We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { remove(@x, @l) -> remove#1(@l, @x)
  , eq#2(::(@y, @ys)) -> #false()
  , eq#2(nil()) -> #true()
  , #equal(@x, @y) -> #eq(@x, @y)
  , eq(@l1, @l2) -> eq#1(@l1, @l2)
  , and(@x, @y) -> #and(@x, @y)
  , remove#1(::(@y, @ys), @x) -> remove#2(eq(@x, @y), @x, @y, @ys)
  , remove#1(nil(), @x) -> nil()
  , nub(@l) -> nub#1(@l)
  , remove#2(#true(), @x, @y, @ys) -> remove(@x, @ys)
  , remove#2(#false(), @x, @y, @ys) -> ::(@y, remove(@x, @ys))
  , eq#1(::(@x, @xs), @l2) -> eq#3(@l2, @x, @xs)
  , eq#1(nil(), @l2) -> eq#2(@l2)
  , eq#3(::(@y, @ys), @x, @xs) -> and(#equal(@x, @y), eq(@xs, @ys))
  , eq#3(nil(), @x, @xs) -> #false()
  , nub#1(::(@x, @xs)) -> ::(@x, nub(remove(@x, @xs)))
  , nub#1(nil()) -> nil() }
Weak Trs:
  { #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
  , #eq(::(@x_1, @x_2), nil()) -> #false()
  , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
  , #eq(#pos(@x), #0()) -> #false()
  , #eq(#pos(@x), #neg(@y)) -> #false()
  , #eq(#0(), #pos(@y)) -> #false()
  , #eq(#0(), #0()) -> #true()
  , #eq(#0(), #neg(@y)) -> #false()
  , #eq(#0(), #s(@y)) -> #false()
  , #eq(#neg(@x), #pos(@y)) -> #false()
  , #eq(#neg(@x), #0()) -> #false()
  , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
  , #eq(#s(@x), #0()) -> #false()
  , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
  , #eq(nil(), ::(@y_1, @y_2)) -> #false()
  , #eq(nil(), nil()) -> #true()
  , #and(#true(), #true()) -> #true()
  , #and(#true(), #false()) -> #false()
  , #and(#false(), #true()) -> #false()
  , #and(#false(), #false()) -> #false() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We add the following dependency tuples:

Strict DPs:
  { remove^#(@x, @l) -> c_1(remove#1^#(@l, @x))
  , remove#1^#(::(@y, @ys), @x) ->
    c_7(remove#2^#(eq(@x, @y), @x, @y, @ys), eq^#(@x, @y))
  , remove#1^#(nil(), @x) -> c_8()
  , eq#2^#(::(@y, @ys)) -> c_2()
  , eq#2^#(nil()) -> c_3()
  , #equal^#(@x, @y) -> c_4(#eq^#(@x, @y))
  , eq^#(@l1, @l2) -> c_5(eq#1^#(@l1, @l2))
  , eq#1^#(::(@x, @xs), @l2) -> c_12(eq#3^#(@l2, @x, @xs))
  , eq#1^#(nil(), @l2) -> c_13(eq#2^#(@l2))
  , and^#(@x, @y) -> c_6(#and^#(@x, @y))
  , remove#2^#(#true(), @x, @y, @ys) -> c_10(remove^#(@x, @ys))
  , remove#2^#(#false(), @x, @y, @ys) -> c_11(remove^#(@x, @ys))
  , nub^#(@l) -> c_9(nub#1^#(@l))
  , nub#1^#(::(@x, @xs)) ->
    c_16(nub^#(remove(@x, @xs)), remove^#(@x, @xs))
  , nub#1^#(nil()) -> c_17()
  , eq#3^#(::(@y, @ys), @x, @xs) ->
    c_14(and^#(#equal(@x, @y), eq(@xs, @ys)),
         #equal^#(@x, @y),
         eq^#(@xs, @ys))
  , eq#3^#(nil(), @x, @xs) -> c_15() }
Weak DPs:
  { #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    c_18(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
         #eq^#(@x_1, @y_1),
         #eq^#(@x_2, @y_2))
  , #eq^#(::(@x_1, @x_2), nil()) -> c_19()
  , #eq^#(#pos(@x), #pos(@y)) -> c_20(#eq^#(@x, @y))
  , #eq^#(#pos(@x), #0()) -> c_21()
  , #eq^#(#pos(@x), #neg(@y)) -> c_22()
  , #eq^#(#0(), #pos(@y)) -> c_23()
  , #eq^#(#0(), #0()) -> c_24()
  , #eq^#(#0(), #neg(@y)) -> c_25()
  , #eq^#(#0(), #s(@y)) -> c_26()
  , #eq^#(#neg(@x), #pos(@y)) -> c_27()
  , #eq^#(#neg(@x), #0()) -> c_28()
  , #eq^#(#neg(@x), #neg(@y)) -> c_29(#eq^#(@x, @y))
  , #eq^#(#s(@x), #0()) -> c_30()
  , #eq^#(#s(@x), #s(@y)) -> c_31(#eq^#(@x, @y))
  , #eq^#(nil(), ::(@y_1, @y_2)) -> c_32()
  , #eq^#(nil(), nil()) -> c_33()
  , #and^#(#true(), #true()) -> c_34()
  , #and^#(#true(), #false()) -> c_35()
  , #and^#(#false(), #true()) -> c_36()
  , #and^#(#false(), #false()) -> c_37() }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { remove^#(@x, @l) -> c_1(remove#1^#(@l, @x))
  , remove#1^#(::(@y, @ys), @x) ->
    c_7(remove#2^#(eq(@x, @y), @x, @y, @ys), eq^#(@x, @y))
  , remove#1^#(nil(), @x) -> c_8()
  , eq#2^#(::(@y, @ys)) -> c_2()
  , eq#2^#(nil()) -> c_3()
  , #equal^#(@x, @y) -> c_4(#eq^#(@x, @y))
  , eq^#(@l1, @l2) -> c_5(eq#1^#(@l1, @l2))
  , eq#1^#(::(@x, @xs), @l2) -> c_12(eq#3^#(@l2, @x, @xs))
  , eq#1^#(nil(), @l2) -> c_13(eq#2^#(@l2))
  , and^#(@x, @y) -> c_6(#and^#(@x, @y))
  , remove#2^#(#true(), @x, @y, @ys) -> c_10(remove^#(@x, @ys))
  , remove#2^#(#false(), @x, @y, @ys) -> c_11(remove^#(@x, @ys))
  , nub^#(@l) -> c_9(nub#1^#(@l))
  , nub#1^#(::(@x, @xs)) ->
    c_16(nub^#(remove(@x, @xs)), remove^#(@x, @xs))
  , nub#1^#(nil()) -> c_17()
  , eq#3^#(::(@y, @ys), @x, @xs) ->
    c_14(and^#(#equal(@x, @y), eq(@xs, @ys)),
         #equal^#(@x, @y),
         eq^#(@xs, @ys))
  , eq#3^#(nil(), @x, @xs) -> c_15() }
Weak DPs:
  { #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    c_18(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
         #eq^#(@x_1, @y_1),
         #eq^#(@x_2, @y_2))
  , #eq^#(::(@x_1, @x_2), nil()) -> c_19()
  , #eq^#(#pos(@x), #pos(@y)) -> c_20(#eq^#(@x, @y))
  , #eq^#(#pos(@x), #0()) -> c_21()
  , #eq^#(#pos(@x), #neg(@y)) -> c_22()
  , #eq^#(#0(), #pos(@y)) -> c_23()
  , #eq^#(#0(), #0()) -> c_24()
  , #eq^#(#0(), #neg(@y)) -> c_25()
  , #eq^#(#0(), #s(@y)) -> c_26()
  , #eq^#(#neg(@x), #pos(@y)) -> c_27()
  , #eq^#(#neg(@x), #0()) -> c_28()
  , #eq^#(#neg(@x), #neg(@y)) -> c_29(#eq^#(@x, @y))
  , #eq^#(#s(@x), #0()) -> c_30()
  , #eq^#(#s(@x), #s(@y)) -> c_31(#eq^#(@x, @y))
  , #eq^#(nil(), ::(@y_1, @y_2)) -> c_32()
  , #eq^#(nil(), nil()) -> c_33()
  , #and^#(#true(), #true()) -> c_34()
  , #and^#(#true(), #false()) -> c_35()
  , #and^#(#false(), #true()) -> c_36()
  , #and^#(#false(), #false()) -> c_37() }
Weak Trs:
  { remove(@x, @l) -> remove#1(@l, @x)
  , eq#2(::(@y, @ys)) -> #false()
  , eq#2(nil()) -> #true()
  , #equal(@x, @y) -> #eq(@x, @y)
  , eq(@l1, @l2) -> eq#1(@l1, @l2)
  , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
  , #eq(::(@x_1, @x_2), nil()) -> #false()
  , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
  , #eq(#pos(@x), #0()) -> #false()
  , #eq(#pos(@x), #neg(@y)) -> #false()
  , #eq(#0(), #pos(@y)) -> #false()
  , #eq(#0(), #0()) -> #true()
  , #eq(#0(), #neg(@y)) -> #false()
  , #eq(#0(), #s(@y)) -> #false()
  , #eq(#neg(@x), #pos(@y)) -> #false()
  , #eq(#neg(@x), #0()) -> #false()
  , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
  , #eq(#s(@x), #0()) -> #false()
  , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
  , #eq(nil(), ::(@y_1, @y_2)) -> #false()
  , #eq(nil(), nil()) -> #true()
  , and(@x, @y) -> #and(@x, @y)
  , remove#1(::(@y, @ys), @x) -> remove#2(eq(@x, @y), @x, @y, @ys)
  , remove#1(nil(), @x) -> nil()
  , nub(@l) -> nub#1(@l)
  , remove#2(#true(), @x, @y, @ys) -> remove(@x, @ys)
  , remove#2(#false(), @x, @y, @ys) -> ::(@y, remove(@x, @ys))
  , eq#1(::(@x, @xs), @l2) -> eq#3(@l2, @x, @xs)
  , eq#1(nil(), @l2) -> eq#2(@l2)
  , #and(#true(), #true()) -> #true()
  , #and(#true(), #false()) -> #false()
  , #and(#false(), #true()) -> #false()
  , #and(#false(), #false()) -> #false()
  , eq#3(::(@y, @ys), @x, @xs) -> and(#equal(@x, @y), eq(@xs, @ys))
  , eq#3(nil(), @x, @xs) -> #false()
  , nub#1(::(@x, @xs)) -> ::(@x, nub(remove(@x, @xs)))
  , nub#1(nil()) -> nil() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We estimate the number of application of {3,4,5,6,10,15,17} by
applications of Pre({3,4,5,6,10,15,17}) = {1,8,9,13,16}. Here rules
are labeled as follows:

  DPs:
    { 1: remove^#(@x, @l) -> c_1(remove#1^#(@l, @x))
    , 2: remove#1^#(::(@y, @ys), @x) ->
         c_7(remove#2^#(eq(@x, @y), @x, @y, @ys), eq^#(@x, @y))
    , 3: remove#1^#(nil(), @x) -> c_8()
    , 4: eq#2^#(::(@y, @ys)) -> c_2()
    , 5: eq#2^#(nil()) -> c_3()
    , 6: #equal^#(@x, @y) -> c_4(#eq^#(@x, @y))
    , 7: eq^#(@l1, @l2) -> c_5(eq#1^#(@l1, @l2))
    , 8: eq#1^#(::(@x, @xs), @l2) -> c_12(eq#3^#(@l2, @x, @xs))
    , 9: eq#1^#(nil(), @l2) -> c_13(eq#2^#(@l2))
    , 10: and^#(@x, @y) -> c_6(#and^#(@x, @y))
    , 11: remove#2^#(#true(), @x, @y, @ys) -> c_10(remove^#(@x, @ys))
    , 12: remove#2^#(#false(), @x, @y, @ys) -> c_11(remove^#(@x, @ys))
    , 13: nub^#(@l) -> c_9(nub#1^#(@l))
    , 14: nub#1^#(::(@x, @xs)) ->
          c_16(nub^#(remove(@x, @xs)), remove^#(@x, @xs))
    , 15: nub#1^#(nil()) -> c_17()
    , 16: eq#3^#(::(@y, @ys), @x, @xs) ->
          c_14(and^#(#equal(@x, @y), eq(@xs, @ys)),
               #equal^#(@x, @y),
               eq^#(@xs, @ys))
    , 17: eq#3^#(nil(), @x, @xs) -> c_15()
    , 18: #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
          c_18(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
               #eq^#(@x_1, @y_1),
               #eq^#(@x_2, @y_2))
    , 19: #eq^#(::(@x_1, @x_2), nil()) -> c_19()
    , 20: #eq^#(#pos(@x), #pos(@y)) -> c_20(#eq^#(@x, @y))
    , 21: #eq^#(#pos(@x), #0()) -> c_21()
    , 22: #eq^#(#pos(@x), #neg(@y)) -> c_22()
    , 23: #eq^#(#0(), #pos(@y)) -> c_23()
    , 24: #eq^#(#0(), #0()) -> c_24()
    , 25: #eq^#(#0(), #neg(@y)) -> c_25()
    , 26: #eq^#(#0(), #s(@y)) -> c_26()
    , 27: #eq^#(#neg(@x), #pos(@y)) -> c_27()
    , 28: #eq^#(#neg(@x), #0()) -> c_28()
    , 29: #eq^#(#neg(@x), #neg(@y)) -> c_29(#eq^#(@x, @y))
    , 30: #eq^#(#s(@x), #0()) -> c_30()
    , 31: #eq^#(#s(@x), #s(@y)) -> c_31(#eq^#(@x, @y))
    , 32: #eq^#(nil(), ::(@y_1, @y_2)) -> c_32()
    , 33: #eq^#(nil(), nil()) -> c_33()
    , 34: #and^#(#true(), #true()) -> c_34()
    , 35: #and^#(#true(), #false()) -> c_35()
    , 36: #and^#(#false(), #true()) -> c_36()
    , 37: #and^#(#false(), #false()) -> c_37() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { remove^#(@x, @l) -> c_1(remove#1^#(@l, @x))
  , remove#1^#(::(@y, @ys), @x) ->
    c_7(remove#2^#(eq(@x, @y), @x, @y, @ys), eq^#(@x, @y))
  , eq^#(@l1, @l2) -> c_5(eq#1^#(@l1, @l2))
  , eq#1^#(::(@x, @xs), @l2) -> c_12(eq#3^#(@l2, @x, @xs))
  , eq#1^#(nil(), @l2) -> c_13(eq#2^#(@l2))
  , remove#2^#(#true(), @x, @y, @ys) -> c_10(remove^#(@x, @ys))
  , remove#2^#(#false(), @x, @y, @ys) -> c_11(remove^#(@x, @ys))
  , nub^#(@l) -> c_9(nub#1^#(@l))
  , nub#1^#(::(@x, @xs)) ->
    c_16(nub^#(remove(@x, @xs)), remove^#(@x, @xs))
  , eq#3^#(::(@y, @ys), @x, @xs) ->
    c_14(and^#(#equal(@x, @y), eq(@xs, @ys)),
         #equal^#(@x, @y),
         eq^#(@xs, @ys)) }
Weak DPs:
  { remove#1^#(nil(), @x) -> c_8()
  , eq#2^#(::(@y, @ys)) -> c_2()
  , eq#2^#(nil()) -> c_3()
  , #equal^#(@x, @y) -> c_4(#eq^#(@x, @y))
  , #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    c_18(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
         #eq^#(@x_1, @y_1),
         #eq^#(@x_2, @y_2))
  , #eq^#(::(@x_1, @x_2), nil()) -> c_19()
  , #eq^#(#pos(@x), #pos(@y)) -> c_20(#eq^#(@x, @y))
  , #eq^#(#pos(@x), #0()) -> c_21()
  , #eq^#(#pos(@x), #neg(@y)) -> c_22()
  , #eq^#(#0(), #pos(@y)) -> c_23()
  , #eq^#(#0(), #0()) -> c_24()
  , #eq^#(#0(), #neg(@y)) -> c_25()
  , #eq^#(#0(), #s(@y)) -> c_26()
  , #eq^#(#neg(@x), #pos(@y)) -> c_27()
  , #eq^#(#neg(@x), #0()) -> c_28()
  , #eq^#(#neg(@x), #neg(@y)) -> c_29(#eq^#(@x, @y))
  , #eq^#(#s(@x), #0()) -> c_30()
  , #eq^#(#s(@x), #s(@y)) -> c_31(#eq^#(@x, @y))
  , #eq^#(nil(), ::(@y_1, @y_2)) -> c_32()
  , #eq^#(nil(), nil()) -> c_33()
  , and^#(@x, @y) -> c_6(#and^#(@x, @y))
  , #and^#(#true(), #true()) -> c_34()
  , #and^#(#true(), #false()) -> c_35()
  , #and^#(#false(), #true()) -> c_36()
  , #and^#(#false(), #false()) -> c_37()
  , nub#1^#(nil()) -> c_17()
  , eq#3^#(nil(), @x, @xs) -> c_15() }
Weak Trs:
  { remove(@x, @l) -> remove#1(@l, @x)
  , eq#2(::(@y, @ys)) -> #false()
  , eq#2(nil()) -> #true()
  , #equal(@x, @y) -> #eq(@x, @y)
  , eq(@l1, @l2) -> eq#1(@l1, @l2)
  , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
  , #eq(::(@x_1, @x_2), nil()) -> #false()
  , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
  , #eq(#pos(@x), #0()) -> #false()
  , #eq(#pos(@x), #neg(@y)) -> #false()
  , #eq(#0(), #pos(@y)) -> #false()
  , #eq(#0(), #0()) -> #true()
  , #eq(#0(), #neg(@y)) -> #false()
  , #eq(#0(), #s(@y)) -> #false()
  , #eq(#neg(@x), #pos(@y)) -> #false()
  , #eq(#neg(@x), #0()) -> #false()
  , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
  , #eq(#s(@x), #0()) -> #false()
  , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
  , #eq(nil(), ::(@y_1, @y_2)) -> #false()
  , #eq(nil(), nil()) -> #true()
  , and(@x, @y) -> #and(@x, @y)
  , remove#1(::(@y, @ys), @x) -> remove#2(eq(@x, @y), @x, @y, @ys)
  , remove#1(nil(), @x) -> nil()
  , nub(@l) -> nub#1(@l)
  , remove#2(#true(), @x, @y, @ys) -> remove(@x, @ys)
  , remove#2(#false(), @x, @y, @ys) -> ::(@y, remove(@x, @ys))
  , eq#1(::(@x, @xs), @l2) -> eq#3(@l2, @x, @xs)
  , eq#1(nil(), @l2) -> eq#2(@l2)
  , #and(#true(), #true()) -> #true()
  , #and(#true(), #false()) -> #false()
  , #and(#false(), #true()) -> #false()
  , #and(#false(), #false()) -> #false()
  , eq#3(::(@y, @ys), @x, @xs) -> and(#equal(@x, @y), eq(@xs, @ys))
  , eq#3(nil(), @x, @xs) -> #false()
  , nub#1(::(@x, @xs)) -> ::(@x, nub(remove(@x, @xs)))
  , nub#1(nil()) -> nil() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We estimate the number of application of {5} by applications of
Pre({5}) = {3}. Here rules are labeled as follows:

  DPs:
    { 1: remove^#(@x, @l) -> c_1(remove#1^#(@l, @x))
    , 2: remove#1^#(::(@y, @ys), @x) ->
         c_7(remove#2^#(eq(@x, @y), @x, @y, @ys), eq^#(@x, @y))
    , 3: eq^#(@l1, @l2) -> c_5(eq#1^#(@l1, @l2))
    , 4: eq#1^#(::(@x, @xs), @l2) -> c_12(eq#3^#(@l2, @x, @xs))
    , 5: eq#1^#(nil(), @l2) -> c_13(eq#2^#(@l2))
    , 6: remove#2^#(#true(), @x, @y, @ys) -> c_10(remove^#(@x, @ys))
    , 7: remove#2^#(#false(), @x, @y, @ys) -> c_11(remove^#(@x, @ys))
    , 8: nub^#(@l) -> c_9(nub#1^#(@l))
    , 9: nub#1^#(::(@x, @xs)) ->
         c_16(nub^#(remove(@x, @xs)), remove^#(@x, @xs))
    , 10: eq#3^#(::(@y, @ys), @x, @xs) ->
          c_14(and^#(#equal(@x, @y), eq(@xs, @ys)),
               #equal^#(@x, @y),
               eq^#(@xs, @ys))
    , 11: remove#1^#(nil(), @x) -> c_8()
    , 12: eq#2^#(::(@y, @ys)) -> c_2()
    , 13: eq#2^#(nil()) -> c_3()
    , 14: #equal^#(@x, @y) -> c_4(#eq^#(@x, @y))
    , 15: #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
          c_18(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
               #eq^#(@x_1, @y_1),
               #eq^#(@x_2, @y_2))
    , 16: #eq^#(::(@x_1, @x_2), nil()) -> c_19()
    , 17: #eq^#(#pos(@x), #pos(@y)) -> c_20(#eq^#(@x, @y))
    , 18: #eq^#(#pos(@x), #0()) -> c_21()
    , 19: #eq^#(#pos(@x), #neg(@y)) -> c_22()
    , 20: #eq^#(#0(), #pos(@y)) -> c_23()
    , 21: #eq^#(#0(), #0()) -> c_24()
    , 22: #eq^#(#0(), #neg(@y)) -> c_25()
    , 23: #eq^#(#0(), #s(@y)) -> c_26()
    , 24: #eq^#(#neg(@x), #pos(@y)) -> c_27()
    , 25: #eq^#(#neg(@x), #0()) -> c_28()
    , 26: #eq^#(#neg(@x), #neg(@y)) -> c_29(#eq^#(@x, @y))
    , 27: #eq^#(#s(@x), #0()) -> c_30()
    , 28: #eq^#(#s(@x), #s(@y)) -> c_31(#eq^#(@x, @y))
    , 29: #eq^#(nil(), ::(@y_1, @y_2)) -> c_32()
    , 30: #eq^#(nil(), nil()) -> c_33()
    , 31: and^#(@x, @y) -> c_6(#and^#(@x, @y))
    , 32: #and^#(#true(), #true()) -> c_34()
    , 33: #and^#(#true(), #false()) -> c_35()
    , 34: #and^#(#false(), #true()) -> c_36()
    , 35: #and^#(#false(), #false()) -> c_37()
    , 36: nub#1^#(nil()) -> c_17()
    , 37: eq#3^#(nil(), @x, @xs) -> c_15() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { remove^#(@x, @l) -> c_1(remove#1^#(@l, @x))
  , remove#1^#(::(@y, @ys), @x) ->
    c_7(remove#2^#(eq(@x, @y), @x, @y, @ys), eq^#(@x, @y))
  , eq^#(@l1, @l2) -> c_5(eq#1^#(@l1, @l2))
  , eq#1^#(::(@x, @xs), @l2) -> c_12(eq#3^#(@l2, @x, @xs))
  , remove#2^#(#true(), @x, @y, @ys) -> c_10(remove^#(@x, @ys))
  , remove#2^#(#false(), @x, @y, @ys) -> c_11(remove^#(@x, @ys))
  , nub^#(@l) -> c_9(nub#1^#(@l))
  , nub#1^#(::(@x, @xs)) ->
    c_16(nub^#(remove(@x, @xs)), remove^#(@x, @xs))
  , eq#3^#(::(@y, @ys), @x, @xs) ->
    c_14(and^#(#equal(@x, @y), eq(@xs, @ys)),
         #equal^#(@x, @y),
         eq^#(@xs, @ys)) }
Weak DPs:
  { remove#1^#(nil(), @x) -> c_8()
  , eq#2^#(::(@y, @ys)) -> c_2()
  , eq#2^#(nil()) -> c_3()
  , #equal^#(@x, @y) -> c_4(#eq^#(@x, @y))
  , #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    c_18(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
         #eq^#(@x_1, @y_1),
         #eq^#(@x_2, @y_2))
  , #eq^#(::(@x_1, @x_2), nil()) -> c_19()
  , #eq^#(#pos(@x), #pos(@y)) -> c_20(#eq^#(@x, @y))
  , #eq^#(#pos(@x), #0()) -> c_21()
  , #eq^#(#pos(@x), #neg(@y)) -> c_22()
  , #eq^#(#0(), #pos(@y)) -> c_23()
  , #eq^#(#0(), #0()) -> c_24()
  , #eq^#(#0(), #neg(@y)) -> c_25()
  , #eq^#(#0(), #s(@y)) -> c_26()
  , #eq^#(#neg(@x), #pos(@y)) -> c_27()
  , #eq^#(#neg(@x), #0()) -> c_28()
  , #eq^#(#neg(@x), #neg(@y)) -> c_29(#eq^#(@x, @y))
  , #eq^#(#s(@x), #0()) -> c_30()
  , #eq^#(#s(@x), #s(@y)) -> c_31(#eq^#(@x, @y))
  , #eq^#(nil(), ::(@y_1, @y_2)) -> c_32()
  , #eq^#(nil(), nil()) -> c_33()
  , eq#1^#(nil(), @l2) -> c_13(eq#2^#(@l2))
  , and^#(@x, @y) -> c_6(#and^#(@x, @y))
  , #and^#(#true(), #true()) -> c_34()
  , #and^#(#true(), #false()) -> c_35()
  , #and^#(#false(), #true()) -> c_36()
  , #and^#(#false(), #false()) -> c_37()
  , nub#1^#(nil()) -> c_17()
  , eq#3^#(nil(), @x, @xs) -> c_15() }
Weak Trs:
  { remove(@x, @l) -> remove#1(@l, @x)
  , eq#2(::(@y, @ys)) -> #false()
  , eq#2(nil()) -> #true()
  , #equal(@x, @y) -> #eq(@x, @y)
  , eq(@l1, @l2) -> eq#1(@l1, @l2)
  , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
  , #eq(::(@x_1, @x_2), nil()) -> #false()
  , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
  , #eq(#pos(@x), #0()) -> #false()
  , #eq(#pos(@x), #neg(@y)) -> #false()
  , #eq(#0(), #pos(@y)) -> #false()
  , #eq(#0(), #0()) -> #true()
  , #eq(#0(), #neg(@y)) -> #false()
  , #eq(#0(), #s(@y)) -> #false()
  , #eq(#neg(@x), #pos(@y)) -> #false()
  , #eq(#neg(@x), #0()) -> #false()
  , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
  , #eq(#s(@x), #0()) -> #false()
  , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
  , #eq(nil(), ::(@y_1, @y_2)) -> #false()
  , #eq(nil(), nil()) -> #true()
  , and(@x, @y) -> #and(@x, @y)
  , remove#1(::(@y, @ys), @x) -> remove#2(eq(@x, @y), @x, @y, @ys)
  , remove#1(nil(), @x) -> nil()
  , nub(@l) -> nub#1(@l)
  , remove#2(#true(), @x, @y, @ys) -> remove(@x, @ys)
  , remove#2(#false(), @x, @y, @ys) -> ::(@y, remove(@x, @ys))
  , eq#1(::(@x, @xs), @l2) -> eq#3(@l2, @x, @xs)
  , eq#1(nil(), @l2) -> eq#2(@l2)
  , #and(#true(), #true()) -> #true()
  , #and(#true(), #false()) -> #false()
  , #and(#false(), #true()) -> #false()
  , #and(#false(), #false()) -> #false()
  , eq#3(::(@y, @ys), @x, @xs) -> and(#equal(@x, @y), eq(@xs, @ys))
  , eq#3(nil(), @x, @xs) -> #false()
  , nub#1(::(@x, @xs)) -> ::(@x, nub(remove(@x, @xs)))
  , nub#1(nil()) -> nil() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ remove#1^#(nil(), @x) -> c_8()
, eq#2^#(::(@y, @ys)) -> c_2()
, eq#2^#(nil()) -> c_3()
, #equal^#(@x, @y) -> c_4(#eq^#(@x, @y))
, #eq^#(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
  c_18(#and^#(#eq(@x_1, @y_1), #eq(@x_2, @y_2)),
       #eq^#(@x_1, @y_1),
       #eq^#(@x_2, @y_2))
, #eq^#(::(@x_1, @x_2), nil()) -> c_19()
, #eq^#(#pos(@x), #pos(@y)) -> c_20(#eq^#(@x, @y))
, #eq^#(#pos(@x), #0()) -> c_21()
, #eq^#(#pos(@x), #neg(@y)) -> c_22()
, #eq^#(#0(), #pos(@y)) -> c_23()
, #eq^#(#0(), #0()) -> c_24()
, #eq^#(#0(), #neg(@y)) -> c_25()
, #eq^#(#0(), #s(@y)) -> c_26()
, #eq^#(#neg(@x), #pos(@y)) -> c_27()
, #eq^#(#neg(@x), #0()) -> c_28()
, #eq^#(#neg(@x), #neg(@y)) -> c_29(#eq^#(@x, @y))
, #eq^#(#s(@x), #0()) -> c_30()
, #eq^#(#s(@x), #s(@y)) -> c_31(#eq^#(@x, @y))
, #eq^#(nil(), ::(@y_1, @y_2)) -> c_32()
, #eq^#(nil(), nil()) -> c_33()
, eq#1^#(nil(), @l2) -> c_13(eq#2^#(@l2))
, and^#(@x, @y) -> c_6(#and^#(@x, @y))
, #and^#(#true(), #true()) -> c_34()
, #and^#(#true(), #false()) -> c_35()
, #and^#(#false(), #true()) -> c_36()
, #and^#(#false(), #false()) -> c_37()
, nub#1^#(nil()) -> c_17()
, eq#3^#(nil(), @x, @xs) -> c_15() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { remove^#(@x, @l) -> c_1(remove#1^#(@l, @x))
  , remove#1^#(::(@y, @ys), @x) ->
    c_7(remove#2^#(eq(@x, @y), @x, @y, @ys), eq^#(@x, @y))
  , eq^#(@l1, @l2) -> c_5(eq#1^#(@l1, @l2))
  , eq#1^#(::(@x, @xs), @l2) -> c_12(eq#3^#(@l2, @x, @xs))
  , remove#2^#(#true(), @x, @y, @ys) -> c_10(remove^#(@x, @ys))
  , remove#2^#(#false(), @x, @y, @ys) -> c_11(remove^#(@x, @ys))
  , nub^#(@l) -> c_9(nub#1^#(@l))
  , nub#1^#(::(@x, @xs)) ->
    c_16(nub^#(remove(@x, @xs)), remove^#(@x, @xs))
  , eq#3^#(::(@y, @ys), @x, @xs) ->
    c_14(and^#(#equal(@x, @y), eq(@xs, @ys)),
         #equal^#(@x, @y),
         eq^#(@xs, @ys)) }
Weak Trs:
  { remove(@x, @l) -> remove#1(@l, @x)
  , eq#2(::(@y, @ys)) -> #false()
  , eq#2(nil()) -> #true()
  , #equal(@x, @y) -> #eq(@x, @y)
  , eq(@l1, @l2) -> eq#1(@l1, @l2)
  , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
  , #eq(::(@x_1, @x_2), nil()) -> #false()
  , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
  , #eq(#pos(@x), #0()) -> #false()
  , #eq(#pos(@x), #neg(@y)) -> #false()
  , #eq(#0(), #pos(@y)) -> #false()
  , #eq(#0(), #0()) -> #true()
  , #eq(#0(), #neg(@y)) -> #false()
  , #eq(#0(), #s(@y)) -> #false()
  , #eq(#neg(@x), #pos(@y)) -> #false()
  , #eq(#neg(@x), #0()) -> #false()
  , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
  , #eq(#s(@x), #0()) -> #false()
  , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
  , #eq(nil(), ::(@y_1, @y_2)) -> #false()
  , #eq(nil(), nil()) -> #true()
  , and(@x, @y) -> #and(@x, @y)
  , remove#1(::(@y, @ys), @x) -> remove#2(eq(@x, @y), @x, @y, @ys)
  , remove#1(nil(), @x) -> nil()
  , nub(@l) -> nub#1(@l)
  , remove#2(#true(), @x, @y, @ys) -> remove(@x, @ys)
  , remove#2(#false(), @x, @y, @ys) -> ::(@y, remove(@x, @ys))
  , eq#1(::(@x, @xs), @l2) -> eq#3(@l2, @x, @xs)
  , eq#1(nil(), @l2) -> eq#2(@l2)
  , #and(#true(), #true()) -> #true()
  , #and(#true(), #false()) -> #false()
  , #and(#false(), #true()) -> #false()
  , #and(#false(), #false()) -> #false()
  , eq#3(::(@y, @ys), @x, @xs) -> and(#equal(@x, @y), eq(@xs, @ys))
  , eq#3(nil(), @x, @xs) -> #false()
  , nub#1(::(@x, @xs)) -> ::(@x, nub(remove(@x, @xs)))
  , nub#1(nil()) -> nil() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

