(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
append(@l1, @l2) → append#1(@l1, @l2)
append#1(::(@x, @xs), @l2) → ::(@x, append(@xs, @l2))
append#1(nil, @l2) → @l2
appendAll(@l) → appendAll#1(@l)
appendAll#1(::(@l1, @ls)) → append(@l1, appendAll(@ls))
appendAll#1(nil) → nil
appendAll2(@l) → appendAll2#1(@l)
appendAll2#1(::(@l1, @ls)) → append(appendAll(@l1), appendAll2(@ls))
appendAll2#1(nil) → nil
appendAll3(@l) → appendAll3#1(@l)
appendAll3#1(::(@l1, @ls)) → append(appendAll2(@l1), appendAll3(@ls))
appendAll3#1(nil) → nil
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
append(::(@x3_0, @xs4_0), @l2) →+ ::(@x3_0, append(@xs4_0, @l2))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [@xs4_0 / ::(@x3_0, @xs4_0)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
append(@l1, @l2) → append#1(@l1, @l2)
append#1(::(@x, @xs), @l2) → ::(@x, append(@xs, @l2))
append#1(nil, @l2) → @l2
appendAll(@l) → appendAll#1(@l)
appendAll#1(::(@l1, @ls)) → append(@l1, appendAll(@ls))
appendAll#1(nil) → nil
appendAll2(@l) → appendAll2#1(@l)
appendAll2#1(::(@l1, @ls)) → append(appendAll(@l1), appendAll2(@ls))
appendAll2#1(nil) → nil
appendAll3(@l) → appendAll3#1(@l)
appendAll3#1(::(@l1, @ls)) → append(appendAll2(@l1), appendAll3(@ls))
appendAll3#1(nil) → nil
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
append(@l1, @l2) → append#1(@l1, @l2)
append#1(::(@x, @xs), @l2) → ::(@x, append(@xs, @l2))
append#1(nil, @l2) → @l2
appendAll(@l) → appendAll#1(@l)
appendAll#1(::(@l1, @ls)) → append(@l1, appendAll(@ls))
appendAll#1(nil) → nil
appendAll2(@l) → appendAll2#1(@l)
appendAll2#1(::(@l1, @ls)) → append(appendAll(@l1), appendAll2(@ls))
appendAll2#1(nil) → nil
appendAll3(@l) → appendAll3#1(@l)
appendAll3#1(::(@l1, @ls)) → append(appendAll2(@l1), appendAll3(@ls))
appendAll3#1(nil) → nil
Types:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil → :::nil
nil :: :::nil
appendAll :: :::nil → :::nil
appendAll#1 :: :::nil → :::nil
appendAll2 :: :::nil → :::nil
appendAll2#1 :: :::nil → :::nil
appendAll3 :: :::nil → :::nil
appendAll3#1 :: :::nil → :::nil
hole_:::nil1_0 :: :::nil
gen_:::nil2_0 :: Nat → :::nil
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
append,
append#1,
appendAll,
appendAll#1,
appendAll2,
appendAll2#1,
appendAll3,
appendAll3#1They will be analysed ascendingly in the following order:
append = append#1
append < appendAll#1
append < appendAll2#1
append < appendAll3#1
appendAll = appendAll#1
appendAll < appendAll2#1
appendAll2 = appendAll2#1
appendAll2 < appendAll3#1
appendAll3 = appendAll3#1
(8) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@x,
@xs),
@l2) →
::(
@x,
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2appendAll(
@l) →
appendAll#1(
@l)
appendAll#1(
::(
@l1,
@ls)) →
append(
@l1,
appendAll(
@ls))
appendAll#1(
nil) →
nilappendAll2(
@l) →
appendAll2#1(
@l)
appendAll2#1(
::(
@l1,
@ls)) →
append(
appendAll(
@l1),
appendAll2(
@ls))
appendAll2#1(
nil) →
nilappendAll3(
