*** 1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        +(x,+(y,z)) -> +(+(x,y),z)
        +(x,0()) -> x
        +(0(),x) -> x
        +(I(x),I(y)) -> O(+(+(x,y),I(0())))
        +(I(x),O(y)) -> I(+(x,y))
        +(O(x),I(y)) -> I(+(x,y))
        +(O(x),O(y)) -> O(+(x,y))
        -(x,0()) -> x
        -(0(),x) -> 0()
        -(I(x),I(y)) -> O(-(x,y))
        -(I(x),O(y)) -> I(-(x,y))
        -(O(x),I(y)) -> I(-(-(x,y),I(1())))
        -(O(x),O(y)) -> O(-(x,y))
        BS(L(x)) -> true()
        BS(N(x,l(),r())) -> and(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r())))
        Log(x) -> -(Log'(x),I(0()))
        Log'(0()) -> 0()
        Log'(I(x)) -> +(Log'(x),I(0()))
        Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
        Max(L(x)) -> x
        Max(N(x,l(),r())) -> Max(r())
        Min(L(x)) -> x
        Min(N(x,l(),r())) -> Min(l())
        O(0()) -> 0()
        Size(L(x)) -> I(0())
        Size(N(x,l(),r())) -> +(+(Size(l()),Size(r())),I(1()))
        Val(L(x)) -> x
        Val(N(x,l(),r())) -> x
        WB(L(x)) -> true()
        WB(N(x,l(),r())) -> and(if(ge(Size(l()),Size(r())),ge(I(0()),-(Size(l()),Size(r()))),ge(I(0()),-(Size(r()),Size(l())))),and(WB(l()),WB(r())))
        and(x,false()) -> false()
        and(x,true()) -> x
        ge(x,0()) -> true()
        ge(0(),I(x)) -> false()
        ge(0(),O(x)) -> ge(0(),x)
        ge(I(x),I(y)) -> ge(x,y)
        ge(I(x),O(y)) -> ge(x,y)
        ge(O(x),I(y)) -> not(ge(y,x))
        ge(O(x),O(y)) -> ge(x,y)
        if(false(),x,y) -> y
        if(true(),x,y) -> x
        not(false()) -> true()
        not(true()) -> false()
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0}
      Obligation:
        Innermost
        basic terms: {+,-,BS,Log,Log',Max,Min,O,Size,Val,WB,and,ge,if,not}/{0,1,I,L,N,false,l,r,true}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
        +#(x,0()) -> c_2()
        +#(0(),x) -> c_3()
        +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y))
        +#(I(x),O(y)) -> c_5(+#(x,y))
        +#(O(x),I(y)) -> c_6(+#(x,y))
        +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y))
        -#(x,0()) -> c_8()
        -#(0(),x) -> c_9()
        -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y))
        -#(I(x),O(y)) -> c_11(-#(x,y))
        -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
        -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y))
        BS#(L(x)) -> c_14()
        BS#(N(x,l(),r())) -> c_15(and#(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r()))),and#(ge(x,Max(l())),ge(Min(r()),x)),ge#(x,Max(l())),Max#(l()),ge#(Min(r()),x),Min#(r()),and#(BS(l()),BS(r())),BS#(l()),BS#(r()))
        Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
        Log'#(0()) -> c_17()
        Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
        Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
        Max#(L(x)) -> c_20()
        Max#(N(x,l(),r())) -> c_21(Max#(r()))
        Min#(L(x)) -> c_22()
        Min#(N(x,l(),r())) -> c_23(Min#(l()))
        O#(0()) -> c_24()
        Size#(L(x)) -> c_25()
        Size#(N(x,l(),r())) -> c_26(+#(+(Size(l()),Size(r())),I(1())),+#(Size(l()),Size(r())),Size#(l()),Size#(r()))
        Val#(L(x)) -> c_27()
        Val#(N(x,l(),r())) -> c_28()
        WB#(L(x)) -> c_29()
        WB#(N(x,l(),r())) -> c_30(and#(if(ge(Size(l()),Size(r())),ge(I(0()),-(Size(l()),Size(r()))),ge(I(0()),-(Size(r()),Size(l())))),and(WB(l()),WB(r()))),if#(ge(Size(l()),Size(r())),ge(I(0()),-(Size(l()),Size(r()))),ge(I(0()),-(Size(r()),Size(l())))),ge#(Size(l()),Size(r())),Size#(l()),Size#(r()),ge#(I(0()),-(Size(l()),Size(r()))),-#(Size(l()),Size(r())),Size#(l()),Size#(r()),ge#(I(0()),-(Size(r()),Size(l()))),-#(Size(r()),Size(l())),Size#(r()),Size#(l()),and#(WB(l()),WB(r())),WB#(l()),WB#(r()))
        and#(x,false()) -> c_31()
        and#(x,true()) -> c_32()
        ge#(x,0()) -> c_33()
        ge#(0(),I(x)) -> c_34()
        ge#(0(),O(x)) -> c_35(ge#(0(),x))
        ge#(I(x),I(y)) -> c_36(ge#(x,y))
        ge#(I(x),O(y)) -> c_37(ge#(x,y))
        ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x))
        ge#(O(x),O(y)) -> c_39(ge#(x,y))
        if#(false(),x,y) -> c_40()
        if#(true(),x,y) -> c_41()
        not#(false()) -> c_42()
        not#(true()) -> c_43()
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
        +#(x,0()) -> c_2()
        +#(0(),x) -> c_3()
        +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y))
        +#(I(x),O(y)) -> c_5(+#(x,y))
        +#(O(x),I(y)) -> c_6(+#(x,y))
        +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y))
        -#(x,0()) -> c_8()
        -#(0(),x) -> c_9()
        -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y))
        -#(I(x),O(y)) -> c_11(-#(x,y))
        -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
        -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y))
        BS#(L(x)) -> c_14()
        BS#(N(x,l(),r())) -> c_15(and#(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r()))),and#(ge(x,Max(l())),ge(Min(r()),x)),ge#(x,Max(l())),Max#(l()),ge#(Min(r()),x),Min#(r()),and#(BS(l()),BS(r())),BS#(l()),BS#(r()))
        Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
        Log'#(0()) -> c_17()
        Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
        Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
        Max#(L(x)) -> c_20()
        Max#(N(x,l(),r())) -> c_21(Max#(r()))
        Min#(L(x)) -> c_22()
        Min#(N(x,l(),r())) -> c_23(Min#(l()))
        O#(0()) -> c_24()
        Size#(L(x)) -> c_25()
        Size#(N(x,l(),r())) -> c_26(+#(+(Size(l()),Size(r())),I(1())),+#(Size(l()),Size(r())),Size#(l()),Size#(r()))
        Val#(L(x)) -> c_27()
        Val#(N(x,l(),r())) -> c_28()
        WB#(L(x)) -> c_29()
        WB#(N(x,l(),r())) -> c_30(and#(if(ge(Size(l()),Size(r())),ge(I(0()),-(Size(l()),Size(r()))),ge(I(0()),-(Size(r()),Size(l())))),and(WB(l()),WB(r()))),if#(ge(Size(l()),Size(r())),ge(I(0()),-(Size(l()),Size(r()))),ge(I(0()),-(Size(r()),Size(l())))),ge#(Size(l()),Size(r())),Size#(l()),Size#(r()),ge#(I(0()),-(Size(l()),Size(r()))),-#(Size(l()),Size(r())),Size#(l()),Size#(r()),ge#(I(0()),-(Size(r()),Size(l()))),-#(Size(r()),Size(l())),Size#(r()),Size#(l()),and#(WB(l()),WB(r())),WB#(l()),WB#(r()))
        and#(x,false()) -> c_31()
        and#(x,true()) -> c_32()
        ge#(x,0()) -> c_33()
        ge#(0(),I(x)) -> c_34()
        ge#(0(),O(x)) -> c_35(ge#(0(),x))
        ge#(I(x),I(y)) -> c_36(ge#(x,y))
        ge#(I(x),O(y)) -> c_37(ge#(x,y))
        ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x))
        ge#(O(x),O(y)) -> c_39(ge#(x,y))
        if#(false(),x,y) -> c_40()
        if#(true(),x,y) -> c_41()
        not#(false()) -> c_42()
        not#(true()) -> c_43()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        +(x,+(y,z)) -> +(+(x,y),z)
        +(x,0()) -> x
        +(0(),x) -> x
        +(I(x),I(y)) -> O(+(+(x,y),I(0())))
        +(I(x),O(y)) -> I(+(x,y))
        +(O(x),I(y)) -> I(+(x,y))
        +(O(x),O(y)) -> O(+(x,y))
        -(x,0()) -> x
        -(0(),x) -> 0()
        -(I(x),I(y)) -> O(-(x,y))
        -(I(x),O(y)) -> I(-(x,y))
        -(O(x),I(y)) -> I(-(-(x,y),I(1())))
        -(O(x),O(y)) -> O(-(x,y))
        BS(L(x)) -> true()
        BS(N(x,l(),r())) -> and(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r())))
        Log(x) -> -(Log'(x),I(0()))
        Log'(0()) -> 0()
        Log'(I(x)) -> +(Log'(x),I(0()))
        Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
        Max(L(x)) -> x
        Max(N(x,l(),r())) -> Max(r())
        Min(L(x)) -> x
        Min(N(x,l(),r())) -> Min(l())
        O(0()) -> 0()
        Size(L(x)) -> I(0())
        Size(N(x,l(),r())) -> +(+(Size(l()),Size(r())),I(1()))
        Val(L(x)) -> x
        Val(N(x,l(),r())) -> x
        WB(L(x)) -> true()
        WB(N(x,l(),r())) -> and(if(ge(Size(l()),Size(r())),ge(I(0()),-(Size(l()),Size(r()))),ge(I(0()),-(Size(r()),Size(l())))),and(WB(l()),WB(r())))
        and(x,false()) -> false()
        and(x,true()) -> x
        ge(x,0()) -> true()
        ge(0(),I(x)) -> false()
        ge(0(),O(x)) -> ge(0(),x)
        ge(I(x),I(y)) -> ge(x,y)
        ge(I(x),O(y)) -> ge(x,y)
        ge(O(x),I(y)) -> not(ge(y,x))
        ge(O(x),O(y)) -> ge(x,y)
        if(false(),x,y) -> y
        if(true(),x,y) -> x
        not(false()) -> true()
        not(true()) -> false()
      Signature:
        {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/3,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/2,c_11/1,c_12/2,c_13/2,c_14/0,c_15/9,c_16/2,c_17/0,c_18/2,c_19/4,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/2,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
      Obligation:
        Innermost
        basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        +(x,+(y,z)) -> +(+(x,y),z)
        +(x,0()) -> x
        +(0(),x) -> x
        +(I(x),I(y)) -> O(+(+(x,y),I(0())))
        +(I(x),O(y)) -> I(+(x,y))
        +(O(x),I(y)) -> I(+(x,y))
        +(O(x),O(y)) -> O(+(x,y))
        -(x,0()) -> x
        -(0(),x) -> 0()
        -(I(x),I(y)) -> O(-(x,y))
        -(I(x),O(y)) -> I(-(x,y))
        -(O(x),I(y)) -> I(-(-(x,y),I(1())))
        -(O(x),O(y)) -> O(-(x,y))
        Log'(0()) -> 0()
        Log'(I(x)) -> +(Log'(x),I(0()))
        Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
        O(0()) -> 0()
        and(x,false()) -> false()
        and(x,true()) -> x
        ge(x,0()) -> true()
        ge(0(),I(x)) -> false()
        ge(0(),O(x)) -> ge(0(),x)
        ge(I(x),I(y)) -> ge(x,y)
        ge(I(x),O(y)) -> ge(x,y)
        ge(O(x),I(y)) -> not(ge(y,x))
        ge(O(x),O(y)) -> ge(x,y)
        if(false(),x,y) -> y
        if(true(),x,y) -> x
        not(false()) -> true()
        not(true()) -> false()
        +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
        +#(x,0()) -> c_2()
        +#(0(),x) -> c_3()
        +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y))
        +#(I(x),O(y)) -> c_5(+#(x,y))
        +#(O(x),I(y)) -> c_6(+#(x,y))
        +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y))
        -#(x,0()) -> c_8()
        -#(0(),x) -> c_9()
        -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y))
        -#(I(x),O(y)) -> c_11(-#(x,y))
        -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
        -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y))
        BS#(L(x)) -> c_14()
        BS#(N(x,l(),r())) -> c_15(and#(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r()))),and#(ge(x,Max(l())),ge(Min(r()),x)),ge#(x,Max(l())),Max#(l()),ge#(Min(r()),x),Min#(r()),and#(BS(l()),BS(r())),BS#(l()),BS#(r()))
        Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
        Log'#(0()) -> c_17()
        Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
        Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
        Max#(L(x)) -> c_20()
        Max#(N(x,l(),r())) -> c_21(Max#(r()))
        Min#(L(x)) -> c_22()
        Min#(N(x,l(),r())) -> c_23(Min#(l()))
        O#(0()) -> c_24()
        Size#(L(x)) -> c_25()
        Size#(N(x,l(),r())) -> c_26(+#(+(Size(l()),Size(r())),I(1())),+#(Size(l()),Size(r())),Size#(l()),Size#(r()))
        Val#(L(x)) -> c_27()
        Val#(N(x,l(),r())) -> c_28()
        WB#(L(x)) -> c_29()
        WB#(N(x,l(),r())) -> c_30(and#(if(ge(Size(l()),Size(r())),ge(I(0()),-(Size(l()),Size(r()))),ge(I(0()),-(Size(r()),Size(l())))),and(WB(l()),WB(r()))),if#(ge(Size(l()),Size(r())),ge(I(0()),-(Size(l()),Size(r()))),ge(I(0()),-(Size(r()),Size(l())))),ge#(Size(l()),Size(r())),Size#(l()),Size#(r()),ge#(I(0()),-(Size(l()),Size(r()))),-#(Size(l()),Size(r())),Size#(l()),Size#(r()),ge#(I(0()),-(Size(r()),Size(l()))),-#(Size(r()),Size(l())),Size#(r()),Size#(l()),and#(WB(l()),WB(r())),WB#(l()),WB#(r()))
        and#(x,false()) -> c_31()
        and#(x,true()) -> c_32()
        ge#(x,0()) -> c_33()
        ge#(0(),I(x)) -> c_34()
        ge#(0(),O(x)) -> c_35(ge#(0(),x))
        ge#(I(x),I(y)) -> c_36(ge#(x,y))
        ge#(I(x),O(y)) -> c_37(ge#(x,y))
        ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x))
        ge#(O(x),O(y)) -> c_39(ge#(x,y))
        if#(false(),x,y) -> c_40()
        if#(true(),x,y) -> c_41()
        not#(false()) -> c_42()
        not#(true()) -> c_43()
*** 1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
        +#(x,0()) -> c_2()
        +#(0(),x) -> c_3()
        +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y))
        +#(I(x),O(y)) -> c_5(+#(x,y))
        +#(O(x),I(y)) -> c_6(+#(x,y))
