We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).
Strict Trs:
{ mult(@n, @l) -> mult#1(@l, @n)
, mult#1(::(@x, @xs), @n) -> ::(*(@n, @x), mult(@n, @xs))
, mult#1(nil(), @n) -> nil()
, *(@x, @y) -> #mult(@x, @y)
, dyade#1(::(@x, @xs), @l2) -> ::(mult(@x, @l2), dyade(@xs, @l2))
, dyade#1(nil(), @l2) -> nil()
, dyade(@l1, @l2) -> dyade#1(@l1, @l2) }
Weak Trs:
{ #natmult(#0(), @y) -> #0()
, #natmult(#s(@x), @y) -> #add(#pos(@y), #natmult(@x, @y))
, #mult(#pos(@x), #pos(@y)) -> #pos(#natmult(@x, @y))
, #mult(#pos(@x), #0()) -> #0()
, #mult(#pos(@x), #neg(@y)) -> #neg(#natmult(@x, @y))
, #mult(#0(), #pos(@y)) -> #0()
, #mult(#0(), #0()) -> #0()
, #mult(#0(), #neg(@y)) -> #0()
, #mult(#neg(@x), #pos(@y)) -> #neg(#natmult(@x, @y))
, #mult(#neg(@x), #0()) -> #0()
, #mult(#neg(@x), #neg(@y)) -> #pos(#natmult(@x, @y))
, #succ(#pos(#s(@x))) -> #pos(#s(#s(@x)))
, #succ(#0()) -> #pos(#s(#0()))
, #succ(#neg(#s(#0()))) -> #0()
, #succ(#neg(#s(#s(@x)))) -> #neg(#s(@x))
, #add(#pos(#s(#0())), @y) -> #succ(@y)
, #add(#pos(#s(#s(@x))), @y) -> #succ(#add(#pos(#s(@x)), @y))
, #add(#0(), @y) -> @y
, #add(#neg(#s(#0())), @y) -> #pred(@y)
, #add(#neg(#s(#s(@x))), @y) -> #pred(#add(#pos(#s(@x)), @y))
, #pred(#pos(#s(#0()))) -> #0()
, #pred(#pos(#s(#s(@x)))) -> #pos(#s(@x))
, #pred(#0()) -> #neg(#s(#0()))
, #pred(#neg(#s(@x))) -> #neg(#s(#s(@x))) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^2))
We add the following dependency tuples:
Strict DPs:
{ mult^#(@n, @l) -> c_1(mult#1^#(@l, @n))
, mult#1^#(::(@x, @xs), @n) -> c_2(*^#(@n, @x), mult^#(@n, @xs))
, mult#1^#(nil(), @n) -> c_3()
, *^#(@x, @y) -> c_4(#mult^#(@x, @y))
, dyade#1^#(::(@x, @xs), @l2) ->
c_5(mult^#(@x, @l2), dyade^#(@xs, @l2))
, dyade#1^#(nil(), @l2) -> c_6()
, dyade^#(@l1, @l2) -> c_7(dyade#1^#(@l1, @l2)) }
Weak DPs:
{ #mult^#(#pos(@x), #pos(@y)) -> c_10(#natmult^#(@x, @y))
, #mult^#(#pos(@x), #0()) -> c_11()
, #mult^#(#pos(@x), #neg(@y)) -> c_12(#natmult^#(@x, @y))
, #mult^#(#0(), #pos(@y)) -> c_13()
, #mult^#(#0(), #0()) -> c_14()
, #mult^#(#0(), #neg(@y)) -> c_15()
, #mult^#(#neg(@x), #pos(@y)) -> c_16(#natmult^#(@x, @y))
, #mult^#(#neg(@x), #0()) -> c_17()
, #mult^#(#neg(@x), #neg(@y)) -> c_18(#natmult^#(@x, @y))
, #natmult^#(#0(), @y) -> c_8()
, #natmult^#(#s(@x), @y) ->
c_9(#add^#(#pos(@y), #natmult(@x, @y)), #natmult^#(@x, @y))
, #add^#(#pos(#s(#0())), @y) -> c_23(#succ^#(@y))
, #add^#(#pos(#s(#s(@x))), @y) ->
c_24(#succ^#(#add(#pos(#s(@x)), @y)), #add^#(#pos(#s(@x)), @y))
, #add^#(#0(), @y) -> c_25()
, #add^#(#neg(#s(#0())), @y) -> c_26(#pred^#(@y))
, #add^#(#neg(#s(#s(@x))), @y) ->
c_27(#pred^#(#add(#pos(#s(@x)), @y)), #add^#(#pos(#s(@x)), @y))
, #succ^#(#pos(#s(@x))) -> c_19()
, #succ^#(#0()) -> c_20()
, #succ^#(#neg(#s(#0()))) -> c_21()
, #succ^#(#neg(#s(#s(@x)))) -> c_22()
, #pred^#(#pos(#s(#0()))) -> c_28()
, #pred^#(#pos(#s(#s(@x)))) -> c_29()
, #pred^#(#0()) -> c_30()
, #pred^#(#neg(#s(@x))) -> c_31() }
and mark the set of starting terms.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).