@l) →
appendAll3#1(
@l)
appendAll3#1(
::(
@l1,
@ls)) →
append(
appendAll2(
@l1),
appendAll3(
@ls))
appendAll3#1(
nil) →
nilTypes:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil → :::nil
nil :: :::nil
appendAll :: :::nil → :::nil
appendAll#1 :: :::nil → :::nil
appendAll2 :: :::nil → :::nil
appendAll2#1 :: :::nil → :::nil
appendAll3 :: :::nil → :::nil
appendAll3#1 :: :::nil → :::nil
hole_:::nil1_0 :: :::nil
gen_:::nil2_0 :: Nat → :::nil
Generator Equations:
gen_:::nil2_0(0) ⇔ nil
gen_:::nil2_0(+(x, 1)) ⇔ ::(nil, gen_:::nil2_0(x))
The following defined symbols remain to be analysed:
append#1, append, appendAll, appendAll#1, appendAll2, appendAll2#1, appendAll3, appendAll3#1
They will be analysed ascendingly in the following order:
append = append#1
append < appendAll#1
append < appendAll2#1
append < appendAll3#1
appendAll = appendAll#1
appendAll < appendAll2#1
appendAll2 = appendAll2#1
appendAll2 < appendAll3#1
appendAll3 = appendAll3#1
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
append#1(
gen_:::nil2_0(
n4_0),
gen_:::nil2_0(
b)) →
gen_:::nil2_0(
+(
n4_0,
b)), rt ∈ Ω(1 + n4
0)
Induction Base:
append#1(gen_:::nil2_0(0), gen_:::nil2_0(b)) →RΩ(1)
gen_:::nil2_0(b)
Induction Step:
append#1(gen_:::nil2_0(+(n4_0, 1)), gen_:::nil2_0(b)) →RΩ(1)
::(nil, append(gen_:::nil2_0(n4_0), gen_:::nil2_0(b))) →RΩ(1)
::(nil, append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b))) →IH
::(nil, gen_:::nil2_0(+(b, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@x,
@xs),
@l2) →
::(
@x,
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2appendAll(
@l) →
appendAll#1(
@l)
appendAll#1(
::(
@l1,
@ls)) →
append(
@l1,
appendAll(
@ls))
appendAll#1(
nil) →
nilappendAll2(
@l) →
appendAll2#1(
@l)
appendAll2#1(
::(
@l1,
@ls)) →
append(
appendAll(
@l1),
appendAll2(
@ls))
appendAll2#1(
nil) →
nilappendAll3(
@l) →
appendAll3#1(
@l)
appendAll3#1(
::(
@l1,
@ls)) →
append(
appendAll2(
@l1),
appendAll3(
@ls))
appendAll3#1(
nil) →
nilTypes:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil → :::nil
nil :: :::nil
appendAll :: :::nil → :::nil
appendAll#1 :: :::nil → :::nil
appendAll2 :: :::nil → :::nil
appendAll2#1 :: :::nil → :::nil
appendAll3 :: :::nil → :::nil
appendAll3#1 :: :::nil → :::nil
hole_:::nil1_0 :: :::nil
gen_:::nil2_0 :: Nat → :::nil
Lemmas:
append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) → gen_:::nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_:::nil2_0(0) ⇔ nil
gen_:::nil2_0(+(x, 1)) ⇔ ::(nil, gen_:::nil2_0(x))
The following defined symbols remain to be analysed:
append, appendAll, appendAll#1, appendAll2, appendAll2#1, appendAll3, appendAll3#1
They will be analysed ascendingly in the following order:
append = append#1
append < appendAll#1
append < appendAll2#1
append < appendAll3#1
appendAll = appendAll#1
appendAll < appendAll2#1
appendAll2 = appendAll2#1
appendAll2 < appendAll3#1
appendAll3 = appendAll3#1
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol append.
