*** 1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
        cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
        fold#3(insert_ord(x2),Nil()) -> Nil()
        fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
        insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
        insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
        leq#2(0(),x8) -> True()
        leq#2(S(x12),0()) -> False()
        leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        main(x3) -> fold#3(insert_ord(leq()),x3)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0}
      Obligation:
        Innermost
        basic terms: {cond_insert_ord_x_ys_1,fold#3,insert_ord#2,leq#2,main}/{0,Cons,False,Nil,S,True,insert_ord,leq}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
        cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
        fold#3#(insert_ord(x2),Nil()) -> c_3()
        fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
        insert_ord#2#(leq(),x2,Nil()) -> c_5()
        insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
        leq#2#(0(),x8) -> c_7()
        leq#2#(S(x12),0()) -> c_8()
        leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
        main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3))
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
        cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
        fold#3#(insert_ord(x2),Nil()) -> c_3()
        fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
        insert_ord#2#(leq(),x2,Nil()) -> c_5()
        insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
        leq#2#(0(),x8) -> c_7()
        leq#2#(S(x12),0()) -> c_8()
        leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
        main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
        cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
        fold#3(insert_ord(x2),Nil()) -> Nil()
        fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
        insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
        insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
        leq#2(0(),x8) -> True()
        leq#2(S(x12),0()) -> False()
        leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        main(x3) -> fold#3(insert_ord(leq()),x3)
      Signature:
        {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
      Obligation:
        Innermost
        basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
        cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
        fold#3(insert_ord(x2),Nil()) -> Nil()
        fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
        insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
        insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
        leq#2(0(),x8) -> True()
        leq#2(S(x12),0()) -> False()
        leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
        cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
        fold#3#(insert_ord(x2),Nil()) -> c_3()
        fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
        insert_ord#2#(leq(),x2,Nil()) -> c_5()
        insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
        leq#2#(0(),x8) -> c_7()
        leq#2#(S(x12),0()) -> c_8()
        leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
        main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3))
*** 1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
        cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
        fold#3#(insert_ord(x2),Nil()) -> c_3()
        fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
        insert_ord#2#(leq(),x2,Nil()) -> c_5()
        insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
        leq#2#(0(),x8) -> c_7()
        leq#2#(S(x12),0()) -> c_8()
        leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
        main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
        cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
        fold#3(insert_ord(x2),Nil()) -> Nil()
        fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
        insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
        insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
        leq#2(0(),x8) -> True()
        leq#2(S(x12),0()) -> False()
        leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
      Signature:
        {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
      Obligation:
        Innermost
        basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {2,3,5,7,8}
      by application of
        Pre({2,3,5,7,8}) = {1,4,6,9,10}.
      Here rules are labelled as follows:
        1:  cond_insert_ord_x_ys_1#(False()                       
                                   ,x0                            
                                   ,x5                            
                                   ,x2) -> c_1(insert_ord#2#(leq()
                                                            ,x0   
                                                            ,x2)) 
        2:  cond_insert_ord_x_ys_1#(True()                        
                                   ,x3                            
                                   ,x2                            
                                   ,x1) -> c_2()                  
        3:  fold#3#(insert_ord(x2),Nil()) ->                      
              c_3()                                               
        4:  fold#3#(insert_ord(x6)                                
                   ,Cons(x4,x2)) ->                               
              c_4(insert_ord#2#(x6                                
                               ,x4                                
                               ,fold#3(insert_ord(x6),x2))        
                 ,fold#3#(insert_ord(x6),x2))                     
        5:  insert_ord#2#(leq(),x2,Nil()) ->                      
              c_5()                                               
        6:  insert_ord#2#(leq()                                   
                         ,x6                                      
                         ,Cons(x4,x2)) ->                         
              c_6(cond_insert_ord_x_ys_1#(leq#2(x6                
                                               ,x4)               
                                         ,x6                      
                                         ,x4                      
                                         ,x2)                     
                 ,leq#2#(x6,x4))                                  
        7:  leq#2#(0(),x8) -> c_7()                               
        8:  leq#2#(S(x12),0()) -> c_8()                           
        9:  leq#2#(S(x4),S(x2)) ->                                
              c_9(leq#2#(x4,x2))                                  
        10: main#(x3) ->                                          
              c_10(fold#3#(insert_ord(leq())                      
                          ,x3))                                   
*** 1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
        fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
        insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
        leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
        main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3))
      Strict TRS Rules:
        
