We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { mult(@n, @l) -> mult#1(@l, @n) , mult#1(::(@x, @xs), @n) -> ::(*(@n, @x), mult(@n, @xs)) , mult#1(nil(), @n) -> nil() , *(@x, @y) -> #mult(@x, @y) , dyade#1(::(@x, @xs), @l2) -> ::(mult(@x, @l2), dyade(@xs, @l2)) , dyade#1(nil(), @l2) -> nil() , dyade(@l1, @l2) -> dyade#1(@l1, @l2) } Weak Trs: { #natmult(#0(), @y) -> #0() , #natmult(#s(@x), @y) -> #add(#pos(@y), #natmult(@x, @y)) , #mult(#pos(@x), #pos(@y)) -> #pos(#natmult(@x, @y)) , #mult(#pos(@x), #0()) -> #0() , #mult(#pos(@x), #neg(@y)) -> #neg(#natmult(@x, @y)) , #mult(#0(), #pos(@y)) -> #0() , #mult(#0(), #0()) -> #0() , #mult(#0(), #neg(@y)) -> #0() , #mult(#neg(@x), #pos(@y)) -> #neg(#natmult(@x, @y)) , #mult(#neg(@x), #0()) -> #0() , #mult(#neg(@x), #neg(@y)) -> #pos(#natmult(@x, @y)) , #succ(#pos(#s(@x))) -> #pos(#s(#s(@x))) , #succ(#0()) -> #pos(#s(#0())) , #succ(#neg(#s(#0()))) -> #0() , #succ(#neg(#s(#s(@x)))) -> #neg(#s(@x)) , #add(#pos(#s(#0())), @y) -> #succ(@y) , #add(#pos(#s(#s(@x))), @y) -> #succ(#add(#pos(#s(@x)), @y)) , #add(#0(), @y) -> @y , #add(#neg(#s(#0())), @y) -> #pred(@y) , #add(#neg(#s(#s(@x))), @y) -> #pred(#add(#pos(#s(@x)), @y)) , #pred(#pos(#s(#0()))) -> #0() , #pred(#pos(#s(#s(@x)))) -> #pos(#s(@x)) , #pred(#0()) -> #neg(#s(#0())) , #pred(#neg(#s(@x))) -> #neg(#s(#s(@x))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We add the following dependency tuples: Strict DPs: { mult^#(@n, @l) -> c_1(mult#1^#(@l, @n)) , mult#1^#(::(@x, @xs), @n) -> c_2(*^#(@n, @x), mult^#(@n, @xs)) , mult#1^#(nil(), @n) -> c_3() , *^#(@x, @y) -> c_4(#mult^#(@x, @y)) , dyade#1^#(::(@x, @xs), @l2) -> c_5(mult^#(@x, @l2), dyade^#(@xs, @l2)) , dyade#1^#(nil(), @l2) -> c_6() , dyade^#(@l1, @l2) -> c_7(dyade#1^#(@l1, @l2)) } Weak DPs: { #mult^#(#pos(@x), #pos(@y)) -> c_10(#natmult^#(@x, @y)) , #mult^#(#pos(@x), #0()) -> c_11() , #mult^#(#pos(@x), #neg(@y)) -> c_12(#natmult^#(@x, @y)) , #mult^#(#0(), #pos(@y)) -> c_13() , #mult^#(#0(), #0()) -> c_14() , #mult^#(#0(), #neg(@y)) -> c_15() , #mult^#(#neg(@x), #pos(@y)) -> c_16(#natmult^#(@x, @y)) , #mult^#(#neg(@x), #0()) -> c_17() , #mult^#(#neg(@x), #neg(@y)) -> c_18(#natmult^#(@x, @y)) , #natmult^#(#0(), @y) -> c_8() , #natmult^#(#s(@x), @y) -> c_9(#add^#(#pos(@y), #natmult(@x, @y)), #natmult^#(@x, @y)) , #add^#(#pos(#s(#0())), @y) -> c_23(#succ^#