*** 1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) flattensort(@t) -> insertionsort(flatten(@t)) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Weak DP Rules: Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3} Obligation: Innermost basic terms: {#cklt,#compare,#less,append,append#1,flatten,flatten#1,flattensort,insert,insert#1,insert#2,insertionsort,insertionsort#1}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs #less#(@x,@y) -> c_1(#cklt#(#compare(@x,@y)),#compare#(@x,@y)) append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) append#1#(nil(),@l2) -> c_4() flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(leaf()) -> c_6() flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys),#less#(@y,@x)) insert#1#(nil(),@x) -> c_11() insert#2#(#false(),@x,@y,@ys) -> c_12() insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) insertionsort#1#(nil()) -> c_16() Weak DPs #cklt#(#EQ()) -> c_17() #cklt#(#GT()) -> c_18() #cklt#(#LT()) -> c_19() #compare#(#0(),#0()) -> c_20() #compare#(#0(),#neg(@y)) -> c_21() #compare#(#0(),#pos(@y)) -> c_22() #compare#(#0(),#s(@y)) -> c_23() #compare#(#neg(@x),#0()) -> c_24() #compare#(#neg(@x),#neg(@y)) -> c_25(#compare#(@y,@x)) #compare#(#neg(@x),#pos(@y)) -> c_26() #compare#(#pos(@x),#0()) -> c_27() #compare#(#pos(@x),#neg(@y)) -> c_28() #compare#(#pos(@x),#pos(@y)) -> c_29(#compare#(@x,@y)) #compare#(#s(@x),#0()) -> c_30() #compare#(#s(@x),#s(@y)) -> c_31(#compare#(@x,@y)) and mark the set of starting terms. *** 1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: #less#(@x,@y) -> c_1(#cklt#(#compare(@x,@y)),#compare#(@x,@y)) append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) append#1#(nil(),@l2) -> c_4() flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(leaf()) -> c_6() flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys),#less#(@y,@x)) insert#1#(nil(),@x) -> c_11() insert#2#(#false(),@x,@y,@ys) -> c_12() insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) insertionsort#1#(nil()) -> c_16() Strict TRS Rules: Weak DP Rules: #cklt#(#EQ()) -> c_17() #cklt#(#GT()) -> c_18() #cklt#(#LT()) -> c_19() #compare#(#0(),#0()) -> c_20() #compare#(#0(),#neg(@y)) -> c_21() #compare#(#0(),#pos(@y)) -> c_22() #compare#(#0(),#s(@y)) -> c_23() #compare#(#neg(@x),#0()) -> c_24() #compare#(#neg(@x),#neg(@y)) -> c_25(#compare#(@y,@x)) #compare#(#neg(@x),#pos(@y)) -> c_26() #compare#(#pos(@x),#0()) -> c_27() #compare#(#pos(@x),#neg(@y)) -> c_28() #compare#(#pos(@x),#pos(@y)) -> c_29(#compare#(@x,@y)) #compare#(#s(@x),#0()) -> c_30() #compare#(#s(@x),#s(@y)) -> c_31(#compare#(@x,@y)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) flattensort(@t) -> insertionsort(flatten(@t)) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/4,c_8/2,c_9/1,c_10/2,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() #cklt#(#EQ()) -> c_17() #cklt#(#GT()) -> c_18() #cklt#(#LT()) -> c_19() #compare#(#0(),#0()) -> c_20() #compare#(#0(),#neg(@y)) -> c_21() #compare#(#0(),#pos(@y)) -> c_22() #compare#(#0(),#s(@y)) -> c_23() #compare#(#neg(@x),#0()) -> c_24() #compare#(#neg(@x),#neg(@y)) -> c_25(#compare#(@y,@x)) #compare#(#neg(@x),#pos(@y)) -> c_26() #compare#(#pos(@x),#0()) -> c_27() #compare#(#pos(@x),#neg(@y)) -> c_28() #compare#(#pos(@x),#pos(@y)) -> c_29(#compare#(@x,@y)) #compare#(#s(@x),#0()) -> c_30() #compare#(#s(@x),#s(@y)) -> c_31(#compare#(@x,@y)) #less#(@x,@y) -> c_1(#cklt#(#compare(@x,@y)),#compare#(@x,@y)) append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) append#1#(nil(),@l2) -> c_4() flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(leaf()) -> c_6() flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys),#less#(@y,@x)) insert#1#(nil(),@x) -> c_11() insert#2#(#false(),@x,@y,@ys) -> c_12() insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) insertionsort#1#(nil()) -> c_16() *** 1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: #less#(@x,@y) -> c_1(#cklt#(#compare(@x,@y)),#compare#(@x,@y)) append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) append#1#(nil(),@l2) -> c_4() flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(leaf()) -> c_6() flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys),#less#(@y,@x)) insert#1#(nil(),@x) -> c_11() insert#2#(#false(),@x,@y,@ys) -> c_12() insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) insertionsort#1#(nil()) -> c_16() Strict TRS Rules: Weak DP Rules: #cklt#(#EQ()) -> c_17() #cklt#(#GT()) -> c_18() #cklt#(#LT()) -> c_19() #compare#(#0(),#0()) -> c_20() #compare#(#0(),#neg(@y)) -> c_21() #compare#(#0(),#pos(@y)) -> c_22() #compare#(#0(),#s(@y)) -> c_23() #compare#(#neg(@x),#0()) -> c_24() #compare#(#neg(@x),#neg(@y)) -> c_25(#compare#(@y,@x)) #compare#(#neg(@x),#pos(@y)) -> c_26() #compare#(#pos(@x),#0()) -> c_27() #compare#(#pos(@x),#neg(@y)) -> c_28() #compare#(#pos(@x),#pos(@y)) -> c_29(#compare#(@x,@y)) #compare#(#s(@x),#0()) -> c_30() #compare#(#s(@x),#s(@y)) -> c_31(#compare#(@x,@y)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/4,c_8/2,c_9/1,c_10/2,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,4,6,11,12,16} by application of Pre({1,4,6,11,12,16}) = {2,5,9,10,14}. Here rules are labelled as follows: 1: #less#(@x,@y) -> c_1(#cklt#(#compare(@x,@y)) ,#compare#(@x,@y)) 2: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) 3: append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) 4: append#1#(nil(),@l2) -> c_4() 5: flatten#(@t) -> c_5(flatten#1#(@t)) 6: flatten#1#(leaf()) -> c_6() 7: flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l ,append(flatten(@t1) ,flatten(@t2))) ,append#(flatten(@t1) ,flatten(@t2)) ,flatten#(@t1) ,flatten#(@t2)) 8: flattensort#(@t) -> c_8(insertionsort#(flatten(@t)) ,flatten#(@t)) 9: insert#(@x,@l) -> c_9(insert#1#(@l,@x)) 10: insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x) ,@x ,@y ,@ys) ,#less#(@y,@x)) 11: insert#1#(nil(),@x) -> c_11() 12: insert#2#(#false(),@x,@y,@ys) -> c_12() 13: insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) 14: insertionsort#(@l) -> c_14(insertionsort#1#(@l)) 15: insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x ,insertionsort(@xs)) ,insertionsort#(@xs)) 16: insertionsort#1#(nil()) -> c_16() 17: #cklt#(#EQ()) -> c_17() 18: #cklt#(#GT()) -> c_18() 19: #cklt#(#LT()) -> c_19() 20: #compare#(#0(),#0()) -> c_20() 21: #compare#(#0(),#neg(@y)) -> c_21() 22: #compare#(#0(),#pos(@y)) -> c_22() 23: #compare#(#0(),#s(@y)) -> c_23() 24: #compare#(#neg(@x),#0()) -> c_24() 25: #compare#(#neg(@x),#neg(@y)) -> c_25(#compare#(@y,@x)) 26: #compare#(#neg(@x),#pos(@y)) -> c_26() 27: #compare#(#pos(@x),#0()) -> c_27() 28: #compare#(#pos(@x),#neg(@y)) -> c_28() 29: #compare#(#pos(@x),#pos(@y)) -> c_29(#compare#(@x,@y)) 30: #compare#(#s(@x),#0()) -> c_30() 31: #compare#(#s(@x),#s(@y)) -> c_31(#compare#(@x,@y)) *** 1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys),#less#(@y,@x)) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Strict TRS Rules: Weak DP Rules: #cklt#(#EQ()) -> c_17() #cklt#(#GT()) -> c_18() #cklt#(#LT()) -> c_19() #compare#(#0(),#0()) -> c_20() #compare#(#0(),#neg(@y)) -> c_21() #compare#(#0(),#pos(@y)) -> c_22() #compare#(#0(),#s(@y)) -> c_23() #compare#(#neg(@x),#0()) -> c_24() #compare#(#neg(@x),#neg(@y)) -> c_25(#compare#(@y,@x)) #compare#(#neg(@x),#pos(@y)) -> c_26() #compare#(#pos(@x),#0()) -> c_27() #compare#(#pos(@x),#neg(@y)) -> c_28() #compare#(#pos(@x),#pos(@y)) -> c_29(#compare#(@x,@y)) #compare#(#s(@x),#0()) -> c_30() #compare#(#s(@x),#s(@y)) -> c_31(#compare#(@x,@y)) #less#(@x,@y) -> c_1(#cklt#(#compare(@x,@y)),#compare#(@x,@y)) append#1#(nil(),@l2) -> c_4() flatten#1#(leaf()) -> c_6() insert#1#(nil(),@x) -> c_11() insert#2#(#false(),@x,@y,@ys) -> c_12() insertionsort#1#(nil()) -> c_16() Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/4,c_8/2,c_9/1,c_10/2,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) -->_1 