Strict DPs:
{ mult^#(@n, @l) -> c_1(mult#1^#(@l, @n))
, mult#1^#(::(@x, @xs), @n) -> c_2(*^#(@n, @x), mult^#(@n, @xs))
, mult#1^#(nil(), @n) -> c_3()
, *^#(@x, @y) -> c_4(#mult^#(@x, @y))
, dyade#1^#(::(@x, @xs), @l2) ->
c_5(mult^#(@x, @l2), dyade^#(@xs, @l2))
, dyade#1^#(nil(), @l2) -> c_6()
, dyade^#(@l1, @l2) -> c_7(dyade#1^#(@l1, @l2)) }
Weak DPs:
{ #mult^#(#pos(@x), #pos(@y)) -> c_10(#natmult^#(@x, @y))
, #mult^#(#pos(@x), #0()) -> c_11()
, #mult^#(#pos(@x), #neg(@y)) -> c_12(#natmult^#(@x, @y))
, #mult^#(#0(), #pos(@y)) -> c_13()
, #mult^#(#0(), #0()) -> c_14()
, #mult^#(#0(), #neg(@y)) -> c_15()
, #mult^#(#neg(@x), #pos(@y)) -> c_16(#natmult^#(@x, @y))
, #mult^#(#neg(@x), #0()) -> c_17()
, #mult^#(#neg(@x), #neg(@y)) -> c_18(#natmult^#(@x, @y))
, #natmult^#(#0(), @y) -> c_8()
, #natmult^#(#s(@x), @y) ->
c_9(#add^#(#pos(@y), #natmult(@x, @y)), #natmult^#(@x, @y))
, #add^#(#pos(#s(#0())), @y) -> c_23(#succ^#(@y))
, #add^#(#pos(#s(#s(@x))), @y) ->
c_24(#succ^#(#add(#pos(#s(@x)), @y)), #add^#(#pos(#s(@x)), @y))
, #add^#(#0(), @y) -> c_25()
, #add^#(#neg(#s(#0())), @y) -> c_26(#pred^#(@y))
, #add^#(#neg(#s(#s(@x))), @y) ->
c_27(#pred^#(#add(#pos(#s(@x)), @y)), #add^#(#pos(#s(@x)), @y))
, #succ^#(#pos(#s(@x))) -> c_19()
, #succ^#(#0()) -> c_20()
, #succ^#(#neg(#s(#0()))) -> c_21()
, #succ^#(#neg(#s(#s(@x)))) -> c_22()
, #pred^#(#pos(#s(#0()))) -> c_28()
, #pred^#(#pos(#s(#s(@x)))) -> c_29()
, #pred^#(#0()) -> c_30()
, #pred^#(#neg(#s(@x))) -> c_31() }
Weak Trs:
{ #natmult(#0(), @y) -> #0()
, #natmult(#s(@x), @y) -> #add(#pos(@y), #natmult(@x, @y))
, mult(@n, @l) -> mult#1(@l, @n)
, mult#1(::(@x, @xs), @n) -> ::(*(@n, @x), mult(@n, @xs))
, mult#1(nil(), @n) -> nil()
, #mult(#pos(@x), #pos(@y)) -> #pos(#natmult(@x, @y))
, #mult(#pos(@x), #0()) -> #0()
, #mult(#pos(@x), #neg(@y)) -> #neg(#natmult(@x, @y))
, #mult(#0(), #pos(@y)) -> #0()
, #mult(#0(), #0()) -> #0()
, #mult(#0(), #neg(@y)) -> #0()
, #mult(#neg(@x), #pos(@y)) -> #neg(#natmult(@x, @y))
, #mult(#neg(@x), #0()) -> #0()
, #mult(#neg(@x), #neg(@y)) -> #pos(#natmult(@x, @y))
, #succ(#pos(#s(@x))) -> #pos(#s(#s(@x)))
, #succ(#0()) -> #pos(#s(#0()))
, #succ(#neg(#s(#0()))) -> #0()
, #succ(#neg(#s(#s(@x)))) -> #neg(#s(@x))
, #add(#pos(#s(#0())), @y) -> #succ(@y)