(@y)) , #add^#(#pos(#s(#s(@x))), @y) -> c_24(#succ^#(#add(#pos(#s(@x)), @y)), #add^#(#pos(#s(@x)), @y)) , #add^#(#0(), @y) -> c_25() , #add^#(#neg(#s(#0())), @y) -> c_26(#pred^#(@y)) , #add^#(#neg(#s(#s(@x))), @y) -> c_27(#pred^#(#add(#pos(#s(@x)), @y)), #add^#(#pos(#s(@x)), @y)) , #succ^#(#pos(#s(@x))) -> c_19() , #succ^#(#0()) -> c_20() , #succ^#(#neg(#s(#0()))) -> c_21() , #succ^#(#neg(#s(#s(@x)))) -> c_22() , #pred^#(#pos(#s(#0()))) -> c_28() , #pred^#(#pos(#s(#s(@x)))) -> c_29() , #pred^#(#0()) -> c_30() , #pred^#(#neg(#s(@x))) -> c_31() } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { mult^#(@n, @l) -> c_1(mult#1^#(@l, @n)) , mult#1^#(::(@x, @xs), @n) -> c_2(*^#(@n, @x), mult^#(@n, @xs)) , mult#1^#(nil(), @n) -> c_3() , *^#(@x, @y) -> c_4(#mult^#(@x, @y)) , dyade#1^#(::(@x, @xs), @l2) -> c_5(mult^#(@x, @l2), dyade^#(@xs, @l2)) , dyade#1^#(nil(), @l2) -> c_6() , dyade^#(@l1, @l2) -> c_7(dyade#1^#(@l1, @l2)) } Weak DPs: { #mult^#(#pos(@x), #pos(@y)) -> c_10(#natmult^#(@x, @y)) , #mult^#(#pos(@x), #0()) -> c_11() , #mult^#(#pos(@x), #neg(@y)) -> c_12(#natmult^#(@x, @y)) , #mult^#(#0(), #pos(@y)) -> c_13() , #mult^#(#0(), #0()) -> c_14() , #mult^#(#0(), #neg(@y)) -> c_15() , #mult^#(#neg(@x), #pos(@y)) -> c_16(#natmult^#(@x, @y)) , #mult^#(#neg(@x), #0()) -> c_17() , #mult^#(#neg(@x), #neg(@y)) -> c_18(#natmult^#(@x, @y)) , #natmult^#(#0(), @y) -> c_8() , #natmult^#(#s(@x), @y) -> c_9(#add^#(#pos(@y), #natmult(@x, @y)), #natmult^#(@x, @y)) , #add^#(#pos(#s(#0())), @y) -> c_23(#succ^#(@y)) , #add^#(#pos(#s(#s(@x))), @y) -> c_24(#succ^#(#add(#pos(#s(@x)), @y)), #add^#(#pos(#s(@x)), @y)) , #add^#(#0(), @y) -> c_25() , #add^#(#neg(#s(#0())), @y) -> c_26(#pred^#(@y)) , #add^#(#neg(#s(#s(@x))), @y) -> c_27(#pred^#(#add(#pos(#s(@x)), @y)), #add^#(#pos(#s(@x)), @y)) , #succ^#(#pos(#s(@x))) -> c_19() , #succ^#(#0()) -> c_20() , #succ^#(#neg(#s(#0()))) -> c_21() , #succ^#(#neg(#s(#s(@x)))) -> c_22() , #pred^#(#pos(#s(#0()))) -> c_28() , #pred^#(#pos(#s(#s(@x)))) -> c_29() , #pred^#(#0()) -> c_30() , #pred^#(#neg(#s(@x))) -> c_31() } Weak Trs: { #natmult(#0(), @y) -> #0() , #natmult(#s(@x), @y) -> #add(#pos(@y), #natmult(@x, @y)) , mult(@n, @l) -> mult#1(@l, @n) , mult#1(::(@x, @xs), @n) -> ::(*(@n, @x), mult(@n, @xs)) , mult#1(nil(), @n) -> nil() , #mult(#pos(@x), #pos(@y)) -> #pos(#natmult(@x, @y)) , #mult(#pos(@x), #0()) -> #0() , #mult(#pos(@x), #neg(@y)) -> #neg(#natmult(@x, @y)) , #mult(#0(), #pos(@y)) -> #0() , #mult(#0(), #0()) -> #0() , #mult(#0(), #neg(@y)) -> #0() , #mult(#neg(@x), #pos(@y)) -> #neg(#natmult(@x, @y)) , #mult(#neg(@x), #0()) -> #0() , #mult(#neg(@x), #neg(@y)) -> #pos(#natmult(@x, @y)) , #succ(#pos(#s(@x))) -> #pos(#s(#s(@x))) , #succ(#0()) -> #pos(#s(#0())) , #succ(#neg(#s(#0()))) -> #0() , #succ(#neg(#s(#s(@x)))) -> #neg(#s(@x)) , #add(#pos(#s(#0())), @y) -> #succ(@y) , #add(#pos(#s(#s(@x))), @y) -> #succ(#add(#pos(#s(@x)), @y)) , #add(#0(), @y) -> @y , #add(#neg(#s(#0())), @y) -> #pred(@y) , #add(#neg(#s(#s(@x))), @y) -> #pred(#add(#pos(#s(@x)), @y)) , *(@x, @y) -> #mult(@x, @y) , dyade#1(::(@x, @xs), @l2) -> ::(mult(@x, @l2), dyade(@xs, @l2)) , dyade#1(nil(), @l2) -> nil() , #pred(#pos(#s(#0()))) -> #0() , #pred(#pos(#s(#s(@x)))) -> #pos(#s(@x)) , #pred(#0()) -> #neg(#s(#0())) , #pred(#neg(#s(@x))) -> #neg(#s(#s(@x))) , dyade(@l1, @l2) -> dyade#1(@l1, @l2) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We estimate the number of application of {3,4,6} by applications of Pre({3,4,6}) = {1,2,7}. Here rules are labeled as follows: DPs: { 1: mult^#(@n, @l) -> c_1(mult#1^#(@l, @n)) , 2: mult#1^#(::(@x, @xs), @n) -> c_2(*^#(@n, @x), mult^#(@n, @xs)) , 3: mult#1^#(nil(), @n) -> c_3() , 4: *^#(@x, @y) -> c_4(#mult^#(@x, @y)) , 5: dyade#1^#(::(@x, @xs), @l2) -> c_5(mult^#(@x, @l2), dyade^#(@xs, @l2)) , 6: dyade#1^#(nil(), @l2) -> c_6() , 7: dyade^#(@l1, @l2) -> c_7(dyade#1^#(@l1, @l2)) , 8: #mult^#(#pos(@x), #pos(@y)) -> c_10(#natmult^#(@x, @y)) , 9: #mult^#(#pos(@x), #0()) -> c_11() , 10: #mult^#(#pos(@x), #neg(@y)) -> c_12(#natmult^#(@x, @y)) , 11: #mult^#(#0(), #pos(@y)) -> c_13() , 12: #mult^#(#0(), #0()) -> c_14() , 13: #mult^#(#0(), #neg(@y)) -> c_15() , 14: #mult^#(#neg(@x), #pos(@y)) -> c_16(#natmult^#(@x, @y)) , 15: #mult^#(#neg(@x), #0()) -> c_17() , 16: #mult^#(#neg(@x), #neg(@y)) -> c_18(#natmult^#(@x, @y)) , 17: #natmult^#(#0(), @y) -> c_8() , 18: #natmult^#(#s(@x), @y) -> c_9(#add^#(#pos(@y), #natmult(@x, @y)), #natmult^#(@x, @y)) , 19: #add^#(#pos(#s(#0())), @y) -> c_23(#succ^#(@y)) , 20: #add^#(#pos(#s(#s(@x))), @y) -> c_24(#succ^#(#add(#pos(#s(@x)), @y)), #add^#(#pos(#s(@x)), @y)) , 21: #add^#(#0(), @y) -> c_25() , 22: #add^#(#neg(#s(#0())), @y) -> c_26(#pred^#(@y)) , 23: #add^#(#neg(#s(#s(@x))), @y) -> c_27(#pred^#(#add(#pos(#s(@x)), @y)), #add^#(#pos(#s(@x)), @y)) , 24: #succ^#(#pos(#s(@x))) -> c_19() , 25: #succ^#(#0()) -> c_20() , 26: #succ^#(#neg(#s(#0()))) -> c_21() , 27: #succ^#(#neg(#s(#s(@x)))) -> c_22() , 28: #pred^#(#pos(#s(#0()))) -> c_28() , 29: #pred^#(#pos(#s(#s(@x)))) -> c_29() , 30: #pred^#(#0()) -> c_30() , 31: #pred^#(#neg(#s(@x))) -> c_31() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { mult^#(@n, @l) -> c_1(mult#1^#(@l, @n)) , mult#1^#(::(@x, @xs), @n) -> c_2(*^#(@n, @x), mult^#(@n, @xs)) , dyade#1^#(::(@x, @xs), @l2) -> c_5(mult^#(@x, @l2), dyade^#(@xs, @l2)) , dyade^#(@l1, @l2) -> c_7(dyade#1^#(@l1, @l2)) } Weak DPs: { mult#1^#(nil(), @n) -> c_3() , *^#(@x, @y) -> c_4(#mult^#(@x, @y)) , #mult^#(#pos(@x), #pos(@y)) -> c_10(#natmult^#(@x, @y)) , #mult^#(#pos(@x), #0()) -> c_11() , #mult^#(#pos(@x), #neg(@y)) -> c_12(#natmult^#(@x, @y)) , #mult^#(#0(), #pos(@y)) -> c_13() , #mult^#(#0(), #0()) -> c_14() , #mult^#(#0(), #neg(@y)) -> c_15() , #mult^#(#neg(@x), #pos(@y)) -> c_16(#natmult^#(@x, @y)) , #mult^#(#neg(@x), #0()) -> c_17() , #mult^#(#neg(@x), #neg(@y)) -> c_18(#natmult^#(@x, @y)) , dyade#1^#(nil(), @l2) -> c_6() , #natmult^#(#0(), @y) -> c_8() , #natmult^#(#s(@x), @y) -> c_9(#add^#(#pos(@y), #natmult(@x, @y)), #natmult^#(@x, @y)) , #add^#(#pos(#s(#0())), @y) -> c_23(#succ^#(@y)) , #add^#(#pos(#s(#s(@x))), @y) -> c_24(#succ^#(#add(#pos(#s(@x)), @y)), #add^#(#pos(#s(@x)), @y)) , #add^#(#0(), @y) -> c_25() , #add^#(#neg(#s(#0())), @y) -> c_26(#pred^#(@y)) , #add^#(#neg(#s(#s(@x))), @y) -> c_27(#pred^#(#add(#pos(#s(@x)), @y)), #add^#(#pos(#s(@x)), @y)) , #succ^#(#pos(#s(@x))) -> c_19() , #succ^#(#0()) -> c_20() , #succ^#(#neg(#s(#0()))) -> c_21() , #succ^#(#neg(#s(#s(@x)))) -> c_22() , #pred^#(#pos(#s(#0()))) -> c_28() , #pred^#(#pos(#s(#s(@x)))) -> c_29() , #pred^#(#0()) -> c_30() , #pred^#(#neg(#s(@x))) -> c_31() } Weak Trs: { #natmult(#0(), @y) -> #0() , #natmult(#s(@x), @y) -> #add(#pos(@y), #natmult(@x, @y)) , mult(@n, @l) -> mult#1(@l, @n) , mult#1(::(@x, @xs), @n) -> ::(*(@n, @x), mult(@n, @xs)) , mult#1(nil(), @n) -> nil() , #mult(#pos(@x), #pos(@y)) -> #pos(#natmult(@x, @y)) , #mult(#pos(@x), #0()) -> #0() , #mult(#pos(@x), #neg(@y)) -> #neg(#natmult(@x, @y)) , #mult(#0(), #pos(@y)) -> #0() , #mult(#0(), #0()) -> #0() , #mult(#0(), #neg(@y)) -> #0() , #mult(#neg(@x), #pos(@y)) -> #neg(#natmult(@x, @y)) , #mult(#neg(@x), #0()) -> #0() , #mult(#neg(@x), #neg(@y)) -> #pos(#natmult(@x, @y)) , #succ(#pos(#s(@x))) -> #pos(#s(#s(@x))) , #succ(#0()) -> #pos(#s(#0())) , #succ(#neg(#s(#0()))) -> #0() , #succ(#neg(#s(#s(@x)))) -> #neg(#s(@x)) , #add(#pos(#s(#0())), @y) -> #succ(@y) , #add(#pos(#s(#s(@x))), @y) -> #succ(#add(#pos(#s(@x)), @y)) , #add(#0(), @y) -> @y , #add(#neg(#s(#0())), @y) -> #pred(@y) , #add(#neg(#s(#s(@x))), @y) -> #pred(#add(#pos(#s(@x)), @y)) , *(@x, @y) -> #mult(@x, @y) , dyade#1(::(@x, @xs), @l2) -> ::(mult(@x, @l2), dyade(@xs, @l2)) , dyade#1(nil(), @l2) -> nil() , #pred(#pos(#s(#0()))) -> #0() , #pred(#pos(#s(#s(@x)))) -> #pos(#s(@x)) , #pred(#0()) -> #neg(#s(#0())) , #pred(#neg(#s(@x))) -> #neg(#s(#s(@x))) , dyade(@l1, @l2) -> dyade#1(@l1, @l2) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { mult#1^#(nil(), @n) -> c_3() , *^#(@x, @y) -> c_4(#mult^#(@x, @y)) , #mult^#(#pos(@x), #pos(@y)) -> c_10(#natmult^#(@x, @y)) , #mult^#(#pos(@x), #0()) -> c_11() , #mult^#(#pos(@x), #neg(@y)) -> c_12(#natmult^#(@x, @y)) , #mult^#(#0(), #pos(@y)) -> c_13() , #mult^#(#0(), #0()) -> c_14() , #mult^#(#0(), #neg(@y)) -> c_15() , #mult^#(#neg(@x), #pos(@y)) -> c_16(#natmult^#(@x, @y)) , #mult^#(#neg(@x), #0()) -> c_17() , #mult^#(#neg(@x), #neg(@y)) -> c_18(#natmult^#(@x, @y)) , dyade#1^#(nil(), @l2) -> c_6() , #natmult^#(#0(), @y) -> c_8() , #natmult^#(#s(@x), @y) -> c_9(#add^#(#pos(@y), #natmult(@x, @y)), #natmult^#(@x, @y)) , #add^#(#pos(#s(#0())), @y) -> c_23(#succ^#(@y)) , #add^#(#pos(#s(#s(@x))), @y) -> c_24(#succ^#(#add(#pos(#s(@x)), @y)), #add^#(#pos(#s(@x)), @y)) , #add^#(#0(), @y) -> c_25() , #add^#(#neg(#s(#0())), @y) -> c_26(#pred^#(@y)) , #add^#(#neg(#s(#s(@x))), @y) -> c_27(#pred^#(#add(#pos(#s(@x)), @y)), #add^#(#pos(#s(@x)), @y)) , #succ^#(#pos(#s(@x))) -> c_19() , #succ^#(#0()) -> c_20() , #succ^#(#neg(#s(#0()))) -> c_21() , #succ^#(#neg(#s(#s(@x)))) -> c_22() , #pred^#(#pos(#s(#0()))) -> c_28() , #pred^#(#pos(#s(#s(@x)))) -> c_29() , #pred^#(#0()) -> c_30() , #pred^#(#neg(#s(@x))) -> c_31() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { mult^#(@n, @l) -> c_1(mult#1^#(@l, @n)) , mult#1^#(::(@x, @xs), @n) -> c_2(*^#(@n, @x), mult^#(@n, @xs)) , dyade#1^#(::(@x, @xs), @l2) -> c_5(mult^#(@x, @l2), dyade^#(@xs, @l2)) , dyade^#(@l1, @l2) -> c_7(dyade#1^#(@l1, @l2)) } Weak