append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)):2 -->_1 append#1#(nil(),@l2) -> c_4():27 2:S:append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) -->_1 append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)):1 3:S:flatten#(@t) -> c_5(flatten#1#(@t)) -->_1 flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)):4 -->_1 flatten#1#(leaf()) -> c_6():28 4:S:flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) -->_4 flatten#(@t) -> c_5(flatten#1#(@t)):3 -->_3 flatten#(@t) -> c_5(flatten#1#(@t)):3 -->_2 append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)):1 -->_1 append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)):1 5:S:flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) -->_1 insertionsort#(@l) -> c_14(insertionsort#1#(@l)):9 -->_2 flatten#(@t) -> c_5(flatten#1#(@t)):3 6:S:insert#(@x,@l) -> c_9(insert#1#(@l,@x)) -->_1 insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys),#less#(@y,@x)):7 -->_1 insert#1#(nil(),@x) -> c_11():29 7:S:insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys),#less#(@y,@x)) -->_2 #less#(@x,@y) -> c_1(#cklt#(#compare(@x,@y)),#compare#(@x,@y)):26 -->_1 insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)):8 -->_1 insert#2#(#false(),@x,@y,@ys) -> c_12():30 8:S:insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) -->_1 insert#(@x,@l) -> c_9(insert#1#(@l,@x)):6 9:S:insertionsort#(@l) -> c_14(insertionsort#1#(@l)) -->_1 insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)):10 -->_1 insertionsort#1#(nil()) -> c_16():31 10:S:insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) -->_2 insertionsort#(@l) -> c_14(insertionsort#1#(@l)):9 -->_1 insert#(@x,@l) -> c_9(insert#1#(@l,@x)):6 11:W:#cklt#(#EQ()) -> c_17() 12:W:#cklt#(#GT()) -> c_18() 13:W:#cklt#(#LT()) -> c_19() 14:W:#compare#(#0(),#0()) -> c_20() 15:W:#compare#(#0(),#neg(@y)) -> c_21() 16:W:#compare#(#0(),#pos(@y)) -> c_22() 17:W:#compare#(#0(),#s(@y)) -> c_23() 18:W:#compare#(#neg(@x),#0()) -> c_24() 19:W:#compare#(#neg(@x),#neg(@y)) -> c_25(#compare#(@y,@x)) -->_1 #compare#(#s(@x),#s(@y)) -> c_31(#compare#(@x,@y)):25 -->_1 #compare#(#pos(@x),#pos(@y)) -> c_29(#compare#(@x,@y)):23 -->_1 #compare#(#s(@x),#0()) -> c_30():24 -->_1 #compare#(#pos(@x),#neg(@y)) -> c_28():22 -->_1 #compare#(#pos(@x),#0()) -> c_27():21 -->_1 #compare#(#neg(@x),#pos(@y)) -> c_26():20 -->_1 #compare#(#neg(@x),#neg(@y)) -> c_25(#compare#(@y,@x)):19 -->_1 #compare#(#neg(@x),#0()) -> c_24():18 -->_1 #compare#(#0(),#s(@y)) -> c_23():17 -->_1 #compare#(#0(),#pos(@y)) -> c_22():16 -->_1 #compare#(#0(),#neg(@y)) -> c_21():15 -->_1 #compare#(#0(),#0()) -> c_20():14 20:W:#compare#(#neg(@x),#pos(@y)) -> c_26() 21:W:#compare#(#pos(@x),#0()) -> c_27() 22:W:#compare#(#pos(@x),#neg(@y)) -> c_28() 23:W:#compare#(#pos(@x),#pos(@y)) -> c_29(#compare#(@x,@y)) -->_1 #compare#(#s(@x),#s(@y)) -> c_31(#compare#(@x,@y)):25 -->_1 #compare#(#s(@x),#0()) -> c_30():24 -->_1 #compare#(#pos(@x),#pos(@y)) -> c_29(#compare#(@x,@y)):23 -->_1 #compare#(#pos(@x),#neg(@y)) -> c_28():22 -->_1 #compare#(#pos(@x),#0()) -> c_27():21 -->_1 #compare#(#neg(@x),#pos(@y)) -> c_26():20 -->_1 #compare#(#neg(@x),#neg(@y)) -> c_25(#compare#(@y,@x)):19 -->_1 #compare#(#neg(@x),#0()) -> c_24():18 -->_1 #compare#(#0(),#s(@y)) -> c_23():17 -->_1 #compare#(#0(),#pos(@y)) -> c_22():16 -->_1 #compare#(#0(),#neg(@y)) -> c_21():15 -->_1 #compare#(#0(),#0()) -> c_20():14 24:W:#compare#(#s(@x),#0()) -> c_30() 25:W:#compare#(#s(@x),#s(@y)) -> c_31(#compare#(@x,@y)) -->_1 #compare#(#s(@x),#s(@y)) -> c_31(#compare#(@x,@y)):25 -->_1 #compare#(#s(@x),#0()) -> c_30():24 -->_1 #compare#(#pos(@x),#pos(@y)) -> c_29(#compare#(@x,@y)):23 -->_1 #compare#(#pos(@x),#neg(@y)) -> c_28():22 -->_1 #compare#(#pos(@x),#0()) -> c_27():21 -->_1 #compare#(#neg(@x),#pos(@y)) -> c_26():20 -->_1 #compare#(#neg(@x),#neg(@y)) -> c_25(#compare#(@y,@x)):19 -->_1 #compare#(#neg(@x),#0()) -> c_24():18 -->_1 #compare#(#0(),#s(@y)) -> c_23():17 -->_1 #compare#(#0(),#pos(@y)) -> c_22():16 -->_1 #compare#(#0(),#neg(@y)) -> c_21():15 -->_1 #compare#(#0(),#0()) -> c_20():14 26:W:#less#(@x,@y) -> c_1(#cklt#(#compare(@x,@y)),#compare#(@x,@y)) -->_2 #compare#(#s(@x),#s(@y)) -> c_31(#compare#(@x,@y)):25 -->_2 #compare#(#s(@x),#0()) -> c_30():24 -->_2 #compare#(#pos(@x),#pos(@y)) -> c_29(#compare#(@x,@y)):23 -->_2 #compare#(#pos(@x),#neg(@y)) -> c_28():22 -->_2 #compare#(#pos(@x),#0()) -> c_27():21 -->_2 #compare#(#neg(@x),#pos(@y)) -> c_26():20 -->_2 #compare#(#neg(@x),#neg(@y)) -> c_25(#compare#(@y,@x)):19 -->_2 #compare#(#neg(@x),#0()) -> c_24():18 -->_2 #compare#(#0(),#s(@y)) -> c_23():17 -->_2 #compare#(#0(),#pos(@y)) -> c_22():16 -->_2 #compare#(#0(),#neg(@y)) -> c_21():15 -->_2 #compare#(#0(),#0()) -> c_20():14 -->_1 #cklt#(#LT()) -> c_19():13 -->_1 #cklt#(#GT()) -> c_18():12 -->_1 #cklt#(#EQ()) -> c_17():11 27:W:append#1#(nil(),@l2) -> c_4() 28:W:flatten#1#(leaf()) -> c_6() 29:W:insert#1#(nil(),@x) -> c_11() 30:W:insert#2#(#false(),@x,@y,@ys) -> c_12() 31:W:insertionsort#1#(nil()) -> c_16() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 31: insertionsort#1#(nil()) -> c_16() 29: insert#1#(nil(),@x) -> c_11() 30: insert#2#(#false(),@x,@y,@ys) -> c_12() 26: #less#(@x,@y) -> c_1(#cklt#(#compare(@x,@y)) ,#compare#(@x,@y)) 11: #cklt#(#EQ()) -> c_17() 12: #cklt#(#GT()) -> c_18() 13: #cklt#(#LT()) -> c_19() 25: #compare#(#s(@x),#s(@y)) -> c_31(#compare#(@x,@y)) 23: #compare#(#pos(@x),#pos(@y)) -> c_29(#compare#(@x,@y)) 19: #compare#(#neg(@x),#neg(@y)) -> c_25(#compare#(@y,@x)) 14: #compare#(#0(),#0()) -> c_20() 15: #compare#(#0(),#neg(@y)) -> c_21() 16: #compare#(#0(),#pos(@y)) -> c_22() 17: #compare#(#0(),#s(@y)) -> c_23() 18: #compare#(#neg(@x),#0()) -> c_24() 20: #compare#(#neg(@x),#pos(@y)) -> c_26() 21: #compare#(#pos(@x),#0()) -> c_27() 22: #compare#(#pos(@x),#neg(@y)) -> c_28() 24: #compare#(#s(@x),#0()) -> c_30() 28: flatten#1#(leaf()) -> c_6() 27: append#1#(nil(),@l2) -> c_4() *** 1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys),#less#(@y,@x)) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/4,c_8/2,c_9/1,c_10/2,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) -->_1 append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)):2 2:S:append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) -->_1 append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)):1 3:S:flatten#(@t) -> c_5(flatten#1#(@t)) -->_1 flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)):4 4:S:flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) -->_4 flatten#(@t) -> c_5(flatten#1#(@t)):3 -->_3 flatten#(@t) -> c_5(flatten#1#(@t)):3 -->_2 append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)):1 -->_1 append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)):1 5:S:flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) -->_1 insertionsort#(@l) -> c_14(insertionsort#1#(@l)):9 -->_2 flatten#(@t) -> c_5(flatten#1#(@t)):3 6:S:insert#(@x,@l) -> c_9(insert#1#(@l,@x)) -->_1 insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys),#less#(@y,@x)):7 7:S:insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys),#less#(@y,@x)) -->_1 insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)):8 8:S:insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) -->_1 insert#(@x,@l) -> c_9(insert#1#(@l,@x)):6 9:S:insertionsort#(@l) -> c_14(insertionsort#1#(@l)) -->_1 insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)):10 10:S:insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) -->_2 insertionsort#(@l) -> c_14(insertionsort#1#(@l)):9 -->_1 insert#(@x,@l) -> c_9(insert#1#(@l,@x)):6 