, #add(#pos(#s(#s(@x))), @y) -> #succ(#add(#pos(#s(@x)), @y))
, #add(#0(), @y) -> @y
, #add(#neg(#s(#0())), @y) -> #pred(@y)
, #add(#neg(#s(#s(@x))), @y) -> #pred(#add(#pos(#s(@x)), @y))
, *(@x, @y) -> #mult(@x, @y)
, dyade#1(::(@x, @xs), @l2) -> ::(mult(@x, @l2), dyade(@xs, @l2))
, dyade#1(nil(), @l2) -> nil()
, #pred(#pos(#s(#0()))) -> #0()
, #pred(#pos(#s(#s(@x)))) -> #pos(#s(@x))
, #pred(#0()) -> #neg(#s(#0()))
, #pred(#neg(#s(@x))) -> #neg(#s(#s(@x)))
, dyade(@l1, @l2) -> dyade#1(@l1, @l2) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^2))
We estimate the number of application of {3,4,6} by applications of
Pre({3,4,6}) = {1,2,7}. Here rules are labeled as follows:
DPs:
{ 1: mult^#(@n, @l) -> c_1(mult#1^#(@l, @n))
, 2: mult#1^#(::(@x, @xs), @n) -> c_2(*^#(@n, @x), mult^#(@n, @xs))
, 3: mult#1^#(nil(), @n) -> c_3()
, 4: *^#(@x, @y) -> c_4(#mult^#(@x, @y))
, 5: dyade#1^#(::(@x, @xs), @l2) ->
c_5(mult^#(@x, @l2), dyade^#(@xs, @l2))
, 6: dyade#1^#(nil(), @l2) -> c_6()
, 7: dyade^#(@l1, @l2) -> c_7(dyade#1^#(@l1, @l2))
, 8: #mult^#(#pos(@x), #pos(@y)) -> c_10(#natmult^#(@x, @y))
, 9: #mult^#(#pos(@x), #0()) -> c_11()
, 10: #mult^#(#pos(@x), #neg(@y)) -> c_12(#natmult^#(@x, @y))
, 11: #mult^#(#0(), #pos(@y)) -> c_13()
, 12: #mult^#(#0(), #0()) -> c_14()
, 13: #mult^#(#0(), #neg(@y)) -> c_15()
, 14: #mult^#(#neg(@x), #pos(@y)) -> c_16(#natmult^#(@x, @y))
, 15: #mult^#(#neg(@x), #0()) -> c_17()
, 16: #mult^#(#neg(@x), #neg(@y)) -> c_18(#natmult^#(@x, @y))
, 17: #natmult^#(#0(), @y) -> c_8()
, 18: #natmult^#(#s(@x), @y) ->
c_9(#add^#(#pos(@y), #natmult(@x, @y)), #natmult^#(@x, @y))
, 19: #add^#(#pos(#s(#0())), @y) -> c_23(#succ^#(@y))
, 20: #add^#(#pos(#s(#s(@x))), @y) ->
c_24(#succ^#(#add(#pos(#s(@x)), @y)), #add^#(#pos(#s(@x)), @y))
, 21: #add^#(#0(), @y) -> c_25()
, 22: #add^#(#neg(#s(#0())), @y) -> c_26(#pred^#(@y))
, 23: #add^#(#neg(#s(#s(@x))), @y) ->
c_27(#pred^#(#add(#pos(#s(@x)), @y)), #add^#(#pos(#s(@x)), @y))
, 24: #succ^#(#pos(#s(@x))) -> c_19()
, 25: #succ^#(#0()) -> c_20()
, 26: #succ^#(#neg(#s(#0()))) -> c_21()
, 27: #succ^#(#neg(#s(#s(@x)))) -> c_22()
, 28: #pred^#(#pos(#s(#0()))) -> c_28()
, 29: #pred^#(#pos(#s(#s(@x)))) -> c_29()
, 30: #pred^#(#0()) -> c_30()
, 31: #pred^#(#neg(#s(@x))) -> c_31() }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).