Due to missing edges in the dependency-graph, the right-hand sides
of following rules could be simplified:

  { eq#3^#(::(@y, @ys), @x, @xs) ->
    c_14(and^#(#equal(@x, @y), eq(@xs, @ys)),
         #equal^#(@x, @y),
         eq^#(@xs, @ys)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { remove^#(@x, @l) -> c_1(remove#1^#(@l, @x))
  , remove#1^#(::(@y, @ys), @x) ->
    c_2(remove#2^#(eq(@x, @y), @x, @y, @ys), eq^#(@x, @y))
  , eq^#(@l1, @l2) -> c_3(eq#1^#(@l1, @l2))
  , eq#1^#(::(@x, @xs), @l2) -> c_4(eq#3^#(@l2, @x, @xs))
  , remove#2^#(#true(), @x, @y, @ys) -> c_5(remove^#(@x, @ys))
  , remove#2^#(#false(), @x, @y, @ys) -> c_6(remove^#(@x, @ys))
  , nub^#(@l) -> c_7(nub#1^#(@l))
  , nub#1^#(::(@x, @xs)) ->
    c_8(nub^#(remove(@x, @xs)), remove^#(@x, @xs))
  , eq#3^#(::(@y, @ys), @x, @xs) -> c_9(eq^#(@xs, @ys)) }
Weak Trs:
  { remove(@x, @l) -> remove#1(@l, @x)
  , eq#2(::(@y, @ys)) -> #false()
  , eq#2(nil()) -> #true()
  , #equal(@x, @y) -> #eq(@x, @y)
  , eq(@l1, @l2) -> eq#1(@l1, @l2)
  , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
  , #eq(::(@x_1, @x_2), nil()) -> #false()
  , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
  , #eq(#pos(@x), #0()) -> #false()
  , #eq(#pos(@x), #neg(@y)) -> #false()
  , #eq(#0(), #pos(@y)) -> #false()
  , #eq(#0(), #0()) -> #true()
  , #eq(#0(), #neg(@y)) -> #false()
  , #eq(#0(), #s(@y)) -> #false()
  , #eq(#neg(@x), #pos(@y)) -> #false()
  , #eq(#neg(@x), #0()) -> #false()
  , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
  , #eq(#s(@x), #0()) -> #false()
  , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
  , #eq(nil(), ::(@y_1, @y_2)) -> #false()
  , #eq(nil(), nil()) -> #true()
  , and(@x, @y) -> #and(@x, @y)
  , remove#1(::(@y, @ys), @x) -> remove#2(eq(@x, @y), @x, @y, @ys)
  , remove#1(nil(), @x) -> nil()
  , nub(@l) -> nub#1(@l)
  , remove#2(#true(), @x, @y, @ys) -> remove(@x, @ys)
  , remove#2(#false(), @x, @y, @ys) -> ::(@y, remove(@x, @ys))
  , eq#1(::(@x, @xs), @l2) -> eq#3(@l2, @x, @xs)
  , eq#1(nil(), @l2) -> eq#2(@l2)
  , #and(#true(), #true()) -> #true()
  , #and(#true(), #false()) -> #false()
  , #and(#false(), #true()) -> #false()
  , #and(#false(), #false()) -> #false()
  , eq#3(::(@y, @ys), @x, @xs) -> and(#equal(@x, @y), eq(@xs, @ys))
  , eq#3(nil(), @x, @xs) -> #false()
  , nub#1(::(@x, @xs)) -> ::(@x, nub(remove(@x, @xs)))
  , nub#1(nil()) -> nil() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We replace rewrite rules by usable rules:

  Weak Usable Rules:
    { remove(@x, @l) -> remove#1(@l, @x)
    , eq#2(::(@y, @ys)) -> #false()
    , eq#2(nil()) -> #true()
    , #equal(@x, @y) -> #eq(@x, @y)
    , eq(@l1, @l2) -> eq#1(@l1, @l2)
    , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
      #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
    , #eq(::(@x_1, @x_2), nil()) -> #false()
    , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
    , #eq(#pos(@x), #0()) -> #false()
    , #eq(#pos(@x), #neg(@y)) -> #false()
    , #eq(#0(), #pos(@y)) -> #false()
    , #eq(#0(), #0()) -> #true()
    , #eq(#0(), #neg(@y)) -> #false()
    , #eq(#0(), #s(@y)) -> #false()
    , #eq(#neg(@x), #pos(@y)) -> #false()
    , #eq(#neg(@x), #0()) -> #false()
    , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
    , #eq(#s(@x), #0()) -> #false()
    , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
    , #eq(nil(), ::(@y_1, @y_2)) -> #false()
    , #eq(nil(), nil()) -> #true()
    , and(@x, @y) -> #and(@x, @y)
    , remove#1(::(@y, @ys), @x) -> remove#2(eq(@x, @y), @x, @y, @ys)
    , remove#1(nil(), @x) -> nil()
    , remove#2(#true(), @x, @y, @ys) -> remove(@x, @ys)
    , remove#2(#false(), @x, @y, @ys) -> ::(@y, remove(@x, @ys))
    , eq#1(::(@x, @xs), @l2) -> eq#3(@l2, @x, @xs)
    , eq#1(nil(), @l2) -> eq#2(@l2)
    , #and(#true(), #true()) -> #true()
    , #and(#true(), #false()) -> #false()
    , #and(#false(), #true()) -> #false()
    , #and(#false(), #false()) -> #false()
    , eq#3(::(@y, @ys), @x, @xs) -> and(#equal(@x, @y), eq(@xs, @ys))
    , eq#3(nil(), @x, @xs) -> #false() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { remove^#(@x, @l) -> c_1(remove#1^#(@l, @x))
  , remove#1^#(::(@y, @ys), @x) ->
    c_2(remove#2^#(eq(@x, @y), @x, @y, @ys), eq^#(@x, @y))
  , eq^#(@l1, @l2) -> c_3(eq#1^#(@l1, @l2))
  , eq#1^#(::(@x, @xs), @l2) -> c_4(eq#3^#(@l2, @x, @xs))
  , remove#2^#(#true(), @x, @y, @ys) -> c_5(remove^#(@x, @ys))
  , remove#2^#(#false(), @x, @y, @ys) -> c_6(remove^#(@x, @ys))
  , nub^#(@l) -> c_7(nub#1^#(@l))
  , nub#1^#(::(@x, @xs)) ->
    c_8(nub^#(remove(@x, @xs)), remove^#(@x, @xs))
  , eq#3^#(::(@y, @ys), @x, @xs) -> c_9(eq^#(@xs, @ys)) }
Weak Trs:
  { remove(@x, @l) -> remove#1(@l, @x)
  , eq#2(::(@y, @ys)) -> #false()
  , eq#2(nil()) -> #true()
  , #equal(@x, @y) -> #eq(@x, @y)
  , eq(@l1, @l2) -> eq#1(@l1, @l2)
  , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
  , #eq(::(@x_1, @x_2), nil()) -> #false()
  , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
  , #eq(#pos(@x), #0()) -> #false()
  , #eq(#pos(@x), #neg(@y)) -> #false()
  , #eq(#0(), #pos(@y)) -> #false()
  , #eq(#0(), #0()) -> #true()
  , #eq(#0(), #neg(@y)) -> #false()
  , #eq(#0(), #s(@y)) -> #false()
  , #eq(#neg(@x), #pos(@y)) -> #false()
  , #eq(#neg(@x), #0()) -> #false()
  , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
  , #eq(#s(@x), #0()) -> #false()
  , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
  , #eq(nil(), ::(@y_1, @y_2)) -> #false()
  , #eq(nil(), nil()) -> #true()
  , and(@x, @y) -> #and(@x, @y)
  , remove#1(::(@y, @ys), @x) -> remove#2(eq(@x, @y), @x, @y, @ys)
  , remove#1(nil(), @x) -> nil()
  , remove#2(#true(), @x, @y, @ys) -> remove(@x, @ys)
  , remove#2(#false(), @x, @y, @ys) -> ::(@y, remove(@x, @ys))
  , eq#1(::(@x, @xs), @l2) -> eq#3(@l2, @x, @xs)
  , eq#1(nil(), @l2) -> eq#2(@l2)
  , #and(#true(), #true()) -> #true()
  , #and(#true(), #false()) -> #false()
  , #and(#false(), #true()) -> #false()
  , #and(#false(), #false()) -> #false()
  , eq#3(::(@y, @ys), @x, @xs) -> and(#equal(@x, @y), eq(@xs, @ys))
  , eq#3(nil(), @x, @xs) -> #false() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We decompose the input problem according to the dependency graph
into the upper component