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) *** 1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/4,c_8/2,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) Strict TRS Rules: Weak DP Rules: flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/4,c_8/2,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Problem (S) Strict DP Rules: flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Strict TRS Rules: Weak DP Rules: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/4,c_8/2,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) Strict TRS Rules: Weak DP Rules: flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/4,c_8/2,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) -->_1 append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)):2 2:S:append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) -->_1 append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)):1 3:W:flatten#(@t) -> c_5(flatten#1#(@t)) -->_1 flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)):4 4:W:flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) -->_4 flatten#(@t) -> c_5(flatten#1#(@t)):3 -->_3 flatten#(@t) -> c_5(flatten#1#(@t)):3 -->_2 append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)):1 -->_1 append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)):1 5:W:flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) -->_1 insertionsort#(@l) -> c_14(insertionsort#1#(@l)):9 -->_2 flatten#(@t) -> c_5(flatten#1#(@t)):3 6:W:insert#(@x,@l) -> c_9(insert#1#(@l,@x)) -->_1 insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)):7 7:W:insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) -->_1 insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)):8 8:W:insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) -->_1 insert#(@x,@l) -> c_9(insert#1#(@l,@x)):6 9:W:insertionsort#(@l) -> c_14(insertionsort#1#(@l)) -->_1 insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)):10 10:W:insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) -->_1 insert#(@x,@l) -> c_9(insert#1#(@l,@x)):6 -->_2 insertionsort#(@l) -> c_14(insertionsort#1#(@l)):9 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 9: insertionsort#(@l) -> c_14(insertionsort#1#(@l)) 10: insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x ,insertionsort(@xs)) ,insertionsort#(@xs)) 6: insert#(@x,@l) -> c_9(insert#1#(@l,@x)) 8: insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) 7: insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x) ,@x ,@y ,@ys)) *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) Strict TRS Rules: Weak DP Rules: flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/4,c_8/2,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) -->_1 append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)):2 2:S:append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) -->_1 append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)):1 3:W:flatten#(@t) -> c_5(flatten#1#(@t)) -->_1 flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)):4 4:W:flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) -->_4 flatten#(@t) -> c_5(flatten#1#(@t)):3 -->_3 flatten#(@t) -> c_5(flatten#1#(@t)):3 -->_2 append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)):1 -->_1 append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)):1 5:W:flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) -->_2 flatten#(@t) -> c_5(flatten#1#(@t)):3 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: flattensort#(@t) -> c_8(flatten#(@t)) *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) Strict TRS Rules: Weak DP Rules: flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(flatten#(@t)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/4,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(flatten#(@t)) *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) Strict TRS Rules: Weak DP Rules: flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(flatten#(@t)) Weak TRS Rules: append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/4,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 2: append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) Consider the set of all dependency pairs 1: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) 2: append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) 3: flatten#(@t) -> c_5(flatten#1#(@t)) 4: flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l ,append(flatten(@t1) ,flatten(@t2))) ,append#(flatten(@t1) ,flatten(@t2)) ,flatten#(@t1) ,flatten#(@t2)) 5: flattensort#(@t) -> c_8(flatten#(@t)) Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2)) SPACE(?,?)on application of the dependency pairs {2} These cover all (indirect) predecessors of dependency pairs {2,5} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) Strict TRS Rules: Weak DP Rules: flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(flatten#(@t)) Weak TRS Rules: append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/4,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_5) = {1}, uargs(c_7) = {1,2,3,4}, uargs(c_8) = {1} Following symbols are considered usable: {append,append#1,flatten,flatten#1,#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#} TcT has computed the following interpretation: p(#0) = 0 p(#EQ) = 0 p(#GT) = 0 p(#LT) = 0 p(#cklt) = 0 p(#compare) = 0 p(#false) = 0 p(#less) = 0 p(#neg) = 0 p(#pos) = 0 p(#s) = 0 p(#true) = 0 p(::) = 1 + x2 p(append) = x1 + x2 p(append#1) = x1 + x2 p(flatten) = x1 p(flatten#1) = x1 p(flattensort) = 0 p(insert) = 0 p(insert#1) = 0 p(insert#2) = 0 p(insertionsort) = 0 p(insertionsort#1) = 0 p(leaf) = 0 p(nil) = 0 p(node) = 1 + x1 + x2 + x3 p(#cklt#) = 0 p(#compare#) = 0 p(#less#) = 0 p(append#) = x1 p(append#1#) = x1 p(flatten#) = x1 + x1^2 p(flatten#1#) = x1 + x1^2 p(flattensort#) = x1 + x1^2 p(insert#) = 0 p(insert#1#) = 0 p(insert#2#) = 0 p(insertionsort#) = 0 p(insertionsort#1#) = 0 p(c_1) = 0 p(c_2) = x1 p(c_3) = x1 p(c_4) = 0 p(c_5) = x1 p(c_6) = 0 p(c_7) = x1 + x2 + x3 + x4 p(c_8) = x1 p(c_9) = 0 p(c_10) = 0 p(c_11) = 0 p(c_12) = 0 p(c_13) = 0 p(c_14) = 0 p(c_15) = 0 p(c_16) = 0 p(c_17) = 0 p(c_18) = 0 p(c_19) = 0 p(c_20) = 0 p(c_21) = 0 p(c_22) = 0 p(c_23) = 0 p(c_24) = 0 p(c_25) = 0 p(c_26) = 0 p(c_27) = 0 p(c_28) = 0 p(c_29) = 0 p(c_30) = 0 p(c_31) = 0 Following rules are strictly oriented: append#1#(::(@x,@xs),@l2) = 1 + @xs > @xs = c_3(append#(@xs,@l2)) Following rules are (at-least) weakly oriented: append#(@l1,@l2) = @l1 >= @l1 = c_2(append#1#(@l1,@l2)) flatten#(@t) = @t + @t^2 >= @t + @t^2 = c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) = 2 + 3*@l + 2*@l*@t1 + 2*@l*@t2 + @l^2 + 3*@t1 + 2*@t1*@t2 + @t1^2 + 3*@t2 + @t2^2 >= @l + 2*@t1 + @t1^2 + @t2 + @t2^2 = c_7(append#(@l ,append(flatten(@t1) ,flatten(@t2))) ,append#(flatten(@t1) ,flatten(@t2)) ,flatten#(@t1) ,flatten#(@t2)) flattensort#(@t) = @t + @t^2 >= @t + @t^2 = c_8(flatten#(@t)) append(@l1,@l2) = @l1 + @l2 >= @l1 + @l2 = append#1(@l1,@l2) append#1(::(@x,@xs),@l2) = 1 + @l2 + @xs >= 1 + @l2 + @xs = ::(@x,append(@xs,@l2)) append#1(nil(),@l2) = @l2 >= @l2 = @l2 flatten(@t) = @t >= @t = flatten#1(@t) flatten#1(leaf()) = 0 >= 0 = nil() flatten#1(node(@l,@t1,@t2)) = 1 + @l + @t1 + @t2 >= @l + @t1 + @t2 = append(@l ,append(flatten(@t1) ,flatten(@t2))) *** 1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) Strict TRS Rules: Weak DP Rules: append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(flatten#(@t)) Weak TRS Rules: append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/4,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) Strict TRS Rules: Weak DP Rules: append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(flatten#(@t)) Weak TRS Rules: append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/4,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) Consider the set of all dependency pairs 1: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) 2: append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) 3: flatten#(@t) -> c_5(flatten#1#(@t)) 4: flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l ,append(flatten(@t1) ,flatten(@t2))) ,append#(flatten(@t1) ,flatten(@t2)) ,flatten#(@t1) ,flatten#(@t2)) 5: flattensort#(@t) -> c_8(flatten#(@t)) Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2)) SPACE(?,?)on application of the dependency pairs {1} These cover all (indirect) predecessors of dependency pairs {1,2,5} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) Strict TRS Rules: Weak DP Rules: append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(flatten#(@t)) Weak TRS Rules: append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/4,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_5) = {1}, uargs(c_7) = {1,2,3,4}, uargs(c_8) = {1} Following symbols are considered usable: {append,append#1,flatten,flatten#1,#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#} TcT has computed the following interpretation: p(#0) = 0 p(#EQ) = 0 p(#GT) = 0 p(#LT) = 0 p(#cklt) = 0 p(#compare) = 0 p(#false) = 0 p(#less) = 0 p(#neg) = 0 p(#pos) = 0 p(#s) = 0 p(#true) = 0 p(::) = 1 + x2 p(append) = x1 + x2 p(append#1) = x1 + x2 p(flatten) = x1 p(flatten#1) = x1 p(flattensort) = 0 p(insert) = 0 p(insert#1) = 0 p(insert#2) = 0 p(insertionsort) = 0 p(insertionsort#1) = 0 p(leaf) = 0 p(nil) = 0 p(node) = 1 + x1 + x2 + x3 p(#cklt#) = 0 p(#compare#) = 0 p(#less#) = 0 p(append#) = 1 + x1 p(append#1#) = x1 p(flatten#) = x1 + x1^2 p(flatten#1#) = x1 + x1^2 p(flattensort#) = x1 + x1^2 p(insert#) = 0 p(insert#1#) = 0 p(insert#2#) = 0 p(insertionsort#) = 0 p(insertionsort#1#) = 0 p(c_1) = 0 p(c_2) = x1 p(c_3) = x1 p(c_4) = 0 p(c_5) = x1 p(c_6) = 0 p(c_7) = x1 + x2 + x3 + x4 p(c_8) = x1 p(c_9) = 0 p(c_10) = 0 p(c_11) = 0 p(c_12) = 0 p(c_13) = 0 p(c_14) = 0 p(c_15) = 0 p(c_16) = 0 p(c_17) = 0 p(c_18) = 0 p(c_19) = 0 p(c_20) = 0 p(c_21) = 0 p(c_22) = 0 p(c_23) = 0 p(c_24) = 0 p(c_25) = 0 p(c_26) = 0 p(c_27) = 0 p(c_28) = 0 p(c_29) = 0 p(c_30) = 0 p(c_31) = 0 Following rules are strictly oriented: append#(@l1,@l2) = 1 + @l1 > @l1 = c_2(append#1#(@l1,@l2)) Following rules are (at-least) weakly oriented: append#1#(::(@x,@xs),@l2) = 1 + @xs >= 1 + @xs = c_3(append#(@xs,@l2)) flatten#(@t) = @t + @t^2 >= @t + @t^2 = c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) = 2 + 3*@l + 2*@l*@t1 + 2*@l*@t2 + @l^2 + 3*@t1 + 2*@t1*@t2 + @t1^2 + 3*@t2 + @t2^2 >= 2 + @l + 2*@t1 + @t1^2 + @t2 + @t2^2 = c_7(append#(@l ,append(flatten(@t1) ,flatten(@t2))) ,append#(flatten(@t1) ,flatten(@t2)) ,flatten#(@t1) ,flatten#(@t2)) flattensort#(@t) = @t + @t^2 >= @t + @t^2 = c_8(flatten#(@t)) append(@l1,@l2) = @l1 + @l2 >= @l1 + @l2 = append#1(@l1,@l2) append#1(::(@x,@xs),@l2) = 1 + @l2 + @xs >= 1 + @l2 + @xs = ::(@x,append(@xs,@l2)) append#1(nil(),@l2) = @l2 >= @l2 = @l2 flatten(@t) = @t >= @t = flatten#1(@t) flatten#1(leaf()) = 0 >= 0 = nil() flatten#1(node(@l,@t1,@t2)) = 1 + @l + @t1 + @t2 >= @l + @t1 + @t2 = append(@l ,append(flatten(@t1) ,flatten(@t2))) *** 1.1.1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(flatten#(@t)) Weak TRS Rules: append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/4,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.1.1.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(flatten#(@t)) Weak TRS Rules: append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/4,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) -->_1 append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)):2 2:W:append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) -->_1 append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)):1 3:W:flatten#(@t) -> c_5(flatten#1#(@t)) -->_1 flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)):4 4:W:flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) -->_4 flatten#(@t) -> c_5(flatten#1#(@t)):3 -->_3 flatten#(@t) -> c_5(flatten#1#(@t)):3 -->_2 append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)):1 -->_1 append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)):1 5:W:flattensort#(@t) -> c_8(flatten#(@t)) -->_1 flatten#(@t) -> c_5(flatten#1#(@t)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: flattensort#(@t) -> c_8(flatten#(@t)) 3: flatten#(@t) -> c_5(flatten#1#(@t)) 4: flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l ,append(flatten(@t1) ,flatten(@t2))) ,append#(flatten(@t1) ,flatten(@t2)) ,flatten#(@t1) ,flatten#(@t2)) 1: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) 2: append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) *** 1.1.1.1.1.1.1.1.1.1.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/4,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Strict TRS Rules: Weak DP Rules: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/4,c_8/2,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:flatten#(@t) -> c_5(flatten#1#(@t)) -->_1 flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)):2 2:S:flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) -->_2 append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)):9 -->_1 append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)):9 -->_4 flatten#(@t) -> c_5(flatten#1#(@t)):1 -->_3 flatten#(@t) -> c_5(flatten#1#(@t)):1 3:S:flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) -->_1 insertionsort#(@l) -> c_14(insertionsort#1#(@l)):7 -->_2 flatten#(@t) -> c_5(flatten#1#(@t)):1 4:S:insert#(@x,@l) -> c_9(insert#1#(@l,@x)) -->_1 insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)):5 5:S:insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) -->_1 insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)):6 6:S:insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) -->_1 insert#(@x,@l) -> c_9(insert#1#(@l,@x)):4 7:S:insertionsort#(@l) -> c_14(insertionsort#1#(@l)) -->_1 insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)):8 8:S:insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) -->_2 insertionsort#(@l) -> c_14(insertionsort#1#(@l)):7 -->_1 insert#(@x,@l) -> c_9(insert#1#(@l,@x)):4 9:W:append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) -->_1 append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)):10 10:W:append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) -->_1 append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)):9 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 9: append#(@l1,@l2) -> c_2(append#1#(@l1,@l2)) 10: append#1#(::(@x,@xs),@l2) -> c_3(append#(@xs,@l2)) *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/4,c_8/2,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:flatten#(@t) -> c_5(flatten#1#(@t)) -->_1 flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)):2 2:S:flatten#1#(node(@l,@t1,@t2)) -> c_7(append#(@l,append(flatten(@t1),flatten(@t2))),append#(flatten(@t1),flatten(@t2)),flatten#(@t1),flatten#(@t2)) -->_4 flatten#(@t) -> c_5(flatten#1#(@t)):1 -->_3 flatten#(@t) -> c_5(flatten#1#(@t)):1 3:S:flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) -->_1 insertionsort#(@l) -> c_14(insertionsort#1#(@l)):7 -->_2 flatten#(@t) -> c_5(flatten#1#(@t)):1 4:S:insert#(@x,@l) -> c_9(insert#1#(@l,@x)) -->_1 insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)):5 5:S:insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) -->_1 insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)):6 6:S:insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) -->_1 insert#(@x,@l) -> c_9(insert#1#(@l,@x)):4 7:S:insertionsort#(@l) -> c_14(insertionsort#1#(@l)) -->_1 insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)):8 