*** 1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) fold#3(insert_ord(x2),Nil()) -> Nil() fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2)) insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil()) insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) main(x3) -> fold#3(insert_ord(leq()),x3) Weak DP Rules: Weak TRS Rules: Signature: {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1,fold#3,insert_ord#2,leq#2,main}/{0,Cons,False,Nil,S,True,insert_ord,leq} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)) cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2() fold#3#(insert_ord(x2),Nil()) -> c_3() fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)) insert_ord#2#(leq(),x2,Nil()) -> c_5() insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(0(),x8) -> c_7() leq#2#(S(x12),0()) -> c_8() leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3)) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)) cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2() fold#3#(insert_ord(x2),Nil()) -> c_3() fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)) insert_ord#2#(leq(),x2,Nil()) -> c_5() insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(0(),x8) -> c_7() leq#2#(S(x12),0()) -> c_8() leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) fold#3(insert_ord(x2),Nil()) -> Nil() fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2)) insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil()) insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) main(x3) -> fold#3(insert_ord(leq()),x3) Signature: {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) fold#3(insert_ord(x2),Nil()) -> Nil() fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2)) insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil()) insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)) cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2() fold#3#(insert_ord(x2),Nil()) -> c_3() fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)) insert_ord#2#(leq(),x2,Nil()) -> c_5() insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(0(),x8) -> c_7() leq#2#(S(x12),0()) -> c_8() leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3)) *** 1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)) cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2() fold#3#(insert_ord(x2),Nil()) -> c_3() fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)) insert_ord#2#(leq(),x2,Nil()) -> c_5() insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(0(),x8) -> c_7() leq#2#(S(x12),0()) -> c_8() leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) fold#3(insert_ord(x2),Nil()) -> Nil() fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2)) insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil()) insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) Signature: {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {2,3,5,7,8} by application of Pre({2,3,5,7,8}) = {1,4,6,9,10}. Here rules are labelled as follows: 1: cond_insert_ord_x_ys_1#(False() ,x0 ,x5 ,x2) -> c_1(insert_ord#2#(leq() ,x0 ,x2)) 2: cond_insert_ord_x_ys_1#(True() ,x3 ,x2 ,x1) -> c_2() 3: fold#3#(insert_ord(x2),Nil()) -> c_3() 4: fold#3#(insert_ord(x6) ,Cons(x4,x2)) -> c_4(insert_ord#2#(x6 ,x4 ,fold#3(insert_ord(x6),x2)) ,fold#3#(insert_ord(x6),x2)) 5: insert_ord#2#(leq(),x2,Nil()) -> c_5() 6: insert_ord#2#(leq() ,x6 ,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6 ,x4) ,x6 ,x4 ,x2) ,leq#2#(x6,x4)) 7: leq#2#(0(),x8) -> c_7() 8: leq#2#(S(x12),0()) -> c_8() 9: leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) 10: main#(x3) -> c_10(fold#3#(insert_ord(leq()) ,x3)) *** 1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)) fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)) insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3)) Strict TRS Rules: Weak DP Rules: cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2() fold#3#(insert_ord(x2),Nil()) -> c_3() insert_ord#2#(leq(),x2,Nil()) -> c_5() leq#2#(0(),x8) -> c_7() leq#2#(S(x12),0()) -> c_8() Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) fold#3(insert_ord(x2),Nil()) -> Nil() fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2)) insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil()) insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) Signature: {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)) -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3 -->_1 insert_ord#2#(leq(),x2,Nil()) -> c_5():8 2:S:fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)) -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3 -->_1 insert_ord#2#(leq(),x2,Nil()) -> c_5():8 -->_2 fold#3#(insert_ord(x2),Nil()) -> c_3():7 -->_2 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)):2 3:S:insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) -->_2 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4 -->_2 leq#2#(S(x12),0()) -> c_8():10 -->_2 leq#2#(0(),x8) -> c_7():9 -->_1 cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2():6 -->_1 cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)):1 4:S:leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) -->_1 leq#2#(S(x12),0()) -> c_8():10 -->_1 leq#2#(0(),x8) -> c_7():9 -->_1 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4 5:S:main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3)) -->_1 fold#3#(insert_ord(x2),Nil()) -> c_3():7 -->_1 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)):2 6:W:cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2() 7:W:fold#3#(insert_ord(x2),Nil()) -> c_3() 8:W:insert_ord#2#(leq(),x2,Nil()) -> c_5() 9:W:leq#2#(0(),x8) -> c_7() 10:W:leq#2#(S(x12),0()) -> c_8() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: fold#3#(insert_ord(x2),Nil()) -> c_3() 8: insert_ord#2#(leq(),x2,Nil()) -> c_5() 6: cond_insert_ord_x_ys_1#(True() ,x3 ,x2 ,x1) -> c_2() 9: leq#2#(0(),x8) -> c_7() 10: leq#2#(S(x12),0()) -> c_8() *** 1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)) fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)) insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) fold#3(insert_ord(x2),Nil()) -> Nil() fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2)) insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil()) insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) Signature: {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq} Applied Processor: RemoveHeads Proof: Consider the dependency graph 1:S:cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)) -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3 2:S:fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)) -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3 -->_2 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)):2 3:S:insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) -->_2 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4 -->_1 cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)):1 4:S:leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) -->_1 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4 5:S:main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3)) -->_1 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)):2 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(5,main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3)))] *** 1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)) fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)) insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) fold#3(insert_ord(x2),Nil()) -> Nil() fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2)) insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil()) insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) Signature: {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)) insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) Strict TRS Rules: Weak DP Rules: fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)) Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) fold#3(insert_ord(x2),Nil()) -> Nil() fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2)) insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil()) insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) Signature: {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq} Problem (S) Strict DP Rules: fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)) Strict TRS Rules: Weak DP Rules: cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)) insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) fold#3(insert_ord(x2),Nil()) -> Nil() fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2)) insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil()) insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) Signature: {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq} *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)) insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) Strict TRS Rules: Weak DP Rules: fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)) Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) fold#3(insert_ord(x2),Nil()) -> Nil() fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2)) insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil()) insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) Signature: {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 3: insert_ord#2#(leq() ,x6 ,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6 ,x4) ,x6 ,x4 ,x2) ,leq#2#(x6,x4)) 4: leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) Consider the set of all dependency pairs 1: cond_insert_ord_x_ys_1#(False() ,x0 ,x5 ,x2) -> c_1(insert_ord#2#(leq() ,x0 ,x2)) 2: fold#3#(insert_ord(x6) ,Cons(x4,x2)) -> c_4(insert_ord#2#(x6 ,x4 ,fold#3(insert_ord(x6),x2)) ,fold#3#(insert_ord(x6),x2)) 3: insert_ord#2#(leq() ,x6 ,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6 ,x4) ,x6 ,x4 ,x2) ,leq#2#(x6,x4)) 4: leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2)) SPACE(?,?)on application of the dependency pairs {3,4} These cover all (indirect) predecessors of dependency pairs {1,3,4} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)) insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) Strict TRS Rules: Weak DP Rules: fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)) Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) fold#3(insert_ord(x2),Nil()) -> Nil() fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2)) insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil()) insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) Signature: {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_4) = {1,2}, uargs(c_6) = {1,2}, uargs(c_9) = {1} Following symbols are considered usable: {cond_insert_ord_x_ys_1,fold#3,insert_ord#2,cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#} TcT has computed the following interpretation: p(0) = 1 p(Cons) = 1 + x1 + x2 p(False) = 0 p(Nil) = 0 p(S) = 1 + x1 p(True) = 0 p(cond_insert_ord_x_ys_1) = 3 + x2 + x3 + x4 p(fold#3) = x1*x2 + x1^2 + x2 p(insert_ord) = 1 p(insert_ord#2) = 2 + x2 + x3 p(leq) = 0 p(leq#2) = 0 p(main) = 2*x1^2 p(cond_insert_ord_x_ys_1#) = x2*x3 + x2*x4 + x2^2 + 2*x4 p(fold#3#) = 1 + x1 + 3*x1^2 + 2*x2^2 p(insert_ord#2#) = x2*x3 + x2^2 + 2*x3 p(leq#2#) = x1 p(main#) = 2 p(c_1) = x1 p(c_2) = 1 p(c_3) = 0 p(c_4) = x1 + x2 p(c_5) = 1 p(c_6) = x1 + x2 p(c_7) = 1 p(c_8) = 0 p(c_9) = x1 p(c_10) = x1 Following rules are strictly oriented: insert_ord#2#(leq() = 2 + 2*x2 + x2*x6 + 2*x4 + x4*x6 + x6 + x6^2 ,x6 ,Cons(x4,x2)) > 2*x2 + x2*x6 + x4*x6 + x6 + x6^2 = c_6(cond_insert_ord_x_ys_1#(leq#2(x6 ,x4) ,x6 ,x4 ,x2) ,leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) = 1 + x4 > x4 = c_9(leq#2#(x4,x2)) Following rules are (at-least) weakly oriented: cond_insert_ord_x_ys_1#(False() = x0*x2 + x0*x5 + x0^2 + 2*x2 ,x0 ,x5 ,x2) >= x0*x2 + x0^2 + 2*x2 = c_1(insert_ord#2#(leq(),x0,x2)) fold#3#(insert_ord(x6) = 7 + 4*x2 + 4*x2*x4 + 2*x2^2 + 4*x4 + 2*x4^2 ,Cons(x4,x2)) >= 7 + 4*x2 + 2*x2*x4 + 2*x2^2 + x4 + x4^2 = c_4(insert_ord#2#(x6 ,x4 ,fold#3(insert_ord(x6),x2)) ,fold#3#(insert_ord(x6),x2)) cond_insert_ord_x_ys_1(False() = 3 + x0 + x2 + x5 ,x0 ,x5 ,x2) >= 3 + x0 + x2 + x5 = Cons(x5 ,insert_ord#2(leq(),x0,x2)) cond_insert_ord_x_ys_1(True() = 3 + x1 + x2 + x3 ,x3 ,x2 ,x1) >= 2 + x1 + x2 + x3 = Cons(x3,Cons(x2,x1)) fold#3(insert_ord(x2),Nil()) = 1 >= 0 = Nil() fold#3(insert_ord(x6) = 