  { nub^#(@l) -> c_7(nub#1^#(@l))
  , nub#1^#(::(@x, @xs)) ->
    c_8(nub^#(remove(@x, @xs)), remove^#(@x, @xs)) }

and lower component

  { remove^#(@x, @l) -> c_1(remove#1^#(@l, @x))
  , remove#1^#(::(@y, @ys), @x) ->
    c_2(remove#2^#(eq(@x, @y), @x, @y, @ys), eq^#(@x, @y))
  , eq^#(@l1, @l2) -> c_3(eq#1^#(@l1, @l2))
  , eq#1^#(::(@x, @xs), @l2) -> c_4(eq#3^#(@l2, @x, @xs))
  , remove#2^#(#true(), @x, @y, @ys) -> c_5(remove^#(@x, @ys))
  , remove#2^#(#false(), @x, @y, @ys) -> c_6(remove^#(@x, @ys))
  , eq#3^#(::(@y, @ys), @x, @xs) -> c_9(eq^#(@xs, @ys)) }

Further, following extension rules are added to the lower
component.

{ nub^#(@l) -> nub#1^#(@l)
, nub#1^#(::(@x, @xs)) -> remove^#(@x, @xs)
, nub#1^#(::(@x, @xs)) -> nub^#(remove(@x, @xs)) }

TcT solves the upper component with certificate YES(O(1),O(n^1)).

Sub-proof:
----------
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(n^1)).
  
  Strict DPs:
    { nub^#(@l) -> c_7(nub#1^#(@l))
    , nub#1^#(::(@x, @xs)) ->
      c_8(nub^#(remove(@x, @xs)), remove^#(@x, @xs)) }
  Weak Trs:
    { remove(@x, @l) -> remove#1(@l, @x)
    , eq#2(::(@y, @ys)) -> #false()
    , eq#2(nil()) -> #true()
    , #equal(@x, @y) -> #eq(@x, @y)
    , eq(@l1, @l2) -> eq#1(@l1, @l2)
    , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
      #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
    , #eq(::(@x_1, @x_2), nil()) -> #false()
    , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
    , #eq(#pos(@x), #0()) -> #false()
    , #eq(#pos(@x), #neg(@y)) -> #false()
    , #eq(#0(), #pos(@y)) -> #false()
    , #eq(#0(), #0()) -> #true()
    , #eq(#0(), #neg(@y)) -> #false()
    , #eq(#0(), #s(@y)) -> #false()
    , #eq(#neg(@x), #pos(@y)) -> #false()
    , #eq(#neg(@x), #0()) -> #false()
    , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
    , #eq(#s(@x), #0()) -> #false()
    , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
    , #eq(nil(), ::(@y_1, @y_2)) -> #false()
    , #eq(nil(), nil()) -> #true()
    , and(@x, @y) -> #and(@x, @y)
    , remove#1(::(@y, @ys), @x) -> remove#2(eq(@x, @y), @x, @y, @ys)
    , remove#1(nil(), @x) -> nil()
    , remove#2(#true(), @x, @y, @ys) -> remove(@x, @ys)
    , remove#2(#false(), @x, @y, @ys) -> ::(@y, remove(@x, @ys))
    , eq#1(::(@x, @xs), @l2) -> eq#3(@l2, @x, @xs)
    , eq#1(nil(), @l2) -> eq#2(@l2)
    , #and(#true(), #true()) -> #true()
    , #and(#true(), #false()) -> #false()
    , #and(#false(), #true()) -> #false()
    , #and(#false(), #false()) -> #false()
    , eq#3(::(@y, @ys), @x, @xs) -> and(#equal(@x, @y), eq(@xs, @ys))
    , eq#3(nil(), @x, @xs) -> #false() }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(n^1))
  
  We use the processor 'matrix interpretation of dimension 1' to
  orient following rules strictly.
  
  DPs:
    { 1: nub^#(@l) -> c_7(nub#1^#(@l))
    , 2: nub#1^#(::(@x, @xs)) ->
         c_8(nub^#(remove(@x, @xs)), remove^#(@x, @xs)) }
  Trs:
    { remove#1(nil(), @x) -> nil()
    , remove#2(#true(), @x, @y, @ys) -> remove(@x, @ys) }
  
  Sub-proof:
  ----------
    The following argument positions are usable:
      Uargs(c_7) = {1}, Uargs(c_8) = {1}
    
    TcT has computed the following constructor-based matrix
    interpretation satisfying not(EDA).
    
                [remove](x1, x2) = [1] x2 + [3]         
                                                        
                      [eq#2](x1) = [0]                  
                                                        
                [#equal](x1, x2) = [0]                  
                                                        
                    [eq](x1, x2) = [0]                  
                                                        
                   [#eq](x1, x2) = [0]                  
                                                        
                         [#true] = [0]                  
                                                        
                        [#false] = [0]                  
                                                        
                    [::](x1, x2) = [1] x2 + [4]         
                                                        
                   [and](x1, x2) = [0]                  
                                                        
              [remove#1](x1, x2) = [1] x1 + [3]         
                                                        
                      [#pos](x1) = [1] x1 + [0]         
                                                        
                            [#0] = [0]                  
                                                        
                      [#neg](x1) = [1] x1 + [0]         
                                                        
      [remove#2](x1, x2, x3, x4) = [3] x1 + [1] x4 + [7]
                                                        
                  [eq#1](x1, x2) = [0]                  
                                                        
                  [#and](x1, x2) = [0]                  
                                                        
              [eq#3](x1, x2, x3) = [0]                  
                                                        
                        [#s](x1) = [1] x1 + [0]         
                                                        
                           [nil] = [0]                  
                                                        
              [remove^#](x1, x2) = [0]                  
                                                        
                     [nub^#](x1) = [3] x1 + [2]         
                                                        
                   [nub#1^#](x1) = [3] x1 + [1]         
                                                        
                       [c_7](x1) = [1] x1 + [0]         
                                                        
                   [c_8](x1, x2) = [1] x1 + [1] x2 + [0]
    
    The order satisfies the following ordering constraints:
    
                           [remove(@x, @l)] =  [1] @l + [3]                                    
                                            >= [1] @l + [3]                                    
                                            =  [remove#1(@l, @x)]                              
                                                                                               
                        [eq#2(::(@y, @ys))] =  [0]                                             
                                            >= [0]                                             
                                            =  [#false()]                                      
                                                                                               
                              [eq#2(nil())] =  [0]                                             
                                            >= [0]                                             
                                            =  [#true()]                                       
                                                                                               
                           [#equal(@x, @y)] =  [0]                                             
                                            >= [0]                                             
                                            =  [#eq(@x, @y)]                                   
                                                                                               
                             [eq(@l1, @l2)] =  [0]                                             
                                            >= [0]                                             
                                            =  [eq#1(@l1, @l2)]                                
                                                                                               
      [#eq(::(@x_1, @x_2), ::(@y_1, @y_2))] =  [0]                                             
                                            >= [0]                                             
                                            =  [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))]        
                                                                                               
               [#eq(::(@x_1, @x_2), nil())] =  [0]                                             
                                            >= [0]                                             
                                            =  [#false()]                                      
                                                                                               
                  [#eq(#pos(@x), #pos(@y))] =  [0]                                             
                                            >= [0]                                             
                                            =  [#eq(@x, @y)]                                   
                                                                                               
                      [#eq(#pos(@x), #0())] =  [0]                                             
                                            >= [0]                                             
                                            =  [#false()]                                      
                                                                                               
                  [#eq(#pos(@x), #neg(@y))] =  [0]                                             
                                            >= [0]                                             
                                            =  [#false()]                                      
                                                                                               
                      [#eq(#0(), #pos(@y))] =  [0]                                             
                                            >= [0]                                             
                                            =  [#false()]                                      
                                                                                               