Trs: { #natmult(#0(), @y) -> #0() , #natmult(#s(@x), @y) -> #add(#pos(@y), #natmult(@x, @y)) , mult(@n, @l) -> mult#1(@l, @n) , mult#1(::(@x, @xs), @n) -> ::(*(@n, @x), mult(@n, @xs)) , mult#1(nil(), @n) -> nil() , #mult(#pos(@x), #pos(@y)) -> #pos(#natmult(@x, @y)) , #mult(#pos(@x), #0()) -> #0() , #mult(#pos(@x), #neg(@y)) -> #neg(#natmult(@x, @y)) , #mult(#0(), #pos(@y)) -> #0() , #mult(#0(), #0()) -> #0() , #mult(#0(), #neg(@y)) -> #0() , #mult(#neg(@x), #pos(@y)) -> #neg(#natmult(@x, @y)) , #mult(#neg(@x), #0()) -> #0() , #mult(#neg(@x), #neg(@y)) -> #pos(#natmult(@x, @y)) , #succ(#pos(#s(@x))) -> #pos(#s(#s(@x))) , #succ(#0()) -> #pos(#s(#0())) , #succ(#neg(#s(#0()))) -> #0() , #succ(#neg(#s(#s(@x)))) -> #neg(#s(@x)) , #add(#pos(#s(#0())), @y) -> #succ(@y) , #add(#pos(#s(#s(@x))), @y) -> #succ(#add(#pos(#s(@x)), @y)) , #add(#0(), @y) -> @y , #add(#neg(#s(#0())), @y) -> #pred(@y) , #add(#neg(#s(#s(@x))), @y) -> #pred(#add(#pos(#s(@x)), @y)) , *(@x, @y) -> #mult(@x, @y) , dyade#1(::(@x, @xs), @l2) -> ::(mult(@x, @l2), dyade(@xs, @l2)) , dyade#1(nil(), @l2) -> nil() , #pred(#pos(#s(#0()))) -> #0() , #pred(#pos(#s(#s(@x)))) -> #pos(#s(@x)) , #pred(#0()) -> #neg(#s(#0())) , #pred(#neg(#s(@x))) -> #neg(#s(#s(@x))) , dyade(@l1, @l2) -> dyade#1(@l1, @l2) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { mult#1^#(::(@x, @xs), @n) -> c_2(*^#(@n, @x), mult^#(@n, @xs)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { mult^#(@n, @l) -> c_1(mult#1^#(@l, @n)) , mult#1^#(::(@x, @xs), @n) -> c_2(mult^#(@n, @xs)) , dyade#1^#(::(@x, @xs), @l2) -> c_3(mult^#(@x, @l2), dyade^#(@xs, @l2)) , dyade^#(@l1, @l2) -> c_4(dyade#1^#(@l1, @l2)) } Weak Trs: { #natmult(#0(), @y) -> #0() , #natmult(#s(@x), @y) -> #add(#pos(@y), #natmult(@x, @y)) , mult(@n, @l) -> mult#1(@l, @n) , mult#1(::(@x, @xs), @n) -> ::(*(@n, @x), mult(@n, @xs)) , mult#1(nil(), @n) -> nil() , #mult(#pos(@x), #pos(@y)) -> #pos(#natmult(@x, @y)) , #mult(#pos(@x), #0()) -> #0() , #mult(#pos(@x), #neg(@y)) -> #neg(#natmult(@x, @y)) , #mult(#0(), #pos(@y)) -> #0() , #mult(#0(), #0()) -> #0() , #mult(#0(), #neg(@y)) -> #0() , #mult(#neg(@x), #pos(@y)) -> #neg(#natmult(@x, @y)) , #mult(#neg(@x), #0()) -> #0() , #mult(#neg(@x), #neg(@y)) -> #pos(#natmult(@x, @y)) , #succ(#pos(#s(@x))) -> #pos(#s(#s(@x))) , #succ(#0()) -> #pos(#s(#0())) , #succ(#neg(#s(#0()))) -> #0() , #succ(#neg(#s(#s(@x)))) -> #neg(#s(@x)) , #add(#pos(#s(#0())), @y) -> #succ(@y) , #add(#pos(#s(#s(@x))), @y) -> #succ(#add(#pos(#s(@x)), @y)) , #add(#0(), @y) -> @y , #add(#neg(#s(#0())), @y) -> #pred(@y) , #add(#neg(#s(#s(@x))), @y) -> #pred(#add(#pos(#s(@x)), @y)) , *(@x, @y) -> #mult(@x, @y) , dyade#1(::(@x, @xs), @l2) -> ::(mult(@x, @l2), dyade(@xs, @l2)) , dyade#1(nil(), @l2) -> nil() , #pred(#pos(#s(#0()))) -> #0() , #pred(#pos(#s(#s(@x)))) -> #pos(#s(@x)) , #pred(#0()) -> #neg(#s(#0())) , #pred(#neg(#s(@x))) -> #neg(#s(#s(@x))) , dyade(@l1, @l2) -> dyade#1(@l1, @l2) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { mult^#(@n, @l) -> c_1(mult#1^#(@l, @n)) , mult#1^#(::(@x, @xs), @n) -> c_2(mult^#(@n, @xs)) , dyade#1^#(::(@x, @xs), @l2) -> c_3(mult^#(@x, @l2), dyade^#(@xs, @l2)) , dyade^#(@l1, @l2) -> c_4(dyade#1^#(@l1, @l2)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We use the processor 'custom shape polynomial interpretation' to orient following rules strictly. DPs: { 1: mult^#(@n, @l) -> c_1(mult#1^#(@l, @n)) } Sub-proof: ---------- The following argument positions are considered usable: Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_3) = {1, 2}, Uargs(c_4) = {1} TcT has computed the following constructor-restricted polynomial interpretation. [::](x1, x2) = 1 + x2 [mult^#](x1, x2) = 1 + x2 [mult#1^#](x1, x2) = x1 [dyade#1^#](x1, x2) = 1 + x1 + 2*x1*x2 + 2*x1^2 + x2 + x2^2 [dyade^#](x1, x2) = 1 + x1 + 2*x1*x2 + 2*x1^2 + x2 + x2^2 [c_1](x1) = x1 [c_2](x1) = x1 [c_3](x1, x2) = 1 + 2*x1 + x2 [c_4](x1) = x1 This order satisfies the following ordering constraints. [mult^#(@n, @l)] = 1 + @l > @l = [c_1(mult#1^#(@l, @n))] [mult#1^#(::(@x, @xs), @n)] = 1 + @xs >= 1 + @xs = [c_2(mult^#(@n, @xs))] [dyade#1^#(::(@x, @xs), @l2)] = 4 + 5*@xs + 3*@l2 + 2*@xs*@l2 + 2*@xs^2 + @l2^2 >= 4 + 3*@l2 + @xs + 2*@xs*@l2 + 2*@xs^2 + @l2^2 = [c_3(mult^#(@x, @l2), dyade^#(@xs, @l2))] [dyade^#(@l1, @l2)] = 1 + @l1 + 2*@l1*@l2 + 2*@l1^2 + @l2 + @l2^2 >= 1 + @l1 + 2*@l1*@l2 + 2*@l1^2 + @l2 + @l2^2 = [c_4(dyade#1^#(@l1, @l2))] We return to the main proof. Consider the set of all dependency pairs : { 1: mult^#(@n, @l) -> c_1(mult#1^#(@l, @n)) , 2: mult#1^#(::(@x, @xs), @n) -> c_2(mult^#(@n, @xs)) , 3: dyade#1^#(::(@x, @xs), @l2) -> c_3(mult^#(@x, @l2), dyade^#(@xs, @l2)) , 