*** 1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
        cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
        insert#3(x2,Nil()) -> Cons(x2,Nil())
        insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
        leq#2(0(),x8) -> True()
        leq#2(S(x12),0()) -> False()
        leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        main(x1) -> sort#2(x1)
        sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
        sort#2(Nil()) -> Nil()
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0}
      Obligation:
        Innermost
        basic terms: {cond_insert_ord_x_ys_1,insert#3,leq#2,main,sort#2}/{0,Cons,False,Nil,S,True}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
        cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
        insert#3#(x2,Nil()) -> c_3()
        insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
        leq#2#(0(),x8) -> c_5()
        leq#2#(S(x12),0()) -> c_6()
        leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
        main#(x1) -> c_8(sort#2#(x1))
        sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        sort#2#(Nil()) -> c_10()
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
        cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
        insert#3#(x2,Nil()) -> c_3()
        insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
        leq#2#(0(),x8) -> c_5()
        leq#2#(S(x12),0()) -> c_6()
        leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
        main#(x1) -> c_8(sort#2#(x1))
        sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        sort#2#(Nil()) -> c_10()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
        cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
        insert#3(x2,Nil()) -> Cons(x2,Nil())
        insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
        leq#2(0(),x8) -> True()
        leq#2(S(x12),0()) -> False()
        leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        main(x1) -> sort#2(x1)
        sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
        sort#2(Nil()) -> Nil()
      Signature:
        {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0}
      Obligation:
        Innermost
        basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
        cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
        insert#3(x2,Nil()) -> Cons(x2,Nil())
        insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
        leq#2(0(),x8) -> True()
        leq#2(S(x12),0()) -> False()
        leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
        sort#2(Nil()) -> Nil()
        cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
        cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
        insert#3#(x2,Nil()) -> c_3()
        insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
        leq#2#(0(),x8) -> c_5()
        leq#2#(S(x12),0()) -> c_6()
        leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
        main#(x1) -> c_8(sort#2#(x1))
        sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        sort#2#(Nil()) -> c_10()
*** 1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
        cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
        insert#3#(x2,Nil()) -> c_3()
        insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
        leq#2#(0(),x8) -> c_5()
        leq#2#(S(x12),0()) -> c_6()
        leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
        main#(x1) -> c_8(sort#2#(x1))
        sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        sort#2#(Nil()) -> c_10()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
        cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
        insert#3(x2,Nil()) -> Cons(x2,Nil())
        insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
        leq#2(0(),x8) -> True()
        leq#2(S(x12),0()) -> False()
        leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
        sort#2(Nil()) -> Nil()
      Signature:
        {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0}
      Obligation:
        Innermost
        basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {2,3,5,6,10}
      by application of
        Pre({2,3,5,6,10}) = {1,4,7,8,9}.
      Here rules are labelled as follows:
        1:  cond_insert_ord_x_ys_1#(False()                     
                                   ,x3                          
                                   ,x2                          
                                   ,x1) -> c_1(insert#3#(x3,x1))
        2:  cond_insert_ord_x_ys_1#(True()                      
                                   ,x3                          
                                   ,x2                          
                                   ,x1) -> c_2()                
        3:  insert#3#(x2,Nil()) -> c_3()                        
        4:  insert#3#(x6,Cons(x4,x2)) ->                        
              c_4(cond_insert_ord_x_ys_1#(leq#2(x6              
                                               ,x4)             
                                         ,x6                    
                                         ,x4                    
                                         ,x2)                   
                 ,leq#2#(x6,x4))                                
        5:  leq#2#(0(),x8) -> c_5()                             
        6:  leq#2#(S(x12),0()) -> c_6()                         
        7:  leq#2#(S(x4),S(x2)) ->                              
              c_7(leq#2#(x4,x2))                                
        8:  main#(x1) -> c_8(sort#2#(x1))                       
        9:  sort#2#(Cons(x4,x2)) ->                             
              c_9(insert#3#(x4,sort#2(x2))                      
                 ,sort#2#(x2))                                  
        10: sort#2#(Nil()) -> c_10()                            
*** 1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
        insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
        leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
        main#(x1) -> c_8(sort#2#(x1))
        sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
      Strict TRS Rules:
        
