*** 1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) insert#3(x2,Nil()) -> Cons(x2,Nil()) insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) main(x1) -> sort#2(x1) sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2)) sort#2(Nil()) -> Nil() Weak DP Rules: Weak TRS Rules: Signature: {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1,insert#3,leq#2,main,sort#2}/{0,Cons,False,Nil,S,True} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)) cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2() insert#3#(x2,Nil()) -> c_3() insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(0(),x8) -> c_5() leq#2#(S(x12),0()) -> c_6() leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) main#(x1) -> c_8(sort#2#(x1)) sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)) sort#2#(Nil()) -> c_10() Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)) cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2() insert#3#(x2,Nil()) -> c_3() insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(0(),x8) -> c_5() leq#2#(S(x12),0()) -> c_6() leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) main#(x1) -> c_8(sort#2#(x1)) sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)) sort#2#(Nil()) -> c_10() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) insert#3(x2,Nil()) -> Cons(x2,Nil()) insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) main(x1) -> sort#2(x1) sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2)) sort#2(Nil()) -> Nil() Signature: {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) insert#3(x2,Nil()) -> Cons(x2,Nil()) insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2)) sort#2(Nil()) -> Nil() cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)) cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2() insert#3#(x2,Nil()) -> c_3() insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(0(),x8) -> c_5() leq#2#(S(x12),0()) -> c_6() leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) main#(x1) -> c_8(sort#2#(x1)) sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)) sort#2#(Nil()) -> c_10() *** 1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)) cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2() insert#3#(x2,Nil()) -> c_3() insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(0(),x8) -> c_5() leq#2#(S(x12),0()) -> c_6() leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) main#(x1) -> c_8(sort#2#(x1)) sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)) sort#2#(Nil()) -> c_10() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) insert#3(x2,Nil()) -> Cons(x2,Nil()) insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2)) sort#2(Nil()) -> Nil() Signature: {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {2,3,5,6,10} by application of Pre({2,3,5,6,10}) = {1,4,7,8,9}. Here rules are labelled as follows: 1: cond_insert_ord_x_ys_1#(False() ,x3 ,x2 ,x1) -> c_1(insert#3#(x3,x1)) 2: cond_insert_ord_x_ys_1#(True() ,x3 ,x2 ,x1) -> c_2() 3: insert#3#(x2,Nil()) -> c_3() 4: insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6 ,x4) ,x6 ,x4 ,x2) ,leq#2#(x6,x4)) 5: leq#2#(0(),x8) -> c_5() 6: leq#2#(S(x12),0()) -> c_6() 7: leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) 8: main#(x1) -> c_8(sort#2#(x1)) 9: sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)) ,sort#2#(x2)) 10: sort#2#(Nil()) -> c_10() *** 1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)) insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) main#(x1) -> c_8(sort#2#(x1)) sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)) Strict TRS Rules: Weak DP Rules: cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2() insert#3#(x2,Nil()) -> c_3() leq#2#(0(),x8) -> c_5() leq#2#(S(x12),0()) -> c_6() sort#2#(Nil()) -> c_10() Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) insert#3(x2,Nil()) -> Cons(x2,Nil()) insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2)) sort#2(Nil()) -> Nil() Signature: {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)) -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):2 -->_1 insert#3#(x2,Nil()) -> c_3():7 2:S:insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) -->_2 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):3 -->_2 leq#2#(S(x12),0()) -> c_6():9 -->_2 leq#2#(0(),x8) -> c_5():8 -->_1 cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2():6 -->_1 cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)):1 3:S:leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) -->_1 leq#2#(S(x12),0()) -> c_6():9 -->_1 leq#2#(0(),x8) -> c_5():8 -->_1 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):3 4:S:main#(x1) -> c_8(sort#2#(x1)) -->_1 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):5 -->_1 sort#2#(Nil()) -> c_10():10 5:S:sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)) -->_2 sort#2#(Nil()) -> c_10():10 -->_1 insert#3#(x2,Nil()) -> c_3():7 -->_2 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):5 -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):2 6:W:cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2() 7:W:insert#3#(x2,Nil()) -> c_3() 8:W:leq#2#(0(),x8) -> c_5() 9:W:leq#2#(S(x12),0()) -> c_6() 10:W:sort#2#(Nil()) -> c_10() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 