4: dyade^#(@l1, @l2) -> c_4(dyade#1^#(@l1, @l2)) } Processor 'custom shape polynomial interpretation' induces the complexity certificate YES(?,O(n^2)) on application of dependency pairs {1}. These cover all (indirect) predecessors of dependency pairs {1,2}, their number of application is equally bounded. The dependency pairs are shifted into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { dyade#1^#(::(@x, @xs), @l2) -> c_3(mult^#(@x, @l2), dyade^#(@xs, @l2)) , dyade^#(@l1, @l2) -> c_4(dyade#1^#(@l1, @l2)) } Weak DPs: { mult^#(@n, @l) -> c_1(mult#1^#(@l, @n)) , mult#1^#(::(@x, @xs), @n) -> c_2(mult^#(@n, @xs)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { mult^#(@n, @l) -> c_1(mult#1^#(@l, @n)) , mult#1^#(::(@x, @xs), @n) -> c_2(mult^#(@n, @xs)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { dyade#1^#(::(@x, @xs), @l2) -> c_3(mult^#(@x, @l2), dyade^#(@xs, @l2)) , dyade^#(@l1, @l2) -> c_4(dyade#1^#(@l1, @l2)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { dyade#1^#(::(@x, @xs), @l2) -> c_3(mult^#(@x, @l2), dyade^#(@xs, @l2)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { dyade#1^#(::(@x, @xs), @l2) -> c_1(dyade^#(@xs, @l2)) , dyade^#(@l1, @l2) -> c_2(dyade#1^#(@l1, @l2)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 1: dyade#1^#(::(@x, @xs), @l2) -> c_1(dyade^#(@xs, @l2)) , 2: dyade^#(@l1, @l2) -> c_2(dyade#1^#(@l1, @l2)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_1) = {1}, Uargs(c_2) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [::](x1, x2) = [1] x2 + [2] [mult^#](x1, x2) = [0] [mult#1^#](x1, x2) = [0] [dyade#1^#](x1, x2) = [4] x1 + [0] [dyade^#](x1, x2) = [4] x1 + [4] [c_1](x1) = [0] [c_2](x1) = [0] [c_3](x1, x2) = [0] [c_4](x1) = [0] [c] = [0] [c_1](x1) = [1] x1 + [3] [c_2](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [dyade#1^#(::(@x, @xs), @l2)] = [4] @xs + [8] > [4] @xs + [7] = [c_1(dyade^#(@xs, @l2))] [dyade^#(@l1, @l2)] = [4] @l1 + [4] > [4] @l1 + [0] = [c_2(dyade#1^#(@l1, @l2))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { dyade#1^#(::(@x, @xs), @l2) -> c_1(dyade^#(@xs, @l2)) , dyade^#(@l1, @l2) -> c_2(dyade#1^#(@l1, @l2)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { dyade#1^#(::(@x, @xs), @l2) -> c_1(dyade^#(@xs, @l2)) , dyade^#(@l1, @l2) -> c_2(dyade#1^#(@l1, @l2)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^2))