8:S:insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) -->_2 insertionsort#(@l) -> c_14(insertionsort#1#(@l)):7 -->_1 insert#(@x,@l) -> c_9(insert#1#(@l,@x)):4 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)) *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/2,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)) Strict TRS Rules: Weak DP Rules: flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/2,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Problem (S) Strict DP Rules: flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Strict TRS Rules: Weak DP Rules: flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/2,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)) Strict TRS Rules: Weak DP Rules: flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/2,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:flatten#(@t) -> c_5(flatten#1#(@t)) -->_1 flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)):2 2:S:flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)) -->_2 flatten#(@t) -> c_5(flatten#1#(@t)):1 -->_1 flatten#(@t) -> c_5(flatten#1#(@t)):1 3:W:flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) -->_1 insertionsort#(@l) -> c_14(insertionsort#1#(@l)):7 -->_2 flatten#(@t) -> c_5(flatten#1#(@t)):1 4:W:insert#(@x,@l) -> c_9(insert#1#(@l,@x)) -->_1 insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)):5 5:W:insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) -->_1 insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)):6 6:W:insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) -->_1 insert#(@x,@l) -> c_9(insert#1#(@l,@x)):4 7:W:insertionsort#(@l) -> c_14(insertionsort#1#(@l)) -->_1 insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)):8 8:W:insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) -->_1 insert#(@x,@l) -> c_9(insert#1#(@l,@x)):4 -->_2 insertionsort#(@l) -> c_14(insertionsort#1#(@l)):7 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: insertionsort#(@l) -> c_14(insertionsort#1#(@l)) 8: insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x ,insertionsort(@xs)) ,insertionsort#(@xs)) 4: insert#(@x,@l) -> c_9(insert#1#(@l,@x)) 6: insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) 5: insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x) ,@x ,@y ,@ys)) *** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)) Strict TRS Rules: Weak DP Rules: flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/2,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:flatten#(@t) -> c_5(flatten#1#(@t)) -->_1 flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)):2 2:S:flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)) -->_2 flatten#(@t) -> c_5(flatten#1#(@t)):1 -->_1 flatten#(@t) -> c_5(flatten#1#(@t)):1 3:W:flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) -->_2 flatten#(@t) -> c_5(flatten#1#(@t)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: flattensort#(@t) -> c_8(flatten#(@t)) *** 1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)) Strict TRS Rules: Weak DP Rules: flattensort#(@t) -> c_8(flatten#(@t)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(flatten#(@t)) *** 1.1.1.1.1.1.2.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)) Strict TRS Rules: Weak DP Rules: flattensort#(@t) -> c_8(flatten#(@t)) Weak TRS Rules: Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: flatten#(@t) -> c_5(flatten#1#(@t)) Consider the set of all dependency pairs 1: flatten#(@t) -> c_5(flatten#1#(@t)) 2: flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)) 3: flattensort#(@t) -> c_8(flatten#(@t)) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {1} These cover all (indirect) predecessors of dependency pairs {1,2,3} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.2.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)) Strict TRS Rules: Weak DP Rules: flattensort#(@t) -> c_8(flatten#(@t)) Weak TRS Rules: Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1}, uargs(c_7) = {1,2}, uargs(c_8) = {1} Following symbols are considered usable: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#} TcT has computed the following interpretation: p(#0) = [0] p(#EQ) = [0] p(#GT) = [0] p(#LT) = [0] p(#cklt) = [0] p(#compare) = [0] p(#false) = [0] p(#less) = [0] p(#neg) = [1] x1 + [0] p(#pos) = [1] x1 + [0] p(#s) = [1] x1 + [0] p(#true) = [0] p(::) = [1] x1 + [1] x2 + [0] p(append) = [0] p(append#1) = [0] p(flatten) = [0] p(flatten#1) = [0] p(flattensort) = [0] p(insert) = [0] p(insert#1) = [0] p(insert#2) = [0] p(insertionsort) = [0] p(insertionsort#1) = [0] p(leaf) = [0] p(nil) = [0] p(node) = [1] x1 + [1] x2 + [1] x3 + [2] p(#cklt#) = [0] p(#compare#) = [0] p(#less#) = [0] p(append#) = [0] p(append#1#) = [2] x1 + [0] p(flatten#) = [8] x1 + [10] p(flatten#1#) = [8] x1 + [4] p(flattensort#) = [8] x1 + [13] p(insert#) = [1] x1 + [2] p(insert#1#) = [1] p(insert#2#) = [1] x3 + [1] p(insertionsort#) = [0] p(insertionsort#1#) = [2] x1 + [0] p(c_1) = [1] x1 + [0] p(c_2) = [4] p(c_3) = [1] p(c_4) = [1] p(c_5) = [1] x1 + [4] p(c_6) = [2] p(c_7) = [1] x1 + [1] x2 + [0] p(c_8) = [1] x1 + [3] p(c_9) = [1] x1 + [8] p(c_10) = [0] p(c_11) = [0] p(c_12) = [8] p(c_13) = [1] p(c_14) = [1] p(c_15) = [0] p(c_16) = [4] p(c_17) = [0] p(c_18) = [1] p(c_19) = [2] p(c_20) = [1] p(c_21) = [1] p(c_22) = [1] p(c_23) = [0] p(c_24) = [0] p(c_25) = [8] x1 + [1] p(c_26) = [8] p(c_27) = [0] p(c_28) = [2] p(c_29) = [1] x1 + [2] p(c_30) = [8] p(c_31) = [8] Following rules are strictly oriented: flatten#(@t) = [8] @t + [10] > [8] @t + [8] = c_5(flatten#1#(@t)) Following rules are (at-least) weakly oriented: flatten#1#(node(@l,@t1,@t2)) = [8] @l + [8] @t1 + [8] @t2 + [20] >= [8] @t1 + [8] @t2 + [20] = c_7(flatten#(@t1),flatten#(@t2)) flattensort#(@t) = [8] @t + [13] >= [8] @t + [13] = c_8(flatten#(@t)) *** 1.1.1.1.1.1.2.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)) Strict TRS Rules: Weak DP Rules: flatten#(@t) -> c_5(flatten#1#(@t)) flattensort#(@t) -> c_8(flatten#(@t)) Weak TRS Rules: Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)) flattensort#(@t) -> c_8(flatten#(@t)) Weak TRS Rules: Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:flatten#(@t) -> c_5(flatten#1#(@t)) -->_1 flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)):2 2:W:flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)) -->_2 flatten#(@t) -> c_5(flatten#1#(@t)):1 -->_1 flatten#(@t) -> c_5(flatten#1#(@t)):1 3:W:flattensort#(@t) -> c_8(flatten#(@t)) -->_1 flatten#(@t) -> c_5(flatten#1#(@t)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: flattensort#(@t) -> c_8(flatten#(@t)) 1: flatten#(@t) -> c_5(flatten#1#(@t)) 2: flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)) *** 1.1.1.1.1.1.2.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.2.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Strict TRS Rules: Weak DP Rules: flatten#(@t) -> c_5(flatten#1#(@t)) flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/2,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) -->_2 flatten#(@t) -> c_5(flatten#1#(@t)):7 -->_1 insertionsort#(@l) -> c_14(insertionsort#1#(@l)):5 2:S:insert#(@x,@l) -> c_9(insert#1#(@l,@x)) -->_1 insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)):3 3:S:insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) -->_1 insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)):4 4:S:insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) -->_1 insert#(@x,@l) -> c_9(insert#1#(@l,@x)):2 5:S:insertionsort#(@l) -> c_14(insertionsort#1#(@l)) -->_1 insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)):6 6:S:insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) -->_2 insertionsort#(@l) -> c_14(insertionsort#1#(@l)):5 -->_1 insert#(@x,@l) -> c_9(insert#1#(@l,@x)):2 7:W:flatten#(@t) -> c_5(flatten#1#(@t)) -->_1 flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)):8 8:W:flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)) -->_2 flatten#(@t) -> c_5(flatten#1#(@t)):7 -->_1 flatten#(@t) -> c_5(flatten#1#(@t)):7 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: flatten#(@t) -> c_5(flatten#1#(@t)) 8: flatten#1#(node(@l,@t1,@t2)) -> c_7(flatten#(@t1),flatten#(@t2)) *** 1.1.1.1.1.1.2.1.