(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
append(@l1, @l2) → append#1(@l1, @l2)
append#1(::(@x, @xs), @l2) → ::(@x, append(@xs, @l2))
append#1(nil, @l2) → @l2
appendAll(@l) → appendAll#1(@l)
appendAll#1(::(@l1, @ls)) → append(@l1, appendAll(@ls))
appendAll#1(nil) → nil
appendAll2(@l) → appendAll2#1(@l)
appendAll2#1(::(@l1, @ls)) → append(appendAll(@l1), appendAll2(@ls))
appendAll2#1(nil) → nil
appendAll3(@l) → appendAll3#1(@l)
appendAll3#1(::(@l1, @ls)) → append(appendAll2(@l1), appendAll3(@ls))
appendAll3#1(nil) → nil
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
append(z0, z1) → append#1(z0, z1)
append#1(::(z0, z1), z2) → ::(z0, append(z1, z2))
append#1(nil, z0) → z0
appendAll(z0) → appendAll#1(z0)
appendAll#1(::(z0, z1)) → append(z0, appendAll(z1))
appendAll#1(nil) → nil
appendAll2(z0) → appendAll2#1(z0)
appendAll2#1(::(z0, z1)) → append(appendAll(z0), appendAll2(z1))
appendAll2#1(nil) → nil
appendAll3(z0) → appendAll3#1(z0)
appendAll3#1(::(z0, z1)) → append(appendAll2(z0), appendAll3(z1))
appendAll3#1(nil) → nil
Tuples:
APPEND(z0, z1) → c(APPEND#1(z0, z1))
APPEND#1(::(z0, z1), z2) → c1(APPEND(z1, z2))
APPEND#1(nil, z0) → c2
APPENDALL(z0) → c3(APPENDALL#1(z0))
APPENDALL#1(::(z0, z1)) → c4(APPEND(z0, appendAll(z1)), APPENDALL(z1))
APPENDALL#1(nil) → c5
APPENDALL2(z0) → c6(APPENDALL2#1(z0))
APPENDALL2#1(::(z0, z1)) → c7(APPEND(appendAll(z0), appendAll2(z1)), APPENDALL(z0), APPENDALL2(z1))
APPENDALL2#1(nil) → c8
APPENDALL3(z0) → c9(APPENDALL3#1(z0))
APPENDALL3#1(::(z0, z1)) → c10(APPEND(appendAll2(z0), appendAll3(z1)), APPENDALL2(z0), APPENDALL3(z1))
APPENDALL3#1(nil) → c11
S tuples:
APPEND(z0, z1) → c(APPEND#1(z0, z1))
APPEND#1(::(z0, z1), z2) → c1(APPEND(z1, z2))
APPEND#1(nil, z0) → c2
APPENDALL(z0) → c3(APPENDALL#1(z0))
APPENDALL#1(::(z0, z1)) → c4(APPEND(z0, appendAll(z1)), APPENDALL(z1))
APPENDALL#1(nil) → c5
APPENDALL2(z0) → c6(APPENDALL2#1(z0))
APPENDALL2#1(::(z0, z1)) → c7(APPEND(appendAll(z0), appendAll2(z1)), APPENDALL(z0), APPENDALL2(z1))
APPENDALL2#1(nil) → c8
APPENDALL3(z0) → c9(APPENDALL3#1(z0))
APPENDALL3#1(::(z0, z1)) → c10(APPEND(appendAll2(z0), appendAll3(z1)), APPENDALL2(z0), APPENDALL3(z1))
APPENDALL3#1(nil) → c11
K tuples:none
Defined Rule Symbols:
append, append#1, appendAll, appendAll#1, appendAll2, appendAll2#1, appendAll3, appendAll3#1
Defined Pair Symbols:
APPEND, APPEND#1, APPENDALL, APPENDALL#1, APPENDALL2, APPENDALL2#1, APPENDALL3, APPENDALL3#1