      Weak DP Rules:
        cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
        fold#3#(insert_ord(x2),Nil()) -> c_3()
        insert_ord#2#(leq(),x2,Nil()) -> c_5()
        leq#2#(0(),x8) -> c_7()
        leq#2#(S(x12),0()) -> c_8()
      Weak TRS Rules:
        cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
        cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
        fold#3(insert_ord(x2),Nil()) -> Nil()
        fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
        insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
        insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
        leq#2(0(),x8) -> True()
        leq#2(S(x12),0()) -> False()
        leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
      Signature:
        {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
      Obligation:
        Innermost
        basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
           -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3
           -->_1 insert_ord#2#(leq(),x2,Nil()) -> c_5():8
        
        2:S:fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
           -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3
           -->_1 insert_ord#2#(leq(),x2,Nil()) -> c_5():8
           -->_2 fold#3#(insert_ord(x2),Nil()) -> c_3():7
           -->_2 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)):2
        
        3:S:insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
           -->_2 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4
           -->_2 leq#2#(S(x12),0()) -> c_8():10
           -->_2 leq#2#(0(),x8) -> c_7():9
           -->_1 cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2():6
           -->_1 cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)):1
        
        4:S:leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
           -->_1 leq#2#(S(x12),0()) -> c_8():10
           -->_1 leq#2#(0(),x8) -> c_7():9
           -->_1 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4
        
        5:S:main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3))
           -->_1 fold#3#(insert_ord(x2),Nil()) -> c_3():7
           -->_1 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)):2
        
        6:W:cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
           
        
        7:W:fold#3#(insert_ord(x2),Nil()) -> c_3()
           
        
        8:W:insert_ord#2#(leq(),x2,Nil()) -> c_5()
           
        
        9:W:leq#2#(0(),x8) -> c_7()
           
        
        10:W:leq#2#(S(x12),0()) -> c_8()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        7:  fold#3#(insert_ord(x2),Nil()) ->    
              c_3()                             
        8:  insert_ord#2#(leq(),x2,Nil()) ->    
              c_5()                             
        6:  cond_insert_ord_x_ys_1#(True()      
                                   ,x3          
                                   ,x2          
                                   ,x1) -> c_2()
        9:  leq#2#(0(),x8) -> c_7()             
        10: leq#2#(S(x12),0()) -> c_8()         
*** 1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
        fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
        insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
        leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
        main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
        cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
        fold#3(insert_ord(x2),Nil()) -> Nil()
        fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
        insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
        insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
        leq#2(0(),x8) -> True()
        leq#2(S(x12),0()) -> False()
        leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
      Signature:
        {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
      Obligation:
        Innermost
        basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq}
    Applied Processor:
      RemoveHeads
    Proof:
      Consider the dependency graph
      
      1:S:cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
         -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3
      
      2:S:fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
         -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3
         -->_2 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)):2
      
      3:S:insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
         -->_2 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4
         -->_1 cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)):1
      
      4:S:leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
         -->_1 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4
      
      5:S:main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3))
         -->_1 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)):2
      
      
      Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
      
      [(5,main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3)))]
*** 1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
        fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
        insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
        leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
        cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
        fold#3(insert_ord(x2),Nil()) -> Nil()
        fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
        insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
        insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
        leq#2(0(),x8) -> True()
        leq#2(S(x12),0()) -> False()
        leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
      Signature:
        {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
      Obligation:
        Innermost
        basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq}
    Applied Processor:
      Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    Proof:
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
      
      Problem (R)
        Strict DP Rules:
          cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
          insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
          leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
        Strict TRS Rules:
          
        Weak DP Rules:
          fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
        Weak TRS Rules:
          cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
          cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
          fold#3(insert_ord(x2),Nil()) -> Nil()
          fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
          insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
          insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
          leq#2(0(),x8) -> True()
          leq#2(S(x12),0()) -> False()
          leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        Signature:
          {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        Obligation:
          Innermost
          basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq}
      
      Problem (S)
        Strict DP Rules:
          fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
        Strict TRS Rules:
          
        Weak DP Rules:
          cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
          insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
          leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
        Weak TRS Rules:
          cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
          cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
          fold#3(insert_ord(x2),Nil()) -> Nil()
          fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
          insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
          insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
          leq#2(0(),x8) -> True()
          leq#2(S(x12),0()) -> False()
          leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        Signature:
          {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        Obligation:
          Innermost
          basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq}
  *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
          insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
          leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
        Strict TRS Rules:
          