      Weak DP Rules:
        cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
        insert#3#(x2,Nil()) -> c_3()
        leq#2#(0(),x8) -> c_5()
        leq#2#(S(x12),0()) -> c_6()
        sort#2#(Nil()) -> c_10()
      Weak TRS Rules:
        cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
        cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
        insert#3(x2,Nil()) -> Cons(x2,Nil())
        insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
        leq#2(0(),x8) -> True()
        leq#2(S(x12),0()) -> False()
        leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
        sort#2(Nil()) -> Nil()
      Signature:
        {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0}
      Obligation:
        Innermost
        basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
           -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):2
           -->_1 insert#3#(x2,Nil()) -> c_3():7
        
        2:S:insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
           -->_2 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):3
           -->_2 leq#2#(S(x12),0()) -> c_6():9
           -->_2 leq#2#(0(),x8) -> c_5():8
           -->_1 cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2():6
           -->_1 cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)):1
        
        3:S:leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
           -->_1 leq#2#(S(x12),0()) -> c_6():9
           -->_1 leq#2#(0(),x8) -> c_5():8
           -->_1 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):3
        
        4:S:main#(x1) -> c_8(sort#2#(x1))
           -->_1 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):5
           -->_1 sort#2#(Nil()) -> c_10():10
        
        5:S:sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
           -->_2 sort#2#(Nil()) -> c_10():10
           -->_1 insert#3#(x2,Nil()) -> c_3():7
           -->_2 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):5
           -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):2
        
        6:W:cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
           
        
        7:W:insert#3#(x2,Nil()) -> c_3()
           
        
        8:W:leq#2#(0(),x8) -> c_5()
           
        
        9:W:leq#2#(S(x12),0()) -> c_6()
           
        
        10:W:sort#2#(Nil()) -> c_10()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        10: sort#2#(Nil()) -> c_10()            
        7:  insert#3#(x2,Nil()) -> c_3()        
        6:  cond_insert_ord_x_ys_1#(True()      
                                   ,x3          
                                   ,x2          
                                   ,x1) -> c_2()
        8:  leq#2#(0(),x8) -> c_5()             
        9:  leq#2#(S(x12),0()) -> c_6()         
*** 1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
        insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
        leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
        main#(x1) -> c_8(sort#2#(x1))
        sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
        cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
        insert#3(x2,Nil()) -> Cons(x2,Nil())
        insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
        leq#2(0(),x8) -> True()
        leq#2(S(x12),0()) -> False()
        leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
        sort#2(Nil()) -> Nil()
      Signature:
        {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0}
      Obligation:
        Innermost
        basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True}
    Applied Processor:
      RemoveHeads
    Proof:
      Consider the dependency graph
      
      1:S:cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
         -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):2
      
      2:S:insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
         -->_2 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):3
         -->_1 cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)):1
      
      3:S:leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
         -->_1 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):3
      
      4:S:main#(x1) -> c_8(sort#2#(x1))
         -->_1 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):5
      
      5:S:sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
         -->_2 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):5
         -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):2
      
      
      Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
      
      [(4,main#(x1) -> c_8(sort#2#(x1)))]
*** 1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
        insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
        leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
        sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
        cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
        insert#3(x2,Nil()) -> Cons(x2,Nil())
        insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
        leq#2(0(),x8) -> True()
        leq#2(S(x12),0()) -> False()
        leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
        sort#2(Nil()) -> Nil()
      Signature:
        {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0}
      Obligation:
        Innermost
        basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True}
    Applied Processor:
      Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    Proof:
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
      
      Problem (R)
        Strict DP Rules:
          cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
          insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
          leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
        Strict TRS Rules:
          
        Weak DP Rules:
          sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        Weak TRS Rules:
          cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
          cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
          insert#3(x2,Nil()) -> Cons(x2,Nil())
          insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
          leq#2(0(),x8) -> True()
          leq#2(S(x12),0()) -> False()
          leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
          sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
          sort#2(Nil()) -> Nil()
        Signature:
          {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0}
        Obligation:
          Innermost
          basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True}
      
      Problem (S)
        Strict DP Rules:
          sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        Strict TRS Rules:
          