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing nodes:
APPEND#1(nil, z0) → c2
APPENDALL3#1(nil) → c11
APPENDALL#1(nil) → c5
APPENDALL2#1(nil) → c8
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
append(z0, z1) → append#1(z0, z1)
append#1(::(z0, z1), z2) → ::(z0, append(z1, z2))
append#1(nil, z0) → z0
appendAll(z0) → appendAll#1(z0)
appendAll#1(::(z0, z1)) → append(z0, appendAll(z1))
appendAll#1(nil) → nil
appendAll2(z0) → appendAll2#1(z0)
appendAll2#1(::(z0, z1)) → append(appendAll(z0), appendAll2(z1))
appendAll2#1(nil) → nil
appendAll3(z0) → appendAll3#1(z0)
appendAll3#1(::(z0, z1)) → append(appendAll2(z0), appendAll3(z1))
appendAll3#1(nil) → nil
Tuples:
APPEND(z0, z1) → c(APPEND#1(z0, z1))
APPEND#1(::(z0, z1), z2) → c1(APPEND(z1, z2))
APPENDALL(z0) → c3(APPENDALL#1(z0))
APPENDALL#1(::(z0, z1)) → c4(APPEND(z0, appendAll(z1)), APPENDALL(z1))
APPENDALL2(z0) → c6(APPENDALL2#1(z0))
APPENDALL2#1(::(z0, z1)) → c7(APPEND(appendAll(z0), appendAll2(z1)), APPENDALL(z0), APPENDALL2(z1))
APPENDALL3(z0) → c9(APPENDALL3#1(z0))
APPENDALL3#1(::(z0, z1)) → c10(APPEND(appendAll2(z0), appendAll3(z1)), APPENDALL2(z0), APPENDALL3(z1))
S tuples:
APPEND(z0, z1) → c(APPEND#1(z0, z1))
APPEND#1(::(z0, z1), z2) → c1(APPEND(z1, z2))
APPENDALL(z0) → c3(APPENDALL#1(z0))
APPENDALL#1(::(z0, z1)) → c4(APPEND(z0, appendAll(z1)), APPENDALL(z1))
APPENDALL2(z0) → c6(APPENDALL2#1(z0))
APPENDALL2#1(::(z0, z1)) → c7(APPEND(appendAll(z0), appendAll2(z1)), APPENDALL(z0), APPENDALL2(z1))
APPENDALL3(z0) → c9(APPENDALL3#1(z0))
APPENDALL3#1(::(z0, z1)) → c10(APPEND(appendAll2(z0), appendAll3(z1)), APPENDALL2(z0), APPENDALL3(z1))
K tuples:none
Defined Rule Symbols:
append, append#1, appendAll, appendAll#1, appendAll2, appendAll2#1, appendAll3, appendAll3#1
Defined Pair Symbols:
APPEND, APPEND#1, APPENDALL, APPENDALL#1, APPENDALL2, APPENDALL2#1, APPENDALL3, APPENDALL3#1
Compound Symbols:
c, c1, c3, c4, c6, c7, c9, c10
(5) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
APPENDALL3(z0) → c9(APPENDALL3#1(z0))
APPENDALL3#1(::(z0, z1)) → c10(APPEND(appendAll2(z0), appendAll3(z1)), APPENDALL2(z0), APPENDALL3(z1))
We considered the (Usable) Rules:none
And the Tuples:
APPEND(z0, z1) → c(APPEND#1(z0, z1))
APPEND#1(::(z0, z1), z2) → c1(APPEND(z1, z2))
APPENDALL(z0) → c3(APPENDALL#1(z0))
APPENDALL#1(::(z0, z1)) → c4(APPEND(z0, appendAll(z1)), APPENDALL(z1))
APPENDALL2(z0) → c6(APPENDALL2#1(z0))
APPENDALL2#1(::(z0, z1)) → c7(APPEND(appendAll(z0), appendAll2(z1)), APPENDALL(z0), APPENDALL2(z1))