Strict DPs:
{ mult^#(@n, @l) -> c_1(mult#1^#(@l, @n))
, mult#1^#(::(@x, @xs), @n) -> c_2(*^#(@n, @x), mult^#(@n, @xs))
, dyade#1^#(::(@x, @xs), @l2) ->
c_5(mult^#(@x, @l2), dyade^#(@xs, @l2))
, dyade^#(@l1, @l2) -> c_7(dyade#1^#(@l1, @l2)) }
Weak DPs:
{ mult#1^#(nil(), @n) -> c_3()
, *^#(@x, @y) -> c_4(#mult^#(@x, @y))
, #mult^#(#pos(@x), #pos(@y)) -> c_10(#natmult^#(@x, @y))
, #mult^#(#pos(@x), #0()) -> c_11()
, #mult^#(#pos(@x), #neg(@y)) -> c_12(#natmult^#(@x, @y))
, #mult^#(#0(), #pos(@y)) -> c_13()
, #mult^#(#0(), #0()) -> c_14()
, #mult^#(#0(), #neg(@y)) -> c_15()
, #mult^#(#neg(@x), #pos(@y)) -> c_16(#natmult^#(@x, @y))
, #mult^#(#neg(@x), #0()) -> c_17()
, #mult^#(#neg(@x), #neg(@y)) -> c_18(#natmult^#(@x, @y))
, dyade#1^#(nil(), @l2) -> c_6()
, #natmult^#(#0(), @y) -> c_8()
, #natmult^#(#s(@x), @y) ->
c_9(#add^#(#pos(@y), #natmult(@x, @y)), #natmult^#(@x, @y))
, #add^#(#pos(#s(#0())), @y) -> c_23(#succ^#(@y))
, #add^#(#pos(#s(#s(@x))), @y) ->
c_24(#succ^#(#add(#pos(#s(@x)), @y)), #add^#(#pos(#s(@x)), @y))
, #add^#(#0(), @y) -> c_25()
, #add^#(#neg(#s(#0())), @y) -> c_26(#pred^#(@y))
, #add^#(#neg(#s(#s(@x))), @y) ->
c_27(#pred^#(#add(#pos(#s(@x)), @y)), #add^#(#pos(#s(@x)), @y))
, #succ^#(#pos(#s(@x))) -> c_19()
, #succ^#(#0()) -> c_20()
, #succ^#(#neg(#s(#0()))) -> c_21()
, #succ^#(#neg(#s(#s(@x)))) -> c_22()
, #pred^#(#pos(#s(#0()))) -> c_28()
, #pred^#(#pos(#s(#s(@x)))) -> c_29()
, #pred^#(#0()) -> c_30()
, #pred^#(#neg(#s(@x))) -> c_31() }
Weak Trs:
{ #natmult(#0(), @y) -> #0()
, #natmult(#s(@x), @y) -> #add(#pos(@y), #natmult(@x, @y))
, mult(@n, @l) -> mult#1(@l, @n)
, mult#1(::(@x, @xs), @n) -> ::(*(@n, @x), mult(@n, @xs))
, mult#1(nil(), @n) -> nil()
, #mult(#pos(@x), #pos(@y)) -> #pos(#natmult(@x, @y))
, #mult(#pos(@x), #0()) -> #0()
, #mult(#pos(@x), #neg(@y)) -> #neg(#natmult(@x, @y))
, #mult(#0(), #pos(@y)) -> #0()
, #mult(#0(), #0()) -> #0()
, #mult(#0(), #neg(@y)) -> #0()
, #mult(#neg(@x), #pos(@y)) -> #neg(#natmult(@x, @y))
, #mult(#neg(@x), #0()) -> #0()
, #mult(#neg(@x), #neg(@y)) -> #pos(#natmult(@x, @y))