(13) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@x,
@xs),
@l2) →
::(
@x,
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2appendAll(
@l) →
appendAll#1(
@l)
appendAll#1(
::(
@l1,
@ls)) →
append(
@l1,
appendAll(
@ls))
appendAll#1(
nil) →
nilappendAll2(
@l) →
appendAll2#1(
@l)
appendAll2#1(
::(
@l1,
@ls)) →
append(
appendAll(
@l1),
appendAll2(
@ls))
appendAll2#1(
nil) →
nilappendAll3(
@l) →
appendAll3#1(
@l)
appendAll3#1(
::(
@l1,
@ls)) →
append(
appendAll2(
@l1),
appendAll3(
@ls))
appendAll3#1(
nil) →
nilTypes:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil → :::nil
nil :: :::nil
appendAll :: :::nil → :::nil
appendAll#1 :: :::nil → :::nil
appendAll2 :: :::nil → :::nil
appendAll2#1 :: :::nil → :::nil
appendAll3 :: :::nil → :::nil
appendAll3#1 :: :::nil → :::nil
hole_:::nil1_0 :: :::nil
gen_:::nil2_0 :: Nat → :::nil
Lemmas:
append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) → gen_:::nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_:::nil2_0(0) ⇔ nil
gen_:::nil2_0(+(x, 1)) ⇔ ::(nil, gen_:::nil2_0(x))
The following defined symbols remain to be analysed:
appendAll#1, appendAll, appendAll2, appendAll2#1, appendAll3, appendAll3#1
They will be analysed ascendingly in the following order:
appendAll = appendAll#1
appendAll < appendAll2#1
appendAll2 = appendAll2#1
appendAll2 < appendAll3#1
appendAll3 = appendAll3#1
(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
appendAll#1(
gen_:::nil2_0(
n641_0)) →
gen_:::nil2_0(
0), rt ∈ Ω(1 + n641
0)
Induction Base:
appendAll#1(gen_:::nil2_0(0)) →RΩ(1)
nil
Induction Step:
appendAll#1(gen_:::nil2_0(+(n641_0, 1))) →RΩ(1)
append(nil, appendAll(gen_:::nil2_0(n641_0))) →RΩ(1)
append(nil, appendAll#1(gen_:::nil2_0(n641_0))) →IH
append(nil, gen_:::nil2_0(0)) →RΩ(1)
append#1(nil, gen_:::nil2_0(0)) →LΩ(1)
gen_:::nil2_0(+(0, 0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(15) Complex Obligation (BEST)
(16) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@x,
@xs),
@l2) →
::(
@x,
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2appendAll(
@l) →
appendAll#1(
@l)
appendAll#1(
::(
@l1,
@ls)) →
append(
@l1,
appendAll(
@ls))
appendAll#1(
nil) →
nilappendAll2(
@l) →
appendAll2#1(
@l)
appendAll2#1(
::(
@l1,
@ls)) →
append(
appendAll(
@l1),
appendAll2(
@ls))
appendAll2#1(
nil) →
nilappendAll3(
@l) →
appendAll3#1(
@l)
appendAll3#1(
::(
@l1,
@ls)) →
append(
appendAll2(
@l1),
appendAll3(
@ls))
appendAll3#1(
nil) →
nilTypes:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil → :::nil
nil :: :::nil
appendAll :: :::nil → :::nil
appendAll#1 :: :::nil → :::nil
appendAll2 :: :::nil → :::nil
appendAll2#1 :: :::nil → :::nil
appendAll3 :: :::nil → :::nil
appendAll3#1 :: :::nil → :::nil
hole_:::nil1_0 :: :::nil
gen_:::nil2_0 :: Nat → :::nil
Lemmas:
append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) → gen_:::nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
appendAll#1(gen_:::nil2_0(n641_0)) → gen_:::nil2_0(0), rt ∈ Ω(1 + n6410)
Generator Equations:
gen_:::nil2_0(0) ⇔ nil
gen_:::nil2_0(+(x, 1)) ⇔ ::(nil, gen_:::nil2_0(x))
The following defined symbols remain to be analysed:
appendAll, appendAll2, appendAll2#1, appendAll3, appendAll3#1
They will be analysed ascendingly in the following order:
appendAll = appendAll#1
appendAll < appendAll2#1
appendAll2 = appendAll2#1
appendAll2 < appendAll3#1
appendAll3 = appendAll3#1
(17) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol appendAll.