APPENDALL3(z0) → c9(APPENDALL3#1(z0))
APPENDALL3#1(::(z0, z1)) → c10(APPEND(appendAll2(z0), appendAll3(z1)), APPENDALL2(z0), APPENDALL3(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(::(x1, x2)) = [1] + x2
POL(APPEND(x1, x2)) = 0
POL(APPEND#1(x1, x2)) = 0
POL(APPENDALL(x1)) = 0
POL(APPENDALL#1(x1)) = 0
POL(APPENDALL2(x1)) = 0
POL(APPENDALL2#1(x1)) = 0
POL(APPENDALL3(x1)) = [4] + [4]x1
POL(APPENDALL3#1(x1)) = [3] + [4]x1
POL(append(x1, x2)) = [2]
POL(append#1(x1, x2)) = [3]
POL(appendAll(x1)) = [4]
POL(appendAll#1(x1)) = [2] + [3]x1
POL(appendAll2(x1)) = [1]
POL(appendAll2#1(x1)) = [2] + [3]x1
POL(appendAll3(x1)) = [1] + [3]x1
POL(appendAll3#1(x1)) = [4]x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c9(x1)) = x1
POL(nil) = 0
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
append(z0, z1) → append#1(z0, z1)
append#1(::(z0, z1), z2) → ::(z0, append(z1, z2))
append#1(nil, z0) → z0
appendAll(z0) → appendAll#1(z0)
appendAll#1(::(z0, z1)) → append(z0, appendAll(z1))
appendAll#1(nil) → nil
appendAll2(z0) → appendAll2#1(z0)
appendAll2#1(::(z0, z1)) → append(appendAll(z0), appendAll2(z1))
appendAll2#1(nil) → nil
appendAll3(z0) → appendAll3#1(z0)
appendAll3#1(::(z0, z1)) → append(appendAll2(z0), appendAll3(z1))
appendAll3#1(nil) → nil
Tuples:
APPEND(z0, z1) → c(APPEND#1(z0, z1))
APPEND#1(::(z0, z1), z2) → c1(APPEND(z1, z2))
APPENDALL(z0) → c3(APPENDALL#1(z0))
APPENDALL#1(::(z0, z1)) → c4(APPEND(z0, appendAll(z1)), APPENDALL(z1))
APPENDALL2(z0) → c6(APPENDALL2#1(z0))
APPENDALL2#1(::(z0, z1)) → c7(APPEND(appendAll(z0), appendAll2(z1)), APPENDALL(z0), APPENDALL2(z1))
APPENDALL3(z0) → c9(APPENDALL3#1(z0))
APPENDALL3#1(::(z0, z1)) → c10(APPEND(appendAll2(z0), appendAll3(z1)), APPENDALL2(z0), APPENDALL3(z1))
S tuples:
APPEND(z0, z1) → c(APPEND#1(z0, z1))
APPEND#1(::(z0, z1), z2) → c1(APPEND(z1, z2))
APPENDALL(z0) → c3(APPENDALL#1(z0))
APPENDALL#1(::(z0, z1)) → c4(APPEND(z0, appendAll(z1)), APPENDALL(z1))
APPENDALL2(z0) → c6(APPENDALL2#1(z0))
APPENDALL2#1(::(z0, z1)) → c7(APPEND(appendAll(z0), appendAll2(z1)), APPENDALL(z0), APPENDALL2(z1))
K tuples:
APPENDALL3(z0) → c9(APPENDALL3#1(z0))
APPENDALL3#1(::(z0, z1)) → c10(APPEND(appendAll2(z0), appendAll3(z1)), APPENDALL2(z0), APPENDALL3(z1))
Defined Rule Symbols:
append, append#1, appendAll, appendAll#1, appendAll2, appendAll2#1, appendAll3, appendAll3#1
Defined Pair Symbols:
APPEND, APPEND#1, APPENDALL, APPENDALL#1, APPENDALL2, APPENDALL2#1, APPENDALL3, APPENDALL3#1