        +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y))
        -#(x,0()) -> c_8()
        -#(0(),x) -> c_9()
        -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y))
        -#(I(x),O(y)) -> c_11(-#(x,y))
        -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
        -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y))
        BS#(L(x)) -> c_14()
        BS#(N(x,l(),r())) -> c_15(and#(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r()))),and#(ge(x,Max(l())),ge(Min(r()),x)),ge#(x,Max(l())),Max#(l()),ge#(Min(r()),x),Min#(r()),and#(BS(l()),BS(r())),BS#(l()),BS#(r()))
        Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
        Log'#(0()) -> c_17()
        Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
        Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
        Max#(L(x)) -> c_20()
        Max#(N(x,l(),r())) -> c_21(Max#(r()))
        Min#(L(x)) -> c_22()
        Min#(N(x,l(),r())) -> c_23(Min#(l()))
        O#(0()) -> c_24()
        Size#(L(x)) -> c_25()
        Size#(N(x,l(),r())) -> c_26(+#(+(Size(l()),Size(r())),I(1())),+#(Size(l()),Size(r())),Size#(l()),Size#(r()))
        Val#(L(x)) -> c_27()
        Val#(N(x,l(),r())) -> c_28()
        WB#(L(x)) -> c_29()
        WB#(N(x,l(),r())) -> c_30(and#(if(ge(Size(l()),Size(r())),ge(I(0()),-(Size(l()),Size(r()))),ge(I(0()),-(Size(r()),Size(l())))),and(WB(l()),WB(r()))),if#(ge(Size(l()),Size(r())),ge(I(0()),-(Size(l()),Size(r()))),ge(I(0()),-(Size(r()),Size(l())))),ge#(Size(l()),Size(r())),Size#(l()),Size#(r()),ge#(I(0()),-(Size(l()),Size(r()))),-#(Size(l()),Size(r())),Size#(l()),Size#(r()),ge#(I(0()),-(Size(r()),Size(l()))),-#(Size(r()),Size(l())),Size#(r()),Size#(l()),and#(WB(l()),WB(r())),WB#(l()),WB#(r()))
        and#(x,false()) -> c_31()
        and#(x,true()) -> c_32()
        ge#(x,0()) -> c_33()
        ge#(0(),I(x)) -> c_34()
        ge#(0(),O(x)) -> c_35(ge#(0(),x))
        ge#(I(x),I(y)) -> c_36(ge#(x,y))
        ge#(I(x),O(y)) -> c_37(ge#(x,y))
        ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x))
        ge#(O(x),O(y)) -> c_39(ge#(x,y))
        if#(false(),x,y) -> c_40()
        if#(true(),x,y) -> c_41()
        not#(false()) -> c_42()
        not#(true()) -> c_43()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        +(x,+(y,z)) -> +(+(x,y),z)
        +(x,0()) -> x
        +(0(),x) -> x
        +(I(x),I(y)) -> O(+(+(x,y),I(0())))
        +(I(x),O(y)) -> I(+(x,y))
        +(O(x),I(y)) -> I(+(x,y))
        +(O(x),O(y)) -> O(+(x,y))
        -(x,0()) -> x
        -(0(),x) -> 0()
        -(I(x),I(y)) -> O(-(x,y))
        -(I(x),O(y)) -> I(-(x,y))
        -(O(x),I(y)) -> I(-(-(x,y),I(1())))
        -(O(x),O(y)) -> O(-(x,y))
        Log'(0()) -> 0()
        Log'(I(x)) -> +(Log'(x),I(0()))
        Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
        O(0()) -> 0()
        and(x,false()) -> false()
        and(x,true()) -> x
        ge(x,0()) -> true()
        ge(0(),I(x)) -> false()
        ge(0(),O(x)) -> ge(0(),x)
        ge(I(x),I(y)) -> ge(x,y)
        ge(I(x),O(y)) -> ge(x,y)
        ge(O(x),I(y)) -> not(ge(y,x))
        ge(O(x),O(y)) -> ge(x,y)
        if(false(),x,y) -> y
        if(true(),x,y) -> x
        not(false()) -> true()
        not(true()) -> false()
      Signature:
        {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/3,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/2,c_11/1,c_12/2,c_13/2,c_14/0,c_15/9,c_16/2,c_17/0,c_18/2,c_19/4,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/2,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
      Obligation:
        Innermost
        basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {2,3,8,9,14,17,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,40,41,42,43}
      by application of
        Pre({2,3,8,9,14,17,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,40,41,42,43}) = {1,4,5,6,7,10,11,12,13,15,16,18,19,35,36,37,38,39}.
      Here rules are labelled as follows:
        1:  +#(x,+(y,z)) -> c_1(+#(+(x,y),z)          
                               ,+#(x,y))              
        2:  +#(x,0()) -> c_2()                        
        3:  +#(0(),x) -> c_3()                        
        4:  +#(I(x),I(y)) -> c_4(O#(+(+(x,y)          
                                     ,I(0())))        
                                ,+#(+(x,y),I(0()))    
                                ,+#(x,y))             
        5:  +#(I(x),O(y)) -> c_5(+#(x,y))             
        6:  +#(O(x),I(y)) -> c_6(+#(x,y))             
        7:  +#(O(x),O(y)) -> c_7(O#(+(x,y))           
                                ,+#(x,y))             
        8:  -#(x,0()) -> c_8()                        
        9:  -#(0(),x) -> c_9()                        
        10: -#(I(x),I(y)) -> c_10(O#(-(x,y))          
                                 ,-#(x,y))            
        11: -#(I(x),O(y)) -> c_11(-#(x,y))            
        12: -#(O(x),I(y)) -> c_12(-#(-(x,y)           
                                    ,I(1()))          
                                 ,-#(x,y))            
        13: -#(O(x),O(y)) -> c_13(O#(-(x,y))          
                                 ,-#(x,y))            
        14: BS#(L(x)) -> c_14()                       
        15: BS#(N(x,l(),r())) ->                      
              c_15(and#(and(ge(x,Max(l()))            
                           ,ge(Min(r()),x))           
                       ,and(BS(l()),BS(r())))         
                  ,and#(ge(x,Max(l()))                
                       ,ge(Min(r()),x))               
                  ,ge#(x,Max(l()))                    
                  ,Max#(l())                          
                  ,ge#(Min(r()),x)                    
                  ,Min#(r())                          
                  ,and#(BS(l()),BS(r()))              
                  ,BS#(l())                           
                  ,BS#(r()))                          
        16: Log#(x) -> c_16(-#(Log'(x)                
                              ,I(0()))                
                           ,Log'#(x))                 
        17: Log'#(0()) -> c_17()                      
        18: Log'#(I(x)) -> c_18(+#(Log'(x)            
                                  ,I(0()))            
                               ,Log'#(x))             
        19: Log'#(O(x)) -> c_19(if#(ge(x              
                                      ,I(0()))        
                                   ,+(Log'(x),I(0())) 
                                   ,0())              
                               ,ge#(x,I(0()))         
                               ,+#(Log'(x),I(0()))    
                               ,Log'#(x))             
        20: Max#(L(x)) -> c_20()                      
        21: Max#(N(x,l(),r())) ->                     
              c_21(Max#(r()))                         
        22: Min#(L(x)) -> c_22()                      
        23: Min#(N(x,l(),r())) ->                     
              c_23(Min#(l()))                         
        24: O#(0()) -> c_24()                         
        25: Size#(L(x)) -> c_25()                     
        26: Size#(N(x,l(),r())) ->                    
              c_26(+#(+(Size(l()),Size(r()))          
                     ,I(1()))                         
                  ,+#(Size(l()),Size(r()))            
                  ,Size#(l())                         
                  ,Size#(r()))                        
        27: Val#(L(x)) -> c_27()                      
        28: Val#(N(x,l(),r())) -> c_28()              
        29: WB#(L(x)) -> c_29()                       
        30: WB#(N(x,l(),r())) ->                      
              c_30(and#(if(ge(Size(l())               
                             ,Size(r()))              
                          ,ge(I(0())                  
                             ,-(Size(l()),Size(r()))) 
                          ,ge(I(0())                  
                             ,-(Size(r()),Size(l()))))
                       ,and(WB(l()),WB(r())))         
                  ,if#(ge(Size(l()),Size(r()))        
                      ,ge(I(0())                      
                         ,-(Size(l()),Size(r())))     
                      ,ge(I(0())                      
                         ,-(Size(r()),Size(l()))))    
                  ,ge#(Size(l()),Size(r()))           
                  ,Size#(l())                         
                  ,Size#(r())                         
                  ,ge#(I(0())                         
                      ,-(Size(l()),Size(r())))        
                  ,-#(Size(l()),Size(r()))            
                  ,Size#(l())                         
                  ,Size#(r())                         
                  ,ge#(I(0())                         
                      ,-(Size(r()),Size(l())))        
                  ,-#(Size(r()),Size(l()))            
                  ,Size#(r())                         
                  ,Size#(l())                         
                  ,and#(WB(l()),WB(r()))              
                  ,WB#(l())                           
                  ,WB#(r()))                          
        31: and#(x,false()) -> c_31()                 
        32: and#(x,true()) -> c_32()                  
        33: ge#(x,0()) -> c_33()                      
        34: ge#(0(),I(x)) -> c_34()                   
        35: ge#(0(),O(x)) -> c_35(ge#(0()             
                                     ,x))             
        36: ge#(I(x),I(y)) -> c_36(ge#(x,y))          
        37: ge#(I(x),O(y)) -> c_37(ge#(x,y))          
        38: ge#(O(x),I(y)) -> c_38(not#(ge(y          
                                          ,x))        
                                  ,ge#(y,x))          
        39: ge#(O(x),O(y)) -> c_39(ge#(x,y))          
        40: if#(false(),x,y) -> c_40()                
        41: if#(true(),x,y) -> c_41()                 
        42: not#(false()) -> c_42()                   
        43: not#(true()) -> c_43()                    
*** 1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
        +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y))
        +#(I(x),O(y)) -> c_5(+#(x,y))
        +#(O(x),I(y)) -> c_6(+#(x,y))
        +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y))
        -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y))
        -#(I(x),O(y)) -> c_11(-#(x,y))
        -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
        -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y))
        BS#(N(x,l(),r())) -> c_15(and#(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r()))),and#(ge(x,Max(l())),ge(Min(r()),x)),ge#(x,Max(l())),Max#(l()),ge#(Min(r()),x),Min#(r()),and#(BS(l()),BS(r())),BS#(l()),BS#(r()))
        Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
        Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
        Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
        ge#(0(),O(x)) -> c_35(ge#(0(),x))
        ge#(I(x),I(y)) -> c_36(ge#(x,y))
        ge#(I(x),O(y)) -> c_37(ge#(x,y))
        ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x))
        ge#(O(x),O(y)) -> c_39(ge#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        +#(x,0()) -> c_2()
        +#(0(),x) -> c_3()
        -#(x,0()) -> c_8()
        -#(0(),x) -> c_9()
        BS#(L(x)) -> c_14()
        Log'#(0()) -> c_17()
        Max#(L(x)) -> c_20()
        Max#(N(x,l(),r())) -> c_21(Max#(r()))
        Min#(L(x)) -> c_22()
        Min#(N(x,l(),r())) -> c_23(Min#(l()))
        O#(0()) -> c_24()
        Size#(L(x)) -> c_25()
        Size#(N(x,l(),r())) -> c_26(+#(+(Size(l()),Size(r())),I(1())),+#(Size(l()),Size(r())),Size#(l()),Size#(r()))
        Val#(L(x)) -> c_27()
        Val#(N(x,l(),r())) -> c_28()
        WB#(L(x)) -> c_29()
        WB#(N(x,l(),r())) -> c_30(and#(if(ge(Size(l()),Size(r())),ge(I(0()),-(Size(l()),Size(r()))),ge(I(0()),-(Size(r()),Size(l())))),and(WB(l()),WB(r()))),if#(ge(Size(l()),Size(r())),ge(I(0()),-(Size(l()),Size(r()))),ge(I(0()),-(Size(r()),Size(l())))),ge#(Size(l()),Size(r())),Size#(l()),Size#(r()),ge#(I(0()),-(Size(l()),Size(r()))),-#(Size(l()),Size(r())),Size#(l()),Size#(r()),ge#(I(0()),-(Size(r()),Size(l()))),-#(Size(r()),Size(l())),Size#(r()),Size#(l()),and#(WB(l()),WB(r())),WB#(l()),WB#(r()))
        and#(x,false()) -> c_31()
        and#(x,true()) -> c_32()
        ge#(x,0()) -> c_33()
        ge#(0(),I(x)) -> c_34()
        if#(false(),x,y) -> c_40()