        Weak DP Rules:
          cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
          insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
          leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
        Weak TRS Rules:
          cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
          cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
          insert#3(x2,Nil()) -> Cons(x2,Nil())
          insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
          leq#2(0(),x8) -> True()
          leq#2(S(x12),0()) -> False()
          leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
          sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
          sort#2(Nil()) -> Nil()
        Signature:
          {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0}
        Obligation:
          Innermost
          basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True}
  *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
          insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
          leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
        Strict TRS Rules:
          
        Weak DP Rules:
          sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        Weak TRS Rules:
          cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
          cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
          insert#3(x2,Nil()) -> Cons(x2,Nil())
          insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
          leq#2(0(),x8) -> True()
          leq#2(S(x12),0()) -> False()
          leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
          sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
          sort#2(Nil()) -> Nil()
        Signature:
          {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0}
        Obligation:
          Innermost
          basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: cond_insert_ord_x_ys_1#(False()                     
                                    ,x3                          
                                    ,x2                          
                                    ,x1) -> c_1(insert#3#(x3,x1))
          2: insert#3#(x6,Cons(x4,x2)) ->                        
               c_4(cond_insert_ord_x_ys_1#(leq#2(x6              
                                                ,x4)             
                                          ,x6                    
                                          ,x4                    
                                          ,x2)                   
                  ,leq#2#(x6,x4))                                
          3: leq#2#(S(x4),S(x2)) ->                              
               c_7(leq#2#(x4,x2))                                
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
            insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
          Strict TRS Rules:
            
          Weak DP Rules:
            sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
          Weak TRS Rules:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
          Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0}
          Obligation:
            Innermost
            basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True}
        Applied Processor:
          NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a polynomial interpretation of kind constructor-based(mixed(2)):
          The following argument positions are considered usable:
            uargs(c_1) = {1},
            uargs(c_4) = {1,2},
            uargs(c_7) = {1},
            uargs(c_9) = {1,2}
          
          Following symbols are considered usable:
            {cond_insert_ord_x_ys_1,insert#3,sort#2,cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}
          TcT has computed the following interpretation:
                                  p(0) = 1                                       
                               p(Cons) = 1 + x1 + x2                             
                              p(False) = 0                                       
                                p(Nil) = 0                                       
                                  p(S) = 1 + x1                                  
                               p(True) = 0                                       
             p(cond_insert_ord_x_ys_1) = 2 + x2 + x3 + x4                        
                           p(insert#3) = 1 + x1 + x2                             
                              p(leq#2) = 2*x1*x2 + 2*x2                          
                               p(main) = 2                                       
                             p(sort#2) = x1                                      
            p(cond_insert_ord_x_ys_1#) = 5 + 6*x2 + 2*x2*x3 + 4*x2*x4 + x3 + 4*x4
                          p(insert#3#) = 2 + 5*x1 + 4*x1*x2 + 4*x2               
                             p(leq#2#) = 2*x1                                    
                              p(main#) = 2 + x1                                  
                            p(sort#2#) = 3*x1 + 3*x1^2                           
                                p(c_1) = x1                                      
                                p(c_2) = 1                                       
                                p(c_3) = 0                                       
                                p(c_4) = x1 + x2                                 
                                p(c_5) = 0                                       
                                p(c_6) = 1                                       
                                p(c_7) = x1                                      
                                p(c_8) = 0                                       
                                p(c_9) = 1 + x1 + x2                             
                               p(c_10) = 1                                       
          
          Following rules are strictly oriented:
          cond_insert_ord_x_ys_1#(False() = 5 + 4*x1 + 4*x1*x3 + x2 + 2*x2*x3 + 6*x3  
                                      ,x3                                             
                                      ,x2                                             
                                     ,x1)                                             
                                          > 2 + 4*x1 + 4*x1*x3 + 5*x3                 
                                          = c_1(insert#3#(x3,x1))                     
          
                insert#3#(x6,Cons(x4,x2)) = 6 + 4*x2 + 4*x2*x6 + 4*x4 + 4*x4*x6 + 9*x6
                                          > 5 + 4*x2 + 4*x2*x6 + x4 + 2*x4*x6 + 8*x6  
                                          = c_4(cond_insert_ord_x_ys_1#(leq#2(x6      
                                                                             ,x4)     
                                                                       ,x6            
                                                                       ,x4            
                                                                       ,x2)           
                                               ,leq#2#(x6,x4))                        
          
                      leq#2#(S(x4),S(x2)) = 2 + 2*x4                                  
                                          > 2*x4                                      
                                          = c_7(leq#2#(x4,x2))                        
          