(18) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@x,
@xs),
@l2) →
::(
@x,
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2appendAll(
@l) →
appendAll#1(
@l)
appendAll#1(
::(
@l1,
@ls)) →
append(
@l1,
appendAll(
@ls))
appendAll#1(
nil) →
nilappendAll2(
@l) →
appendAll2#1(
@l)
appendAll2#1(
::(
@l1,
@ls)) →
append(
appendAll(
@l1),
appendAll2(
@ls))
appendAll2#1(
nil) →
nilappendAll3(
@l) →
appendAll3#1(
@l)
appendAll3#1(
::(
@l1,
@ls)) →
append(
appendAll2(
@l1),
appendAll3(
@ls))
appendAll3#1(
nil) →
nilTypes:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil → :::nil
nil :: :::nil
appendAll :: :::nil → :::nil
appendAll#1 :: :::nil → :::nil
appendAll2 :: :::nil → :::nil
appendAll2#1 :: :::nil → :::nil
appendAll3 :: :::nil → :::nil
appendAll3#1 :: :::nil → :::nil
hole_:::nil1_0 :: :::nil
gen_:::nil2_0 :: Nat → :::nil
Lemmas:
append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) → gen_:::nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
appendAll#1(gen_:::nil2_0(n641_0)) → gen_:::nil2_0(0), rt ∈ Ω(1 + n6410)
Generator Equations:
gen_:::nil2_0(0) ⇔ nil
gen_:::nil2_0(+(x, 1)) ⇔ ::(nil, gen_:::nil2_0(x))
The following defined symbols remain to be analysed:
appendAll2#1, appendAll2, appendAll3, appendAll3#1
They will be analysed ascendingly in the following order:
appendAll2 = appendAll2#1
appendAll2 < appendAll3#1
appendAll3 = appendAll3#1
(19) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
appendAll2#1(
gen_:::nil2_0(
n1022_0)) →
gen_:::nil2_0(
0), rt ∈ Ω(1 + n1022
0)
Induction Base:
appendAll2#1(gen_:::nil2_0(0)) →RΩ(1)
nil
Induction Step:
appendAll2#1(gen_:::nil2_0(+(n1022_0, 1))) →RΩ(1)
append(appendAll(nil), appendAll2(gen_:::nil2_0(n1022_0))) →RΩ(1)
append(appendAll#1(nil), appendAll2(gen_:::nil2_0(n1022_0))) →LΩ(1)
append(gen_:::nil2_0(0), appendAll2(gen_:::nil2_0(n1022_0))) →RΩ(1)
append(gen_:::nil2_0(0), appendAll2#1(gen_:::nil2_0(n1022_0))) →IH
append(gen_:::nil2_0(0), gen_:::nil2_0(0)) →RΩ(1)
append#1(gen_:::nil2_0(0), gen_:::nil2_0(0)) →LΩ(1)
gen_:::nil2_0(+(0, 0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(20) Complex Obligation (BEST)
(21) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@x,
@xs),
@l2) →
::(
@x,
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2appendAll(
@l) →
appendAll#1(
@l)
appendAll#1(
::(
@l1,
@ls)) →
append(
@l1,
appendAll(
@ls))
appendAll#1(
nil) →
nilappendAll2(
@l) →
appendAll2#1(
@l)
appendAll2#1(
::(
@l1,
@ls)) →
append(
appendAll(
@l1),
appendAll2(
@ls))
appendAll2#1(
nil) →
nilappendAll3(
@l) →
appendAll3#1(
@l)
appendAll3#1(
::(
@l1,
@ls)) →
append(
appendAll2(
@l1),
appendAll3(
@ls))
appendAll3#1(
nil) →
nilTypes:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil → :::nil
nil :: :::nil
appendAll :: :::nil → :::nil
appendAll#1 :: :::nil → :::nil
appendAll2 :: :::nil → :::nil
appendAll2#1 :: :::nil → :::nil
appendAll3 :: :::nil → :::nil