Compound Symbols:
c, c1, c3, c4, c6, c7, c9, c10
(7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
APPENDALL2(z0) → c6(APPENDALL2#1(z0))
APPENDALL2#1(::(z0, z1)) → c7(APPEND(appendAll(z0), appendAll2(z1)), APPENDALL(z0), APPENDALL2(z1))
We considered the (Usable) Rules:none
And the Tuples:
APPEND(z0, z1) → c(APPEND#1(z0, z1))
APPEND#1(::(z0, z1), z2) → c1(APPEND(z1, z2))
APPENDALL(z0) → c3(APPENDALL#1(z0))
APPENDALL#1(::(z0, z1)) → c4(APPEND(z0, appendAll(z1)), APPENDALL(z1))
APPENDALL2(z0) → c6(APPENDALL2#1(z0))
APPENDALL2#1(::(z0, z1)) → c7(APPEND(appendAll(z0), appendAll2(z1)), APPENDALL(z0), APPENDALL2(z1))
APPENDALL3(z0) → c9(APPENDALL3#1(z0))
APPENDALL3#1(::(z0, z1)) → c10(APPEND(appendAll2(z0), appendAll3(z1)), APPENDALL2(z0), APPENDALL3(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(::(x1, x2)) = [5] + x1 + x2
POL(APPEND(x1, x2)) = 0
POL(APPEND#1(x1, x2)) = 0
POL(APPENDALL(x1)) = [4]
POL(APPENDALL#1(x1)) = [4]
POL(APPENDALL2(x1)) = [2] + [3]x1
POL(APPENDALL2#1(x1)) = [1] + [3]x1
POL(APPENDALL3(x1)) = [1] + [3]x1
POL(APPENDALL3#1(x1)) = [1] + [3]x1
POL(append(x1, x2)) = [5] + x1
POL(append#1(x1, x2)) = [2] + [3]x1 + [5]x2
POL(appendAll(x1)) = [1]
POL(appendAll#1(x1)) = [3] + [2]x1
POL(appendAll2(x1)) = [2] + [4]x1
POL(appendAll2#1(x1)) = [2] + [3]x1
POL(appendAll3(x1)) = [2] + [3]x1
POL(appendAll3#1(x1)) = [3] + [3]x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c9(x1)) = x1
POL(nil) = [5]
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
append(z0, z1) → append#1(z0, z1)
append#1(::(z0, z1), z2) → ::(z0, append(z1, z2))
append#1(nil, z0) → z0
appendAll(z0) → appendAll#1(z0)
appendAll#1(::(z0, z1)) → append(z0, appendAll(z1))
appendAll#1(nil) → nil
appendAll2(z0) → appendAll2#1(z0)
appendAll2#1(::(z0, z1)) → append(appendAll(z0), appendAll2(z1))
appendAll2#1(nil) → nil
appendAll3(z0) → appendAll3#1(z0)
appendAll3#1(::(z0, z1)) → append(appendAll2(z0), appendAll3(z1))
appendAll3#1(nil) → nil
Tuples:
APPEND(z0, z1) → c(APPEND#1(z0, z1))
APPEND#1(::(z0, z1), z2) → c1(APPEND(z1, z2))
APPENDALL(z0) → c3(APPENDALL#1(z0))
APPENDALL#1(::(z0, z1)) → c4(APPEND(z0, appendAll(z1)), APPENDALL(z1))
APPENDALL2(z0) → c6(APPENDALL2#1(z0))
APPENDALL2#1(::(z0, z1)) → c7(APPEND(appendAll(z0), appendAll2(z1)), APPENDALL(z0), APPENDALL2(z1))
APPENDALL3(z0) → c9(APPENDALL3#1(z0))
APPENDALL3#1(::(z0, z1)) → c10(APPEND(appendAll2(z0), appendAll3(z1)), APPENDALL2(z0), APPENDALL3(z1))