3 + 2*x2 + 2*x4 ,Cons(x4,x2)) >= 3 + 2*x2 + x4 = insert_ord#2(x6 ,x4 ,fold#3(insert_ord(x6),x2)) insert_ord#2(leq(),x2,Nil()) = 2 + x2 >= 1 + x2 = Cons(x2,Nil()) insert_ord#2(leq() = 3 + x2 + x4 + x6 ,x6 ,Cons(x4,x2)) >= 3 + x2 + x4 + x6 = cond_insert_ord_x_ys_1(leq#2(x6 ,x4) ,x6 ,x4 ,x2) *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)) Strict TRS Rules: Weak DP Rules: fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)) insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) fold#3(insert_ord(x2),Nil()) -> Nil() fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2)) insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil()) insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) Signature: {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)) fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)) insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) fold#3(insert_ord(x2),Nil()) -> Nil() fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2)) insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil()) insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) Signature: {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)) -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3 2:W:fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)) -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3 -->_2 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)):2 3:W:insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) -->_2 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4 -->_1 cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)):1 4:W:leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) -->_1 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: fold#3#(insert_ord(x6) ,Cons(x4,x2)) -> c_4(insert_ord#2#(x6 ,x4 ,fold#3(insert_ord(x6),x2)) ,fold#3#(insert_ord(x6),x2)) 1: cond_insert_ord_x_ys_1#(False() ,x0 ,x5 ,x2) -> c_1(insert_ord#2#(leq() ,x0 ,x2)) 3: insert_ord#2#(leq() ,x6 ,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6 ,x4) ,x6 ,x4 ,x2) ,leq#2#(x6,x4)) 4: leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) *** 1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) fold#3(insert_ord(x2),Nil()) -> Nil() fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2)) insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil()) insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) Signature: {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)) Strict TRS Rules: Weak DP Rules: cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)) insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) fold#3(insert_ord(x2),Nil()) -> Nil() fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2)) insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil()) insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) Signature: {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)) -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3 -->_2 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)):1 2:W:cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)) -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3 3:W:insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)) -->_2 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4 -->_1 cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)):2 4:W:leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) -->_1 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: insert_ord#2#(leq() ,x6 ,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6 ,x4) ,x6 ,x4 ,x2) ,leq#2#(x6,x4)) 2: cond_insert_ord_x_ys_1#(False() ,x0 ,x5 ,x2) -> c_1(insert_ord#2#(leq() ,x0 ,x2)) 4: leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)) *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) fold#3(insert_ord(x2),Nil()) -> Nil() fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2)) insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil()) insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) Signature: {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)) -->_2 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2)) *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2)) cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1)) fold#3(insert_ord(x2),Nil()) -> Nil() fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2)) insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil()) insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2) leq#2(0(),x8) -> True() leq#2(S(x12),0()) -> False() leq#2(S(x4),S(x2)) -> leq#2(x4,x2) Signature: {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2)) *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: fold#3#(insert_ord(x6) ,Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1} Following symbols are considered usable: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#} TcT has computed the following interpretation: p(0) = [0] p(Cons) = [1] x1 + [1] x2 + [4] p(False) = [8] p(Nil) = [1] p(S) = [0] p(True) = [1] p(cond_insert_ord_x_ys_1) = [1] x1 + [2] p(fold#3) = [1] x2 + [1] p(insert_ord) = [1] x1 + [0] p(insert_ord#2) = [2] x2 + [2] x3 + [0] p(leq) = [2] p(leq#2) = [4] x1 + [1] x2 + [1] p(main) = [1] p(cond_insert_ord_x_ys_1#) = [2] x4 + [1] p(fold#3#) = [1] x1 + [4] x2 + [0] p(insert_ord#2#) = [1] x2 + [1] p(leq#2#) = [2] x2 + [0] p(main#) = [1] p(c_1) = [1] x1 + [1] p(c_2) = [1] p(c_3) = [8] p(c_4) = [1] x1 + [12] p(c_5) = [1] p(c_6) = [1] x2 + [1] p(c_7) = [1] p(c_8) = [0] p(c_9) = [1] p(c_10) = [1] Following rules are strictly oriented: fold#3#(insert_ord(x6) = [4] x2 + [4] x4 + [1] x6 + [16] ,Cons(x4,x2)) > [4] x2 + [1] x6 + [12] = c_4(fold#3#(insert_ord(x6),x2)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2)) Weak TRS Rules: Signature: {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2)) Weak TRS Rules: Signature: {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2)) -->_1 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: fold#3#(insert_ord(x6) ,Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2)) *** 1.1.1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}/{0,Cons,False,Nil,S,True,insert_ord,leq} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).