [insert#2^#(#false(), @x, @y, @ys)] =  [2] @ys + [4]                                             
                                          >= [2] @ys + [4]                                             
                                          =  [c_8(insert^#(@x, @ys))]                                  
                                                                                                       

We return to the main proof. Consider the set of all dependency
pairs

:
  { 1: leq#2^#(::(@y, @ys), @x, @xs) -> c_1(leq^#(@xs, @ys))
  , 2: leq^#(@l1, @l2) -> c_2(leq#1^#(@l1, @l2))
  , 3: leq#1^#(::(@x, @xs), @l2) -> c_5(leq#2^#(@l2, @x, @xs))
  , 4: insert^#(@x, @l) -> c_6(insert#1^#(@l, @x))
  , 5: insert#1^#(::(@y, @ys), @x) ->
       c_7(insert#2^#(leq(@x, @y), @x, @y, @ys), leq^#(@x, @y))
  , 6: insert#2^#(#false(), @x, @y, @ys) -> c_8(insert^#(@x, @ys))
  , 7: isortlist^#(@l) -> isortlist#1^#(@l)
  , 8: isortlist#1^#(::(@x, @xs)) -> isortlist^#(@xs)
  , 9: isortlist#1^#(::(@x, @xs)) -> insert^#(@x, isortlist(@xs)) }