S tuples:
APPEND(z0, z1) → c(APPEND#1(z0, z1))
APPEND#1(::(z0, z1), z2) → c1(APPEND(z1, z2))
APPENDALL(z0) → c3(APPENDALL#1(z0))
APPENDALL#1(::(z0, z1)) → c4(APPEND(z0, appendAll(z1)), APPENDALL(z1))
K tuples:
APPENDALL3(z0) → c9(APPENDALL3#1(z0))
APPENDALL3#1(::(z0, z1)) → c10(APPEND(appendAll2(z0), appendAll3(z1)), APPENDALL2(z0), APPENDALL3(z1))
APPENDALL2(z0) → c6(APPENDALL2#1(z0))
APPENDALL2#1(::(z0, z1)) → c7(APPEND(appendAll(z0), appendAll2(z1)), APPENDALL(z0), APPENDALL2(z1))
Defined Rule Symbols:
append, append#1, appendAll, appendAll#1, appendAll2, appendAll2#1, appendAll3, appendAll3#1
Defined Pair Symbols:
APPEND, APPEND#1, APPENDALL, APPENDALL#1, APPENDALL2, APPENDALL2#1, APPENDALL3, APPENDALL3#1
Compound Symbols:
c, c1, c3, c4, c6, c7, c9, c10
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
APPENDALL(z0) → c3(APPENDALL#1(z0))
APPENDALL#1(::(z0, z1)) → c4(APPEND(z0, appendAll(z1)), APPENDALL(z1))
We considered the (Usable) Rules:none
And the Tuples:
APPEND(z0, z1) → c(APPEND#1(z0, z1))
APPEND#1(::(z0, z1), z2) → c1(APPEND(z1, z2))
APPENDALL(z0) → c3(APPENDALL#1(z0))
APPENDALL#1(::(z0, z1)) → c4(APPEND(z0, appendAll(z1)), APPENDALL(z1))
APPENDALL2(z0) → c6(APPENDALL2#1(z0))
APPENDALL2#1(::(z0, z1)) → c7(APPEND(appendAll(z0), appendAll2(z1)), APPENDALL(z0), APPENDALL2(z1))
APPENDALL3(z0) → c9(APPENDALL3#1(z0))
APPENDALL3#1(::(z0, z1)) → c10(APPEND(appendAll2(z0), appendAll3(z1)), APPENDALL2(z0), APPENDALL3(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(::(x1, x2)) = [2] + x1 + x2
POL(APPEND(x1, x2)) = 0
POL(APPEND#1(x1, x2)) = 0
POL(APPENDALL(x1)) = [4] + [4]x1
POL(APPENDALL#1(x1)) = [4]x1
POL(APPENDALL2(x1)) = [4] + [4]x1
POL(APPENDALL2#1(x1)) = [4] + [4]x1
POL(APPENDALL3(x1)) = [5] + [4]x1
POL(APPENDALL3#1(x1)) = [1] + [4]x1
POL(append(x1, x2)) = [2]
POL(append#1(x1, x2)) = [4] + [3]x1 + [3]x2
POL(appendAll(x1)) = [1] + [3]x1
POL(appendAll#1(x1)) = [5]x1
POL(appendAll2(x1)) = [5] + x1
POL(appendAll2#1(x1)) = [5] + x1
POL(appendAll3(x1)) = [2] + [5]x1
POL(appendAll3#1(x1)) = [2] + [3]x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c9(x1)) = x1
POL(nil) = 0
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
append(z0, z1) → append#1(z0, z1)
append#1(::(z0, z1), z2) → ::(z0, append(z1, z2))
append#1(nil, z0) → z0
appendAll(z0) → appendAll#1(z0)
appendAll#1(::(z0, z1)) → append(z0, appendAll(z1))
appendAll#1(nil) → nil
appendAll2(z0) → appendAll2#1(z0)
appendAll2#1(::(z0, z1)) → append(appendAll(z0), appendAll2(z1))