                          [#eq(#0(), #0())] =  [0]                                             
                                            >= [0]                                             
                                            =  [#true()]                                       
                                                                                               
                      [#eq(#0(), #neg(@y))] =  [0]                                             
                                            >= [0]                                             
                                            =  [#false()]                                      
                                                                                               
                        [#eq(#0(), #s(@y))] =  [0]                                             
                                            >= [0]                                             
                                            =  [#false()]                                      
                                                                                               
                  [#eq(#neg(@x), #pos(@y))] =  [0]                                             
                                            >= [0]                                             
                                            =  [#false()]                                      
                                                                                               
                      [#eq(#neg(@x), #0())] =  [0]                                             
                                            >= [0]                                             
                                            =  [#false()]                                      
                                                                                               
                  [#eq(#neg(@x), #neg(@y))] =  [0]                                             
                                            >= [0]                                             
                                            =  [#eq(@x, @y)]                                   
                                                                                               
                        [#eq(#s(@x), #0())] =  [0]                                             
                                            >= [0]                                             
                                            =  [#false()]                                      
                                                                                               
                      [#eq(#s(@x), #s(@y))] =  [0]                                             
                                            >= [0]                                             
                                            =  [#eq(@x, @y)]                                   
                                                                                               
               [#eq(nil(), ::(@y_1, @y_2))] =  [0]                                             
                                            >= [0]                                             
                                            =  [#false()]                                      
                                                                                               
                        [#eq(nil(), nil())] =  [0]                                             
                                            >= [0]                                             
                                            =  [#true()]                                       
                                                                                               
                              [and(@x, @y)] =  [0]                                             
                                            >= [0]                                             
                                            =  [#and(@x, @y)]                                  
                                                                                               
                [remove#1(::(@y, @ys), @x)] =  [1] @ys + [7]                                   
                                            >= [1] @ys + [7]                                   
                                            =  [remove#2(eq(@x, @y), @x, @y, @ys)]             
                                                                                               
                      [remove#1(nil(), @x)] =  [3]                                             
                                            >  [0]                                             
                                            =  [nil()]                                         
                                                                                               
           [remove#2(#true(), @x, @y, @ys)] =  [1] @ys + [7]                                   
                                            >  [1] @ys + [3]                                   
                                            =  [remove(@x, @ys)]                               
                                                                                               
          [remove#2(#false(), @x, @y, @ys)] =  [1] @ys + [7]                                   
                                            >= [1] @ys + [7]                                   
                                            =  [::(@y, remove(@x, @ys))]                       
                                                                                               
                   [eq#1(::(@x, @xs), @l2)] =  [0]                                             
                                            >= [0]                                             
                                            =  [eq#3(@l2, @x, @xs)]                            
                                                                                               
                         [eq#1(nil(), @l2)] =  [0]                                             
                                            >= [0]                                             
                                            =  [eq#2(@l2)]                                     
                                                                                               
                   [#and(#true(), #true())] =  [0]                                             
                                            >= [0]                                             
                                            =  [#true()]                                       
                                                                                               
                  [#and(#true(), #false())] =  [0]                                             
                                            >= [0]                                             
                                            =  [#false()]                                      
                                                                                               
                  [#and(#false(), #true())] =  [0]                                             
                                            >= [0]                                             
                                            =  [#false()]                                      
                                                                                               
                 [#and(#false(), #false())] =  [0]                                             
                                            >= [0]                                             
                                            =  [#false()]                                      
                                                                                               
               [eq#3(::(@y, @ys), @x, @xs)] =  [0]                                             
                                            >= [0]                                             
                                            =  [and(#equal(@x, @y), eq(@xs, @ys))]             
                                                                                               
                     [eq#3(nil(), @x, @xs)] =  [0]                                             
                                            >= [0]                                             
                                            =  [#false()]                                      
                                                                                               
                                [nub^#(@l)] =  [3] @l + [2]                                    
                                            >  [3] @l + [1]                                    
                                            =  [c_7(nub#1^#(@l))]                              
                                                                                               
                     [nub#1^#(::(@x, @xs))] =  [3] @xs + [13]                                  
                                            >  [3] @xs + [11]                                  
                                            =  [c_8(nub^#(remove(@x, @xs)), remove^#(@x, @xs))]
                                                                                               
  
  The strictly oriented rules are moved into the weak component.
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(1)).
  
  Weak DPs:
    { nub^#(@l) -> c_7(nub#1^#(@l))
    , nub#1^#(::(@x, @xs)) ->
      c_8(nub^#(remove(@x, @xs)), remove^#(@x, @xs)) }
  Weak Trs:
    { remove(@x, @l) -> remove#1(@l, @x)
    , eq#2(::(@y, @ys)) -> #false()
    , eq#2(nil()) -> #true()
    , #equal(@x, @y) -> #eq(@x, @y)
    , eq(@l1, @l2) -> eq#1(@l1, @l2)
    , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
      #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
    , #eq(::(@x_1, @x_2), nil()) -> #false()
    , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
    , #eq(#pos(@x), #0()) -> #false()
    , #eq(#pos(@x), #neg(@y)) -> #false()
    , #eq(#0(), #pos(@y)) -> #false()
    , #eq(#0(), #0()) -> #true()
    , #eq(#0(), #neg(@y)) -> #false()
    , #eq(#0(), #s(@y)) -> #false()
    , #eq(#neg(@x), #pos(@y)) -> #false()
    , #eq(#neg(@x), #0()) -> #false()
    , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
    , #eq(#s(@x), #0()) -> #false()
    , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
    , #eq(nil(), ::(@y_1, @y_2)) -> #false()
    , #eq(nil(), nil()) -> #true()
    , and(@x, @y) -> #and(@x, @y)
    , remove#1(::(@y, @ys), @x) -> remove#2(eq(@x, @y), @x, @y, @ys)
    , remove#1(nil(), @x) -> nil()
    , remove#2(#true(), @x, @y, @ys) -> remove(@x, @ys)
    , remove#2(#false(), @x, @y, @ys) -> ::(@y, remove(@x, @ys))
    , eq#1(::(@x, @xs), @l2) -> eq#3(@l2, @x, @xs)
    , eq#1(nil(), @l2) -> eq#2(@l2)
    , #and(#true(), #true()) -> #true()
    , #and(#true(), #false()) -> #false()
    , #and(#false(), #true()) -> #false()
    , #and(#false(), #false()) -> #false()
    , eq#3(::(@y, @ys), @x, @xs) -> and(#equal(@x, @y), eq(@xs, @ys))
    , eq#3(nil(), @x, @xs) -> #false() }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(1))
  
  The following weak DPs constitute a sub-graph of the DG that is
  closed under successors. The DPs are removed.
  
  { nub^#(@l) -> c_7(nub#1^#(@l))
  , nub#1^#(::(@x, @xs)) ->
    c_8(nub^#(remove(@x, @xs)), remove^#(@x, @xs)) }
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(1)).
  
  Weak Trs:
    { remove(@x, @l) -> remove#1(@l, @x)
    , eq#2(::(@y, @ys)) -> #false()
    , eq#2(nil()) -> #true()
    , #equal(@x, @y) -> #eq(@x, @y)
    , eq(@l1, @l2) -> eq#1(@l1, @l2)
    , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
      #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
    , #eq(::(@x_1, @x_2), nil()) -> #false()
    , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
    , #eq(#pos(@x), #0()) -> #false()
    , #eq(#pos(@x), #neg(@y)) -> #false()
    , #eq(#0(), #pos(@y)) -> #false()
    , #eq(#0(), #0()) -> #true()
    , #eq(#0(), #neg(@y)) -> #false()
    , #eq(#0(), #s(@y)) -> #false()
    , #eq(#neg(@x), #pos(@y)) -> #false()
    , #eq(#neg(@x), #0()) -> #false()
    , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
    , #eq(#s(@x), #0()) -> #false()
    , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
    , #eq(nil(), ::(@y_1, @y_2)) -> #false()
    , #eq(nil(), nil()) -> #true()
    , and(@x, @y) -> #and(@x, @y)
    , remove#1(::(@y, @ys), @x) -> remove#2(eq(@x, @y), @x, @y, @ys)
    , remove#1(nil(), @x) -> nil()
    , remove#2(#true(), @x, @y, @ys) -> remove(@x, @ys)
    , remove#2(#false(), @x, @y, @ys) -> ::(@y, remove(@x, @ys))
    , eq#1(::(@x, @xs), @l2) -> eq#3(@l2, @x, @xs)
    , eq#1(nil(), @l2) -> eq#2(@l2)
    , #and(#true(), #true()) -> #true()
    , #and(#true(), #false()) -> #false()
    , #and(#false(), #true()) -> #false()
    , #and(#false(), #false()) -> #false()
    , eq#3(::(@y, @ys), @x, @xs) -> and(#equal(@x, @y), eq(@xs, @ys))
    , eq#3(nil(), @x, @xs) -> #false() }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(1))
  
  No rule is usable, rules are removed from the input problem.
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(1)).
  