Processor 'matrix interpretation of dimension 1' induces the
complexity certificate YES(?,O(n^1)) on application of dependency
pairs {1,5,7,8,9}. These cover all (indirect) predecessors of
dependency pairs {1,2,3,4,5,6,7,8,9}, their number of application
is equally bounded. The dependency pairs are shifted into the weak
component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak DPs:
  { leq#2^#(::(@y, @ys), @x, @xs) -> c_1(leq^#(@xs, @ys))
  , leq^#(@l1, @l2) -> c_2(leq#1^#(@l1, @l2))
  , isortlist^#(@l) -> isortlist#1^#(@l)
  , isortlist#1^#(::(@x, @xs)) -> isortlist^#(@xs)
  , isortlist#1^#(::(@x, @xs)) -> insert^#(@x, isortlist(@xs))
  , leq#1^#(::(@x, @xs), @l2) -> c_5(leq#2^#(@l2, @x, @xs))
  , insert^#(@x, @l) -> c_6(insert#1^#(@l, @x))
  , insert#1^#(::(@y, @ys), @x) ->
    c_7(insert#2^#(leq(@x, @y), @x, @y, @ys), leq^#(@x, @y))
  , insert#2^#(#false(), @x, @y, @ys) -> c_8(insert^#(@x, @ys)) }
Weak Trs:
  { #equal(@x, @y) -> #eq(@x, @y)
  , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
  , #eq(#pos(@x), #0()) -> #false()
  , #eq(#pos(@x), #neg(@y)) -> #false()
  , #eq(nil(), nil()) -> #true()
  , #eq(nil(), ::(@y_1, @y_2)) -> #false()
  , #eq(::(@x_1, @x_2), nil()) -> #false()
  , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
  , #eq(#0(), #pos(@y)) -> #false()
  , #eq(#0(), #0()) -> #true()
  , #eq(#0(), #neg(@y)) -> #false()
  , #eq(#0(), #s(@y)) -> #false()
  , #eq(#neg(@x), #pos(@y)) -> #false()
  , #eq(#neg(@x), #0()) -> #false()
  , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
  , #eq(#s(@x), #0()) -> #false()
  , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
  , leq#2(nil(), @x, @xs) -> #false()
  , leq#2(::(@y, @ys), @x, @xs) ->
    or(#less(@x, @y), and(#equal(@x, @y), leq(@xs, @ys)))
  , or(@x, @y) -> #or(@x, @y)
  , and(@x, @y) -> #and(@x, @y)
  , isortlist(@l) -> isortlist#1(@l)
  , leq#1(nil(), @l2) -> #true()
  , leq#1(::(@x, @xs), @l2) -> leq#2(@l2, @x, @xs)
  , #cklt(#EQ()) -> #false()
  , #cklt(#LT()) -> #true()
  , #cklt(#GT()) -> #false()
  , insert(@x, @l) -> insert#1(@l, @x)
  , insert#2(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys))
  , insert#2(#false(), @x, @y, @ys) -> ::(@y, insert(@x, @ys))
  , #and(#true(), #true()) -> #true()
  , #and(#true(), #false()) -> #false()
  , #and(#false(), #true()) -> #false()
  , #and(#false(), #false()) -> #false()
  , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
  , #compare(#pos(@x), #0()) -> #GT()
  , #compare(#pos(@x), #neg(@y)) -> #GT()
  , #compare(#0(), #pos(@y)) -> #LT()
  , #compare(#0(), #0()) -> #EQ()
  , #compare(#0(), #neg(@y)) -> #GT()
  , #compare(#0(), #s(@y)) -> #LT()
  , #compare(#neg(@x), #pos(@y)) -> #LT()
  , #compare(#neg(@x), #0()) -> #LT()
  , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
  , #compare(#s(@x), #0()) -> #GT()
  , #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
  , leq(@l1, @l2) -> leq#1(@l1, @l2)
  , isortlist#1(nil()) -> nil()
  , isortlist#1(::(@x, @xs)) -> insert(@x, isortlist(@xs))
  , #or(#true(), #true()) -> #true()
  , #or(#true(), #false()) -> #true()
  , #or(#false(), #true()) -> #true()
  , #or(#false(), #false()) -> #false()
  , insert#1(nil(), @x) -> ::(@x, nil())
  , insert#1(::(@y, @ys), @x) -> insert#2(leq(@x, @y), @x, @y, @ys)
  , #less(@x, @y) -> #cklt(#compare(@x, @y)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ leq#2^#(::(@y, @ys), @x, @xs) -> c_1(leq^#(@xs, @ys))
, leq^#(@l1, @l2) -> c_2(leq#1^#(@l1, @l2))
, isortlist^#(@l) -> isortlist#1^#(@l)
, isortlist#1^#(::(@x, @xs)) -> isortlist^#(@xs)
, isortlist#1^#(::(@x, @xs)) -> insert^#(@x, isortlist(@xs))
, leq#1^#(::(@x, @xs), @l2) -> c_5(leq#2^#(@l2, @x, @xs))
, insert^#(@x, @l) -> c_6(insert#1^#(@l, @x))
, insert#1^#(::(@y, @ys), @x) ->
  c_7(insert#2^#(leq(@x, @y), @x, @y, @ys), leq^#(@x, @y))
, insert#2^#(#false(), @x, @y, @ys) -> c_8(insert^#(@x, @ys)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak Trs:
  { #equal(@x, @y) -> #eq(@x, @y)
  , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
  , #eq(#pos(@x), #0()) -> #false()
  , #eq(#pos(@x), #neg(@y)) -> #false()
  , #eq(nil(), nil()) -> #true()
  , #eq(nil(), ::(@y_1, @y_2)) -> #false()
  , #eq(::(@x_1, @x_2), nil()) -> #false()
  , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
  , #eq(#0(), #pos(@y)) -> #false()
  , #eq(#0(), #0()) -> #true()
  , #eq(#0(), #neg(@y)) -> #false()
  , #eq(#0(), #s(@y)) -> #false()
  , #eq(#neg(@x), #pos(@y)) -> #false()
  , #eq(#neg(@x), #0()) -> #false()
  , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
  , #eq(#s(@x), #0()) -> #false()
  , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
  , leq#2(nil(), @x, @xs) -> #false()
  , leq#2(::(@y, @ys), @x, @xs) ->
    or(#less(@x, @y), and(#equal(@x, @y), leq(@xs, @ys)))
  , or(@x, @y) -> #or(@x, @y)
  , and(@x, @y) -> #and(@x, @y)
  , isortlist(@l) -> isortlist#1(@l)
  , leq#1(nil(), @l2) -> #true()
  , leq#1(::(@x, @xs), @l2) -> leq#2(@l2, @x, @xs)
  , #cklt(#EQ()) -> #false()
  , #cklt(#LT()) -> #true()
  , #cklt(#GT()) -> #false()
  , insert(@x, @l) -> insert#1(@l, @x)
  , insert#2(#true(), @x, @y, @ys) -> ::(@x, ::(@y, @ys))
  , insert#2(#false(), @x, @y, @ys) -> ::(@y, insert(@x, @ys))
  , #and(#true(), #true()) -> #true()
  , #and(#true(), #false()) -> #false()
  , #and(#false(), #true()) -> #false()
  , #and(#false(), #false()) -> #false()
  , #compare(#pos(@x), #pos(@y)) -> #compare(@x, @y)
  , #compare(#pos(@x), #0()) -> #GT()
  , #compare(#pos(@x), #neg(@y)) -> #GT()
  , #compare(#0(), #pos(@y)) -> #LT()
  , #compare(#0(), #0()) -> #EQ()
  , #compare(#0(), #neg(@y)) -> #GT()
  , #compare(#0(), #s(@y)) -> #LT()
  , #compare(#neg(@x), #pos(@y)) -> #LT()
  , #compare(#neg(@x), #0()) -> #LT()
  , #compare(#neg(@x), #neg(@y)) -> #compare(@y, @x)
  , #compare(#s(@x), #0()) -> #GT()
  , #compare(#s(@x), #s(@y)) -> #compare(@x, @y)
  , leq(@l1, @l2) -> leq#1(@l1, @l2)
  , isortlist#1(nil()) -> nil()
  , isortlist#1(::(@x, @xs)) -> insert(@x, isortlist(@xs))
  , #or(#true(), #true()) -> #true()
  , #or(#true(), #false()) -> #true()
  , #or(#false(), #true()) -> #true()
  , #or(#false(), #false()) -> #false()
  , insert#1(nil(), @x) -> ::(@x, nil())
  , insert#1(::(@y, @ys), @x) -> insert#2(leq(@x, @y), @x, @y, @ys)
  , #less(@x, @y) -> #cklt(#compare(@x, @y)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

No rule is usable, rules are removed from the input problem.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Rules: Empty
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^2))