          
          Following rules are (at-least) weakly oriented:
                    sort#2#(Cons(x4,x2)) =  6 + 9*x2 + 6*x2*x4 + 3*x2^2 + 9*x4 + 3*x4^2
                                         >= 3 + 7*x2 + 4*x2*x4 + 3*x2^2 + 5*x4         
                                         =  c_9(insert#3#(x4,sort#2(x2))               
                                               ,sort#2#(x2))                           
          
          cond_insert_ord_x_ys_1(False() =  2 + x1 + x2 + x3                           
                                     ,x3                                               
                                     ,x2                                               
                                    ,x1)                                               
                                         >= 2 + x1 + x2 + x3                           
                                         =  Cons(x2,insert#3(x3,x1))                   
          
           cond_insert_ord_x_ys_1(True() =  2 + x1 + x2 + x3                           
                                     ,x3                                               
                                     ,x2                                               
                                    ,x1)                                               
                                         >= 2 + x1 + x2 + x3                           
                                         =  Cons(x3,Cons(x2,x1))                       
          
                      insert#3(x2,Nil()) =  1 + x2                                     
                                         >= 1 + x2                                     
                                         =  Cons(x2,Nil())                             
          
                insert#3(x6,Cons(x4,x2)) =  2 + x2 + x4 + x6                           
                                         >= 2 + x2 + x4 + x6                           
                                         =  cond_insert_ord_x_ys_1(leq#2(x6            
                                                                        ,x4)           
                                                                  ,x6                  
                                                                  ,x4                  
                                                                  ,x2)                 
          
                     sort#2(Cons(x4,x2)) =  1 + x2 + x4                                
                                         >= 1 + x2 + x4                                
                                         =  insert#3(x4,sort#2(x2))                    
          
                           sort#2(Nil()) =  0                                          
                                         >= 0                                          
                                         =  Nil()                                      
          
    *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
            insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
            sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
          Weak TRS Rules:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
          Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0}
          Obligation:
            Innermost
            basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
            insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
            sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
          Weak TRS Rules:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
          Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0}
          Obligation:
            Innermost
            basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
               -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):2
            
            2:W:insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
               -->_2 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):3
               -->_1 cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)):1
            
            3:W:leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
               -->_1 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):3
            
            4:W:sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
               -->_2 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):4
               -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):2
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            4: sort#2#(Cons(x4,x2)) ->                             
                 c_9(insert#3#(x4,sort#2(x2))                      
                    ,sort#2#(x2))                                  
            1: cond_insert_ord_x_ys_1#(False()                     
                                      ,x3                          
                                      ,x2                          
                                      ,x1) -> c_1(insert#3#(x3,x1))
            2: insert#3#(x6,Cons(x4,x2)) ->                        
                 c_4(cond_insert_ord_x_ys_1#(leq#2(x6              
                                                  ,x4)             
                                            ,x6                    
                                            ,x4                    
                                            ,x2)                   
                    ,leq#2#(x6,x4))                                
            3: leq#2#(S(x4),S(x2)) ->                              
                 c_7(leq#2#(x4,x2))                                
    *** 1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
          Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0}
          Obligation:
            Innermost
            basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).
    