        Weak DP Rules:
          fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
        Weak TRS Rules:
          cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
          cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
          fold#3(insert_ord(x2),Nil()) -> Nil()
          fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
          insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
          insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
          leq#2(0(),x8) -> True()
          leq#2(S(x12),0()) -> False()
          leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        Signature:
          {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        Obligation:
          Innermost
          basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          3: insert_ord#2#(leq()                    
                          ,x6                       
                          ,Cons(x4,x2)) ->          
               c_6(cond_insert_ord_x_ys_1#(leq#2(x6 
                                                ,x4)
                                          ,x6       
                                          ,x4       
                                          ,x2)      
                  ,leq#2#(x6,x4))                   
          4: leq#2#(S(x4),S(x2)) ->                 
               c_9(leq#2#(x4,x2))                   
          
        Consider the set of all dependency pairs
          1: cond_insert_ord_x_ys_1#(False()                       
                                    ,x0                            
                                    ,x5                            
                                    ,x2) -> c_1(insert_ord#2#(leq()
                                                             ,x0   
                                                             ,x2)) 
          2: fold#3#(insert_ord(x6)                                
                    ,Cons(x4,x2)) ->                               
               c_4(insert_ord#2#(x6                                
                                ,x4                                
                                ,fold#3(insert_ord(x6),x2))        
                  ,fold#3#(insert_ord(x6),x2))                     
          3: insert_ord#2#(leq()                                   
                          ,x6                                      
                          ,Cons(x4,x2)) ->                         
               c_6(cond_insert_ord_x_ys_1#(leq#2(x6                
                                                ,x4)               
                                          ,x6                      
                                          ,x4                      
                                          ,x2)                     
                  ,leq#2#(x6,x4))                                  
          4: leq#2#(S(x4),S(x2)) ->                                
               c_9(leq#2#(x4,x2))                                  
        Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {3,4}
        These cover all (indirect) predecessors of dependency pairs
          {1,3,4}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
    *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
            insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
          Strict TRS Rules:
            
          Weak DP Rules:
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
          Weak TRS Rules:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
          Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
          Obligation:
            Innermost
            basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq}
        Applied Processor:
          NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a polynomial interpretation of kind constructor-based(mixed(2)):
          The following argument positions are considered usable:
            uargs(c_1) = {1},
            uargs(c_4) = {1,2},
            uargs(c_6) = {1,2},
            uargs(c_9) = {1}
          
          Following symbols are considered usable:
            {cond_insert_ord_x_ys_1,fold#3,insert_ord#2,cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}
          TcT has computed the following interpretation:
                                  p(0) = 1                          
                               p(Cons) = 1 + x1 + x2                
                              p(False) = 0                          
                                p(Nil) = 0                          
                                  p(S) = 1 + x1                     
                               p(True) = 0                          
             p(cond_insert_ord_x_ys_1) = 3 + x2 + x3 + x4           
                             p(fold#3) = x1*x2 + x1^2 + x2          
                         p(insert_ord) = 1                          
                       p(insert_ord#2) = 2 + x2 + x3                
                                p(leq) = 0                          
                              p(leq#2) = 0                          
                               p(main) = 2*x1^2                     
            p(cond_insert_ord_x_ys_1#) = x2*x3 + x2*x4 + x2^2 + 2*x4
                            p(fold#3#) = 1 + x1 + 3*x1^2 + 2*x2^2   
                      p(insert_ord#2#) = x2*x3 + x2^2 + 2*x3        
                             p(leq#2#) = x1                         
                              p(main#) = 2                          
                                p(c_1) = x1                         
                                p(c_2) = 1                          
                                p(c_3) = 0                          
                                p(c_4) = x1 + x2                    
                                p(c_5) = 1                          
                                p(c_6) = x1 + x2                    
                                p(c_7) = 1                          
                                p(c_8) = 0                          
                                p(c_9) = x1                         
                               p(c_10) = x1                         
          
          Following rules are strictly oriented:
                 insert_ord#2#(leq() = 2 + 2*x2 + x2*x6 + 2*x4 + x4*x6 + x6 + x6^2
                                 ,x6                                              
                       ,Cons(x4,x2))                                              
                                     > 2*x2 + x2*x6 + x4*x6 + x6 + x6^2           
                                     = c_6(cond_insert_ord_x_ys_1#(leq#2(x6       
                                                                        ,x4)      
                                                                  ,x6             
                                                                  ,x4             
                                                                  ,x2)            
                                          ,leq#2#(x6,x4))                         
          
                 leq#2#(S(x4),S(x2)) = 1 + x4                                     
                                     > x4                                         
                                     = c_9(leq#2#(x4,x2))                         
          