appendAll3#1 :: :::nil → :::nil
hole_:::nil1_0 :: :::nil
gen_:::nil2_0 :: Nat → :::nil
Lemmas:
append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) → gen_:::nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
appendAll#1(gen_:::nil2_0(n641_0)) → gen_:::nil2_0(0), rt ∈ Ω(1 + n6410)
appendAll2#1(gen_:::nil2_0(n1022_0)) → gen_:::nil2_0(0), rt ∈ Ω(1 + n10220)
Generator Equations:
gen_:::nil2_0(0) ⇔ nil
gen_:::nil2_0(+(x, 1)) ⇔ ::(nil, gen_:::nil2_0(x))
The following defined symbols remain to be analysed:
appendAll2, appendAll3, appendAll3#1
They will be analysed ascendingly in the following order:
appendAll2 = appendAll2#1
appendAll2 < appendAll3#1
appendAll3 = appendAll3#1
(22) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol appendAll2.
(23) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@x,
@xs),
@l2) →
::(
@x,
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2appendAll(
@l) →
appendAll#1(
@l)
appendAll#1(
::(
@l1,
@ls)) →
append(
@l1,
appendAll(
@ls))
appendAll#1(
nil) →
nilappendAll2(
@l) →
appendAll2#1(
@l)
appendAll2#1(
::(
@l1,
@ls)) →
append(
appendAll(
@l1),
appendAll2(
@ls))
appendAll2#1(
nil) →
nilappendAll3(
@l) →
appendAll3#1(
@l)
appendAll3#1(
::(
@l1,
@ls)) →
append(
appendAll2(
@l1),
appendAll3(
@ls))
appendAll3#1(
nil) →
nilTypes:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil → :::nil
nil :: :::nil
appendAll :: :::nil → :::nil
appendAll#1 :: :::nil → :::nil
appendAll2 :: :::nil → :::nil
appendAll2#1 :: :::nil → :::nil
appendAll3 :: :::nil → :::nil
appendAll3#1 :: :::nil → :::nil
hole_:::nil1_0 :: :::nil
gen_:::nil2_0 :: Nat → :::nil
Lemmas:
append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) → gen_:::nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
appendAll#1(gen_:::nil2_0(n641_0)) → gen_:::nil2_0(0), rt ∈ Ω(1 + n6410)
appendAll2#1(gen_:::nil2_0(n1022_0)) → gen_:::nil2_0(0), rt ∈ Ω(1 + n10220)
Generator Equations:
gen_:::nil2_0(0) ⇔ nil
gen_:::nil2_0(+(x, 1)) ⇔ ::(nil, gen_:::nil2_0(x))
The following defined symbols remain to be analysed:
appendAll3#1, appendAll3
They will be analysed ascendingly in the following order:
appendAll3 = appendAll3#1
(24) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
appendAll3#1(
gen_:::nil2_0(
n1764_0)) →
gen_:::nil2_0(
0), rt ∈ Ω(1 + n1764
0)
Induction Base:
appendAll3#1(gen_:::nil2_0(0)) →RΩ(1)
nil
Induction Step:
appendAll3#1(gen_:::nil2_0(+(n1764_0, 1))) →RΩ(1)
append(appendAll2(nil), appendAll3(gen_:::nil2_0(n1764_0))) →RΩ(1)
append(appendAll2#1(nil), appendAll3(gen_:::nil2_0(n1764_0))) →LΩ(1)
append(gen_:::nil2_0(0), appendAll3(gen_:::nil2_0(n1764_0))) →RΩ(1)
append(gen_:::nil2_0(0), appendAll3#1(gen_:::nil2_0(n1764_0))) →IH
append(gen_:::nil2_0(0), gen_:::nil2_0(0)) →RΩ(1)
append#1(gen_:::nil2_0(0), gen_:::nil2_0(0)) →LΩ(1)
gen_:::nil2_0(+(0, 0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(25) Complex Obligation (BEST)