        if#(true(),x,y) -> c_41()
        not#(false()) -> c_42()
        not#(true()) -> c_43()
      Weak TRS Rules:
        +(x,+(y,z)) -> +(+(x,y),z)
        +(x,0()) -> x
        +(0(),x) -> x
        +(I(x),I(y)) -> O(+(+(x,y),I(0())))
        +(I(x),O(y)) -> I(+(x,y))
        +(O(x),I(y)) -> I(+(x,y))
        +(O(x),O(y)) -> O(+(x,y))
        -(x,0()) -> x
        -(0(),x) -> 0()
        -(I(x),I(y)) -> O(-(x,y))
        -(I(x),O(y)) -> I(-(x,y))
        -(O(x),I(y)) -> I(-(-(x,y),I(1())))
        -(O(x),O(y)) -> O(-(x,y))
        Log'(0()) -> 0()
        Log'(I(x)) -> +(Log'(x),I(0()))
        Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
        O(0()) -> 0()
        and(x,false()) -> false()
        and(x,true()) -> x
        ge(x,0()) -> true()
        ge(0(),I(x)) -> false()
        ge(0(),O(x)) -> ge(0(),x)
        ge(I(x),I(y)) -> ge(x,y)
        ge(I(x),O(y)) -> ge(x,y)
        ge(O(x),I(y)) -> not(ge(y,x))
        ge(O(x),O(y)) -> ge(x,y)
        if(false(),x,y) -> y
        if(true(),x,y) -> x
        not(false()) -> true()
        not(true()) -> false()
      Signature:
        {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/3,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/2,c_11/1,c_12/2,c_13/2,c_14/0,c_15/9,c_16/2,c_17/0,c_18/2,c_19/4,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/2,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
      Obligation:
        Innermost
        basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {10}
      by application of
        Pre({10}) = {}.
      Here rules are labelled as follows:
        1:  +#(x,+(y,z)) -> c_1(+#(+(x,y),z)          
                               ,+#(x,y))              
        2:  +#(I(x),I(y)) -> c_4(O#(+(+(x,y)          
                                     ,I(0())))        
                                ,+#(+(x,y),I(0()))    
                                ,+#(x,y))             
        3:  +#(I(x),O(y)) -> c_5(+#(x,y))             
        4:  +#(O(x),I(y)) -> c_6(+#(x,y))             
        5:  +#(O(x),O(y)) -> c_7(O#(+(x,y))           
                                ,+#(x,y))             
        6:  -#(I(x),I(y)) -> c_10(O#(-(x,y))          
                                 ,-#(x,y))            
        7:  -#(I(x),O(y)) -> c_11(-#(x,y))            
        8:  -#(O(x),I(y)) -> c_12(-#(-(x,y)           
                                    ,I(1()))          
                                 ,-#(x,y))            
        9:  -#(O(x),O(y)) -> c_13(O#(-(x,y))          
                                 ,-#(x,y))            
        10: BS#(N(x,l(),r())) ->                      
              c_15(and#(and(ge(x,Max(l()))            
                           ,ge(Min(r()),x))           
                       ,and(BS(l()),BS(r())))         
                  ,and#(ge(x,Max(l()))                
                       ,ge(Min(r()),x))               
                  ,ge#(x,Max(l()))                    
                  ,Max#(l())                          
                  ,ge#(Min(r()),x)                    
                  ,Min#(r())                          
                  ,and#(BS(l()),BS(r()))              
                  ,BS#(l())                           
                  ,BS#(r()))                          
        11: Log#(x) -> c_16(-#(Log'(x)                
                              ,I(0()))                
                           ,Log'#(x))                 
        12: Log'#(I(x)) -> c_18(+#(Log'(x)            
                                  ,I(0()))            
                               ,Log'#(x))             
        13: Log'#(O(x)) -> c_19(if#(ge(x              
                                      ,I(0()))        
                                   ,+(Log'(x),I(0())) 
                                   ,0())              
                               ,ge#(x,I(0()))         
                               ,+#(Log'(x),I(0()))    
                               ,Log'#(x))             
        14: ge#(0(),O(x)) -> c_35(ge#(0()             
                                     ,x))             
        15: ge#(I(x),I(y)) -> c_36(ge#(x,y))          
        16: ge#(I(x),O(y)) -> c_37(ge#(x,y))          
        17: ge#(O(x),I(y)) -> c_38(not#(ge(y          
                                          ,x))        
                                  ,ge#(y,x))          
        18: ge#(O(x),O(y)) -> c_39(ge#(x,y))          
        19: +#(x,0()) -> c_2()                        
        20: +#(0(),x) -> c_3()                        
        21: -#(x,0()) -> c_8()                        
        22: -#(0(),x) -> c_9()                        
        23: BS#(L(x)) -> c_14()                       
        24: Log'#(0()) -> c_17()                      
        25: Max#(L(x)) -> c_20()                      
        26: Max#(N(x,l(),r())) ->                     
              c_21(Max#(r()))                         
        27: Min#(L(x)) -> c_22()                      
        28: Min#(N(x,l(),r())) ->                     
              c_23(Min#(l()))                         
        29: O#(0()) -> c_24()                         
        30: Size#(L(x)) -> c_25()                     
        31: Size#(N(x,l(),r())) ->                    
              c_26(+#(+(Size(l()),Size(r()))          
                     ,I(1()))                         
                  ,+#(Size(l()),Size(r()))            
                  ,Size#(l())                         
                  ,Size#(r()))                        
        32: Val#(L(x)) -> c_27()                      
        33: Val#(N(x,l(),r())) -> c_28()              
        34: WB#(L(x)) -> c_29()                       
        35: WB#(N(x,l(),r())) ->                      
              c_30(and#(if(ge(Size(l())               
                             ,Size(r()))              
                          ,ge(I(0())                  
                             ,-(Size(l()),Size(r()))) 
                          ,ge(I(0())                  
                             ,-(Size(r()),Size(l()))))
                       ,and(WB(l()),WB(r())))         
                  ,if#(ge(Size(l()),Size(r()))        
                      ,ge(I(0())                      
                         ,-(Size(l()),Size(r())))     
                      ,ge(I(0())                      
                         ,-(Size(r()),Size(l()))))    
                  ,ge#(Size(l()),Size(r()))           
                  ,Size#(l())                         
                  ,Size#(r())                         
                  ,ge#(I(0())                         
                      ,-(Size(l()),Size(r())))        
                  ,-#(Size(l()),Size(r()))            
                  ,Size#(l())                         
                  ,Size#(r())                         
                  ,ge#(I(0())                         
                      ,-(Size(r()),Size(l())))        
                  ,-#(Size(r()),Size(l()))            
                  ,Size#(r())                         
                  ,Size#(l())                         
                  ,and#(WB(l()),WB(r()))              
                  ,WB#(l())                           
                  ,WB#(r()))                          
        36: and#(x,false()) -> c_31()                 
        37: and#(x,true()) -> c_32()                  
        38: ge#(x,0()) -> c_33()                      
        39: ge#(0(),I(x)) -> c_34()                   
        40: if#(false(),x,y) -> c_40()                
        41: if#(true(),x,y) -> c_41()                 
        42: not#(false()) -> c_42()                   
        43: not#(true()) -> c_43()                    
*** 1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
        +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y))
        +#(I(x),O(y)) -> c_5(+#(x,y))
        +#(O(x),I(y)) -> c_6(+#(x,y))
        +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y))
        -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y))
        -#(I(x),O(y)) -> c_11(-#(x,y))
        -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
        -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y))
        Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
        Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
        Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
        ge#(0(),O(x)) -> c_35(ge#(0(),x))
        ge#(I(x),I(y)) -> c_36(ge#(x,y))
        ge#(I(x),O(y)) -> c_37(ge#(x,y))
        ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x))
        ge#(O(x),O(y)) -> c_39(ge#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        +#(x,0()) -> c_2()
        +#(0(),x) -> c_3()
        -#(x,0()) -> c_8()
        -#(0(),x) -> c_9()
        BS#(L(x)) -> c_14()
        BS#(N(x,l(),r())) -> c_15(and#(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r()))),and#(ge(x,Max(l())),ge(Min(r()),x)),ge#(x,Max(l())),Max#(l()),ge#(Min(r()),x),Min#(r()),and#(BS(l()),BS(r())),BS#(l()),BS#(r()))
        Log'#(0()) -> c_17()
        Max#(L(x)) -> c_20()
        Max#(N(x,l(),r())) -> c_21(Max#(r()))
        Min#(L(x)) -> c_22()
        Min#(N(x,l(),r())) -> c_23(Min#(l()))
        O#(0()) -> c_24()
        Size#(L(x)) -> c_25()
        Size#(N(x,l(),r())) -> c_26(+#(+(Size(l()),Size(r())),I(1())),+#(Size(l()),Size(r())),Size#(l()),Size#(r()))
        Val#(L(x)) -> c_27()
        Val#(N(x,l(),r())) -> c_28()
        WB#(L(x)) -> c_29()
        WB#(N(x,l(),r())) -> c_30(and#(if(ge(Size(l()),Size(r())),ge(I(0()),-(Size(l()),Size(r()))),ge(I(0()),-(Size(r()),Size(l())))),and(WB(l()),WB(r()))),if#(ge(Size(l()),Size(r())),ge(I(0()),-(Size(l()),Size(r()))),ge(I(0()),-(Size(r()),Size(l())))),ge#(Size(l()),Size(r())),Size#(l()),Size#(r()),ge#(I(0()),-(Size(l()),Size(r()))),-#(Size(l()),Size(r())),Size#(l()),Size#(r()),ge#(I(0()),-(Size(r()),Size(l()))),-#(Size(r()),Size(l())),Size#(r()),Size#(l()),and#(WB(l()),WB(r())),WB#(l()),WB#(r()))
        and#(x,false()) -> c_31()
        and#(x,true()) -> c_32()
        ge#(x,0()) -> c_33()
        ge#(0(),I(x)) -> c_34()
        if#(false(),x,y) -> c_40()
        if#(true(),x,y) -> c_41()
        not#(false()) -> c_42()
        not#(true()) -> c_43()
      Weak TRS Rules:
        +(x,+(y,z)) -> +(+(x,y),z)
        +(x,0()) -> x
        +(0(),x) -> x
        +(I(x),I(y)) -> O(+(+(x,y),I(0())))
        +(I(x),O(y)) -> I(+(x,y))
        +(O(x),I(y)) -> I(+(x,y))
        +(O(x),O(y)) -> O(+(x,y))
        -(x,0()) -> x
        -(0(),x) -> 0()
        -(I(x),I(y)) -> O(-(x,y))
        -(I(x),O(y)) -> I(-(x,y))
        -(O(x),I(y)) -> I(-(-(x,y),I(1())))
        -(O(x),O(y)) -> O(-(x,y))
        Log'(0()) -> 0()
        Log'(I(x)) -> +(Log'(x),I(0()))
        Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
        O(0()) -> 0()
        and(x,false()) -> false()
        and(x,true()) -> x
        ge(x,0()) -> true()
        ge(0(),I(x)) -> false()
        ge(0(),O(x)) -> ge(0(),x)
        ge(I(x),I(y)) -> ge(x,y)
        ge(I(x),O(y)) -> ge(x,y)
        ge(O(x),I(y)) -> not(ge(y,x))
        ge(O(x),O(y)) -> ge(x,y)
        if(false(),x,y) -> y
        if(true(),x,y) -> x
        not(false()) -> true()
        not(true()) -> false()
      Signature:
        {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/3,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/2,c_11/1,c_12/2,c_13/2,c_14/0,c_15/9,c_16/2,c_17/0,c_18/2,c_19/4,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/2,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
      Obligation:
        Innermost
        basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
           -->_2 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
           -->_1 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
           -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
           -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
           -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):3
           -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
           -->_2 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
           -->_1 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
           -->_2 +#(0(),x) -> c_3():19
           -->_1 +#(0(),x) -> c_3():19
           -->_2 +#(x,0()) -> c_2():18
           -->_1 +#(x,0()) -> c_2():18
           -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
           -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
        