          
          Following rules are (at-least) weakly oriented:
          cond_insert_ord_x_ys_1#(False() =  x0*x2 + x0*x5 + x0^2 + 2*x2                 
                                      ,x0                                                
                                      ,x5                                                
                                     ,x2)                                                
                                          >= x0*x2 + x0^2 + 2*x2                         
                                          =  c_1(insert_ord#2#(leq(),x0,x2))             
          
                   fold#3#(insert_ord(x6) =  7 + 4*x2 + 4*x2*x4 + 2*x2^2 + 4*x4 + 2*x4^2 
                            ,Cons(x4,x2))                                                
                                          >= 7 + 4*x2 + 2*x2*x4 + 2*x2^2 + x4 + x4^2     
                                          =  c_4(insert_ord#2#(x6                        
                                                              ,x4                        
                                                              ,fold#3(insert_ord(x6),x2))
                                                ,fold#3#(insert_ord(x6),x2))             
          
           cond_insert_ord_x_ys_1(False() =  3 + x0 + x2 + x5                            
                                      ,x0                                                
                                      ,x5                                                
                                     ,x2)                                                
                                          >= 3 + x0 + x2 + x5                            
                                          =  Cons(x5                                     
                                                 ,insert_ord#2(leq(),x0,x2))             
          
            cond_insert_ord_x_ys_1(True() =  3 + x1 + x2 + x3                            
                                      ,x3                                                
                                      ,x2                                                
                                     ,x1)                                                
                                          >= 2 + x1 + x2 + x3                            
                                          =  Cons(x3,Cons(x2,x1))                        
          
             fold#3(insert_ord(x2),Nil()) =  1                                           
                                          >= 0                                           
                                          =  Nil()                                       
          
                    fold#3(insert_ord(x6) =  3 + 2*x2 + 2*x4                             
                            ,Cons(x4,x2))                                                
                                          >= 3 + 2*x2 + x4                               
                                          =  insert_ord#2(x6                             
                                                         ,x4                             
                                                         ,fold#3(insert_ord(x6),x2))     
          
             insert_ord#2(leq(),x2,Nil()) =  2 + x2                                      
                                          >= 1 + x2                                      
                                          =  Cons(x2,Nil())                              
          
                       insert_ord#2(leq() =  3 + x2 + x4 + x6                            
                                      ,x6                                                
                            ,Cons(x4,x2))                                                
                                          >= 3 + x2 + x4 + x6                            
                                          =  cond_insert_ord_x_ys_1(leq#2(x6             
                                                                         ,x4)            
                                                                   ,x6                   
                                                                   ,x4                   
                                                                   ,x2)                  
          
    *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
          Strict TRS Rules:
            
          Weak DP Rules:
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
            insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
          Weak TRS Rules:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
          Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
          Obligation:
            Innermost
            basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
            insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
          Weak TRS Rules:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
          Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
          Obligation:
            Innermost
            basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
               -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3
            
            2:W:fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
               -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3
               -->_2 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)):2
            
            3:W:insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
               -->_2 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4
               -->_1 cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)):1
            
            4:W:leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
               -->_1 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            2: fold#3#(insert_ord(x6)                                
                      ,Cons(x4,x2)) ->                               
                 c_4(insert_ord#2#(x6                                
                                  ,x4                                
                                  ,fold#3(insert_ord(x6),x2))        
                    ,fold#3#(insert_ord(x6),x2))                     
            1: cond_insert_ord_x_ys_1#(False()                       
                                      ,x0                            
                                      ,x5                            
                                      ,x2) -> c_1(insert_ord#2#(leq()
                                                               ,x0   
                                                               ,x2)) 
            3: insert_ord#2#(leq()                                   
                            ,x6                                      
                            ,Cons(x4,x2)) ->                         
                 c_6(cond_insert_ord_x_ys_1#(leq#2(x6                
                                                  ,x4)               
                                            ,x6                      
                                            ,x4                      
                                            ,x2)                     
                    ,leq#2#(x6,x4))                                  
            4: leq#2#(S(x4),S(x2)) ->                                
                 c_9(leq#2#(x4,x2))                                  
    *** 1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
          Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
          Obligation:
            Innermost
            basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).
    