10: sort#2#(Nil()) -> c_10() 7: insert#3#(x2,Nil()) -> c_3() 6: cond_insert_ord_x_ys_1#(True() ,x3 ,x2 ,x1) -> c_2() 8: leq#2#(0(),x8) -> c_5() 9: leq#2#(S(x12),0()) -> c_6() *** 1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)) insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) main#(x1) -> c_8(sort#2#(x1)) sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) insert#3(x2,Nil()) -> Cons(x2,Nil()) insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2)) sort#2(Nil()) -> Nil() Signature: {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True} Applied Processor: RemoveHeads Proof: Consider the dependency graph 1:S:cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)) -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):2 2:S:insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) -->_2 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):3 -->_1 cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)):1 3:S:leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) -->_1 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):3 4:S:main#(x1) -> c_8(sort#2#(x1)) -->_1 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):5 5:S:sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)) -->_2 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):5 -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):2 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(4,main#(x1) -> c_8(sort#2#(x1)))] *** 1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)) insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) insert#3(x2,Nil()) -> Cons(x2,Nil()) insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2)) sort#2(Nil()) -> Nil() Signature: {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)) insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) Strict TRS Rules: Weak DP Rules: sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)) Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) insert#3(x2,Nil()) -> Cons(x2,Nil()) insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2)) sort#2(Nil()) -> Nil() Signature: {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True} Problem (S) Strict DP Rules: sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)) Strict TRS Rules: Weak DP Rules: cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)) insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) insert#3(x2,Nil()) -> Cons(x2,Nil()) insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2)) sort#2(Nil()) -> Nil() Signature: {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True} *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)) insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) Strict TRS Rules: Weak DP Rules: sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)) Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) insert#3(x2,Nil()) -> Cons(x2,Nil()) insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2)) sort#2(Nil()) -> Nil() Signature: {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: cond_insert_ord_x_ys_1#(False() ,x3 ,x2 ,x1) -> c_1(insert#3#(x3,x1)) 2: insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6 ,x4) ,x6 ,x4 ,x2) ,leq#2#(x6,x4)) 3: leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)) insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) Strict TRS Rules: Weak DP Rules: sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)) Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) insert#3(x2,Nil()) -> Cons(x2,Nil()) insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2)) sort#2(Nil()) -> Nil() Signature: {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_4) = {1,2}, uargs(c_7) = {1}, uargs(c_9) = {1,2} Following symbols are considered usable: {cond_insert_ord_x_ys_1,insert#3,sort#2,cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#} TcT has computed the following interpretation: p(0) = 1 p(Cons) = 1 + x1 + x2 p(False) = 0 p(Nil) = 0 p(S) = 1 + x1 p(True) = 0 p(cond_insert_ord_x_ys_1) = 2 + x2 + x3 + x4 p(insert#3) = 1 + x1 + x2 p(leq#2) = 2*x1*x2 + 2*x2 p(main) = 2 p(sort#2) = x1 p(cond_insert_ord_x_ys_1#) = 5 + 6*x2 + 2*x2*x3 + 4*x2*x4 + x3 + 4*x4 p(insert#3#) = 2 + 5*x1 + 4*x1*x2 + 4*x2 p(leq#2#) = 2*x1 p(main#) = 2 + x1 p(sort#2#) = 3*x1 + 3*x1^2 p(c_1) = x1 p(c_2) = 1 p(c_3) = 0 p(c_4) = x1 + x2 p(c_5) = 0 p(c_6) = 1 p(c_7) = x1 p(c_8) = 0 p(c_9) = 1 + x1 + x2 p(c_10) = 1 Following rules are strictly oriented: cond_insert_ord_x_ys_1#(False() = 5 + 4*x1 + 4*x1*x3 + x2 + 2*x2*x3 + 6*x3 ,x3 ,x2 ,x1) > 2 + 4*x1 + 4*x1*x3 + 5*x3 = c_1(insert#3#(x3,x1)) insert#3#(x6,Cons(x4,x2)) = 6 + 4*x2 + 4*x2*x6 + 4*x4 + 4*x4*x6 + 9*x6 > 5 + 4*x2 + 4*x2*x6 + x4 + 2*x4*x6 + 8*x6 = c_4(cond_insert_ord_x_ys_1#(leq#2(x6 ,x4) ,x6 ,x4 ,x2) ,leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) = 2 + 2*x4 > 2*x4 = c_7(leq#2#(x4,x2)) Following rules are (at-least) weakly oriented: sort#2#(Cons(x4,x2)) = 6 + 9*x2 + 6*x2*x4 + 3*x2^2 + 9*x4 + 3*x4^2 >= 3 + 7*x2 + 4*x2*x4 + 3*x2^2 + 5*x4 = c_9(insert#3#(x4,sort#2(x2)) ,sort#2#(x2)) cond_insert_ord_x_ys_1(False() = 2 + x1 + x2 + x3 ,x3 ,x2 ,x1) >= 2 + x1 + x2 + x3 = Cons(x2,insert#3(x3,x1)) cond_insert_ord_x_ys_1(True() = 2 + x1 + x2 + x3 ,x3 ,x2 ,x1) >= 2 + x1 + x2 + x3 = Cons(x3,Cons(x2,x1)) insert#3(x2,Nil()) = 1 + x2 >= 1 + x2 = Cons(x2,Nil()) insert#3(x6,Cons(x4,x2)) = 2 + x2 + x4 + x6 >= 2 + x2 + x4 + x6 = cond_insert_ord_x_ys_1(leq#2(x6 ,x4) ,x6 ,x4 ,x2) sort#2(Cons(x4,x2)) = 1 + x2 + x4 >= 1 + x2 + x4 = insert#3(x4,sort#2(x2)) sort#2(Nil()) = 0 >= 0 = Nil() *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)) insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)) Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) insert#3(x2,Nil()) -> Cons(x2,Nil()) insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2)) sort#2(Nil()) -> Nil() Signature: {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)) insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)) Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) insert#3(x2,Nil()) -> Cons(x2,Nil()) insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2)) sort#2(Nil()) -> Nil() Signature: {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)) -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):2 2:W:insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) -->_2 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):3 -->_1 cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)):1 3:W:leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) -->_1 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):3 4:W:sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)) -->_2 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):4 -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)) ,sort#2#(x2)) 1: cond_insert_ord_x_ys_1#(False() ,x3 ,x2 ,x1) -> c_1(insert#3#(x3,x1)) 2: insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6 ,x4) ,x6 ,x4 ,x2) ,leq#2#(x6,x4)) 3: leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) *** 1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) insert#3(x2,Nil()) -> Cons(x2,Nil()) insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2)) sort#2(Nil()) -> Nil() Signature: {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)) Strict TRS Rules: Weak DP Rules: cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)) insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) insert#3(x2,Nil()) -> Cons(x2,Nil()) insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2)) sort#2(Nil()) -> Nil() Signature: {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)) -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3 -->_2 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):1 2:W:cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)) -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3 3:W:insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) -->_2 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):4 -->_1 cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)):2 4:W:leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) -->_1 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6 ,x4) ,x6 ,x4 ,x2) ,leq#2#(x6,x4)) 2: cond_insert_ord_x_ys_1#(False() ,x3 ,x2 ,x1) -> c_1(insert#3#(x3,x1)) 4: leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)) *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) insert#3(x2,Nil()) -> Cons(x2,Nil()) insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2)) sort#2(Nil()) -> Nil() Signature: {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)) -->_2 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2)) *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) insert#3(x2,Nil()) -> Cons(x2,Nil()) insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2)) sort#2(Nil()) -> Nil() Signature: {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/1,c_10/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2)) *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/1,c_10/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/1,c_10/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_9) = {1} Following symbols are considered usable: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#} TcT has computed the following interpretation: p(0) = [0] p(Cons) = [1] x1 + [1] x2 + [8] p(False) = [0] p(Nil) = [0] p(S) = [1] x1 + [0] p(True) = [0] p(cond_insert_ord_x_ys_1) = [0] p(insert#3) = [0] p(leq#2) = [0] p(main) = [0] p(sort#2) = [0] p(cond_insert_ord_x_ys_1#) = [8] x1 + [2] x3 + [1] x4 + [0] p(insert#3#) = [8] x1 + [2] p(leq#2#) = [1] p(main#) = [8] p(sort#2#) = [2] x1 + [1] p(c_1) = [1] x1 + [4] p(c_2) = [1] p(c_3) = [1] p(c_4) = [4] x2 + [8] p(c_5) = [1] p(c_6) = [1] p(c_7) = [1] x1 + [1] p(c_8) = [0] p(c_9) = [1] x1 + [0] p(c_10) = [8] Following rules are strictly oriented: sort#2#(Cons(x4,x2)) = [2] x2 + [2] x4 + [17] > [2] x2 + [1] = c_9(sort#2#(x2)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2)) Weak TRS Rules: Signature: {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/1,c_10/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2)) Weak TRS Rules: Signature: {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/1,c_10/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2)) -->_1 sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2)) *** 1.1.1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/1,c_10/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).