        2:S:+#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y))
           -->_3 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
           -->_3 +#(O(x),I(y)) -> c_6(+#(x,y)):4
           -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
           -->_3 +#(I(x),O(y)) -> c_5(+#(x,y)):3
           -->_1 O#(0()) -> c_24():29
           -->_3 +#(0(),x) -> c_3():19
           -->_2 +#(0(),x) -> c_3():19
           -->_3 +#(x,0()) -> c_2():18
           -->_3 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
           -->_2 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
           -->_3 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
        
        3:S:+#(I(x),O(y)) -> c_5(+#(x,y))
           -->_1 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
           -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
           -->_1 +#(0(),x) -> c_3():19
           -->_1 +#(x,0()) -> c_2():18
           -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
           -->_1 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
           -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
        
        4:S:+#(O(x),I(y)) -> c_6(+#(x,y))
           -->_1 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
           -->_1 +#(0(),x) -> c_3():19
           -->_1 +#(x,0()) -> c_2():18
           -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
           -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
           -->_1 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
           -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
        
        5:S:+#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y))
           -->_1 O#(0()) -> c_24():29
           -->_2 +#(0(),x) -> c_3():19
           -->_2 +#(x,0()) -> c_2():18
           -->_2 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
           -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
           -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):3
           -->_2 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
           -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
        
        6:S:-#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y))
           -->_2 -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y)):9
           -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
           -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):7
           -->_1 O#(0()) -> c_24():29
           -->_2 -#(0(),x) -> c_9():21
           -->_2 -#(x,0()) -> c_8():20
           -->_2 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
        
        7:S:-#(I(x),O(y)) -> c_11(-#(x,y))
           -->_1 -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y)):9
           -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
           -->_1 -#(0(),x) -> c_9():21
           -->_1 -#(x,0()) -> c_8():20
           -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):7
           -->_1 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
        
        8:S:-#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
           -->_2 -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y)):9
           -->_2 -#(0(),x) -> c_9():21
           -->_1 -#(0(),x) -> c_9():21
           -->_2 -#(x,0()) -> c_8():20
           -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
           -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
           -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):7
           -->_2 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
           -->_1 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
        
        9:S:-#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y))
           -->_1 O#(0()) -> c_24():29
           -->_2 -#(0(),x) -> c_9():21
           -->_2 -#(x,0()) -> c_8():20
           -->_2 -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y)):9
           -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
           -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):7
           -->_2 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
        
        10:S:Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
           -->_2 Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):12
           -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
           -->_2 Log'#(0()) -> c_17():24
           -->_1 -#(0(),x) -> c_9():21
           -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
           -->_1 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
        
        11:S:Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
           -->_2 Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):12
           -->_2 Log'#(0()) -> c_17():24
           -->_1 +#(0(),x) -> c_3():19
           -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
           -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
           -->_1 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
        
        12:S:Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
           -->_2 ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x)):16
           -->_2 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
           -->_1 if#(true(),x,y) -> c_41():41
           -->_1 if#(false(),x,y) -> c_40():40
           -->_4 Log'#(0()) -> c_17():24
           -->_3 +#(0(),x) -> c_3():19
           -->_4 Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):12
           -->_4 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
           -->_3 +#(O(x),I(y)) -> c_6(+#(x,y)):4
           -->_3 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
        
        13:S:ge#(0(),O(x)) -> c_35(ge#(0(),x))
           -->_1 ge#(0(),I(x)) -> c_34():39
           -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
        
        14:S:ge#(I(x),I(y)) -> c_36(ge#(x,y))
           -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
           -->_1 ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x)):16
           -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
           -->_1 ge#(0(),I(x)) -> c_34():39
           -->_1 ge#(x,0()) -> c_33():38
           -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
           -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
        
        15:S:ge#(I(x),O(y)) -> c_37(ge#(x,y))
           -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
           -->_1 ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x)):16
           -->_1 ge#(0(),I(x)) -> c_34():39
           -->_1 ge#(x,0()) -> c_33():38
           -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
           -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
           -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
        
        16:S:ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x))
           -->_2 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
           -->_1 not#(true()) -> c_43():43
           -->_1 not#(false()) -> c_42():42
           -->_2 ge#(0(),I(x)) -> c_34():39
           -->_2 ge#(x,0()) -> c_33():38
           -->_2 ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x)):16
           -->_2 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
           -->_2 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
           -->_2 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
        
        17:S:ge#(O(x),O(y)) -> c_39(ge#(x,y))
           -->_1 ge#(0(),I(x)) -> c_34():39
           -->_1 ge#(x,0()) -> c_33():38
           -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
           -->_1 ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x)):16
           -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
           -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
           -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
        
        18:W:+#(x,0()) -> c_2()
           
        
        19:W:+#(0(),x) -> c_3()
           
        
        20:W:-#(x,0()) -> c_8()
           
        
        21:W:-#(0(),x) -> c_9()
           
        
        22:W:BS#(L(x)) -> c_14()
           
        
        23:W:BS#(N(x,l(),r())) -> c_15(and#(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r()))),and#(ge(x,Max(l())),ge(Min(r()),x)),ge#(x,Max(l())),Max#(l()),ge#(Min(r()),x),Min#(r()),and#(BS(l()),BS(r())),BS#(l()),BS#(r()))
           -->_5 ge#(x,0()) -> c_33():38
           -->_2 and#(x,true()) -> c_32():37
           -->_2 and#(x,false()) -> c_31():36
        
        24:W:Log'#(0()) -> c_17()
           
        
        25:W:Max#(L(x)) -> c_20()
           
        
        26:W:Max#(N(x,l(),r())) -> c_21(Max#(r()))
           
        
        27:W:Min#(L(x)) -> c_22()
           
        
        28:W:Min#(N(x,l(),r())) -> c_23(Min#(l()))
           
        
        29:W:O#(0()) -> c_24()
           
        
        30:W:Size#(L(x)) -> c_25()
           
        
        31:W:Size#(N(x,l(),r())) -> c_26(+#(+(Size(l()),Size(r())),I(1())),+#(Size(l()),Size(r())),Size#(l()),Size#(r()))
           
        
        32:W:Val#(L(x)) -> c_27()
           
        
        33:W:Val#(N(x,l(),r())) -> c_28()
           
        
        34:W:WB#(L(x)) -> c_29()
           
        
        35:W:WB#(N(x,l(),r())) -> c_30(and#(if(ge(Size(l()),Size(r())),ge(I(0()),-(Size(l()),Size(r()))),ge(I(0()),-(Size(r()),Size(l())))),and(WB(l()),WB(r()))),if#(ge(Size(l()),Size(r())),ge(I(0()),-(Size(l()),Size(r()))),ge(I(0()),-(Size(r()),Size(l())))),ge#(Size(l()),Size(r())),Size#(l()),Size#(r()),ge#(I(0()),-(Size(l()),Size(r()))),-#(Size(l()),Size(r())),Size#(l()),Size#(r()),ge#(I(0()),-(Size(r()),Size(l()))),-#(Size(r()),Size(l())),Size#(r()),Size#(l()),and#(WB(l()),WB(r())),WB#(l()),WB#(r()))
           
        
        36:W:and#(x,false()) -> c_31()
           
        
        37:W:and#(x,true()) -> c_32()
           
        
        38:W:ge#(x,0()) -> c_33()
           
        
        39:W:ge#(0(),I(x)) -> c_34()
           
        
        40:W:if#(false(),x,y) -> c_40()
           
        
        41:W:if#(true(),x,y) -> c_41()
           
        
        42:W:not#(false()) -> c_42()
           
        
        43:W:not#(true()) -> c_43()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        35: WB#(N(x,l(),r())) ->                      
              c_30(and#(if(ge(Size(l())               
                             ,Size(r()))              
                          ,ge(I(0())                  
                             ,-(Size(l()),Size(r()))) 
                          ,ge(I(0())                  
                             ,-(Size(r()),Size(l()))))
                       ,and(WB(l()),WB(r())))         
                  ,if#(ge(Size(l()),Size(r()))        
                      ,ge(I(0())                      
                         ,-(Size(l()),Size(r())))     
                      ,ge(I(0())                      
                         ,-(Size(r()),Size(l()))))    
                  ,ge#(Size(l()),Size(r()))           
                  ,Size#(l())                         
                  ,Size#(r())                         
                  ,ge#(I(0())                         
                      ,-(Size(l()),Size(r())))        
                  ,-#(Size(l()),Size(r()))            
                  ,Size#(l())                         
                  ,Size#(r())                         
                  ,ge#(I(0())                         
                      ,-(Size(r()),Size(l())))        
                  ,-#(Size(r()),Size(l()))            
                  ,Size#(r())                         
                  ,Size#(l())                         
                  ,and#(WB(l()),WB(r()))              
                  ,WB#(l())                           
                  ,WB#(r()))                          
        34: WB#(L(x)) -> c_29()                       
        33: Val#(N(x,l(),r())) -> c_28()              
        32: Val#(L(x)) -> c_27()                      
        31: Size#(N(x,l(),r())) ->                    
              c_26(+#(+(Size(l()),Size(r()))          
                     ,I(1()))                         
                  ,+#(Size(l()),Size(r()))            
                  ,Size#(l())                         
                  ,Size#(r()))                        
        30: Size#(L(x)) -> c_25()                     
        28: Min#(N(x,l(),r())) ->                     
              c_23(Min#(l()))                         
        27: Min#(L(x)) -> c_22()                      
        26: Max#(N(x,l(),r())) ->                     
              c_21(Max#(r()))                         
        25: Max#(L(x)) -> c_20()                      
        23: BS#(N(x,l(),r())) ->                      
              c_15(and#(and(ge(x,Max(l()))            
                           ,ge(Min(r()),x))           
                       ,and(BS(l()),BS(r())))         
                  ,and#(ge(x,Max(l()))                
                       ,ge(Min(r()),x))               
                  ,ge#(x,Max(l()))                    
                  ,Max#(l())                          
                  ,ge#(Min(r()),x)                    
                  ,Min#(r())                          
                  ,and#(BS(l()),BS(r()))              
                  ,BS#(l())                           
                  ,BS#(r()))                          
        36: and#(x,false()) -> c_31()                 
        37: and#(x,true()) -> c_32()                  
        22: BS#(L(x)) -> c_14()                       
        24: Log'#(0()) -> c_17()                      
        40: if#(false(),x,y) -> c_40()                
        41: if#(true(),x,y) -> c_41()                 
        42: not#(false()) -> c_42()                   
        43: not#(true()) -> c_43()                    
        38: ge#(x,0()) -> c_33()                      
        39: ge#(0(),I(x)) -> c_34()                   
        20: -#(x,0()) -> c_8()                        
        21: -#(0(),x) -> c_9()                        
        18: +#(x,0()) -> c_2()                        
        19: +#(0(),x) -> c_3()                        
        29: O#(0()) -> c_24()                         
*** 1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
        +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y))
        +#(I(x),O(y)) -> c_5(+#(x,y))
        +#(O(x),I(y)) -> c_6(+#(x,y))
        +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y))
        -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y))
        -#(I(x),O(y)) -> c_11(-#(x,y))
        -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
        -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y))
        Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
        Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
        Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
        ge#(0(),O(x)) -> c_35(ge#(0(),x))
        ge#(I(x),I(y)) -> c_36(ge#(x,y))
        ge#(I(x),O(y)) -> c_37(ge#(x,y))
        ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x))
        ge#(O(x),O(y)) -> c_39(ge#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        +(x,+(y,z)) -> +(+(x,y),z)
        +(x,0()) -> x
        +(0(),x) -> x
        +(I(x),I(y)) -> O(+(+(x,y),I(0())))
        +(I(x),O(y)) -> I(+(x,y))
        +(O(x),I(y)) -> I(+(x,y))
        +(O(x),O(y)) -> O(+(x,y))
        -(x,0()) -> x
        -(0(),x) -> 0()
        -(I(x),I(y)) -> O(-(x,y))
        -(I(x),O(y)) -> I(-(x,y))
        -(O(x),I(y)) -> I(-(-(x,y),I(1())))
        -(O(x),O(y)) -> O(-(x,y))
        Log'(0()) -> 0()
        Log'(I(x)) -> +(Log'(x),I(0()))
        Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
        O(0()) -> 0()
        and(x,false()) -> false()
        and(x,true()) -> x
        ge(x,0()) -> true()
        ge(0(),I(x)) -> false()
        ge(0(),O(x)) -> ge(0(),x)
        ge(I(x),I(y)) -> ge(x,y)
        ge(I(x),O(y)) -> ge(x,y)
        ge(O(x),I(y)) -> not(ge(y,x))
        ge(O(x),O(y)) -> ge(x,y)
        if(false(),x,y) -> y
        if(true(),x,y) -> x
        not(false()) -> true()
        not(true()) -> false()
      Signature:
        {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/3,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/2,c_11/1,c_12/2,c_13/2,c_14/0,c_15/9,c_16/2,c_17/0,c_18/2,c_19/4,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/2,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
      Obligation:
        Innermost
        basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
    Applied Processor:
      SimplifyRHS
    Proof:
      Consider the dependency graph
        1:S:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
           -->_2 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
           -->_1 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
           -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
           -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
           -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):3
           -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
           -->_2 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
           -->_1 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
           -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
           -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
        
        2:S:+#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y))
           -->_3 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
           -->_3 +#(O(x),I(y)) -> c_6(+#(x,y)):4
           -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
           -->_3 +#(I(x),O(y)) -> c_5(+#(x,y)):3
           -->_3 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
           -->_2 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
           -->_3 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
        
        3:S:+#(I(x),O(y)) -> c_5(+#(x,y))
           -->_1 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
           -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
           -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
           -->_1 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
           -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
        
        4:S:+#(O(x),I(y)) -> c_6(+#(x,y))
           -->_1 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
           -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
           -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
           -->_1 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
           -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
        
        5:S:+#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y))
           -->_2 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
           -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
           -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):3
           -->_2 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
           -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
        
        6:S:-#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y))
           -->_2 -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y)):9
           -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
           -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):7
           -->_2 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
        
        7:S:-#(I(x),O(y)) -> c_11(-#(x,y))
           -->_1 -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y)):9
           -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
           -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):7
           -->_1 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
        
