(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(0, 1, x) → f(g(x), g(x), x)
f(g(x), y, z) → g(f(x, y, z))
f(x, g(y), z) → g(f(x, y, z))
f(x, y, g(z)) → g(f(x, y, z))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(0', 1', x) → f(g(x), g(x), x)
f(g(x), y, z) → g(f(x, y, z))
f(x, g(y), z) → g(f(x, y, z))
f(x, y, g(z)) → g(f(x, y, z))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
f(0', 1', x) → f(g(x), g(x), x)
f(g(x), y, z) → g(f(x, y, z))
f(x, g(y), z) → g(f(x, y, z))
f(x, y, g(z)) → g(f(x, y, z))
Types:
f :: 0':1':g → 0':1':g → 0':1':g → 0':1':g
0' :: 0':1':g
1' :: 0':1':g
g :: 0':1':g → 0':1':g
hole_0':1':g1_0 :: 0':1':g
gen_0':1':g2_0 :: Nat → 0':1':g
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(6) Obligation:
Innermost TRS:
Rules:
f(
0',
1',
x) →
f(
g(
x),
g(
x),
x)
f(
g(
x),
y,
z) →
g(
f(
x,
y,
z))
f(
x,
g(
y),
z) →
g(
f(
x,
y,
z))
f(
x,
y,
g(
z)) →
g(
f(
x,
y,
z))
Types:
f :: 0':1':g → 0':1':g → 0':1':g → 0':1':g
0' :: 0':1':g
1' :: 0':1':g
g :: 0':1':g → 0':1':g
hole_0':1':g1_0 :: 0':1':g
gen_0':1':g2_0 :: Nat → 0':1':g
Generator Equations:
gen_0':1':g2_0(0) ⇔ 1'
gen_0':1':g2_0(+(x, 1)) ⇔ g(gen_0':1':g2_0(x))
The following defined symbols remain to be analysed:
f
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_0':1':g2_0(
+(
1,
n4_0)),
gen_0':1':g2_0(
b),
gen_0':1':g2_0(
c)) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
f(gen_0':1':g2_0(+(1, 0)), gen_0':1':g2_0(b), gen_0':1':g2_0(c))
Induction Step:
f(gen_0':1':g2_0(+(1, +(n4_0, 1))), gen_0':1':g2_0(b), gen_0':1':g2_0(c)) →RΩ(1)
g(f(gen_0':1':g2_0(+(1, n4_0)), gen_0':1':g2_0(b), gen_0':1':g2_0(c))) →IH
g(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
f(
0',
1',
x) →
f(
g(
x),
g(
x),
x)
f(
g(
x),
y,
z) →
g(
f(
x,
y,
z))
f(
x,
g(
y),
z) →
g(
f(
x,
y,
z))
f(
x,
y,
g(
z)) →
g(
f(
x,
y,
z))
Types:
f :: 0':1':g → 0':1':g → 0':1':g → 0':1':g
0' :: 0':1':g
1' :: 0':1':g
g :: 0':1':g → 0':1':g
hole_0':1':g1_0 :: 0':1':g
gen_0':1':g2_0 :: Nat → 0':1':g
Lemmas:
f(gen_0':1':g2_0(+(1, n4_0)), gen_0':1':g2_0(b), gen_0':1':g2_0(c)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':1':g2_0(0) ⇔ 1'
gen_0':1':g2_0(+(x, 1)) ⇔ g(gen_0':1':g2_0(x))
No more defined symbols left to analyse.
(10) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':1':g2_0(+(1, n4_0)), gen_0':1':g2_0(b), gen_0':1':g2_0(c)) → *3_0, rt ∈ Ω(n40)
(11) BOUNDS(n^1, INF)
(12) Obligation:
Innermost TRS:
Rules:
f(
0',
1',
x) →
f(
g(
x),
g(
x),
x)
f(
g(
x),
y,
z) →
g(
f(
x,
y,
z))
f(
x,
g(
y),
z) →
g(
f(
x,
y,
z))
f(
x,
y,
g(
z)) →
g(
f(
x,
y,
z))
Types:
f :: 0':1':g → 0':1':g → 0':1':g → 0':1':g
0' :: 0':1':g
1' :: 0':1':g
g :: 0':1':g → 0':1':g
hole_0':1':g1_0 :: 0':1':g
gen_0':1':g2_0 :: Nat → 0':1':g
Lemmas:
f(gen_0':1':g2_0(+(1, n4_0)), gen_0':1':g2_0(b), gen_0':1':g2_0(c)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':1':g2_0(0) ⇔ 1'
gen_0':1':g2_0(+(x, 1)) ⇔ g(gen_0':1':g2_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':1':g2_0(+(1, n4_0)), gen_0':1':g2_0(b), gen_0':1':g2_0(c)) → *3_0, rt ∈ Ω(n40)
(14) BOUNDS(n^1, INF)