, #succ(#pos(#s(@x))) -> #pos(#s(#s(@x)))
, #succ(#0()) -> #pos(#s(#0()))
, #succ(#neg(#s(#0()))) -> #0()
, #succ(#neg(#s(#s(@x)))) -> #neg(#s(@x))
, #add(#pos(#s(#0())), @y) -> #succ(@y)
, #add(#pos(#s(#s(@x))), @y) -> #succ(#add(#pos(#s(@x)), @y))
, #add(#0(), @y) -> @y
, #add(#neg(#s(#0())), @y) -> #pred(@y)
, #add(#neg(#s(#s(@x))), @y) -> #pred(#add(#pos(#s(@x)), @y))
, *(@x, @y) -> #mult(@x, @y)
, dyade#1(::(@x, @xs), @l2) -> ::(mult(@x, @l2), dyade(@xs, @l2))
, dyade#1(nil(), @l2) -> nil()
, #pred(#pos(#s(#0()))) -> #0()
, #pred(#pos(#s(#s(@x)))) -> #pos(#s(@x))
, #pred(#0()) -> #neg(#s(#0()))
, #pred(#neg(#s(@x))) -> #neg(#s(#s(@x)))
, dyade(@l1, @l2) -> dyade#1(@l1, @l2) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^2))
The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.
{ mult#1^#(nil(), @n) -> c_3()
, *^#(@x, @y) -> c_4(#mult^#(@x, @y))
, #mult^#(#pos(@x), #pos(@y)) -> c_10(#natmult^#(@x, @y))
, #mult^#(#pos(@x), #0()) -> c_11()
, #mult^#(#pos(@x), #neg(@y)) -> c_12(#natmult^#(@x, @y))
, #mult^#(#0(), #pos(@y)) -> c_13()
, #mult^#(#0(), #0()) -> c_14()
, #mult^#(#0(), #neg(@y)) -> c_15()
, #mult^#(#neg(@x), #pos(@y)) -> c_16(#natmult^#(@x, @y))
, #mult^#(#neg(@x), #0()) -> c_17()
, #mult^#(#neg(@x), #neg(@y)) -> c_18(#natmult^#(@x, @y))
, dyade#1^#(nil(), @l2) -> c_6()
, #natmult^#(#0(), @y) -> c_8()
, #natmult^#(#s(@x), @y) ->
c_9(#add^#(#pos(@y), #natmult(@x, @y)), #natmult^#(@x, @y))
, #add^#(#pos(#s(#0())), @y) -> c_23(#succ^#(@y))
, #add^#(#pos(#s(#s(@x))), @y) ->
c_24(#succ^#(#add(#pos(#s(@x)), @y)), #add^#(#pos(#s(@x)), @y))
, #add^#(#0(), @y) -> c_25()
, #add^#(#neg(#s(#0())), @y) -> c_26(#pred^#(@y))
, #add^#(#neg(#s(#s(@x))), @y) ->
c_27(#pred^#(#add(#pos(#s(@x)), @y)), #add^#(#pos(#s(@x)), @y))
, #succ^#(#pos(#s(@x))) -> c_19()
, #succ^#(#0()) -> c_20()
, #succ^#(#neg(#s(#0()))) -> c_21()
, #succ^#(#neg(#s(#s(@x)))) -> c_22()
, #pred^#(#pos(#s(#0()))) -> c_28()
, #pred^#(#pos(#s(#s(@x)))) -> c_29()
, #pred^#(#0()) -> c_30()
, #pred^#(#neg(#s(@x))) -> c_31() }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).