        8:S:-#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
           -->_2 -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y)):9
           -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
           -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
           -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):7
           -->_2 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
           -->_1 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
        
        9:S:-#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y))
           -->_2 -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y)):9
           -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
           -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):7
           -->_2 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
        
        10:S:Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
           -->_2 Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):12
           -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
           -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
           -->_1 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
        
        11:S:Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
           -->_2 Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):12
           -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
           -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
           -->_1 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
        
        12:S:Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
           -->_2 ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x)):16
           -->_2 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
           -->_4 Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):12
           -->_4 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
           -->_3 +#(O(x),I(y)) -> c_6(+#(x,y)):4
           -->_3 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
        
        13:S:ge#(0(),O(x)) -> c_35(ge#(0(),x))
           -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
        
        14:S:ge#(I(x),I(y)) -> c_36(ge#(x,y))
           -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
           -->_1 ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x)):16
           -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
           -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
           -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
        
        15:S:ge#(I(x),O(y)) -> c_37(ge#(x,y))
           -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
           -->_1 ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x)):16
           -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
           -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
           -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
        
        16:S:ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x))
           -->_2 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
           -->_2 ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x)):16
           -->_2 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
           -->_2 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
           -->_2 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
        
        17:S:ge#(O(x),O(y)) -> c_39(ge#(x,y))
           -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
           -->_1 ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x)):16
           -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
           -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
           -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
        
      Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
        +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
        +#(O(x),O(y)) -> c_7(+#(x,y))
        -#(I(x),I(y)) -> c_10(-#(x,y))
        -#(O(x),O(y)) -> c_13(-#(x,y))
        Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
        ge#(O(x),I(y)) -> c_38(ge#(y,x))
*** 1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
        +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
        +#(I(x),O(y)) -> c_5(+#(x,y))
        +#(O(x),I(y)) -> c_6(+#(x,y))
        +#(O(x),O(y)) -> c_7(+#(x,y))
        -#(I(x),I(y)) -> c_10(-#(x,y))
        -#(I(x),O(y)) -> c_11(-#(x,y))
        -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
        -#(O(x),O(y)) -> c_13(-#(x,y))
        Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
        Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
        Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
        ge#(0(),O(x)) -> c_35(ge#(0(),x))
        ge#(I(x),I(y)) -> c_36(ge#(x,y))
        ge#(I(x),O(y)) -> c_37(ge#(x,y))
        ge#(O(x),I(y)) -> c_38(ge#(y,x))
        ge#(O(x),O(y)) -> c_39(ge#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        +(x,+(y,z)) -> +(+(x,y),z)
        +(x,0()) -> x
        +(0(),x) -> x
        +(I(x),I(y)) -> O(+(+(x,y),I(0())))
        +(I(x),O(y)) -> I(+(x,y))
        +(O(x),I(y)) -> I(+(x,y))
        +(O(x),O(y)) -> O(+(x,y))
        -(x,0()) -> x
        -(0(),x) -> 0()
        -(I(x),I(y)) -> O(-(x,y))
        -(I(x),O(y)) -> I(-(x,y))
        -(O(x),I(y)) -> I(-(-(x,y),I(1())))
        -(O(x),O(y)) -> O(-(x,y))
        Log'(0()) -> 0()
        Log'(I(x)) -> +(Log'(x),I(0()))
        Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
        O(0()) -> 0()
        and(x,false()) -> false()
        and(x,true()) -> x
        ge(x,0()) -> true()
        ge(0(),I(x)) -> false()
        ge(0(),O(x)) -> ge(0(),x)
        ge(I(x),I(y)) -> ge(x,y)
        ge(I(x),O(y)) -> ge(x,y)
        ge(O(x),I(y)) -> not(ge(y,x))
        ge(O(x),O(y)) -> ge(x,y)
        if(false(),x,y) -> y
        if(true(),x,y) -> x
        not(false()) -> true()
        not(true()) -> false()
      Signature:
        {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/2,c_17/0,c_18/2,c_19/3,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
      Obligation:
        Innermost
        basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        +(x,+(y,z)) -> +(+(x,y),z)
        +(x,0()) -> x
        +(0(),x) -> x
        +(I(x),I(y)) -> O(+(+(x,y),I(0())))
        +(I(x),O(y)) -> I(+(x,y))
        +(O(x),I(y)) -> I(+(x,y))
        +(O(x),O(y)) -> O(+(x,y))
        -(x,0()) -> x
        -(0(),x) -> 0()
        -(I(x),I(y)) -> O(-(x,y))
        -(I(x),O(y)) -> I(-(x,y))
        -(O(x),I(y)) -> I(-(-(x,y),I(1())))
        -(O(x),O(y)) -> O(-(x,y))
        Log'(0()) -> 0()
        Log'(I(x)) -> +(Log'(x),I(0()))
        Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
        O(0()) -> 0()
        ge(x,0()) -> true()
        ge(0(),I(x)) -> false()
        ge(0(),O(x)) -> ge(0(),x)
        ge(I(x),I(y)) -> ge(x,y)
        ge(I(x),O(y)) -> ge(x,y)
        ge(O(x),I(y)) -> not(ge(y,x))
        ge(O(x),O(y)) -> ge(x,y)
        if(false(),x,y) -> y
        if(true(),x,y) -> x
        not(false()) -> true()
        not(true()) -> false()
        +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
        +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
        +#(I(x),O(y)) -> c_5(+#(x,y))
        +#(O(x),I(y)) -> c_6(+#(x,y))
        +#(O(x),O(y)) -> c_7(+#(x,y))
        -#(I(x),I(y)) -> c_10(-#(x,y))
        -#(I(x),O(y)) -> c_11(-#(x,y))
        -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
        -#(O(x),O(y)) -> c_13(-#(x,y))
        Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
        Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
        Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
        ge#(0(),O(x)) -> c_35(ge#(0(),x))
        ge#(I(x),I(y)) -> c_36(ge#(x,y))
        ge#(I(x),O(y)) -> c_37(ge#(x,y))
        ge#(O(x),I(y)) -> c_38(ge#(y,x))
        ge#(O(x),O(y)) -> c_39(ge#(x,y))
*** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
        +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
        +#(I(x),O(y)) -> c_5(+#(x,y))
        +#(O(x),I(y)) -> c_6(+#(x,y))
        +#(O(x),O(y)) -> c_7(+#(x,y))
        -#(I(x),I(y)) -> c_10(-#(x,y))
        -#(I(x),O(y)) -> c_11(-#(x,y))
        -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
        -#(O(x),O(y)) -> c_13(-#(x,y))
        Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
        Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
        Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
        ge#(0(),O(x)) -> c_35(ge#(0(),x))
        ge#(I(x),I(y)) -> c_36(ge#(x,y))
        ge#(I(x),O(y)) -> c_37(ge#(x,y))
        ge#(O(x),I(y)) -> c_38(ge#(y,x))
        ge#(O(x),O(y)) -> c_39(ge#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        +(x,+(y,z)) -> +(+(x,y),z)
        +(x,0()) -> x
        +(0(),x) -> x
        +(I(x),I(y)) -> O(+(+(x,y),I(0())))
        +(I(x),O(y)) -> I(+(x,y))
        +(O(x),I(y)) -> I(+(x,y))
        +(O(x),O(y)) -> O(+(x,y))
        -(x,0()) -> x
        -(0(),x) -> 0()
        -(I(x),I(y)) -> O(-(x,y))
        -(I(x),O(y)) -> I(-(x,y))
        -(O(x),I(y)) -> I(-(-(x,y),I(1())))
        -(O(x),O(y)) -> O(-(x,y))
        Log'(0()) -> 0()
        Log'(I(x)) -> +(Log'(x),I(0()))
        Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
        O(0()) -> 0()
        ge(x,0()) -> true()
        ge(0(),I(x)) -> false()
        ge(0(),O(x)) -> ge(0(),x)
        ge(I(x),I(y)) -> ge(x,y)
        ge(I(x),O(y)) -> ge(x,y)
        ge(O(x),I(y)) -> not(ge(y,x))
        ge(O(x),O(y)) -> ge(x,y)
        if(false(),x,y) -> y
        if(true(),x,y) -> x
        not(false()) -> true()
        not(true()) -> false()
      Signature:
        {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/2,c_17/0,c_18/2,c_19/3,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
      Obligation:
        Innermost
        basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
    Applied Processor:
      Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    Proof:
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
      
      Problem (R)
        Strict DP Rules:
          +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
          +#(I(x),O(y)) -> c_5(+#(x,y))
          +#(O(x),I(y)) -> c_6(+#(x,y))
          +#(O(x),O(y)) -> c_7(+#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          -#(I(x),I(y)) -> c_10(-#(x,y))
          -#(I(x),O(y)) -> c_11(-#(x,y))
          -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
          -#(O(x),O(y)) -> c_13(-#(x,y))
          Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
          Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
          Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
          ge#(0(),O(x)) -> c_35(ge#(0(),x))
          ge#(I(x),I(y)) -> c_36(ge#(x,y))
          ge#(I(x),O(y)) -> c_37(ge#(x,y))
          ge#(O(x),I(y)) -> c_38(ge#(y,x))
          ge#(O(x),O(y)) -> c_39(ge#(x,y))
        Weak TRS Rules:
          +(x,+(y,z)) -> +(+(x,y),z)
          +(x,0()) -> x
          +(0(),x) -> x
          +(I(x),I(y)) -> O(+(+(x,y),I(0())))
          +(I(x),O(y)) -> I(+(x,y))
          +(O(x),I(y)) -> I(+(x,y))
          +(O(x),O(y)) -> O(+(x,y))
          -(x,0()) -> x
          -(0(),x) -> 0()
          -(I(x),I(y)) -> O(-(x,y))
          -(I(x),O(y)) -> I(-(x,y))
          -(O(x),I(y)) -> I(-(-(x,y),I(1())))
          -(O(x),O(y)) -> O(-(x,y))
          Log'(0()) -> 0()
          Log'(I(x)) -> +(Log'(x),I(0()))
          Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
          O(0()) -> 0()
          ge(x,0()) -> true()
          ge(0(),I(x)) -> false()
          ge(0(),O(x)) -> ge(0(),x)
          ge(I(x),I(y)) -> ge(x,y)
          ge(I(x),O(y)) -> ge(x,y)
          ge(O(x),I(y)) -> not(ge(y,x))
          ge(O(x),O(y)) -> ge(x,y)
          if(false(),x,y) -> y
          if(true(),x,y) -> x
          not(false()) -> true()
          not(true()) -> false()
        Signature:
          {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/2,c_17/0,c_18/2,c_19/3,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        Obligation:
          Innermost
          basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
      
      Problem (S)
        Strict DP Rules:
          -#(I(x),I(y)) -> c_10(-#(x,y))
          -#(I(x),O(y)) -> c_11(-#(x,y))
          -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
          -#(O(x),O(y)) -> c_13(-#(x,y))
          Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
          Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
          Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
          ge#(0(),O(x)) -> c_35(ge#(0(),x))
          ge#(I(x),I(y)) -> c_36(ge#(x,y))
          ge#(I(x),O(y)) -> c_37(ge#(x,y))
          ge#(O(x),I(y)) -> c_38(ge#(y,x))
          ge#(O(x),O(y)) -> c_39(ge#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
          +#(I(x),O(y)) -> c_5(+#(x,y))
          +#(O(x),I(y)) -> c_6(+#(x,y))
          +#(O(x),O(y)) -> c_7(+#(x,y))
        Weak TRS Rules:
          +(x,+(y,z)) -> +(+(x,y),z)
          +(x,0()) -> x
          +(0(),x) -> x
          +(I(x),I(y)) -> O(+(+(x,y),I(0())))
          +(I(x),O(y)) -> I(+(x,y))
          +(O(x),I(y)) -> I(+(x,y))
          +(O(x),O(y)) -> O(+(x,y))
          -(x,0()) -> x
          -(0(),x) -> 0()
          -(I(x),I(y)) -> O(-(x,y))
          -(I(x),O(y)) -> I(-(x,y))
          -(O(x),I(y)) -> I(-(-(x,y),I(1())))
          -(O(x),O(y)) -> O(-(x,y))
          Log'(0()) -> 0()
          Log'(I(x)) -> +(Log'(x),I(0()))
          Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
          O(0()) -> 0()
          ge(x,0()) -> true()
          ge(0(),I(x)) -> false()
          ge(0(),O(x)) -> ge(0(),x)
          ge(I(x),I(y)) -> ge(x,y)
          ge(I(x),O(y)) -> ge(x,y)
          ge(O(x),I(y)) -> not(ge(y,x))
          ge(O(x),O(y)) -> ge(x,y)
          if(false(),x,y) -> y
          if(true(),x,y) -> x
          not(false()) -> true()
          not(true()) -> false()
        Signature:
          {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/2,c_17/0,c_18/2,c_19/3,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        Obligation:
          Innermost
          basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
  *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
          +#(I(x),O(y)) -> c_5(+#(x,y))
          +#(O(x),I(y)) -> c_6(+#(x,y))
          +#(O(x),O(y)) -> c_7(+#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          -#(I(x),I(y)) -> c_10(-#(x,y))
          -#(I(x),O(y)) -> c_11(-#(x,y))
          -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
          -#(O(x),O(y)) -> c_13(-#(x,y))
          Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
          Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
          Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
          ge#(0(),O(x)) -> c_35(ge#(0(),x))
          ge#(I(x),I(y)) -> c_36(ge#(x,y))
          ge#(I(x),O(y)) -> c_37(ge#(x,y))
          ge#(O(x),I(y)) -> c_38(ge#(y,x))
          ge#(O(x),O(y)) -> c_39(ge#(x,y))
        Weak TRS Rules:
          +(x,+(y,z)) -> +(+(x,y),z)
          +(x,0()) -> x
          +(0(),x) -> x
          +(I(x),I(y)) -> O(+(+(x,y),I(0())))
          +(I(x),O(y)) -> I(+(x,y))
          +(O(x),I(y)) -> I(+(x,y))
          +(O(x),O(y)) -> O(+(x,y))
          -(x,0()) -> x
          -(0(),x) -> 0()
          -(I(x),I(y)) -> O(-(x,y))
          -(I(x),O(y)) -> I(-(x,y))
          -(O(x),I(y)) -> I(-(-(x,y),I(1())))
          -(O(x),O(y)) -> O(-(x,y))
          Log'(0()) -> 0()
          Log'(I(x)) -> +(Log'(x),I(0()))
          Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
          O(0()) -> 0()
          ge(x,0()) -> true()
          ge(0(),I(x)) -> false()
          ge(0(),O(x)) -> ge(0(),x)
          ge(I(x),I(y)) -> ge(x,y)
          ge(I(x),O(y)) -> ge(x,y)
          ge(O(x),I(y)) -> not(ge(y,x))
          ge(O(x),O(y)) -> ge(x,y)
          if(false(),x,y) -> y
          if(true(),x,y) -> x
          not(false()) -> true()
          not(true()) -> false()
        Signature:
          {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/2,c_17/0,c_18/2,c_19/3,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        Obligation:
          Innermost
          basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
             -->_2 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          2:S:+#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
             -->_2 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          3:S:+#(I(x),O(y)) -> c_5(+#(x,y))
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          4:S:+#(O(x),I(y)) -> c_6(+#(x,y))
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          5:S:+#(O(x),O(y)) -> c_7(+#(x,y))
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          6:W:-#(I(x),I(y)) -> c_10(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):9
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):7
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):6
          