  *** 1.1.1.1.1.1.2 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
        Strict TRS Rules:
          
        Weak DP Rules:
          cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
          insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
          leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
        Weak TRS Rules:
          cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
          cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
          fold#3(insert_ord(x2),Nil()) -> Nil()
          fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
          insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
          insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
          leq#2(0(),x8) -> True()
          leq#2(S(x12),0()) -> False()
          leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        Signature:
          {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        Obligation:
          Innermost
          basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
             -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3
             -->_2 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)):1
          
          2:W:cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
             -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3
          
          3:W:insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
             -->_2 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4
             -->_1 cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)):2
          
          4:W:leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
             -->_1 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: insert_ord#2#(leq()                                   
                          ,x6                                      
                          ,Cons(x4,x2)) ->                         
               c_6(cond_insert_ord_x_ys_1#(leq#2(x6                
                                                ,x4)               
                                          ,x6                      
                                          ,x4                      
                                          ,x2)                     
                  ,leq#2#(x6,x4))                                  
          2: cond_insert_ord_x_ys_1#(False()                       
                                    ,x0                            
                                    ,x5                            
                                    ,x2) -> c_1(insert_ord#2#(leq()
                                                             ,x0   
                                                             ,x2)) 
          4: leq#2#(S(x4),S(x2)) ->                                
               c_9(leq#2#(x4,x2))                                  
  *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
          cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
          fold#3(insert_ord(x2),Nil()) -> Nil()
          fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
          insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
          insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
          leq#2(0(),x8) -> True()
          leq#2(S(x12),0()) -> False()
          leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        Signature:
          {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        Obligation:
          Innermost
          basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq}
      Applied Processor:
        SimplifyRHS
      Proof:
        Consider the dependency graph
          1:S:fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
             -->_2 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2))
  *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
          cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
          fold#3(insert_ord(x2),Nil()) -> Nil()
          fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
          insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
          insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
          leq#2(0(),x8) -> True()
          leq#2(S(x12),0()) -> False()
          leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        Signature:
          {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        Obligation:
          Innermost
          basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq}
      Applied Processor:
        UsableRules
      Proof:
        We replace rewrite rules by usable rules:
          fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2))
  *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          
        Signature:
          {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        Obligation:
          Innermost
          basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: fold#3#(insert_ord(x6)           
                    ,Cons(x4,x2)) ->          
               c_4(fold#3#(insert_ord(x6),x2))
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
          Obligation:
            Innermost
            basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq}
        Applied Processor:
          NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(c_4) = {1}
          
          Following symbols are considered usable:
            {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}
          TcT has computed the following interpretation:
                                  p(0) = [0]                  
                               p(Cons) = [1] x1 + [1] x2 + [4]
                              p(False) = [8]                  
                                p(Nil) = [1]                  
                                  p(S) = [0]                  
                               p(True) = [1]                  
             p(cond_insert_ord_x_ys_1) = [1] x1 + [2]         
                             p(fold#3) = [1] x2 + [1]         
                         p(insert_ord) = [1] x1 + [0]         
                       p(insert_ord#2) = [2] x2 + [2] x3 + [0]
                                p(leq) = [2]                  
                              p(leq#2) = [4] x1 + [1] x2 + [1]
                               p(main) = [1]                  
            p(cond_insert_ord_x_ys_1#) = [2] x4 + [1]         
                            p(fold#3#) = [1] x1 + [4] x2 + [0]
                      p(insert_ord#2#) = [1] x2 + [1]         
                             p(leq#2#) = [2] x2 + [0]         
                              p(main#) = [1]                  
                                p(c_1) = [1] x1 + [1]         
                                p(c_2) = [1]                  
                                p(c_3) = [8]                  
                                p(c_4) = [1] x1 + [12]        
                                p(c_5) = [1]                  
                                p(c_6) = [1] x2 + [1]         
                                p(c_7) = [1]                  
                                p(c_8) = [0]                  
                                p(c_9) = [1]                  
                               p(c_10) = [1]                  
          
          Following rules are strictly oriented:
          fold#3#(insert_ord(x6) = [4] x2 + [4] x4 + [1] x6 + [16]
                   ,Cons(x4,x2))                                  
                                 > [4] x2 + [1] x6 + [12]         
                                 = c_4(fold#3#(insert_ord(x6),x2))
          
          
          Following rules are (at-least) weakly oriented:
          
    *** 1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2))
          Weak TRS Rules:
            
          Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
          Obligation:
            Innermost
            basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2))
          Weak TRS Rules:
            
          Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
          Obligation:
            Innermost
            basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2))
               -->_1 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2)):1
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            1: fold#3#(insert_ord(x6)           
                      ,Cons(x4,x2)) ->          
                 c_4(fold#3#(insert_ord(x6),x2))
    *** 1.1.1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
          Obligation:
            Innermost
            basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).