Strict DPs:
{ mult^#(@n, @l) -> c_1(mult#1^#(@l, @n))
, mult#1^#(::(@x, @xs), @n) -> c_2(*^#(@n, @x), mult^#(@n, @xs))
, dyade#1^#(::(@x, @xs), @l2) ->
c_5(mult^#(@x, @l2), dyade^#(@xs, @l2))
, dyade^#(@l1, @l2) -> c_7(dyade#1^#(@l1, @l2)) }
Weak Trs:
{ #natmult(#0(), @y) -> #0()
, #natmult(#s(@x), @y) -> #add(#pos(@y), #natmult(@x, @y))
, mult(@n, @l) -> mult#1(@l, @n)
, mult#1(::(@x, @xs), @n) -> ::(*(@n, @x), mult(@n, @xs))
, mult#1(nil(), @n) -> nil()
, #mult(#pos(@x), #pos(@y)) -> #pos(#natmult(@x, @y))
, #mult(#pos(@x), #0()) -> #0()
, #mult(#pos(@x), #neg(@y)) -> #neg(#natmult(@x, @y))
, #mult(#0(), #pos(@y)) -> #0()
, #mult(#0(), #0()) -> #0()
, #mult(#0(), #neg(@y)) -> #0()
, #mult(#neg(@x), #pos(@y)) -> #neg(#natmult(@x, @y))
, #mult(#neg(@x), #0()) -> #0()
, #mult(#neg(@x), #neg(@y)) -> #pos(#natmult(@x, @y))
, #succ(#pos(#s(@x))) -> #pos(#s(#s(@x)))
, #succ(#0()) -> #pos(#s(#0()))
, #succ(#neg(#s(#0()))) -> #0()
, #succ(#neg(#s(#s(@x)))) -> #neg(#s(@x))
, #add(#pos(#s(#0())), @y) -> #succ(@y)
, #add(#pos(#s(#s(@x))), @y) -> #succ(#add(#pos(#s(@x)), @y))
, #add(#0(), @y) -> @y
, #add(#neg(#s(#0())), @y) -> #pred(@y)
, #add(#neg(#s(#s(@x))), @y) -> #pred(#add(#pos(#s(@x)), @y))
, *(@x, @y) -> #mult(@x, @y)
, dyade#1(::(@x, @xs), @l2) -> ::(mult(@x, @l2), dyade(@xs, @l2))
, dyade#1(nil(), @l2) -> nil()
, #pred(#pos(#s(#0()))) -> #0()
, #pred(#pos(#s(#s(@x)))) -> #pos(#s(@x))
, #pred(#0()) -> #neg(#s(#0()))
, #pred(#neg(#s(@x))) -> #neg(#s(#s(@x)))
, dyade(@l1, @l2) -> dyade#1(@l1, @l2) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^2))
Due to missing edges in the dependency-graph, the right-hand sides
of following rules could be simplified:
{ mult#1^#(::(@x, @xs), @n) -> c_2(*^#(@n, @x), mult^#(@n, @xs)) }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).