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/2,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:flattensort#(@t) -> c_8(insertionsort#(flatten(@t)),flatten#(@t)) -->_1 insertionsort#(@l) -> c_14(insertionsort#1#(@l)):5 2:S:insert#(@x,@l) -> c_9(insert#1#(@l,@x)) -->_1 insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)):3 3:S:insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) -->_1 insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)):4 4:S:insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) -->_1 insert#(@x,@l) -> c_9(insert#1#(@l,@x)):2 5:S:insertionsort#(@l) -> c_14(insertionsort#1#(@l)) -->_1 insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)):6 6:S:insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) -->_2 insertionsort#(@l) -> c_14(insertionsort#1#(@l)):5 -->_1 insert#(@x,@l) -> c_9(insert#1#(@l,@x)):2 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: flattensort#(@t) -> c_8(insertionsort#(flatten(@t))) *** 1.1.1.1.1.1.2.1.1.2.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: flattensort#(@t) -> c_8(insertionsort#(flatten(@t))) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 4: insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) Consider the set of all dependency pairs 1: flattensort#(@t) -> c_8(insertionsort#(flatten(@t))) 2: insert#(@x,@l) -> c_9(insert#1#(@l,@x)) 3: insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x) ,@x ,@y ,@ys)) 4: insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) 5: insertionsort#(@l) -> c_14(insertionsort#1#(@l)) 6: insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x ,insertionsort(@xs)) ,insertionsort#(@xs)) Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2)) SPACE(?,?)on application of the dependency pairs {4} These cover all (indirect) predecessors of dependency pairs {1,4} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.2.1.1.2.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: flattensort#(@t) -> c_8(insertionsort#(flatten(@t))) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_8) = {1}, uargs(c_9) = {1}, uargs(c_10) = {1}, uargs(c_13) = {1}, uargs(c_14) = {1}, uargs(c_15) = {1,2} Following symbols are considered usable: {#cklt,#compare,#less,append,append#1,flatten,flatten#1,insert,insert#1,insert#2,insertionsort,insertionsort#1,#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#} TcT has computed the following interpretation: p(#0) = 1 p(#EQ) = 0 p(#GT) = 0 p(#LT) = 1 p(#cklt) = x1 p(#compare) = x1*x2 p(#false) = 0 p(#less) = x1*x2 p(#neg) = 1 + x1 p(#pos) = 1 + x1 p(#s) = 1 + x1 p(#true) = 1 p(::) = x1 + x2 p(append) = x1 + x2 p(append#1) = x1 + x2 p(flatten) = x1 p(flatten#1) = x1 p(flattensort) = 0 p(insert) = x1 + x2 p(insert#1) = x1 + x2 p(insert#2) = x2 + x3 + x4 p(insertionsort) = x1 p(insertionsort#1) = x1 p(leaf) = 0 p(nil) = 0 p(node) = x1 + x2 + x3 p(#cklt#) = 0 p(#compare#) = 0 p(#less#) = 0 p(append#) = 0 p(append#1#) = 0 p(flatten#) = 0 p(flatten#1#) = 0 p(flattensort#) = x1 + x1^2 p(insert#) = x1*x2 p(insert#1#) = x1*x2 p(insert#2#) = x1 + x2*x4 p(insertionsort#) = x1^2 p(insertionsort#1#) = x1^2 p(c_1) = 0 p(c_2) = 0 p(c_3) = 0 p(c_4) = 0 p(c_5) = 0 p(c_6) = 0 p(c_7) = 0 p(c_8) = x1 p(c_9) = x1 p(c_10) = x1 p(c_11) = 0 p(c_12) = 0 p(c_13) = x1 p(c_14) = x1 p(c_15) = x1 + x2 p(c_16) = 0 p(c_17) = 0 p(c_18) = 0 p(c_19) = 0 p(c_20) = 0 p(c_21) = 0 p(c_22) = 0 p(c_23) = 0 p(c_24) = 0 p(c_25) = 0 p(c_26) = 0 p(c_27) = 0 p(c_28) = 0 p(c_29) = 0 p(c_30) = 0 p(c_31) = 0 Following rules are strictly oriented: insert#2#(#true(),@x,@y,@ys) = 1 + @x*@ys > @x*@ys = c_13(insert#(@x,@ys)) Following rules are (at-least) weakly oriented: flattensort#(@t) = @t + @t^2 >= @t^2 = c_8(insertionsort#(flatten(@t))) insert#(@x,@l) = @l*@x >= @l*@x = c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) = @x*@y + @x*@ys >= @x*@y + @x*@ys = c_10(insert#2#(#less(@y,@x) ,@x ,@y ,@ys)) insertionsort#(@l) = @l^2 >= @l^2 = c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) = 2*@x*@xs + @x^2 + @xs^2 >= @x*@xs + @xs^2 = c_15(insert#(@x ,insertionsort(@xs)) ,insertionsort#(@xs)) #cklt(#EQ()) = 0 >= 0 = #false() #cklt(#GT()) = 0 >= 0 = #false() #cklt(#LT()) = 1 >= 1 = #true() #compare(#0(),#0()) = 1 >= 0 = #EQ() #compare(#0(),#neg(@y)) = 1 + @y >= 0 = #GT() #compare(#0(),#pos(@y)) = 1 + @y >= 1 = #LT() #compare(#0(),#s(@y)) = 1 + @y >= 1 = #LT() #compare(#neg(@x),#0()) = 1 + @x >= 1 = #LT() #compare(#neg(@x),#neg(@y)) = 1 + @x + @x*@y + @y >= @x*@y = #compare(@y,@x) #compare(#neg(@x),#pos(@y)) = 1 + @x + @x*@y + @y >= 1 = #LT() #compare(#pos(@x),#0()) = 1 + @x >= 0 = #GT() #compare(#pos(@x),#neg(@y)) = 1 + @x + @x*@y + @y >= 0 = #GT() #compare(#pos(@x),#pos(@y)) = 1 + @x + @x*@y + @y >= @x*@y = #compare(@x,@y) #compare(#s(@x),#0()) = 1 + @x >= 0 = #GT() #compare(#s(@x),#s(@y)) = 1 + @x + @x*@y + @y >= @x*@y = #compare(@x,@y) #less(@x,@y) = @x*@y >= @x*@y = #cklt(#compare(@x,@y)) append(@l1,@l2) = @l1 + @l2 >= @l1 + @l2 = append#1(@l1,@l2) append#1(::(@x,@xs),@l2) = @l2 + @x + @xs >= @l2 + @x + @xs = ::(@x,append(@xs,@l2)) append#1(nil(),@l2) = @l2 >= @l2 = @l2 flatten(@t) = @t >= @t = flatten#1(@t) flatten#1(leaf()) = 0 >= 0 = nil() flatten#1(node(@l,@t1,@t2)) = @l + @t1 + @t2 >= @l + @t1 + @t2 = append(@l ,append(flatten(@t1) ,flatten(@t2))) insert(@x,@l) = @l + @x >= @l + @x = insert#1(@l,@x) insert#1(::(@y,@ys),@x) = @x + @y + @ys >= @x + @y + @ys = insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) = @x >= @x = ::(@x,nil()) insert#2(#false(),@x,@y,@ys) = @x + @y + @ys >= @x + @y + @ys = ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) = @x + @y + @ys >= @x + @y + @ys = ::(@y,insert(@x,@ys)) insertionsort(@l) = @l >= @l = insertionsort#1(@l) insertionsort#1(::(@x,@xs)) = @x + @xs >= @x + @xs = insert(@x,insertionsort(@xs)) insertionsort#1(nil()) = 0 >= 0 = nil() *** 1.1.1.1.1.1.2.1.1.2.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: flattensort#(@t) -> c_8(insertionsort#(flatten(@t))) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Strict TRS Rules: Weak DP Rules: insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.1.1.2.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Strict TRS Rules: Weak DP Rules: flattensort#(@t) -> c_8(insertionsort#(flatten(@t))) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 4: insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x ,insertionsort(@xs)) ,insertionsort#(@xs)) Consider the set of all dependency pairs 1: insert#(@x,@l) -> c_9(insert#1#(@l,@x)) 2: insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x) ,@x ,@y ,@ys)) 3: insertionsort#(@l) -> c_14(insertionsort#1#(@l)) 4: insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x ,insertionsort(@xs)) ,insertionsort#(@xs)) 5: flattensort#(@t) -> c_8(insertionsort#(flatten(@t))) 6: insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {4} These cover all (indirect) predecessors of dependency pairs {3,4,5} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.2.1.1.2.