appendAll2#1(nil) → nil
appendAll3(z0) → appendAll3#1(z0)
appendAll3#1(::(z0, z1)) → append(appendAll2(z0), appendAll3(z1))
appendAll3#1(nil) → nil
Tuples:
APPEND(z0, z1) → c(APPEND#1(z0, z1))
APPEND#1(::(z0, z1), z2) → c1(APPEND(z1, z2))
APPENDALL(z0) → c3(APPENDALL#1(z0))
APPENDALL#1(::(z0, z1)) → c4(APPEND(z0, appendAll(z1)), APPENDALL(z1))
APPENDALL2(z0) → c6(APPENDALL2#1(z0))
APPENDALL2#1(::(z0, z1)) → c7(APPEND(appendAll(z0), appendAll2(z1)), APPENDALL(z0), APPENDALL2(z1))
APPENDALL3(z0) → c9(APPENDALL3#1(z0))
APPENDALL3#1(::(z0, z1)) → c10(APPEND(appendAll2(z0), appendAll3(z1)), APPENDALL2(z0), APPENDALL3(z1))
S tuples:
APPEND(z0, z1) → c(APPEND#1(z0, z1))
APPEND#1(::(z0, z1), z2) → c1(APPEND(z1, z2))
K tuples:
APPENDALL3(z0) → c9(APPENDALL3#1(z0))
APPENDALL3#1(::(z0, z1)) → c10(APPEND(appendAll2(z0), appendAll3(z1)), APPENDALL2(z0), APPENDALL3(z1))
APPENDALL2(z0) → c6(APPENDALL2#1(z0))
APPENDALL2#1(::(z0, z1)) → c7(APPEND(appendAll(z0), appendAll2(z1)), APPENDALL(z0), APPENDALL2(z1))
APPENDALL(z0) → c3(APPENDALL#1(z0))
APPENDALL#1(::(z0, z1)) → c4(APPEND(z0, appendAll(z1)), APPENDALL(z1))
Defined Rule Symbols:
append, append#1, appendAll, appendAll#1, appendAll2, appendAll2#1, appendAll3, appendAll3#1
Defined Pair Symbols:
APPEND, APPEND#1, APPENDALL, APPENDALL#1, APPENDALL2, APPENDALL2#1, APPENDALL3, APPENDALL3#1
Compound Symbols:
c, c1, c3, c4, c6, c7, c9, c10
(11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
APPEND(z0, z1) → c(APPEND#1(z0, z1))
APPEND#1(::(z0, z1), z2) → c1(APPEND(z1, z2))
We considered the (Usable) Rules:
appendAll#1(::(z0, z1)) → append(z0, appendAll(z1))
append(z0, z1) → append#1(z0, z1)
append#1(nil, z0) → z0
appendAll(z0) → appendAll#1(z0)
appendAll2(z0) → appendAll2#1(z0)
appendAll2#1(::(z0, z1)) → append(appendAll(z0), appendAll2(z1))
appendAll2#1(nil) → nil
appendAll#1(nil) → nil
append#1(::(z0, z1), z2) → ::(z0, append(z1, z2))
And the Tuples:
APPEND(z0, z1) → c(APPEND#1(z0, z1))
APPEND#1(::(z0, z1), z2) → c1(APPEND(z1, z2))
APPENDALL(z0) → c3(APPENDALL#1(z0))
APPENDALL#1(::(z0, z1)) → c4(APPEND(z0, appendAll(z1)), APPENDALL(z1))
APPENDALL2(z0) → c6(APPENDALL2#1(z0))
APPENDALL2#1(::(z0, z1)) → c7(APPEND(appendAll(z0), appendAll2(z1)), APPENDALL(z0), APPENDALL2(z1))
APPENDALL3(z0) → c9(APPENDALL3#1(z0))
APPENDALL3#1(::(z0, z1)) → c10(APPEND(appendAll2(z0), appendAll3(z1)), APPENDALL2(z0), APPENDALL3(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(::(x1, x2)) = [4] + x1 + x2