Strict DPs:
{ mult^#(@n, @l) -> c_1(mult#1^#(@l, @n))
, mult#1^#(::(@x, @xs), @n) -> c_2(mult^#(@n, @xs))
, dyade#1^#(::(@x, @xs), @l2) ->
c_3(mult^#(@x, @l2), dyade^#(@xs, @l2))
, dyade^#(@l1, @l2) -> c_4(dyade#1^#(@l1, @l2)) }
Weak Trs:
{ #natmult(#0(), @y) -> #0()
, #natmult(#s(@x), @y) -> #add(#pos(@y), #natmult(@x, @y))
, mult(@n, @l) -> mult#1(@l, @n)
, mult#1(::(@x, @xs), @n) -> ::(*(@n, @x), mult(@n, @xs))
, mult#1(nil(), @n) -> nil()
, #mult(#pos(@x), #pos(@y)) -> #pos(#natmult(@x, @y))
, #mult(#pos(@x), #0()) -> #0()
, #mult(#pos(@x), #neg(@y)) -> #neg(#natmult(@x, @y))
, #mult(#0(), #pos(@y)) -> #0()
, #mult(#0(), #0()) -> #0()
, #mult(#0(), #neg(@y)) -> #0()
, #mult(#neg(@x), #pos(@y)) -> #neg(#natmult(@x, @y))
, #mult(#neg(@x), #0()) -> #0()
, #mult(#neg(@x), #neg(@y)) -> #pos(#natmult(@x, @y))
, #succ(#pos(#s(@x))) -> #pos(#s(#s(@x)))
, #succ(#0()) -> #pos(#s(#0()))
, #succ(#neg(#s(#0()))) -> #0()
, #succ(#neg(#s(#s(@x)))) -> #neg(#s(@x))
, #add(#pos(#s(#0())), @y) -> #succ(@y)
, #add(#pos(#s(#s(@x))), @y) -> #succ(#add(#pos(#s(@x)), @y))
, #add(#0(), @y) -> @y
, #add(#neg(#s(#0())), @y) -> #pred(@y)
, #add(#neg(#s(#s(@x))), @y) -> #pred(#add(#pos(#s(@x)), @y))
, *(@x, @y) -> #mult(@x, @y)
, dyade#1(::(@x, @xs), @l2) -> ::(mult(@x, @l2), dyade(@xs, @l2))
, dyade#1(nil(), @l2) -> nil()
, #pred(#pos(#s(#0()))) -> #0()
, #pred(#pos(#s(#s(@x)))) -> #pos(#s(@x))
, #pred(#0()) -> #neg(#s(#0()))
, #pred(#neg(#s(@x))) -> #neg(#s(#s(@x)))
, dyade(@l1, @l2) -> dyade#1(@l1, @l2) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^2))
No rule is usable, rules are removed from the input problem.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).
Strict DPs:
{ mult^#(@n, @l) -> c_1(mult#1^#(@l, @n))
, mult#1^#(::(@x, @xs), @n) -> c_2(mult^#(@n, @xs))
, dyade#1^#(::(@x, @xs), @l2) ->
c_3(mult^#(@x, @l2), dyade^#(@xs, @l2))
, dyade^#(@l1, @l2) -> c_4(dyade#1^#(@l1, @l2)) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^2))
We use the processor 'custom shape polynomial interpretation' to
orient following rules strictly.
DPs:
{ 1: mult^#(@n, @l) -> c_1(mult#1^#(@l, @n)) }
Sub-proof:
----------
The following argument positions are considered usable:
Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_3) = {1, 2},
Uargs(c_4) = {1}
TcT has computed the following constructor-restricted polynomial
interpretation.
[::](x1, x2) = 1 + x2
[mult^#](x1, x2) = 1 + x2
[mult#1^#](x1, x2) = x1
[dyade#1^#](x1, x2) = 1 + x1 + 2*x1*x2 + 2*x1^2 + x2 + x2^2
[dyade^#](x1, x2) = 1 + x1 + 2*x1*x2 + 2*x1^2 + x2 + x2^2
[c_1](x1) = x1
[c_2](x1) = x1
[c_3](x1, x2) = 1 + 2*x1 + x2
[c_4](x1) = x1
This order satisfies the following ordering constraints.
[mult^#(@n, @l)] = 1 + @l
> @l
= [c_1(mult#1^#(@l, @n))]
[mult#1^#(::(@x, @xs), @n)] = 1 + @xs
>= 1 + @xs
= [c_2(mult^#(@n, @xs))]
[dyade#1^#(::(@x, @xs), @l2)] = 4 + 5*@xs + 3*@l2 + 2*@xs*@l2 + 2*@xs^2 + @l2^2
>= 4 + 3*@l2 + @xs + 2*@xs*@l2 + 2*@xs^2 + @l2^2
= [c_3(mult^#(@x, @l2), dyade^#(@xs, @l2))]
[dyade^#(@l1, @l2)] = 1 + @l1 + 2*@l1*@l2 + 2*@l1^2 + @l2 + @l2^2
>= 1 + @l1 + 2*@l1*@l2 + 2*@l1^2 + @l2 + @l2^2
= [c_4(dyade#1^#(@l1, @l2))]
We return to the main proof. Consider the set of all dependency
pairs
:
{ 1: mult^#(@n, @l) -> c_1(mult#1^#(@l, @n))
, 2: mult#1^#(::(@x, @xs), @n) -> c_2(mult^#(@n, @xs))
, 3: dyade#1^#(::(@x, @xs), @l2) ->
c_3(mult^#(@x, @l2), dyade^#(@xs, @l2))
, 4: dyade^#(@l1, @l2) -> c_4(dyade#1^#(@l1, @l2)) }
Processor 'custom shape polynomial interpretation' induces the
complexity certificate YES(?,O(n^2)) on application of dependency
pairs {1}. These cover all (indirect) predecessors of dependency
pairs {1,2}, their number of application is equally bounded. The
dependency pairs are shifted into the weak component.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).
