We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict Trs: { walk#1(Nil()) -> walk_xs() , walk#1(Cons(x4, x3)) -> comp_f_g(walk#1(x3), walk_xs_3(x4)) , comp_f_g#1(walk_xs(), walk_xs_3(x8), x12) -> Cons(x8, x12) , comp_f_g#1(comp_f_g(x7, x9), walk_xs_3(x8), x12) -> comp_f_g#1(x7, x9, Cons(x8, x12)) , main(Nil()) -> Nil() , main(Cons(x4, x5)) -> comp_f_g#1(walk#1(x5), walk_xs_3(x4), Nil()) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The problem is match-bounded by 2. The enriched problem is compatible with the following automaton. { walk#1_0(2) -> 1 , walk#1_1(2) -> 3 , Nil_0() -> 2 , Nil_1() -> 1 , walk_xs_0() -> 2 , walk_xs_1() -> 1 , walk_xs_1() -> 3 , Cons_0(2, 2) -> 2 , Cons_1(2, 1) -> 1 , Cons_1(2, 2) -> 1 , Cons_2(2, 1) -> 1 , comp_f_g_0(2, 2) -> 2 , comp_f_g_1(3, 4) -> 1 , comp_f_g_1(3, 4) -> 3 , walk_xs_3_0(2) -> 2 , walk_xs_3_1(2) -> 4 , comp_f_g#1_0(2, 2, 2) -> 1 , comp_f_g#1_1(2, 2, 1) -> 1 , comp_f_g#1_1(3, 4, 1) -> 1 , comp_f_g#1_2(3, 4, 1) -> 1 , main_0(2) -> 1 } Hurray, we answered YES(?,O(n^1))