          7:W:-#(I(x),O(y)) -> c_11(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):9
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):7
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):6
          
          8:W:-#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
             -->_2 -#(O(x),O(y)) -> c_13(-#(x,y)):9
             -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):7
             -->_2 -#(I(x),I(y)) -> c_10(-#(x,y)):6
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):6
          
          9:W:-#(O(x),O(y)) -> c_13(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):9
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):7
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):6
          
          10:W:Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):6
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):12
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
          
          11:W:Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):12
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
          
          12:W:Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):16
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
             -->_3 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):12
             -->_3 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
          
          13:W:ge#(0(),O(x)) -> c_35(ge#(0(),x))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
          
          14:W:ge#(I(x),I(y)) -> c_36(ge#(x,y))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):16
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
          
          15:W:ge#(I(x),O(y)) -> c_37(ge#(x,y))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):16
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
          
          16:W:ge#(O(x),I(y)) -> c_38(ge#(y,x))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):16
          
          17:W:ge#(O(x),O(y)) -> c_39(ge#(x,y))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):16
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          16: ge#(O(x),I(y)) -> c_38(ge#(y,x))
          17: ge#(O(x),O(y)) -> c_39(ge#(x,y))
          15: ge#(I(x),O(y)) -> c_37(ge#(x,y))
          14: ge#(I(x),I(y)) -> c_36(ge#(x,y))
          13: ge#(0(),O(x)) -> c_35(ge#(0()   
                                       ,x))   
          6:  -#(I(x),I(y)) -> c_10(-#(x,y))  
          9:  -#(O(x),O(y)) -> c_13(-#(x,y))  
          8:  -#(O(x),I(y)) -> c_12(-#(-(x,y) 
                                      ,I(1()))
                                   ,-#(x,y))  
          7:  -#(I(x),O(y)) -> c_11(-#(x,y))  
  *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
          +#(I(x),O(y)) -> c_5(+#(x,y))
          +#(O(x),I(y)) -> c_6(+#(x,y))
          +#(O(x),O(y)) -> c_7(+#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
          Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
          Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
        Weak TRS Rules:
          +(x,+(y,z)) -> +(+(x,y),z)
          +(x,0()) -> x
          +(0(),x) -> x
          +(I(x),I(y)) -> O(+(+(x,y),I(0())))
          +(I(x),O(y)) -> I(+(x,y))
          +(O(x),I(y)) -> I(+(x,y))
          +(O(x),O(y)) -> O(+(x,y))
          -(x,0()) -> x
          -(0(),x) -> 0()
          -(I(x),I(y)) -> O(-(x,y))
          -(I(x),O(y)) -> I(-(x,y))
          -(O(x),I(y)) -> I(-(-(x,y),I(1())))
          -(O(x),O(y)) -> O(-(x,y))
          Log'(0()) -> 0()
          Log'(I(x)) -> +(Log'(x),I(0()))
          Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
          O(0()) -> 0()
          ge(x,0()) -> true()
          ge(0(),I(x)) -> false()
          ge(0(),O(x)) -> ge(0(),x)
          ge(I(x),I(y)) -> ge(x,y)
          ge(I(x),O(y)) -> ge(x,y)
          ge(O(x),I(y)) -> not(ge(y,x))
          ge(O(x),O(y)) -> ge(x,y)
          if(false(),x,y) -> y
          if(true(),x,y) -> x
          not(false()) -> true()
          not(true()) -> false()
        Signature:
          {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/2,c_17/0,c_18/2,c_19/3,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        Obligation:
          Innermost
          basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
      Applied Processor:
        SimplifyRHS
      Proof:
        Consider the dependency graph
          1:S:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
             -->_2 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          2:S:+#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
             -->_2 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          3:S:+#(I(x),O(y)) -> c_5(+#(x,y))
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          4:S:+#(O(x),I(y)) -> c_6(+#(x,y))
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          5:S:+#(O(x),O(y)) -> c_7(+#(x,y))
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          10:W:Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):12
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
          
          11:W:Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):12
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
          
          12:W:Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
             -->_3 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):12
             -->_3 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          Log#(x) -> c_16(Log'#(x))
          Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
  *** 1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
          +#(I(x),O(y)) -> c_5(+#(x,y))
          +#(O(x),I(y)) -> c_6(+#(x,y))
          +#(O(x),O(y)) -> c_7(+#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          Log#(x) -> c_16(Log'#(x))
          Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
          Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        Weak TRS Rules:
          +(x,+(y,z)) -> +(+(x,y),z)
          +(x,0()) -> x
          +(0(),x) -> x
          +(I(x),I(y)) -> O(+(+(x,y),I(0())))
          +(I(x),O(y)) -> I(+(x,y))
          +(O(x),I(y)) -> I(+(x,y))
          +(O(x),O(y)) -> O(+(x,y))
          -(x,0()) -> x
          -(0(),x) -> 0()
          -(I(x),I(y)) -> O(-(x,y))
          -(I(x),O(y)) -> I(-(x,y))
          -(O(x),I(y)) -> I(-(-(x,y),I(1())))
          -(O(x),O(y)) -> O(-(x,y))
          Log'(0()) -> 0()
          Log'(I(x)) -> +(Log'(x),I(0()))
          Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
          O(0()) -> 0()
          ge(x,0()) -> true()
          ge(0(),I(x)) -> false()
          ge(0(),O(x)) -> ge(0(),x)
          ge(I(x),I(y)) -> ge(x,y)
          ge(I(x),O(y)) -> ge(x,y)
          ge(O(x),I(y)) -> not(ge(y,x))
          ge(O(x),O(y)) -> ge(x,y)
          if(false(),x,y) -> y
          if(true(),x,y) -> x
          not(false()) -> true()
          not(true()) -> false()
        Signature:
          {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        Obligation:
          Innermost
          basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
      Applied Processor:
        UsableRules
      Proof:
        We replace rewrite rules by usable rules:
          +(x,+(y,z)) -> +(+(x,y),z)
          +(x,0()) -> x
          +(0(),x) -> x
          +(I(x),I(y)) -> O(+(+(x,y),I(0())))
          +(I(x),O(y)) -> I(+(x,y))
          +(O(x),I(y)) -> I(+(x,y))
          +(O(x),O(y)) -> O(+(x,y))
          Log'(0()) -> 0()
          Log'(I(x)) -> +(Log'(x),I(0()))
          Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
          O(0()) -> 0()
          ge(x,0()) -> true()
          ge(0(),I(x)) -> false()
          ge(0(),O(x)) -> ge(0(),x)
          ge(I(x),I(y)) -> ge(x,y)
          ge(I(x),O(y)) -> ge(x,y)
          ge(O(x),I(y)) -> not(ge(y,x))
          ge(O(x),O(y)) -> ge(x,y)
          if(false(),x,y) -> y
          if(true(),x,y) -> x
          not(false()) -> true()
          not(true()) -> false()
          +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
          +#(I(x),O(y)) -> c_5(+#(x,y))
          +#(O(x),I(y)) -> c_6(+#(x,y))
          +#(O(x),O(y)) -> c_7(+#(x,y))
          Log#(x) -> c_16(Log'#(x))
          Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
          Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
  *** 1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
          +#(I(x),O(y)) -> c_5(+#(x,y))
          +#(O(x),I(y)) -> c_6(+#(x,y))
          +#(O(x),O(y)) -> c_7(+#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          Log#(x) -> c_16(Log'#(x))
          Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
          Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        Weak TRS Rules:
          +(x,+(y,z)) -> +(+(x,y),z)
          +(x,0()) -> x
          +(0(),x) -> x
          +(I(x),I(y)) -> O(+(+(x,y),I(0())))
          +(I(x),O(y)) -> I(+(x,y))
          +(O(x),I(y)) -> I(+(x,y))
          +(O(x),O(y)) -> O(+(x,y))
          Log'(0()) -> 0()
          Log'(I(x)) -> +(Log'(x),I(0()))
          Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
          O(0()) -> 0()
          ge(x,0()) -> true()
          ge(0(),I(x)) -> false()
          ge(0(),O(x)) -> ge(0(),x)
          ge(I(x),I(y)) -> ge(x,y)
          ge(I(x),O(y)) -> ge(x,y)
          ge(O(x),I(y)) -> not(ge(y,x))
          ge(O(x),O(y)) -> ge(x,y)
          if(false(),x,y) -> y
          if(true(),x,y) -> x
          not(false()) -> true()
          not(true()) -> false()
        Signature:
          {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        Obligation:
          Innermost
          basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: +#(x,+(y,z)) -> c_1(+#(+(x,y),z)
                                ,+#(x,y))    
          
        Consider the set of all dependency pairs
          1: +#(x,+(y,z)) -> c_1(+#(+(x,y),z)
                                ,+#(x,y))    
          2: +#(I(x),I(y)) -> c_4(+#(+(x,y)  
                                    ,I(0())) 
                                 ,+#(x,y))   
          3: +#(I(x),O(y)) -> c_5(+#(x,y))   
          4: +#(O(x),I(y)) -> c_6(+#(x,y))   
          5: +#(O(x),O(y)) -> c_7(+#(x,y))   
          6: Log#(x) -> c_16(Log'#(x))       
          7: Log'#(I(x)) -> c_18(+#(Log'(x)  
                                   ,I(0()))  
                                ,Log'#(x))   
          8: Log'#(O(x)) -> c_19(+#(Log'(x)  
                                   ,I(0()))  
                                ,Log'#(x))   
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,6}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
    *** 1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
          Weak TRS Rules:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
          Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
          Obligation:
            Innermost
            basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
        Applied Processor:
          NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(c_1) = {1,2},
            uargs(c_4) = {1,2},
            uargs(c_5) = {1},
            uargs(c_6) = {1},
            uargs(c_7) = {1},
            uargs(c_16) = {1},
            uargs(c_18) = {1,2},
            uargs(c_19) = {1,2}
          