POL(APPEND(x1, x2)) = [4] + x1
POL(APPEND#1(x1, x2)) = [2] + x1
POL(APPENDALL(x1)) = x1
POL(APPENDALL#1(x1)) = x1
POL(APPENDALL2(x1)) = [3]x1
POL(APPENDALL2#1(x1)) = [3]x1
POL(APPENDALL3(x1)) = [2] + [5]x1
POL(APPENDALL3#1(x1)) = [1] + [5]x1
POL(append(x1, x2)) = [1] + x1 + x2
POL(append#1(x1, x2)) = [1] + x1 + x2
POL(appendAll(x1)) = [1] + [2]x1
POL(appendAll#1(x1)) = [2]x1
POL(appendAll2(x1)) = [2]x1
POL(appendAll2#1(x1)) = [2]x1
POL(appendAll3(x1)) = [3] + [3]x1
POL(appendAll3#1(x1)) = [2] + [2]x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c9(x1)) = x1
POL(nil) = 0
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
append(z0, z1) → append#1(z0, z1)
append#1(::(z0, z1), z2) → ::(z0, append(z1, z2))
append#1(nil, z0) → z0
appendAll(z0) → appendAll#1(z0)
appendAll#1(::(z0, z1)) → append(z0, appendAll(z1))
appendAll#1(nil) → nil
appendAll2(z0) → appendAll2#1(z0)
appendAll2#1(::(z0, z1)) → append(appendAll(z0), appendAll2(z1))
appendAll2#1(nil) → nil
appendAll3(z0) → appendAll3#1(z0)
appendAll3#1(::(z0, z1)) → append(appendAll2(z0), appendAll3(z1))
appendAll3#1(nil) → nil
Tuples:
APPEND(z0, z1) → c(APPEND#1(z0, z1))
APPEND#1(::(z0, z1), z2) → c1(APPEND(z1, z2))
APPENDALL(z0) → c3(APPENDALL#1(z0))
APPENDALL#1(::(z0, z1)) → c4(APPEND(z0, appendAll(z1)), APPENDALL(z1))
APPENDALL2(z0) → c6(APPENDALL2#1(z0))
APPENDALL2#1(::(z0, z1)) → c7(APPEND(appendAll(z0), appendAll2(z1)), APPENDALL(z0), APPENDALL2(z1))
APPENDALL3(z0) → c9(APPENDALL3#1(z0))
APPENDALL3#1(::(z0, z1)) → c10(APPEND(appendAll2(z0), appendAll3(z1)), APPENDALL2(z0), APPENDALL3(z1))
S tuples:none
K tuples:
APPENDALL3(z0) → c9(APPENDALL3#1(z0))
APPENDALL3#1(::(z0, z1)) → c10(APPEND(appendAll2(z0), appendAll3(z1)), APPENDALL2(z0), APPENDALL3(z1))
APPENDALL2(z0) → c6(APPENDALL2#1(z0))
APPENDALL2#1(::(z0, z1)) → c7(APPEND(appendAll(z0), appendAll2(z1)), APPENDALL(z0), APPENDALL2(z1))
APPENDALL(z0) → c3(APPENDALL#1(z0))
APPENDALL#1(::(z0, z1)) → c4(APPEND(z0, appendAll(z1)), APPENDALL(z1))
APPEND(z0, z1) → c(APPEND#1(z0, z1))
APPEND#1(::(z0, z1), z2) → c1(APPEND(z1, z2))
Defined Rule Symbols:
append, append#1, appendAll, appendAll#1, appendAll2, appendAll2#1, appendAll3, appendAll3#1
Defined Pair Symbols:
APPEND, APPEND#1, APPENDALL, APPENDALL#1, APPENDALL2, APPENDALL2#1, APPENDALL3, APPENDALL3#1
Compound Symbols:
c, c1, c3, c4, c6, c7, c9, c10
(13) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(14) BOUNDS(1, 1)