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Strict TRS Rules: Weak DP Rules: flattensort#(@t) -> c_8(insertionsort#(flatten(@t))) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_8) = {1}, uargs(c_9) = {1}, uargs(c_10) = {1}, uargs(c_13) = {1}, uargs(c_14) = {1}, uargs(c_15) = {1,2} Following symbols are considered usable: {append,append#1,flatten,flatten#1,#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#} TcT has computed the following interpretation: p(#0) = [2] p(#EQ) = [0] p(#GT) = [0] p(#LT) = [0] p(#cklt) = [7] p(#compare) = [2] x1 + [4] x2 + [0] p(#false) = [0] p(#less) = [1] x2 + [0] p(#neg) = [0] p(#pos) = [2] p(#s) = [0] p(#true) = [0] p(::) = [1] x2 + [2] p(append) = [1] x1 + [1] x2 + [0] p(append#1) = [1] x1 + [1] x2 + [0] p(flatten) = [1] x1 + [0] p(flatten#1) = [1] x1 + [0] p(flattensort) = [1] p(insert) = [4] p(insert#1) = [0] p(insert#2) = [1] x2 + [2] p(insertionsort) = [0] p(insertionsort#1) = [0] p(leaf) = [1] p(nil) = [1] p(node) = [1] x1 + [1] x2 + [1] x3 + [0] p(#cklt#) = [0] p(#compare#) = [1] p(#less#) = [2] x2 + [0] p(append#) = [2] x2 + [1] p(append#1#) = [1] x1 + [2] p(flatten#) = [4] p(flatten#1#) = [4] p(flattensort#) = [5] x1 + [1] p(insert#) = [4] p(insert#1#) = [4] p(insert#2#) = [4] p(insertionsort#) = [4] x1 + [0] p(insertionsort#1#) = [4] x1 + [0] p(c_1) = [1] x2 + [0] p(c_2) = [1] p(c_3) = [1] x1 + [0] p(c_4) = [0] p(c_5) = [0] p(c_6) = [2] p(c_7) = [2] x1 + [4] x2 + [0] p(c_8) = [1] x1 + [1] p(c_9) = [1] x1 + [0] p(c_10) = [1] x1 + [0] p(c_11) = [1] p(c_12) = [0] p(c_13) = [1] x1 + [0] p(c_14) = [1] x1 + [0] p(c_15) = [1] x1 + [1] x2 + [2] p(c_16) = [0] p(c_17) = [0] p(c_18) = [1] p(c_19) = [1] p(c_20) = [1] p(c_21) = [1] p(c_22) = [4] p(c_23) = [0] p(c_24) = [4] p(c_25) = [4] x1 + [0] p(c_26) = [1] p(c_27) = [1] p(c_28) = [1] p(c_29) = [0] p(c_30) = [1] p(c_31) = [0] Following rules are strictly oriented: insertionsort#1#(::(@x,@xs)) = [4] @xs + [8] > [4] @xs + [6] = c_15(insert#(@x ,insertionsort(@xs)) ,insertionsort#(@xs)) Following rules are (at-least) weakly oriented: flattensort#(@t) = [5] @t + [1] >= [4] @t + [1] = c_8(insertionsort#(flatten(@t))) insert#(@x,@l) = [4] >= [4] = c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) = [4] >= [4] = c_10(insert#2#(#less(@y,@x) ,@x ,@y ,@ys)) insert#2#(#true(),@x,@y,@ys) = [4] >= [4] = c_13(insert#(@x,@ys)) insertionsort#(@l) = [4] @l + [0] >= [4] @l + [0] = c_14(insertionsort#1#(@l)) append(@l1,@l2) = [1] @l1 + [1] @l2 + [0] >= [1] @l1 + [1] @l2 + [0] = append#1(@l1,@l2) append#1(::(@x,@xs),@l2) = [1] @l2 + [1] @xs + [2] >= [1] @l2 + [1] @xs + [2] = ::(@x,append(@xs,@l2)) append#1(nil(),@l2) = [1] @l2 + [1] >= [1] @l2 + [0] = @l2 flatten(@t) = [1] @t + [0] >= [1] @t + [0] = flatten#1(@t) flatten#1(leaf()) = [1] >= [1] = nil() flatten#1(node(@l,@t1,@t2)) = [1] @l + [1] @t1 + [1] @t2 + [0] >= [1] @l + [1] @t1 + [1] @t2 + [0] = append(@l ,append(flatten(@t1) ,flatten(@t2))) *** 1.1.1.1.1.1.2.1.1.2.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) Strict TRS Rules: Weak DP Rules: flattensort#(@t) -> c_8(insertionsort#(flatten(@t))) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.1.1.2.1.1.2.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) Strict TRS Rules: Weak DP Rules: flattensort#(@t) -> c_8(insertionsort#(flatten(@t))) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 2: insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x) ,@x ,@y ,@ys)) Consider the set of all dependency pairs 1: insert#(@x,@l) -> c_9(insert#1#(@l,@x)) 2: insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x) ,@x ,@y ,@ys)) 3: flattensort#(@t) -> c_8(insertionsort#(flatten(@t))) 4: insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) 5: insertionsort#(@l) -> c_14(insertionsort#1#(@l)) 6: insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x ,insertionsort(@xs)) ,insertionsort#(@xs)) Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2)) SPACE(?,?)on application of the dependency pairs {2} These cover all (indirect) predecessors of dependency pairs {2,3,4} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.2.1.1.2.1.1.2.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) Strict TRS Rules: Weak DP Rules: flattensort#(@t) -> c_8(insertionsort#(flatten(@t))) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_8) = {1}, uargs(c_9) = {1}, uargs(c_10) = {1}, uargs(c_13) = {1}, uargs(c_14) = {1}, uargs(c_15) = {1,2} Following symbols are considered usable: {#cklt,#less,append,append#1,flatten,flatten#1,insert,insert#1,insert#2,insertionsort,insertionsort#1,#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#} TcT has computed the following interpretation: p(#0) = 0 p(#EQ) = 0 p(#GT) = 0 p(#LT) = 0 p(#cklt) = 1 p(#compare) = x2 + x2^2 p(#false) = 1 p(#less) = 1 p(#neg) = 0 p(#pos) = 0 p(#s) = 1 p(#true) = 1 p(::) = 1 + x1 + x2 p(append) = x1 + x2 p(append#1) = x1 + x2 p(flatten) = x1 p(flatten#1) = x1 p(flattensort) = 0 p(insert) = 1 + x1 + x2 p(insert#1) = 1 + x1 + x2 p(insert#2) = 1 + x1*x4 + x1^2 + x2 + x3 p(insertionsort) = x1 p(insertionsort#1) = x1 p(leaf) = 0 p(nil) = 0 p(node) = x1 + x2 + x3 p(#cklt#) = 0 p(#compare#) = 0 p(#less#) = 0 p(append#) = 0 p(append#1#) = 0 p(flatten#) = 0 p(flatten#1#) = 0 p(flattensort#) = 1 + x1^2 p(insert#) = x1^2 + x2 p(insert#1#) = x1 + x2^2 p(insert#2#) = x1*x4 + x2^2 p(insertionsort#) = 1 + x1^2 p(insertionsort#1#) = 1 + x1^2 p(c_1) = 0 p(c_2) = 0 p(c_3) = 0 p(c_4) = 0 p(c_5) = 0 p(c_6) = 0 p(c_7) = 0 p(c_8) = x1 p(c_9) = x1 p(c_10) = x1 p(c_11) = 0 p(c_12) = 0 p(c_13) = x1 p(c_14) = x1 p(c_15) = 1 + x1 + x2 p(c_16) = 0 p(c_17) = 0 p(c_18) = 0 p(c_19) = 0 p(c_20) = 0 p(c_21) = 0 p(c_22) = 0 p(c_23) = 0 p(c_24) = 0 p(c_25) = 0 p(c_26) = 0 p(c_27) = 0 p(c_28) = 0 p(c_29) = 0 p(c_30) = 0 p(c_31) = 0 Following rules are strictly oriented: insert#1#(::(@y,@ys),@x) = 1 + @x^2 + @y + @ys > @x^2 + @ys = c_10(insert#2#(#less(@y,@x) ,@x ,@y ,@ys)) Following rules are (at-least) weakly oriented: flattensort#(@t) = 1 + @t^2 >= 1 + @t^2 = c_8(insertionsort#(flatten(@t))) insert#(@x,@l) = @l + @x^2 >= @l + @x^2 = c_9(insert#1#(@l,@x)) insert#2#(#true(),@x,@y,@ys) = @x^2 + @ys >= @x^2 + @ys = c_13(insert#(@x,@ys)) insertionsort#(@l) = 1 + @l^2 >= 1 + @l^2 = c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) = 2 + 2*@x + 2*@x*@xs + @x^2 + 2*@xs + @xs^2 >= 2 + @x^2 + @xs + @xs^2 = c_15(insert#(@x ,insertionsort(@xs)) ,insertionsort#(@xs)) #cklt(#EQ()) = 1 >= 1 = #false() #cklt(#GT()) = 1 >= 1 = #false() #cklt(#LT()) = 1 >= 1 = #true() #less(@x,@y) = 1 >= 1 = #cklt(#compare(@x,@y)) append(@l1,@l2) = @l1 + @l2 >= @l1 + @l2 = append#1(@l1,@l2) append#1(::(@x,@xs),@l2) = 1 + @l2 + @x + @xs >= 1 + @l2 + @x + @xs = ::(@x,append(@xs,@l2)) append#1(nil(),@l2) = @l2 >= @l2 = @l2 flatten(@t) = @t >= @t = flatten#1(@t) flatten#1(leaf()) = 0 >= 0 = nil() flatten#1(node(@l,@t1,@t2)) = @l + @t1 + @t2 >= @l + @t1 + @t2 = append(@l ,append(flatten(@t1) ,flatten(@t2))) insert(@x,@l) = 1 + @l + @x >= 1 + @l + @x = insert#1(@l,@x) insert#1(::(@y,@ys),@x) = 2 + @x + @y + @ys >= 2 + @x + @y + @ys = insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) = 1 + @x >= 1 + @x = ::(@x,nil()) insert#2(#false(),@x,@y,@ys) = 2 + @x + @y + @ys >= 2 + @x + @y + @ys = ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) = 2 + @x + @y + @ys >= 2 + @x + @y + @ys = ::(@y,insert(@x,@ys)) insertionsort(@l) = @l >= @l = insertionsort#1(@l) insertionsort#1(::(@x,@xs)) = 1 + @x + @xs >= 1 + @x + @xs = insert(@x,insertionsort(@xs)) insertionsort#1(nil()) = 0 >= 0 = nil() *** 1.1.1.1.1.1.2.1.1.2.1.1.2.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: insert#(@x,@l) -> c_9(insert#1#(@l,@x)) Strict TRS Rules: Weak DP Rules: flattensort#(@t) -> c_8(insertionsort#(flatten(@t))) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.1.1.2.1.1.2.2.