          Following symbols are considered usable:
            {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}
          TcT has computed the following interpretation:
                p(+) = [1] x1 + [2] x2 + [2]                                                                  
                p(-) = [0]                                                                                    
                p(0) = [0]                                                                                    
                p(1) = [0]                                                                                    
               p(BS) = [0]                                                                                    
                p(I) = [1] x1 + [0]                                                                           
                p(L) = [1] x1 + [0]                                                                           
              p(Log) = [0]                                                                                    
             p(Log') = [4]                                                                                    
              p(Max) = [0]                                                                                    
              p(Min) = [0]                                                                                    
                p(N) = [1] x1 + [1] x2 + [1] x3 + [0]                                                         
                p(O) = [1] x1 + [0]                                                                           
             p(Size) = [0]                                                                                    
              p(Val) = [0]                                                                                    
               p(WB) = [0]                                                                                    
              p(and) = [0]                                                                                    
            p(false) = [0]                                                                                    
               p(ge) = [2] x2 + [0]                                                                           
               p(if) = [0]                                                                                    
                p(l) = [0]                                                                                    
              p(not) = [0]                                                                                    
                p(r) = [0]                                                                                    
             p(true) = [0]                                                                                    
               p(+#) = [4] x2 + [0]                                                                           
               p(-#) = [0]                                                                                    
              p(BS#) = [0]                                                                                    
             p(Log#) = [0]                                                                                    
            p(Log'#) = [0]                                                                                    
             p(Max#) = [0]                                                                                    
             p(Min#) = [0]                                                                                    
               p(O#) = [0]                                                                                    
            p(Size#) = [0]                                                                                    
             p(Val#) = [0]                                                                                    
              p(WB#) = [0]                                                                                    
             p(and#) = [0]                                                                                    
              p(ge#) = [0]                                                                                    
              p(if#) = [0]                                                                                    
             p(not#) = [0]                                                                                    
              p(c_1) = [2] x1 + [1] x2 + [4]                                                                  
              p(c_2) = [0]                                                                                    
              p(c_3) = [0]                                                                                    
              p(c_4) = [1] x1 + [1] x2 + [0]                                                                  
              p(c_5) = [1] x1 + [0]                                                                           
              p(c_6) = [1] x1 + [0]                                                                           
              p(c_7) = [1] x1 + [0]                                                                           
              p(c_8) = [0]                                                                                    
              p(c_9) = [0]                                                                                    
             p(c_10) = [0]                                                                                    
             p(c_11) = [0]                                                                                    
             p(c_12) = [0]                                                                                    
             p(c_13) = [0]                                                                                    
             p(c_14) = [0]                                                                                    
             p(c_15) = [1] x5 + [1] x6 + [0]                                                                  
             p(c_16) = [1] x1 + [0]                                                                           
             p(c_17) = [0]                                                                                    
             p(c_18) = [1] x1 + [1] x2 + [0]                                                                  
             p(c_19) = [1] x1 + [1] x2 + [0]                                                                  
             p(c_20) = [0]                                                                                    
             p(c_21) = [0]                                                                                    
             p(c_22) = [0]                                                                                    
             p(c_23) = [0]                                                                                    
             p(c_24) = [0]                                                                                    
             p(c_25) = [0]                                                                                    
             p(c_26) = [2] x2 + [0]                                                                           
             p(c_27) = [0]                                                                                    
             p(c_28) = [0]                                                                                    
             p(c_29) = [0]                                                                                    
             p(c_30) = [4] x1 + [1] x3 + [2] x5 + [1] x6 + [2] x7 + [2] x9 + [1] x10 + [4] x12 + [4] x13 + [0]
             p(c_31) = [0]                                                                                    
             p(c_32) = [2]                                                                                    
             p(c_33) = [0]                                                                                    
             p(c_34) = [0]                                                                                    
             p(c_35) = [0]                                                                                    
             p(c_36) = [0]                                                                                    
             p(c_37) = [1] x1 + [0]                                                                           
             p(c_38) = [0]                                                                                    
             p(c_39) = [0]                                                                                    
             p(c_40) = [0]                                                                                    
             p(c_41) = [0]                                                                                    
             p(c_42) = [0]                                                                                    
             p(c_43) = [0]                                                                                    
          
          Following rules are strictly oriented:
          +#(x,+(y,z)) = [4] y + [8] z + [8]      
                       > [4] y + [8] z + [4]      
                       = c_1(+#(+(x,y),z),+#(x,y))
          
          
          Following rules are (at-least) weakly oriented:
          +#(I(x),I(y)) =  [4] y + [0]                   
                        >= [4] y + [0]                   
                        =  c_4(+#(+(x,y),I(0())),+#(x,y))
          
          +#(I(x),O(y)) =  [4] y + [0]                   
                        >= [4] y + [0]                   
                        =  c_5(+#(x,y))                  
          
          +#(O(x),I(y)) =  [4] y + [0]                   
                        >= [4] y + [0]                   
                        =  c_6(+#(x,y))                  
          
          +#(O(x),O(y)) =  [4] y + [0]                   
                        >= [4] y + [0]                   
                        =  c_7(+#(x,y))                  
          
                Log#(x) =  [0]                           
                        >= [0]                           
                        =  c_16(Log'#(x))                
          
            Log'#(I(x)) =  [0]                           
                        >= [0]                           
                        =  c_18(+#(Log'(x),I(0()))       
                               ,Log'#(x))                
          
            Log'#(O(x)) =  [0]                           
                        >= [0]                           
                        =  c_19(+#(Log'(x),I(0()))       
                               ,Log'#(x))                
          
    *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
          Weak TRS Rules:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
          Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
          Obligation:
            Innermost
            basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.1.1.1.1.1.1.2 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
          Weak TRS Rules:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
          Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
          Obligation:
            Innermost
            basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            4: +#(O(x),O(y)) -> c_7(+#(x,y))
            
          Consider the set of all dependency pairs
            1: +#(I(x),I(y)) -> c_4(+#(+(x,y)  
                                      ,I(0())) 
                                   ,+#(x,y))   
            2: +#(I(x),O(y)) -> c_5(+#(x,y))   
            3: +#(O(x),I(y)) -> c_6(+#(x,y))   
            4: +#(O(x),O(y)) -> c_7(+#(x,y))   
            5: +#(x,+(y,z)) -> c_1(+#(+(x,y),z)
                                  ,+#(x,y))    
            6: Log#(x) -> c_16(Log'#(x))       
            7: Log'#(I(x)) -> c_18(+#(Log'(x)  
                                     ,I(0()))  
                                  ,Log'#(x))   
            8: Log'#(O(x)) -> c_19(+#(Log'(x)  
                                     ,I(0()))  
                                  ,Log'#(x))   
          Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
          SPACE(?,?)on application of the dependency pairs
            {4}
          These cover all (indirect) predecessors of dependency pairs
            {4,6}
          their number of applications is equally bounded.
          The dependency pairs are shifted into the weak component.
      *** 1.1.1.1.1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
              +#(I(x),O(y)) -> c_5(+#(x,y))
              +#(O(x),I(y)) -> c_6(+#(x,y))
              +#(O(x),O(y)) -> c_7(+#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
              Log#(x) -> c_16(Log'#(x))
              Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
              Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
            Weak TRS Rules:
              +(x,+(y,z)) -> +(+(x,y),z)
              +(x,0()) -> x
              +(0(),x) -> x
              +(I(x),I(y)) -> O(+(+(x,y),I(0())))
              +(I(x),O(y)) -> I(+(x,y))
              +(O(x),I(y)) -> I(+(x,y))
              +(O(x),O(y)) -> O(+(x,y))
              Log'(0()) -> 0()
              Log'(I(x)) -> +(Log'(x),I(0()))
              Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
              O(0()) -> 0()
              ge(x,0()) -> true()
              ge(0(),I(x)) -> false()
              ge(0(),O(x)) -> ge(0(),x)
              ge(I(x),I(y)) -> ge(x,y)
              ge(I(x),O(y)) -> ge(x,y)
              ge(O(x),I(y)) -> not(ge(y,x))
              ge(O(x),O(y)) -> ge(x,y)
              if(false(),x,y) -> y
              if(true(),x,y) -> x
              not(false()) -> true()
              not(true()) -> false()
            Signature:
              {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
            Obligation:
              Innermost
              basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
          Applied Processor:
            NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation:
            The following argument positions are considered usable:
              uargs(c_1) = {1,2},
              uargs(c_4) = {1,2},
              uargs(c_5) = {1},
              uargs(c_6) = {1},
              uargs(c_7) = {1},
              uargs(c_16) = {1},
              uargs(c_18) = {1,2},
              uargs(c_19) = {1,2}
            
            Following symbols are considered usable:
              {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}
            TcT has computed the following interpretation:
                  p(+) = [2] x1 + [2] x2 + [0]                                                 
                  p(-) = [1] x1 + [0]                                                          
                  p(0) = [0]                                                                   
                  p(1) = [0]                                                                   
                 p(BS) = [0]                                                                   
                  p(I) = [1] x1 + [0]                                                          
                  p(L) = [0]                                                                   
                p(Log) = [1] x1 + [0]                                                          
               p(Log') = [1]                                                                   
                p(Max) = [0]                                                                   
                p(Min) = [1] x1 + [0]                                                          
                  p(N) = [1] x2 + [1] x3 + [0]                                                 
                  p(O) = [3] x1 + [1]                                                          
               p(Size) = [1] x1 + [2]                                                          
                p(Val) = [0]                                                                   
                 p(WB) = [0]                                                                   
                p(and) = [1] x2 + [0]                                                          
              p(false) = [1]                                                                   
                 p(ge) = [0]                                                                   
                 p(if) = [0]                                                                   
                  p(l) = [0]                                                                   
                p(not) = [2] x1 + [0]                                                          
                  p(r) = [1]                                                                   
               p(true) = [0]                                                                   
                 p(+#) = [1] x2 + [0]                                                          
                 p(-#) = [1] x1 + [0]                                                          
                p(BS#) = [2] x1 + [4]                                                          
               p(Log#) = [2]                                                                   
              p(Log'#) = [0]                                                                   
               p(Max#) = [1]                                                                   
               p(Min#) = [2]                                                                   
                 p(O#) = [0]                                                                   
              p(Size#) = [1]                                                                   
               p(Val#) = [1]                                                                   
                p(WB#) = [0]                                                                   
               p(and#) = [4] x2 + [2]                                                          
                p(ge#) = [4] x1 + [1]                                                          
                p(if#) = [1] x2 + [2]                                                          
               p(not#) = [2] x1 + [1]                                                          
                p(c_1) = [1] x1 + [1] x2 + [0]                                                 
                p(c_2) = [0]                                                                   
                p(c_3) = [0]                                                                   
                p(c_4) = [4] x1 + [1] x2 + [0]                                                 
                p(c_5) = [1] x1 + [1]                                                          
                p(c_6) = [1] x1 + [0]                                                          
                p(c_7) = [2] x1 + [0]                                                          
                p(c_8) = [2]                                                                   
                p(c_9) = [0]                                                                   
               p(c_10) = [4]                                                                   
               p(c_11) = [0]                                                                   
               p(c_12) = [1] x1 + [0]                                                          
               p(c_13) = [2]                                                                   
               p(c_14) = [4]                                                                   
               p(c_15) = [1] x1 + [1] x9 + [0]                                                 
               p(c_16) = [4] x1 + [2]                                                          
               p(c_17) = [0]                                                                   
               p(c_18) = [1] x1 + [1] x2 + [0]                                                 
               p(c_19) = [2] x1 + [1] x2 + [0]                                                 
               p(c_20) = [0]                                                                   
               p(c_21) = [2]                                                                   
               p(c_22) = [0]                                                                   
               p(c_23) = [2] x1 + [2]                                                          
               p(c_24) = [4]                                                                   
               p(c_25) = [0]                                                                   
               p(c_26) = [1] x2 + [1] x3 + [4] x4 + [0]                                        
               p(c_27) = [1]                                                                   
               p(c_28) = [1]                                                                   
               p(c_29) = [0]                                                                   
               p(c_30) = [1] x1 + [1] x3 + [1] x8 + [1] x10 + [1] x11 + [2] x13 + [4] x15 + [4]
               p(c_31) = [0]                                                                   
               p(c_32) = [0]                                                                   
               p(c_33) = [0]                                                                   
               p(c_34) = [2]                                                                   
               p(c_35) = [0]                                                                   
               p(c_36) = [1]                                                                   
               p(c_37) = [0]                                                                   
               p(c_38) = [1] x1 + [4]                                                          
               p(c_39) = [2] x1 + [4]                                                          
               p(c_40) = [0]                                                                   
               p(c_41) = [0]                                                                   
               p(c_42) = [1]                                                                   
               p(c_43) = [0]                                                                   
            
            Following rules are strictly oriented:
            +#(O(x),O(y)) = [3] y + [1] 
                          > [2] y + [0] 
                          = c_7(+#(x,y))
            
            
            Following rules are (at-least) weakly oriented:
             +#(x,+(y,z)) =  [2] y + [2] z + [0]           
                          >= [1] y + [1] z + [0]           
                          =  c_1(+#(+(x,y),z),+#(x,y))     
            
            +#(I(x),I(y)) =  [1] y + [0]                   
                          >= [1] y + [0]                   
                          =  c_4(+#(+(x,y),I(0())),+#(x,y))
            
            +#(I(x),O(y)) =  [3] y + [1]                   
                          >= [1] y + [1]                   
                          =  c_5(+#(x,y))                  
            
            +#(O(x),I(y)) =  [1] y + [0]                   
                          >= [1] y + [0]                   
                          =  c_6(+#(x,y))                  
            
                  Log#(x) =  [2]                           
                          >= [2]                           
                          =  c_16(Log'#(x))                
            
              Log'#(I(x)) =  [0]                           
                          >= [0]                           
                          =  c_18(+#(Log'(x),I(0()))       
                                 ,Log'#(x))                
            
              Log'#(O(x)) =  [0]                           
                          >= [0]                           
                          =  c_19(+#(Log'(x),I(0()))       
                                 ,Log'#(x))                
            