(26) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@x,
@xs),
@l2) →
::(
@x,
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2appendAll(
@l) →
appendAll#1(
@l)
appendAll#1(
::(
@l1,
@ls)) →
append(
@l1,
appendAll(
@ls))
appendAll#1(
nil) →
nilappendAll2(
@l) →
appendAll2#1(
@l)
appendAll2#1(
::(
@l1,
@ls)) →
append(
appendAll(
@l1),
appendAll2(
@ls))
appendAll2#1(
nil) →
nilappendAll3(
@l) →
appendAll3#1(
@l)
appendAll3#1(
::(
@l1,
@ls)) →
append(
appendAll2(
@l1),
appendAll3(
@ls))
appendAll3#1(
nil) →
nilTypes:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil → :::nil
nil :: :::nil
appendAll :: :::nil → :::nil
appendAll#1 :: :::nil → :::nil
appendAll2 :: :::nil → :::nil
appendAll2#1 :: :::nil → :::nil
appendAll3 :: :::nil → :::nil
appendAll3#1 :: :::nil → :::nil
hole_:::nil1_0 :: :::nil
gen_:::nil2_0 :: Nat → :::nil
Lemmas:
append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) → gen_:::nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
appendAll#1(gen_:::nil2_0(n641_0)) → gen_:::nil2_0(0), rt ∈ Ω(1 + n6410)
appendAll2#1(gen_:::nil2_0(n1022_0)) → gen_:::nil2_0(0), rt ∈ Ω(1 + n10220)
appendAll3#1(gen_:::nil2_0(n1764_0)) → gen_:::nil2_0(0), rt ∈ Ω(1 + n17640)
Generator Equations:
gen_:::nil2_0(0) ⇔ nil
gen_:::nil2_0(+(x, 1)) ⇔ ::(nil, gen_:::nil2_0(x))
The following defined symbols remain to be analysed:
appendAll3
They will be analysed ascendingly in the following order:
appendAll3 = appendAll3#1
(27) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol appendAll3.
(28) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@x,
@xs),
@l2) →
::(
@x,
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2appendAll(
@l) →
appendAll#1(
@l)
appendAll#1(
::(
@l1,
@ls)) →
append(
@l1,
appendAll(
@ls))
appendAll#1(
nil) →
nilappendAll2(
@l) →
appendAll2#1(
@l)
appendAll2#1(
::(
@l1,
@ls)) →
append(
appendAll(
@l1),
appendAll2(
@ls))
appendAll2#1(
nil) →
nilappendAll3(
@l) →
appendAll3#1(
@l)
appendAll3#1(
::(
@l1,
@ls)) →
append(
appendAll2(
@l1),
appendAll3(
@ls))
appendAll3#1(
nil) →
nilTypes:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil → :::nil
nil :: :::nil
appendAll :: :::nil → :::nil
appendAll#1 :: :::nil → :::nil
appendAll2 :: :::nil → :::nil
appendAll2#1 :: :::nil → :::nil
appendAll3 :: :::nil → :::nil
appendAll3#1 :: :::nil → :::nil
hole_:::nil1_0 :: :::nil
gen_:::nil2_0 :: Nat → :::nil
Lemmas:
append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) → gen_:::nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
appendAll#1(gen_:::nil2_0(n641_0)) → gen_:::nil2_0(0), rt ∈ Ω(1 + n6410)
appendAll2#1(gen_:::nil2_0(n1022_0)) → gen_:::nil2_0(0), rt ∈ Ω(1 + n10220)
appendAll3#1(gen_:::nil2_0(n1764_0)) → gen_:::nil2_0(0), rt ∈ Ω(1 + n17640)
Generator Equations:
gen_:::nil2_0(0) ⇔ nil
gen_:::nil2_0(+(x, 1)) ⇔ ::(nil, gen_:::nil2_0(x))
No more defined symbols left to analyse.