  Rules: Empty
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(1))
  
  Empty rules are trivially bounded

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { remove^#(@x, @l) -> c_1(remove#1^#(@l, @x))
  , remove#1^#(::(@y, @ys), @x) ->
    c_2(remove#2^#(eq(@x, @y), @x, @y, @ys), eq^#(@x, @y))
  , eq^#(@l1, @l2) -> c_3(eq#1^#(@l1, @l2))
  , eq#1^#(::(@x, @xs), @l2) -> c_4(eq#3^#(@l2, @x, @xs))
  , remove#2^#(#true(), @x, @y, @ys) -> c_5(remove^#(@x, @ys))
  , remove#2^#(#false(), @x, @y, @ys) -> c_6(remove^#(@x, @ys))
  , eq#3^#(::(@y, @ys), @x, @xs) -> c_9(eq^#(@xs, @ys)) }
Weak DPs:
  { nub^#(@l) -> nub#1^#(@l)
  , nub#1^#(::(@x, @xs)) -> remove^#(@x, @xs)
  , nub#1^#(::(@x, @xs)) -> nub^#(remove(@x, @xs)) }
Weak Trs:
  { remove(@x, @l) -> remove#1(@l, @x)
  , eq#2(::(@y, @ys)) -> #false()
  , eq#2(nil()) -> #true()
  , #equal(@x, @y) -> #eq(@x, @y)
  , eq(@l1, @l2) -> eq#1(@l1, @l2)
  , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
  , #eq(::(@x_1, @x_2), nil()) -> #false()
  , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
  , #eq(#pos(@x), #0()) -> #false()
  , #eq(#pos(@x), #neg(@y)) -> #false()
  , #eq(#0(), #pos(@y)) -> #false()
  , #eq(#0(), #0()) -> #true()
  , #eq(#0(), #neg(@y)) -> #false()
  , #eq(#0(), #s(@y)) -> #false()
  , #eq(#neg(@x), #pos(@y)) -> #false()
  , #eq(#neg(@x), #0()) -> #false()
  , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
  , #eq(#s(@x), #0()) -> #false()
  , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
  , #eq(nil(), ::(@y_1, @y_2)) -> #false()
  , #eq(nil(), nil()) -> #true()
  , and(@x, @y) -> #and(@x, @y)
  , remove#1(::(@y, @ys), @x) -> remove#2(eq(@x, @y), @x, @y, @ys)
  , remove#1(nil(), @x) -> nil()
  , remove#2(#true(), @x, @y, @ys) -> remove(@x, @ys)
  , remove#2(#false(), @x, @y, @ys) -> ::(@y, remove(@x, @ys))
  , eq#1(::(@x, @xs), @l2) -> eq#3(@l2, @x, @xs)
  , eq#1(nil(), @l2) -> eq#2(@l2)
  , #and(#true(), #true()) -> #true()
  , #and(#true(), #false()) -> #false()
  , #and(#false(), #true()) -> #false()
  , #and(#false(), #false()) -> #false()
  , eq#3(::(@y, @ys), @x, @xs) -> and(#equal(@x, @y), eq(@xs, @ys))
  , eq#3(nil(), @x, @xs) -> #false() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 2: remove#1^#(::(@y, @ys), @x) ->
       c_2(remove#2^#(eq(@x, @y), @x, @y, @ys), eq^#(@x, @y))
  , 7: eq#3^#(::(@y, @ys), @x, @xs) -> c_9(eq^#(@xs, @ys))
  , 9: nub#1^#(::(@x, @xs)) -> remove^#(@x, @xs)
  , 10: nub#1^#(::(@x, @xs)) -> nub^#(remove(@x, @xs)) }
Trs:
  { eq(@l1, @l2) -> eq#1(@l1, @l2)
  , remove#2(#true(), @x, @y, @ys) -> remove(@x, @ys) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1},
    Uargs(c_4) = {1}, Uargs(c_5) = {1}, Uargs(c_6) = {1},
    Uargs(c_9) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
                [remove](x1, x2) = [1] x2 + [0]                  
                                                                 
                      [eq#2](x1) = [0]                           
                                                                 
                [#equal](x1, x2) = [0]                           
                                                                 
                    [eq](x1, x2) = [1]                           
                                                                 
                   [#eq](x1, x2) = [0]                           
                                                                 
                         [#true] = [0]                           
                                                                 
                        [#false] = [0]                           
                                                                 
                    [::](x1, x2) = [1] x1 + [1] x2 + [2]         
                                                                 
                   [and](x1, x2) = [0]                           
                                                                 
              [remove#1](x1, x2) = [1] x1 + [0]                  
                                                                 
                      [#pos](x1) = [1] x1 + [0]                  
                                                                 
                            [#0] = [0]                           
                                                                 
                      [#neg](x1) = [1] x1 + [0]                  
                                                                 
      [remove#2](x1, x2, x3, x4) = [1] x3 + [1] x4 + [2]         
                                                                 
                  [eq#1](x1, x2) = [0]                           
                                                                 
                  [#and](x1, x2) = [0]                           
                                                                 
              [eq#3](x1, x2, x3) = [0]                           
                                                                 
                        [#s](x1) = [1] x1 + [0]                  
                                                                 
                           [nil] = [0]                           
                                                                 
              [remove^#](x1, x2) = [4] x1 + [4] x2 + [1]         
                                                                 
            [remove#1^#](x1, x2) = [4] x1 + [4] x2 + [1]         
                                                                 
                  [eq^#](x1, x2) = [2] x2 + [1]                  
                                                                 
                [eq#1^#](x1, x2) = [2] x2 + [1]                  
                                                                 
    [remove#2^#](x1, x2, x3, x4) = [2] x1 + [4] x2 + [4] x4 + [1]
                                                                 
                     [nub^#](x1) = [4] x1 + [4]                  
                                                                 
                   [nub#1^#](x1) = [4] x1 + [4]                  
                                                                 
            [eq#3^#](x1, x2, x3) = [2] x1 + [1]                  
                                                                 
                       [c_1](x1) = [1] x1 + [0]                  
                                                                 
                   [c_2](x1, x2) = [1] x1 + [1] x2 + [3]         
                                                                 
                       [c_3](x1) = [1] x1 + [0]                  
                                                                 
                       [c_4](x1) = [1] x1 + [0]                  
                                                                 
                       [c_5](x1) = [1] x1 + [0]                  
                                                                 
                       [c_6](x1) = [1] x1 + [0]                  
                                                                 
                       [c_9](x1) = [1] x1 + [0]                  
  
  The order satisfies the following ordering constraints:
  
                         [remove(@x, @l)] =  [1] @l + [0]                                            
                                          >= [1] @l + [0]                                            
                                          =  [remove#1(@l, @x)]                                      
                                                                                                     
                      [eq#2(::(@y, @ys))] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#false()]                                              
                                                                                                     
                            [eq#2(nil())] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#true()]                                               
                                                                                                     
                         [#equal(@x, @y)] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#eq(@x, @y)]                                           
                                                                                                     
                           [eq(@l1, @l2)] =  [1]                                                     
                                          >  [0]                                                     
                                          =  [eq#1(@l1, @l2)]                                        
                                                                                                     
    [#eq(::(@x_1, @x_2), ::(@y_1, @y_2))] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))]                
                                                                                                     
             [#eq(::(@x_1, @x_2), nil())] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#false()]                                              
                                                                                                     
                [#eq(#pos(@x), #pos(@y))] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#eq(@x, @y)]                                           
                                                                                                     
                    [#eq(#pos(@x), #0())] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#false()]                                              
                                                                                                     
                [#eq(#pos(@x), #neg(@y))] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#false()]                                              
                                                                                                     
                    [#eq(#0(), #pos(@y))] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#false()]                                              
                                                                                                     
                        [#eq(#0(), #0())] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#true()]                                               
                                                                                                     
                    [#eq(#0(), #neg(@y))] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#false()]                                              
                                                                                                     
                      [#eq(#0(), #s(@y))] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#false()]                                              
                                                                                                     
                [#eq(#neg(@x), #pos(@y))] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#false()]                                              
                                                                                                     
                    [#eq(#neg(@x), #0())] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#false()]                                              
                                                                                                     
                [#eq(#neg(@x), #neg(@y))] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#eq(@x, @y)]                                           
                                                                                                     
                      [#eq(#s(@x), #0())] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#false()]                                              
                                                                                                     
                    [#eq(#s(@x), #s(@y))] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#eq(@x, @y)]                                           
                                                                                                     
             [#eq(nil(), ::(@y_1, @y_2))] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#false()]                                              
                                                                                                     
                      [#eq(nil(), nil())] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#true()]                                               
                                                                                                     
                            [and(@x, @y)] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#and(@x, @y)]                                          
                                                                                                     
              [remove#1(::(@y, @ys), @x)] =  [1] @y + [1] @ys + [2]                                  
                                          >= [1] @y + [1] @ys + [2]                                  
                                          =  [remove#2(eq(@x, @y), @x, @y, @ys)]                     
                                                                                                     
                    [remove#1(nil(), @x)] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [nil()]                                                 
                                                                                                     
         [remove#2(#true(), @x, @y, @ys)] =  [1] @y + [1] @ys + [2]                                  
                                          >  [1] @ys + [0]                                           
                                          =  [remove(@x, @ys)]                                       
                                                                                                     
        [remove#2(#false(), @x, @y, @ys)] =  [1] @y + [1] @ys + [2]                                  
                                          >= [1] @y + [1] @ys + [2]                                  
                                          =  [::(@y, remove(@x, @ys))]                               
                                                                                                     
                 [eq#1(::(@x, @xs), @l2)] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [eq#3(@l2, @x, @xs)]                                    
                                                                                                     
                       [eq#1(nil(), @l2)] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [eq#2(@l2)]                                             
                                                                                                     
                 [#and(#true(), #true())] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#true()]                                               
                                                                                                     
                [#and(#true(), #false())] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#false()]                                              
                                                                                                     
                [#and(#false(), #true())] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#false()]                                              
                                                                                                     
               [#and(#false(), #false())] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#false()]                                              
                                                                                                     
             [eq#3(::(@y, @ys), @x, @xs)] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [and(#equal(@x, @y), eq(@xs, @ys))]                     
                                                                                                     
                   [eq#3(nil(), @x, @xs)] =  [0]                                                     
                                          >= [0]                                                     
                                          =  [#false()]                                              
                                                                                                     
                       [remove^#(@x, @l)] =  [4] @x + [4] @l + [1]                                   
                                          >= [4] @x + [4] @l + [1]                                   
                                          =  [c_1(remove#1^#(@l, @x))]                               
                                                                                                     
            [remove#1^#(::(@y, @ys), @x)] =  [4] @x + [4] @y + [4] @ys + [9]                         
                                          >  [4] @x + [2] @y + [4] @ys + [7]                         
                                          =  [c_2(remove#2^#(eq(@x, @y), @x, @y, @ys), eq^#(@x, @y))]
                                                                                                     