Strict DPs:
{ dyade#1^#(::(@x, @xs), @l2) ->
c_3(mult^#(@x, @l2), dyade^#(@xs, @l2))
, dyade^#(@l1, @l2) -> c_4(dyade#1^#(@l1, @l2)) }
Weak DPs:
{ mult^#(@n, @l) -> c_1(mult#1^#(@l, @n))
, mult#1^#(::(@x, @xs), @n) -> c_2(mult^#(@n, @xs)) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^1))
The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.
{ mult^#(@n, @l) -> c_1(mult#1^#(@l, @n))
, mult#1^#(::(@x, @xs), @n) -> c_2(mult^#(@n, @xs)) }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).
Strict DPs:
{ dyade#1^#(::(@x, @xs), @l2) ->
c_3(mult^#(@x, @l2), dyade^#(@xs, @l2))
, dyade^#(@l1, @l2) -> c_4(dyade#1^#(@l1, @l2)) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^1))
Due to missing edges in the dependency-graph, the right-hand sides
of following rules could be simplified:
{ dyade#1^#(::(@x, @xs), @l2) ->
c_3(mult^#(@x, @l2), dyade^#(@xs, @l2)) }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).
Strict DPs:
{ dyade#1^#(::(@x, @xs), @l2) -> c_1(dyade^#(@xs, @l2))
, dyade^#(@l1, @l2) -> c_2(dyade#1^#(@l1, @l2)) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^1))
We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.
DPs:
{ 1: dyade#1^#(::(@x, @xs), @l2) -> c_1(dyade^#(@xs, @l2))
, 2: dyade^#(@l1, @l2) -> c_2(dyade#1^#(@l1, @l2)) }
Sub-proof:
----------
The following argument positions are usable:
Uargs(c_1) = {1}, Uargs(c_2) = {1}
TcT has computed the following constructor-based matrix
interpretation satisfying not(EDA).
[::](x1, x2) = [1] x2 + [2]
[mult^#](x1, x2) = [0]
[mult#1^#](x1, x2) = [0]
[dyade#1^#](x1, x2) = [4] x1 + [0]
[dyade^#](x1, x2) = [4] x1 + [4]
[c_1](x1) = [0]
[c_2](x1) = [0]
[c_3](x1, x2) = [0]
[c_4](x1) = [0]
[c] = [0]
[c_1](x1) = [1] x1 + [3]
[c_2](x1) = [1] x1 + [0]
The order satisfies the following ordering constraints:
[dyade#1^#(::(@x, @xs), @l2)] = [4] @xs + [8]
> [4] @xs + [7]
= [c_1(dyade^#(@xs, @l2))]
[dyade^#(@l1, @l2)] = [4] @l1 + [4]
> [4] @l1 + [0]
= [c_2(dyade#1^#(@l1, @l2))]
The strictly oriented rules are moved into the weak component.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Weak DPs:
{ dyade#1^#(::(@x, @xs), @l2) -> c_1(dyade^#(@xs, @l2))
, dyade^#(@l1, @l2) -> c_2(dyade#1^#(@l1, @l2)) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.
{ dyade#1^#(::(@x, @xs), @l2) -> c_1(dyade^#(@xs, @l2))
, dyade^#(@l1, @l2) -> c_2(dyade#1^#(@l1, @l2)) }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Rules: Empty
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
Empty rules are trivially bounded
Hurray, we answered YES(O(1),O(n^2))