(29) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) → gen_:::nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(30) BOUNDS(n^1, INF)
(31) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@x,
@xs),
@l2) →
::(
@x,
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2appendAll(
@l) →
appendAll#1(
@l)
appendAll#1(
::(
@l1,
@ls)) →
append(
@l1,
appendAll(
@ls))
appendAll#1(
nil) →
nilappendAll2(
@l) →
appendAll2#1(
@l)
appendAll2#1(
::(
@l1,
@ls)) →
append(
appendAll(
@l1),
appendAll2(
@ls))
appendAll2#1(
nil) →
nilappendAll3(
@l) →
appendAll3#1(
@l)
appendAll3#1(
::(
@l1,
@ls)) →
append(
appendAll2(
@l1),
appendAll3(
@ls))
appendAll3#1(
nil) →
nilTypes:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil → :::nil
nil :: :::nil
appendAll :: :::nil → :::nil
appendAll#1 :: :::nil → :::nil
appendAll2 :: :::nil → :::nil
appendAll2#1 :: :::nil → :::nil
appendAll3 :: :::nil → :::nil
appendAll3#1 :: :::nil → :::nil
hole_:::nil1_0 :: :::nil
gen_:::nil2_0 :: Nat → :::nil
Lemmas:
append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) → gen_:::nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
appendAll#1(gen_:::nil2_0(n641_0)) → gen_:::nil2_0(0), rt ∈ Ω(1 + n6410)
appendAll2#1(gen_:::nil2_0(n1022_0)) → gen_:::nil2_0(0), rt ∈ Ω(1 + n10220)
appendAll3#1(gen_:::nil2_0(n1764_0)) → gen_:::nil2_0(0), rt ∈ Ω(1 + n17640)
Generator Equations:
gen_:::nil2_0(0) ⇔ nil
gen_:::nil2_0(+(x, 1)) ⇔ ::(nil, gen_:::nil2_0(x))
No more defined symbols left to analyse.
(32) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) → gen_:::nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(33) BOUNDS(n^1, INF)
(34) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@x,
@xs),
@l2) →
::(
@x,
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2appendAll(
@l) →
appendAll#1(
@l)
appendAll#1(
::(
@l1,
@ls)) →
append(
@l1,
appendAll(
@ls))
appendAll#1(
nil) →
nilappendAll2(
@l) →
appendAll2#1(
@l)
appendAll2#1(
::(
@l1,
@ls)) →
append(
appendAll(
@l1),
appendAll2(
@ls))
appendAll2#1(
nil) →
nilappendAll3(
@l) →
appendAll3#1(
@l)
appendAll3#1(
::(
@l1,
@ls)) →
append(
appendAll2(
@l1),
appendAll3(
@ls))
appendAll3#1(
nil) →
nilTypes:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil → :::nil
nil :: :::nil
appendAll :: :::nil → :::nil
appendAll#1 :: :::nil → :::nil
appendAll2 :: :::nil → :::nil
appendAll2#1 :: :::nil → :::nil
appendAll3 :: :::nil → :::nil
appendAll3#1 :: :::nil → :::nil
hole_:::nil1_0 :: :::nil
gen_:::nil2_0 :: Nat → :::nil
Lemmas:
append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) → gen_:::nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
appendAll#1(gen_:::nil2_0(n641_0)) → gen_:::nil2_0(0), rt ∈ Ω(1 + n6410)
appendAll2#1(gen_:::nil2_0(n1022_0)) → gen_:::nil2_0(0), rt ∈ Ω(1 + n10220)
Generator Equations:
gen_:::nil2_0(0) ⇔ nil
gen_:::nil2_0(+(x, 1)) ⇔ ::(nil, gen_:::nil2_0(x))
No more defined symbols left to analyse.