                         [eq^#(@l1, @l2)] =  [2] @l2 + [1]                                           
                                          >= [2] @l2 + [1]                                           
                                          =  [c_3(eq#1^#(@l1, @l2))]                                 
                                                                                                     
               [eq#1^#(::(@x, @xs), @l2)] =  [2] @l2 + [1]                                           
                                          >= [2] @l2 + [1]                                           
                                          =  [c_4(eq#3^#(@l2, @x, @xs))]                             
                                                                                                     
       [remove#2^#(#true(), @x, @y, @ys)] =  [4] @x + [4] @ys + [1]                                  
                                          >= [4] @x + [4] @ys + [1]                                  
                                          =  [c_5(remove^#(@x, @ys))]                                
                                                                                                     
      [remove#2^#(#false(), @x, @y, @ys)] =  [4] @x + [4] @ys + [1]                                  
                                          >= [4] @x + [4] @ys + [1]                                  
                                          =  [c_6(remove^#(@x, @ys))]                                
                                                                                                     
                              [nub^#(@l)] =  [4] @l + [4]                                            
                                          >= [4] @l + [4]                                            
                                          =  [nub#1^#(@l)]                                           
                                                                                                     
                   [nub#1^#(::(@x, @xs))] =  [4] @x + [4] @xs + [12]                                 
                                          >  [4] @x + [4] @xs + [1]                                  
                                          =  [remove^#(@x, @xs)]                                     
                                                                                                     
                   [nub#1^#(::(@x, @xs))] =  [4] @x + [4] @xs + [12]                                 
                                          >  [4] @xs + [4]                                           
                                          =  [nub^#(remove(@x, @xs))]                                
                                                                                                     
           [eq#3^#(::(@y, @ys), @x, @xs)] =  [2] @y + [2] @ys + [5]                                  
                                          >  [2] @ys + [1]                                           
                                          =  [c_9(eq^#(@xs, @ys))]                                   
                                                                                                     

We return to the main proof. Consider the set of all dependency
pairs

:
  { 1: remove^#(@x, @l) -> c_1(remove#1^#(@l, @x))
  , 2: remove#1^#(::(@y, @ys), @x) ->
       c_2(remove#2^#(eq(@x, @y), @x, @y, @ys), eq^#(@x, @y))
  , 3: eq^#(@l1, @l2) -> c_3(eq#1^#(@l1, @l2))
  , 4: eq#1^#(::(@x, @xs), @l2) -> c_4(eq#3^#(@l2, @x, @xs))
  , 5: remove#2^#(#true(), @x, @y, @ys) -> c_5(remove^#(@x, @ys))
  , 6: remove#2^#(#false(), @x, @y, @ys) -> c_6(remove^#(@x, @ys))
  , 7: eq#3^#(::(@y, @ys), @x, @xs) -> c_9(eq^#(@xs, @ys))
  , 8: nub^#(@l) -> nub#1^#(@l)
  , 9: nub#1^#(::(@x, @xs)) -> remove^#(@x, @xs)
  , 10: nub#1^#(::(@x, @xs)) -> nub^#(remove(@x, @xs)) }

Processor 'matrix interpretation of dimension 1' induces the
complexity certificate YES(?,O(n^1)) on application of dependency
pairs {2,7,9,10}. These cover all (indirect) predecessors of
dependency pairs {1,2,3,4,5,6,7,8,9,10}, their number of
application is equally bounded. The dependency pairs are shifted
into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak DPs:
  { remove^#(@x, @l) -> c_1(remove#1^#(@l, @x))
  , remove#1^#(::(@y, @ys), @x) ->
    c_2(remove#2^#(eq(@x, @y), @x, @y, @ys), eq^#(@x, @y))
  , eq^#(@l1, @l2) -> c_3(eq#1^#(@l1, @l2))
  , eq#1^#(::(@x, @xs), @l2) -> c_4(eq#3^#(@l2, @x, @xs))
  , remove#2^#(#true(), @x, @y, @ys) -> c_5(remove^#(@x, @ys))
  , remove#2^#(#false(), @x, @y, @ys) -> c_6(remove^#(@x, @ys))
  , nub^#(@l) -> nub#1^#(@l)
  , nub#1^#(::(@x, @xs)) -> remove^#(@x, @xs)
  , nub#1^#(::(@x, @xs)) -> nub^#(remove(@x, @xs))
  , eq#3^#(::(@y, @ys), @x, @xs) -> c_9(eq^#(@xs, @ys)) }
Weak Trs:
  { remove(@x, @l) -> remove#1(@l, @x)
  , eq#2(::(@y, @ys)) -> #false()
  , eq#2(nil()) -> #true()
  , #equal(@x, @y) -> #eq(@x, @y)
  , eq(@l1, @l2) -> eq#1(@l1, @l2)
  , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
  , #eq(::(@x_1, @x_2), nil()) -> #false()
  , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
  , #eq(#pos(@x), #0()) -> #false()
  , #eq(#pos(@x), #neg(@y)) -> #false()
  , #eq(#0(), #pos(@y)) -> #false()
  , #eq(#0(), #0()) -> #true()
  , #eq(#0(), #neg(@y)) -> #false()
  , #eq(#0(), #s(@y)) -> #false()
  , #eq(#neg(@x), #pos(@y)) -> #false()
  , #eq(#neg(@x), #0()) -> #false()
  , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
  , #eq(#s(@x), #0()) -> #false()
  , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
  , #eq(nil(), ::(@y_1, @y_2)) -> #false()
  , #eq(nil(), nil()) -> #true()
  , and(@x, @y) -> #and(@x, @y)
  , remove#1(::(@y, @ys), @x) -> remove#2(eq(@x, @y), @x, @y, @ys)
  , remove#1(nil(), @x) -> nil()
  , remove#2(#true(), @x, @y, @ys) -> remove(@x, @ys)
  , remove#2(#false(), @x, @y, @ys) -> ::(@y, remove(@x, @ys))
  , eq#1(::(@x, @xs), @l2) -> eq#3(@l2, @x, @xs)
  , eq#1(nil(), @l2) -> eq#2(@l2)
  , #and(#true(), #true()) -> #true()
  , #and(#true(), #false()) -> #false()
  , #and(#false(), #true()) -> #false()
  , #and(#false(), #false()) -> #false()
  , eq#3(::(@y, @ys), @x, @xs) -> and(#equal(@x, @y), eq(@xs, @ys))
  , eq#3(nil(), @x, @xs) -> #false() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ remove^#(@x, @l) -> c_1(remove#1^#(@l, @x))
, remove#1^#(::(@y, @ys), @x) ->
  c_2(remove#2^#(eq(@x, @y), @x, @y, @ys), eq^#(@x, @y))
, eq^#(@l1, @l2) -> c_3(eq#1^#(@l1, @l2))
, eq#1^#(::(@x, @xs), @l2) -> c_4(eq#3^#(@l2, @x, @xs))
, remove#2^#(#true(), @x, @y, @ys) -> c_5(remove^#(@x, @ys))
, remove#2^#(#false(), @x, @y, @ys) -> c_6(remove^#(@x, @ys))
, nub^#(@l) -> nub#1^#(@l)
, nub#1^#(::(@x, @xs)) -> remove^#(@x, @xs)
, nub#1^#(::(@x, @xs)) -> nub^#(remove(@x, @xs))
, eq#3^#(::(@y, @ys), @x, @xs) -> c_9(eq^#(@xs, @ys)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak Trs:
  { remove(@x, @l) -> remove#1(@l, @x)
  , eq#2(::(@y, @ys)) -> #false()
  , eq#2(nil()) -> #true()
  , #equal(@x, @y) -> #eq(@x, @y)
  , eq(@l1, @l2) -> eq#1(@l1, @l2)
  , #eq(::(@x_1, @x_2), ::(@y_1, @y_2)) ->
    #and(#eq(@x_1, @y_1), #eq(@x_2, @y_2))
  , #eq(::(@x_1, @x_2), nil()) -> #false()
  , #eq(#pos(@x), #pos(@y)) -> #eq(@x, @y)
  , #eq(#pos(@x), #0()) -> #false()
  , #eq(#pos(@x), #neg(@y)) -> #false()
  , #eq(#0(), #pos(@y)) -> #false()
  , #eq(#0(), #0()) -> #true()
  , #eq(#0(), #neg(@y)) -> #false()
  , #eq(#0(), #s(@y)) -> #false()
  , #eq(#neg(@x), #pos(@y)) -> #false()
  , #eq(#neg(@x), #0()) -> #false()
  , #eq(#neg(@x), #neg(@y)) -> #eq(@x, @y)
  , #eq(#s(@x), #0()) -> #false()
  , #eq(#s(@x), #s(@y)) -> #eq(@x, @y)
  , #eq(nil(), ::(@y_1, @y_2)) -> #false()
  , #eq(nil(), nil()) -> #true()
  , and(@x, @y) -> #and(@x, @y)
  , remove#1(::(@y, @ys), @x) -> remove#2(eq(@x, @y), @x, @y, @ys)
  , remove#1(nil(), @x) -> nil()
  , remove#2(#true(), @x, @y, @ys) -> remove(@x, @ys)
  , remove#2(#false(), @x, @y, @ys) -> ::(@y, remove(@x, @ys))
  , eq#1(::(@x, @xs), @l2) -> eq#3(@l2, @x, @xs)
  , eq#1(nil(), @l2) -> eq#2(@l2)
  , #and(#true(), #true()) -> #true()
  , #and(#true(), #false()) -> #false()
  , #and(#false(), #true()) -> #false()
  , #and(#false(), #false()) -> #false()
  , eq#3(::(@y, @ys), @x, @xs) -> and(#equal(@x, @y), eq(@xs, @ys))
  , eq#3(nil(), @x, @xs) -> #false() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

No rule is usable, rules are removed from the input problem.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Rules: Empty
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^2))