*** 1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: max(L(x)) -> x max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) Weak DP Rules: Weak TRS Rules: Signature: {max/1} / {0/0,L/1,N/2,s/1} Obligation: Innermost basic terms: {max}/{0,L,N,s} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs max#(L(x)) -> c_1() max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) max#(N(L(0()),L(y))) -> c_3() max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: max#(L(x)) -> c_1() max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) max#(N(L(0()),L(y))) -> c_3() max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: max(L(x)) -> x max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} Obligation: Innermost basic terms: {max#}/{0,L,N,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) max#(L(x)) -> c_1() max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) max#(N(L(0()),L(y))) -> c_3() max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) *** 1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: max#(L(x)) -> c_1() max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) max#(N(L(0()),L(y))) -> c_3() max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} Obligation: Innermost basic terms: {max#}/{0,L,N,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,3} by application of Pre({1,3}) = {2,4}. Here rules are labelled as follows: 1: max#(L(x)) -> c_1() 2: max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))) ,max#(N(y,z))) 3: max#(N(L(0()),L(y))) -> c_3() 4: max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) *** 1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) Strict TRS Rules: Weak DP Rules: max#(L(x)) -> c_1() max#(N(L(0()),L(y))) -> c_3() Weak TRS Rules: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} Obligation: Innermost basic terms: {max#}/{0,L,N,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) -->_2 max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))):2 -->_1 max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))):2 -->_2 max#(N(L(0()),L(y))) -> c_3():4 -->_1 max#(N(L(0()),L(y))) -> c_3():4 -->_2 max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))):1 2:S:max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) -->_1 max#(N(L(0()),L(y))) -> c_3():4 -->_1 max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))):2 3:W:max#(L(x)) -> c_1() 4:W:max#(N(L(0()),L(y))) -> c_3() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: max#(L(x)) -> c_1() 4: max#(N(L(0()),L(y))) -> c_3() *** 1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} Obligation: Innermost basic terms: {max#}/{0,L,N,s} Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} Proof: We decompose the input problem according to the dependency graph into the upper component max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) and a lower component max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) Further, following extension rules are added to the lower component. max#(N(L(x),N(y,z))) -> max#(N(y,z)) max#(N(L(x),N(y,z))) -> max#(N(L(x),L(max(N(y,z))))) *** 1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} Obligation: Innermost basic terms: {max#}/{0,L,N,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))) ,max#(N(y,z))) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} Obligation: Innermost basic terms: {max#}/{0,L,N,s} Applied Processor: NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_2) = {1,2} Following symbols are considered usable: {max#} TcT has computed the following interpretation: p(0) = [1] [1] p(L) = [0] [0] p(N) = [0 1] x2 + [0] [0 1] [2] p(max) = [0 0] x1 + [0] [1 0] [0] p(s) = [0] [0] p(max#) = [1 0] x1 + [0] [0 0] [1] p(c_1) = [1] [2] p(c_2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [0] p(c_3) = [2] [0] p(c_4) = [2] [2] Following rules are strictly oriented: max#(N(L(x),N(y,z))) = [0 1] z + [2] [0 0] [1] > [0 1] z + [1] [0 0] [1] = c_2(max#(N(L(x),L(max(N(y,z))))) ,max#(N(y,z))) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) Weak TRS Rules: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} Obligation: Innermost basic terms: {max#}/{0,L,N,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) Weak TRS Rules: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} Obligation: Innermost basic terms: {max#}/{0,L,N,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) -->_2 max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))) ,max#(N(y,z))) *** 1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} Obligation: Innermost basic terms: {max#}/{0,L,N,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) Strict TRS Rules: Weak DP Rules: max#(N(L(x),N(y,z))) -> max#(N(y,z)) max#(N(L(x),N(y,z))) -> max#(N(L(x),L(max(N(y,z))))) Weak TRS Rules: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} Obligation: Innermost basic terms: {max#}/{0,L,N,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) Strict TRS Rules: Weak DP Rules: max#(N(L(x),N(y,z))) -> max#(N(y,z)) max#(N(L(x),N(y,z))) -> max#(N(L(x),L(max(N(y,z))))) Weak TRS Rules: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} Obligation: Innermost basic terms: {max#}/{0,L,N,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1} Following symbols are considered usable: {max,max#} TcT has computed the following interpretation: p(0) = [2] p(L) = [1] x1 + [0] p(N) = [1] x1 + [1] x2 + [0] p(max) = [1] x1 + [0] p(s) = [1] x1 + [1] p(max#) = [8] x1 + [4] p(c_1) = [0] p(c_2) = [1] x1 + [1] x2 + [1] p(c_3) = [1] p(c_4) = [1] x1 + [15] Following rules are strictly oriented: max#(N(L(s(x)),L(s(y)))) = [8] x + [8] y + [20] > [8] x + [8] y + [19] = c_4(max#(N(L(x),L(y)))) Following rules are (at-least) weakly oriented: max#(N(L(x),N(y,z))) = [8] x + [8] y + [8] z + [4] >= [8] y + [8] z + [4] = max#(N(y,z)) max#(N(L(x),N(y,z))) = [8] x + [8] y + [8] z + [4] >= [8] x + [8] y + [8] z + [4] = max#(N(L(x),L(max(N(y,z))))) max(N(L(x),N(y,z))) = [1] x + [1] y + [1] z + [0] >= [1] x + [1] y + [1] z + [0] = max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) = [1] y + [2] >= [1] y + [0] = y max(N(L(s(x)),L(s(y)))) = [1] x + [1] y + [2] >= [1] x + [1] y + [1] = s(max(N(L(x),L(y)))) *** 1.1.1.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: max#(N(L(x),N(y,z))) -> max#(N(y,z)) max#(N(L(x),N(y,z))) -> max#(N(L(x),L(max(N(y,z))))) max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) Weak TRS Rules: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} Obligation: Innermost basic terms: {max#}/{0,L,N,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: max#(N(L(x),N(y,z))) -> max#(N(y,z)) max#(N(L(x),N(y,z))) -> max#(N(L(x),L(max(N(y,z))))) max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) Weak TRS Rules: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} Obligation: Innermost basic terms: {max#}/{0,L,N,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:max#(N(L(x),N(y,z))) -> max#(N(y,z)) -->_1 max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))):3 -->_1 max#(N(L(x),N(y,z))) -> max#(N(L(x),L(max(N(y,z))))):2 -->_1 max#(N(L(x),N(y,z))) -> max#(N(y,z)):1 2:W:max#(N(L(x),N(y,z))) -> max#(N(L(x),L(max(N(y,z))))) -->_1 max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))):3 3:W:max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) -->_1 max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: max#(N(L(x),N(y,z))) -> max#(N(y ,z)) 2: max#(N(L(x),N(y,z))) -> max#(N(L(x),L(max(N(y,z))))) 3: max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) *** 1.1.1.1.1.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} Obligation: Innermost basic terms: {max#}/{0,L,N,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).