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: insert#(@x,@l) -> c_9(insert#1#(@l,@x)) Strict TRS Rules: Weak DP Rules: flattensort#(@t) -> c_8(insertionsort#(flatten(@t))) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: insert#(@x,@l) -> c_9(insert#1#(@l,@x)) Consider the set of all dependency pairs 1: insert#(@x,@l) -> c_9(insert#1#(@l,@x)) 2: flattensort#(@t) -> c_8(insertionsort#(flatten(@t))) 3: insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x) ,@x ,@y ,@ys)) 4: insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) 5: insertionsort#(@l) -> c_14(insertionsort#1#(@l)) 6: insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x ,insertionsort(@xs)) ,insertionsort#(@xs)) Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2)) SPACE(?,?)on application of the dependency pairs {1} These cover all (indirect) predecessors of dependency pairs {1,2,3,4} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.2.1.1.2.1.1.2.2.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: insert#(@x,@l) -> c_9(insert#1#(@l,@x)) Strict TRS Rules: Weak DP Rules: flattensort#(@t) -> c_8(insertionsort#(flatten(@t))) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_8) = {1}, uargs(c_9) = {1}, uargs(c_10) = {1}, uargs(c_13) = {1}, uargs(c_14) = {1}, uargs(c_15) = {1,2} Following symbols are considered usable: {#cklt,#less,append,append#1,flatten,flatten#1,insert,insert#1,insert#2,insertionsort,insertionsort#1,#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#} TcT has computed the following interpretation: p(#0) = 0 p(#EQ) = 0 p(#GT) = 0 p(#LT) = 1 p(#cklt) = 1 p(#compare) = x1 p(#false) = 1 p(#less) = 1 p(#neg) = 1 p(#pos) = 0 p(#s) = 1 p(#true) = 1 p(::) = 1 + x1 + x2 p(append) = x1 + x2 p(append#1) = x1 + x2 p(flatten) = x1 p(flatten#1) = x1 p(flattensort) = 0 p(insert) = 1 + x1 + x2 p(insert#1) = 1 + x1 + x2 p(insert#2) = 1 + x1 + x1*x4 + x2 + x3 p(insertionsort) = 1 + x1 p(insertionsort#1) = 1 + x1 p(leaf) = 0 p(nil) = 0 p(node) = x1 + x2 + x3 p(#cklt#) = 0 p(#compare#) = 0 p(#less#) = 0 p(append#) = 0 p(append#1#) = 0 p(flatten#) = 0 p(flatten#1#) = 0 p(flattensort#) = 1 + x1 + x1^2 p(insert#) = 1 + x1 + x1^2 + x2 p(insert#1#) = x1 + x2 + x2^2 p(insert#2#) = x1 + x1*x2 + x2^2 + x3 + x4 p(insertionsort#) = 1 + x1 + x1^2 p(insertionsort#1#) = 1 + x1 + x1^2 p(c_1) = 0 p(c_2) = 0 p(c_3) = 0 p(c_4) = 0 p(c_5) = 0 p(c_6) = 0 p(c_7) = 0 p(c_8) = x1 p(c_9) = x1 p(c_10) = x1 p(c_11) = 0 p(c_12) = 0 p(c_13) = x1 p(c_14) = x1 p(c_15) = x1 + x2 p(c_16) = 0 p(c_17) = 0 p(c_18) = 0 p(c_19) = 0 p(c_20) = 0 p(c_21) = 0 p(c_22) = 0 p(c_23) = 0 p(c_24) = 0 p(c_25) = 0 p(c_26) = 0 p(c_27) = 0 p(c_28) = 0 p(c_29) = 0 p(c_30) = 0 p(c_31) = 0 Following rules are strictly oriented: insert#(@x,@l) = 1 + @l + @x + @x^2 > @l + @x + @x^2 = c_9(insert#1#(@l,@x)) Following rules are (at-least) weakly oriented: flattensort#(@t) = 1 + @t + @t^2 >= 1 + @t + @t^2 = c_8(insertionsort#(flatten(@t))) insert#1#(::(@y,@ys),@x) = 1 + @x + @x^2 + @y + @ys >= 1 + @x + @x^2 + @y + @ys = c_10(insert#2#(#less(@y,@x) ,@x ,@y ,@ys)) insert#2#(#true(),@x,@y,@ys) = 1 + @x + @x^2 + @y + @ys >= 1 + @x + @x^2 + @ys = c_13(insert#(@x,@ys)) insertionsort#(@l) = 1 + @l + @l^2 >= 1 + @l + @l^2 = c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) = 3 + 3*@x + 2*@x*@xs + @x^2 + 3*@xs + @xs^2 >= 3 + @x + @x^2 + 2*@xs + @xs^2 = c_15(insert#(@x ,insertionsort(@xs)) ,insertionsort#(@xs)) #cklt(#EQ()) = 1 >= 1 = #false() #cklt(#GT()) = 1 >= 1 = #false() #cklt(#LT()) = 1 >= 1 = #true() #less(@x,@y) = 1 >= 1 = #cklt(#compare(@x,@y)) append(@l1,@l2) = @l1 + @l2 >= @l1 + @l2 = append#1(@l1,@l2) append#1(::(@x,@xs),@l2) = 1 + @l2 + @x + @xs >= 1 + @l2 + @x + @xs = ::(@x,append(@xs,@l2)) append#1(nil(),@l2) = @l2 >= @l2 = @l2 flatten(@t) = @t >= @t = flatten#1(@t) flatten#1(leaf()) = 0 >= 0 = nil() flatten#1(node(@l,@t1,@t2)) = @l + @t1 + @t2 >= @l + @t1 + @t2 = append(@l ,append(flatten(@t1) ,flatten(@t2))) insert(@x,@l) = 1 + @l + @x >= 1 + @l + @x = insert#1(@l,@x) insert#1(::(@y,@ys),@x) = 2 + @x + @y + @ys >= 2 + @x + @y + @ys = insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) = 1 + @x >= 1 + @x = ::(@x,nil()) insert#2(#false(),@x,@y,@ys) = 2 + @x + @y + @ys >= 2 + @x + @y + @ys = ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) = 2 + @x + @y + @ys >= 2 + @x + @y + @ys = ::(@y,insert(@x,@ys)) insertionsort(@l) = 1 + @l >= 1 + @l = insertionsort#1(@l) insertionsort#1(::(@x,@xs)) = 2 + @x + @xs >= 2 + @x + @xs = insert(@x,insertionsort(@xs)) insertionsort#1(nil()) = 1 >= 0 = nil() *** 1.1.1.1.1.1.2.1.1.2.1.1.2.2.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: flattensort#(@t) -> c_8(insertionsort#(flatten(@t))) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.1.1.2.1.1.2.2.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: flattensort#(@t) -> c_8(insertionsort#(flatten(@t))) insert#(@x,@l) -> c_9(insert#1#(@l,@x)) insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) insertionsort#(@l) -> c_14(insertionsort#1#(@l)) insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:flattensort#(@t) -> c_8(insertionsort#(flatten(@t))) -->_1 insertionsort#(@l) -> c_14(insertionsort#1#(@l)):5 2:W:insert#(@x,@l) -> c_9(insert#1#(@l,@x)) -->_1 insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)):3 3:W:insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x),@x,@y,@ys)) -->_1 insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)):4 4:W:insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) -->_1 insert#(@x,@l) -> c_9(insert#1#(@l,@x)):2 5:W:insertionsort#(@l) -> c_14(insertionsort#1#(@l)) -->_1 insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)):6 6:W:insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x,insertionsort(@xs)),insertionsort#(@xs)) -->_2 insertionsort#(@l) -> c_14(insertionsort#1#(@l)):5 -->_1 insert#(@x,@l) -> c_9(insert#1#(@l,@x)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: flattensort#(@t) -> c_8(insertionsort#(flatten(@t))) 5: insertionsort#(@l) -> c_14(insertionsort#1#(@l)) 6: insertionsort#1#(::(@x,@xs)) -> c_15(insert#(@x ,insertionsort(@xs)) ,insertionsort#(@xs)) 2: insert#(@x,@l) -> c_9(insert#1#(@l,@x)) 4: insert#2#(#true(),@x,@y,@ys) -> c_13(insert#(@x,@ys)) 3: insert#1#(::(@y,@ys),@x) -> c_10(insert#2#(#less(@y,@x) ,@x ,@y ,@ys)) *** 1.1.1.1.1.1.2.1.1.2.1.1.2.2.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) append(@l1,@l2) -> append#1(@l1,@l2) append#1(::(@x,@xs),@l2) -> ::(@x,append(@xs,@l2)) append#1(nil(),@l2) -> @l2 flatten(@t) -> flatten#1(@t) flatten#1(leaf()) -> nil() flatten#1(node(@l,@t1,@t2)) -> append(@l,append(flatten(@t1),flatten(@t2))) insert(@x,@l) -> insert#1(@l,@x) insert#1(::(@y,@ys),@x) -> insert#2(#less(@y,@x),@x,@y,@ys) insert#1(nil(),@x) -> ::(@x,nil()) insert#2(#false(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) insert#2(#true(),@x,@y,@ys) -> ::(@y,insert(@x,@ys)) insertionsort(@l) -> insertionsort#1(@l) insertionsort#1(::(@x,@xs)) -> insert(@x,insertionsort(@xs)) insertionsort#1(nil()) -> nil() Signature: {#cklt/1,#compare/2,#less/2,append/2,append#1/2,flatten/1,flatten#1/1,flattensort/1,insert/2,insert#1/2,insert#2/4,insertionsort/1,insertionsort#1/1,#cklt#/1,#compare#/2,#less#/2,append#/2,append#1#/2,flatten#/1,flatten#1#/1,flattensort#/1,insert#/2,insert#1#/2,insert#2#/4,insertionsort#/1,insertionsort#1#/1} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,leaf/0,nil/0,node/3,c_1/2,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2,c_8/1,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/2,c_16/0,c_17/0,c_18/0,c_19/0,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1} Obligation: Innermost basic terms: {#cklt#,#compare#,#less#,append#,append#1#,flatten#,flatten#1#,flattensort#,insert#,insert#1#,insert#2#,insertionsort#,insertionsort#1#}/{#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,leaf,nil,node} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).