  *** 1.1.1.1.1.1.2 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        Strict TRS Rules:
          
        Weak DP Rules:
          cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
          insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
          leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
        Weak TRS Rules:
          cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
          cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
          insert#3(x2,Nil()) -> Cons(x2,Nil())
          insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
          leq#2(0(),x8) -> True()
          leq#2(S(x12),0()) -> False()
          leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
          sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
          sort#2(Nil()) -> Nil()
        Signature:
          {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0}
        Obligation:
          Innermost
          basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
             -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3
             -->_2 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):1
          
          2:W:cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
             -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3
          
          3:W:insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
             -->_2 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):4
             -->_1 cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)):2
          
          4:W:leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
             -->_1 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):4
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: insert#3#(x6,Cons(x4,x2)) ->                        
               c_4(cond_insert_ord_x_ys_1#(leq#2(x6              
                                                ,x4)             
                                          ,x6                    
                                          ,x4                    
                                          ,x2)                   
                  ,leq#2#(x6,x4))                                
          2: cond_insert_ord_x_ys_1#(False()                     
                                    ,x3                          
                                    ,x2                          
                                    ,x1) -> c_1(insert#3#(x3,x1))
          4: leq#2#(S(x4),S(x2)) ->                              
               c_7(leq#2#(x4,x2))                                
  *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
          cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
          insert#3(x2,Nil()) -> Cons(x2,Nil())
          insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
          leq#2(0(),x8) -> True()
          leq#2(S(x12),0()) -> False()
          leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
          sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
          sort#2(Nil()) -> Nil()
        Signature:
          {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/2,c_10/0}
        Obligation:
          Innermost
          basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True}
      Applied Processor:
        SimplifyRHS
      Proof:
        Consider the dependency graph
          1:S:sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
             -->_2 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2))
  *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
          cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
          insert#3(x2,Nil()) -> Cons(x2,Nil())
          insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
          leq#2(0(),x8) -> True()
          leq#2(S(x12),0()) -> False()
          leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
          sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
          sort#2(Nil()) -> Nil()
        Signature:
          {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/1,c_10/0}
        Obligation:
          Innermost
          basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True}
      Applied Processor:
        UsableRules
      Proof:
        We replace rewrite rules by usable rules:
          sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2))
  *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          
        Signature:
          {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/1,c_10/0}
        Obligation:
          Innermost
          basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: sort#2#(Cons(x4,x2)) ->
               c_9(sort#2#(x2))     
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/1,c_10/0}
          Obligation:
            Innermost
            basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True}
        Applied Processor:
          NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(c_9) = {1}
          
          Following symbols are considered usable:
            {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}
          TcT has computed the following interpretation:
                                  p(0) = [0]                           
                               p(Cons) = [1] x1 + [1] x2 + [8]         
                              p(False) = [0]                           
                                p(Nil) = [0]                           
                                  p(S) = [1] x1 + [0]                  
                               p(True) = [0]                           
             p(cond_insert_ord_x_ys_1) = [0]                           
                           p(insert#3) = [0]                           
                              p(leq#2) = [0]                           
                               p(main) = [0]                           
                             p(sort#2) = [0]                           
            p(cond_insert_ord_x_ys_1#) = [8] x1 + [2] x3 + [1] x4 + [0]
                          p(insert#3#) = [8] x1 + [2]                  
                             p(leq#2#) = [1]                           
                              p(main#) = [8]                           
                            p(sort#2#) = [2] x1 + [1]                  
                                p(c_1) = [1] x1 + [4]                  
                                p(c_2) = [1]                           
                                p(c_3) = [1]                           
                                p(c_4) = [4] x2 + [8]                  
                                p(c_5) = [1]                           
                                p(c_6) = [1]                           
                                p(c_7) = [1] x1 + [1]                  
                                p(c_8) = [0]                           
                                p(c_9) = [1] x1 + [0]                  
                               p(c_10) = [8]                           
          
          Following rules are strictly oriented:
          sort#2#(Cons(x4,x2)) = [2] x2 + [2] x4 + [17]
                               > [2] x2 + [1]          
                               = c_9(sort#2#(x2))      
          
          
          Following rules are (at-least) weakly oriented:
          
    *** 1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2))
          Weak TRS Rules:
            
          Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/1,c_10/0}
          Obligation:
            Innermost
            basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2))
          Weak TRS Rules:
            
          Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/1,c_10/0}
          Obligation:
            Innermost
            basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2))
               -->_1 sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2)):1
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            1: sort#2#(Cons(x4,x2)) ->
                 c_9(sort#2#(x2))     
    *** 1.1.1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1,c_9/1,c_10/0}
          Obligation:
            Innermost
            basic terms: {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}/{0,Cons,False,Nil,S,True}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).