(35) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) → gen_:::nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(36) BOUNDS(n^1, INF)
(37) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@x,
@xs),
@l2) →
::(
@x,
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2appendAll(
@l) →
appendAll#1(
@l)
appendAll#1(
::(
@l1,
@ls)) →
append(
@l1,
appendAll(
@ls))
appendAll#1(
nil) →
nilappendAll2(
@l) →
appendAll2#1(
@l)
appendAll2#1(
::(
@l1,
@ls)) →
append(
appendAll(
@l1),
appendAll2(
@ls))
appendAll2#1(
nil) →
nilappendAll3(
@l) →
appendAll3#1(
@l)
appendAll3#1(
::(
@l1,
@ls)) →
append(
appendAll2(
@l1),
appendAll3(
@ls))
appendAll3#1(
nil) →
nilTypes:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil → :::nil
nil :: :::nil
appendAll :: :::nil → :::nil
appendAll#1 :: :::nil → :::nil
appendAll2 :: :::nil → :::nil
appendAll2#1 :: :::nil → :::nil
appendAll3 :: :::nil → :::nil
appendAll3#1 :: :::nil → :::nil
hole_:::nil1_0 :: :::nil
gen_:::nil2_0 :: Nat → :::nil
Lemmas:
append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) → gen_:::nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
appendAll#1(gen_:::nil2_0(n641_0)) → gen_:::nil2_0(0), rt ∈ Ω(1 + n6410)
Generator Equations:
gen_:::nil2_0(0) ⇔ nil
gen_:::nil2_0(+(x, 1)) ⇔ ::(nil, gen_:::nil2_0(x))
No more defined symbols left to analyse.
(38) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) → gen_:::nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(39) BOUNDS(n^1, INF)
(40) Obligation:
Innermost TRS:
Rules:
append(
@l1,
@l2) →
append#1(
@l1,
@l2)
append#1(
::(
@x,
@xs),
@l2) →
::(
@x,
append(
@xs,
@l2))
append#1(
nil,
@l2) →
@l2appendAll(
@l) →
appendAll#1(
@l)
appendAll#1(
::(
@l1,
@ls)) →
append(
@l1,
appendAll(
@ls))
appendAll#1(
nil) →
nilappendAll2(
@l) →
appendAll2#1(
@l)
appendAll2#1(
::(
@l1,
@ls)) →
append(
appendAll(
@l1),
appendAll2(
@ls))
appendAll2#1(
nil) →
nilappendAll3(
@l) →
appendAll3#1(
@l)
appendAll3#1(
::(
@l1,
@ls)) →
append(
appendAll2(
@l1),
appendAll3(
@ls))
appendAll3#1(
nil) →
nilTypes:
append :: :::nil → :::nil → :::nil
append#1 :: :::nil → :::nil → :::nil
:: :: :::nil → :::nil → :::nil
nil :: :::nil
appendAll :: :::nil → :::nil
appendAll#1 :: :::nil → :::nil
appendAll2 :: :::nil → :::nil
appendAll2#1 :: :::nil → :::nil
appendAll3 :: :::nil → :::nil
appendAll3#1 :: :::nil → :::nil
hole_:::nil1_0 :: :::nil
gen_:::nil2_0 :: Nat → :::nil
Lemmas:
append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) → gen_:::nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_:::nil2_0(0) ⇔ nil
gen_:::nil2_0(+(x, 1)) ⇔ ::(nil, gen_:::nil2_0(x))
No more defined symbols left to analyse.
(41) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) → gen_:::nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(42) BOUNDS(n^1, INF)