      *** 1.1.1.1.1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
              +#(I(x),O(y)) -> c_5(+#(x,y))
              +#(O(x),I(y)) -> c_6(+#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
              +#(O(x),O(y)) -> c_7(+#(x,y))
              Log#(x) -> c_16(Log'#(x))
              Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
              Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
            Weak TRS Rules:
              +(x,+(y,z)) -> +(+(x,y),z)
              +(x,0()) -> x
              +(0(),x) -> x
              +(I(x),I(y)) -> O(+(+(x,y),I(0())))
              +(I(x),O(y)) -> I(+(x,y))
              +(O(x),I(y)) -> I(+(x,y))
              +(O(x),O(y)) -> O(+(x,y))
              Log'(0()) -> 0()
              Log'(I(x)) -> +(Log'(x),I(0()))
              Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
              O(0()) -> 0()
              ge(x,0()) -> true()
              ge(0(),I(x)) -> false()
              ge(0(),O(x)) -> ge(0(),x)
              ge(I(x),I(y)) -> ge(x,y)
              ge(I(x),O(y)) -> ge(x,y)
              ge(O(x),I(y)) -> not(ge(y,x))
              ge(O(x),O(y)) -> ge(x,y)
              if(false(),x,y) -> y
              if(true(),x,y) -> x
              not(false()) -> true()
              not(true()) -> false()
            Signature:
              {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
            Obligation:
              Innermost
              basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.1.1.1.1.1.2.2 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
              +#(I(x),O(y)) -> c_5(+#(x,y))
              +#(O(x),I(y)) -> c_6(+#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
              +#(O(x),O(y)) -> c_7(+#(x,y))
              Log#(x) -> c_16(Log'#(x))
              Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
              Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
            Weak TRS Rules:
              +(x,+(y,z)) -> +(+(x,y),z)
              +(x,0()) -> x
              +(0(),x) -> x
              +(I(x),I(y)) -> O(+(+(x,y),I(0())))
              +(I(x),O(y)) -> I(+(x,y))
              +(O(x),I(y)) -> I(+(x,y))
              +(O(x),O(y)) -> O(+(x,y))
              Log'(0()) -> 0()
              Log'(I(x)) -> +(Log'(x),I(0()))
              Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
              O(0()) -> 0()
              ge(x,0()) -> true()
              ge(0(),I(x)) -> false()
              ge(0(),O(x)) -> ge(0(),x)
              ge(I(x),I(y)) -> ge(x,y)
              ge(I(x),O(y)) -> ge(x,y)
              ge(O(x),I(y)) -> not(ge(y,x))
              ge(O(x),O(y)) -> ge(x,y)
              if(false(),x,y) -> y
              if(true(),x,y) -> x
              not(false()) -> true()
              not(true()) -> false()
            Signature:
              {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
            Obligation:
              Innermost
              basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              2: +#(I(x),O(y)) -> c_5(+#(x,y))
              
            Consider the set of all dependency pairs
              1: +#(I(x),I(y)) -> c_4(+#(+(x,y)  
                                        ,I(0())) 
                                     ,+#(x,y))   
              2: +#(I(x),O(y)) -> c_5(+#(x,y))   
              3: +#(O(x),I(y)) -> c_6(+#(x,y))   
              4: +#(x,+(y,z)) -> c_1(+#(+(x,y),z)
                                    ,+#(x,y))    
              5: +#(O(x),O(y)) -> c_7(+#(x,y))   
              6: Log#(x) -> c_16(Log'#(x))       
              7: Log'#(I(x)) -> c_18(+#(Log'(x)  
                                       ,I(0()))  
                                    ,Log'#(x))   
              8: Log'#(O(x)) -> c_19(+#(Log'(x)  
                                       ,I(0()))  
                                    ,Log'#(x))   
            Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
            SPACE(?,?)on application of the dependency pairs
              {2}
            These cover all (indirect) predecessors of dependency pairs
              {2,6}
            their number of applications is equally bounded.
            The dependency pairs are shifted into the weak component.
        *** 1.1.1.1.1.1.1.1.1.1.1.1.2.2.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
                +#(I(x),O(y)) -> c_5(+#(x,y))
                +#(O(x),I(y)) -> c_6(+#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
                +#(O(x),O(y)) -> c_7(+#(x,y))
                Log#(x) -> c_16(Log'#(x))
                Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
                Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
              Weak TRS Rules:
                +(x,+(y,z)) -> +(+(x,y),z)
                +(x,0()) -> x
                +(0(),x) -> x
                +(I(x),I(y)) -> O(+(+(x,y),I(0())))
                +(I(x),O(y)) -> I(+(x,y))
                +(O(x),I(y)) -> I(+(x,y))
                +(O(x),O(y)) -> O(+(x,y))
                Log'(0()) -> 0()
                Log'(I(x)) -> +(Log'(x),I(0()))
                Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
                O(0()) -> 0()
                ge(x,0()) -> true()
                ge(0(),I(x)) -> false()
                ge(0(),O(x)) -> ge(0(),x)
                ge(I(x),I(y)) -> ge(x,y)
                ge(I(x),O(y)) -> ge(x,y)
                ge(O(x),I(y)) -> not(ge(y,x))
                ge(O(x),O(y)) -> ge(x,y)
                if(false(),x,y) -> y
                if(true(),x,y) -> x
                not(false()) -> true()
                not(true()) -> false()
              Signature:
                {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
              Obligation:
                Innermost
                basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
            Applied Processor:
              NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a matrix interpretation of kind constructor based matrix interpretation:
              The following argument positions are considered usable:
                uargs(c_1) = {1,2},
                uargs(c_4) = {1,2},
                uargs(c_5) = {1},
                uargs(c_6) = {1},
                uargs(c_7) = {1},
                uargs(c_16) = {1},
                uargs(c_18) = {1,2},
                uargs(c_19) = {1,2}
              
              Following symbols are considered usable:
                {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}
              TcT has computed the following interpretation:
                    p(+) = [2] x1 + [1] x2 + [0]                                       
                    p(-) = [0]                                                         
                    p(0) = [0]                                                         
                    p(1) = [0]                                                         
                   p(BS) = [0]                                                         
                    p(I) = [1] x1 + [0]                                                
                    p(L) = [1] x1 + [0]                                                
                  p(Log) = [0]                                                         
                 p(Log') = [0]                                                         
                  p(Max) = [0]                                                         
                  p(Min) = [0]                                                         
                    p(N) = [1] x1 + [1] x2 + [1] x3 + [0]                              
                    p(O) = [3] x1 + [5]                                                
                 p(Size) = [0]                                                         
                  p(Val) = [0]                                                         
                   p(WB) = [0]                                                         
                  p(and) = [0]                                                         
                p(false) = [0]                                                         
                   p(ge) = [0]                                                         
                   p(if) = [0]                                                         
                    p(l) = [0]                                                         
                  p(not) = [5]                                                         
                    p(r) = [0]                                                         
                 p(true) = [0]                                                         
                   p(+#) = [1] x2 + [0]                                                
                   p(-#) = [0]                                                         
                  p(BS#) = [0]                                                         
                 p(Log#) = [0]                                                         
                p(Log'#) = [0]                                                         
                 p(Max#) = [0]                                                         
                 p(Min#) = [0]                                                         
                   p(O#) = [0]                                                         
                p(Size#) = [0]                                                         
                 p(Val#) = [0]                                                         
                  p(WB#) = [0]                                                         
                 p(and#) = [0]                                                         
                  p(ge#) = [0]                                                         
                  p(if#) = [0]                                                         
                 p(not#) = [0]                                                         
                  p(c_1) = [1] x1 + [2] x2 + [0]                                       
                  p(c_2) = [0]                                                         
                  p(c_3) = [0]                                                         
                  p(c_4) = [4] x1 + [1] x2 + [0]                                       
                  p(c_5) = [2] x1 + [3]                                                
                  p(c_6) = [1] x1 + [0]                                                
                  p(c_7) = [2] x1 + [1]                                                
                  p(c_8) = [0]                                                         
                  p(c_9) = [0]                                                         
                 p(c_10) = [0]                                                         
                 p(c_11) = [0]                                                         
                 p(c_12) = [0]                                                         
                 p(c_13) = [0]                                                         
                 p(c_14) = [0]                                                         
                 p(c_15) = [0]                                                         
                 p(c_16) = [1] x1 + [0]                                                
                 p(c_17) = [0]                                                         
                 p(c_18) = [1] x1 + [4] x2 + [0]                                       
                 p(c_19) = [1] x1 + [1] x2 + [0]                                       
                 p(c_20) = [0]                                                         
                 p(c_21) = [0]                                                         
                 p(c_22) = [0]                                                         
                 p(c_23) = [0]                                                         
                 p(c_24) = [0]                                                         
                 p(c_25) = [0]                                                         
                 p(c_26) = [4] x4 + [0]                                                
                 p(c_27) = [0]                                                         
                 p(c_28) = [0]                                                         
                 p(c_29) = [0]                                                         
                 p(c_30) = [1] x6 + [4] x7 + [2] x8 + [1] x11 + [1] x12 + [2] x13 + [0]
                 p(c_31) = [0]                                                         
                 p(c_32) = [0]                                                         
                 p(c_33) = [0]                                                         
                 p(c_34) = [0]                                                         
                 p(c_35) = [0]                                                         
                 p(c_36) = [0]                                                         
                 p(c_37) = [0]                                                         
                 p(c_38) = [2] x1 + [0]                                                
                 p(c_39) = [4] x1 + [0]                                                
                 p(c_40) = [0]                                                         
                 p(c_41) = [0]                                                         
                 p(c_42) = [0]                                                         
                 p(c_43) = [0]                                                         
              
              Following rules are strictly oriented:
              +#(I(x),O(y)) = [3] y + [5] 
                            > [2] y + [3] 
                            = c_5(+#(x,y))
              
              
              Following rules are (at-least) weakly oriented:
               +#(x,+(y,z)) =  [2] y + [1] z + [0]           
                            >= [2] y + [1] z + [0]           
                            =  c_1(+#(+(x,y),z),+#(x,y))     
              
              +#(I(x),I(y)) =  [1] y + [0]                   
                            >= [1] y + [0]                   
                            =  c_4(+#(+(x,y),I(0())),+#(x,y))
              
              +#(O(x),I(y)) =  [1] y + [0]                   
                            >= [1] y + [0]                   
                            =  c_6(+#(x,y))                  
              
              +#(O(x),O(y)) =  [3] y + [5]                   
                            >= [2] y + [1]                   
                            =  c_7(+#(x,y))                  
              
                    Log#(x) =  [0]                           
                            >= [0]                           
                            =  c_16(Log'#(x))                
              
                Log'#(I(x)) =  [0]                           
                            >= [0]                           
                            =  c_18(+#(Log'(x),I(0()))       
                                   ,Log'#(x))                
              
                Log'#(O(x)) =  [0]                           
                            >= [0]                           
                            =  c_19(+#(Log'(x),I(0()))       
                                   ,Log'#(x))                
              
        *** 1.1.1.1.1.1.1.1.1.1.1.1.2.2.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
                +#(O(x),I(y)) -> c_6(+#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
                +#(I(x),O(y)) -> c_5(+#(x,y))
                +#(O(x),O(y)) -> c_7(+#(x,y))
                Log#(x) -> c_16(Log'#(x))
                Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
                Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
              Weak TRS Rules:
                +(x,+(y,z)) -> +(+(x,y),z)
                +(x,0()) -> x
                +(0(),x) -> x
                +(I(x),I(y)) -> O(+(+(x,y),I(0())))
                +(I(x),O(y)) -> I(+(x,y))
                +(O(x),I(y)) -> I(+(x,y))
                +(O(x),O(y)) -> O(+(x,y))
                Log'(0()) -> 0()
                Log'(I(x)) -> +(Log'(x),I(0()))
                Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
                O(0()) -> 0()
                ge(x,0()) -> true()
                ge(0(),I(x)) -> false()
                ge(0(),O(x)) -> ge(0(),x)
                ge(I(x),I(y)) -> ge(x,y)
                ge(I(x),O(y)) -> ge(x,y)
                ge(O(x),I(y)) -> not(ge(y,x))
                ge(O(x),O(y)) -> ge(x,y)
                if(false(),x,y) -> y
                if(true(),x,y) -> x
                not(false()) -> true()
                not(true()) -> false()
              Signature:
                {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
              Obligation:
                Innermost
                basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.1.1.1.1.1.1.2.2.2 Progress [(?,O(n^2))]  ***
            Considered Problem:
              Strict DP Rules:
                +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
                +#(O(x),I(y)) -> c_6(+#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
                +#(I(x),O(y)) -> c_5(+#(x,y))
                +#(O(x),O(y)) -> c_7(+#(x,y))
                Log#(x) -> c_16(Log'#(x))
                Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
                Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
              Weak TRS Rules:
                +(x,+(y,z)) -> +(+(x,y),z)
                +(x,0()) -> x
                +(0(),x) -> x
                +(I(x),I(y)) -> O(+(+(x,y),I(0())))
                +(I(x),O(y)) -> I(+(x,y))
                +(O(x),I(y)) -> I(+(x,y))
                +(O(x),O(y)) -> O(+(x,y))
                Log'(0()) -> 0()
                Log'(I(x)) -> +(Log'(x),I(0()))
                Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
                O(0()) -> 0()
                ge(x,0()) -> true()
                ge(0(),I(x)) -> false()
                ge(0(),O(x)) -> ge(0(),x)
                ge(I(x),I(y)) -> ge(x,y)
                ge(I(x),O(y)) -> ge(x,y)
                ge(O(x),I(y)) -> not(ge(y,x))
                ge(O(x),O(y)) -> ge(x,y)
                if(false(),x,y) -> y
                if(true(),x,y) -> x
                not(false()) -> true()
                not(true()) -> false()
              Signature:
                {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
              Obligation:
                Innermost
                basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                2: +#(O(x),I(y)) -> c_6(+#(x,y))
                
              Consider the set of all dependency pairs
                1: +#(I(x),I(y)) -> c_4(+#(+(x,y)  
                                          ,I(0())) 
                                       ,+#(x,y))   
                2: +#(O(x),I(y)) -> c_6(+#(x,y))   
                3: +#(x,+(y,z)) -> c_1(+#(+(x,y),z)
                                      ,+#(x,y))    
                4: +#(I(x),O(y)) -> c_5(+#(x,y))   
                5: +#(O(x),O(y)) -> c_7(+#(x,y))   
                6: Log#(x) -> c_16(Log'#(x))       
                7: Log'#(I(x)) -> c_18(+#(Log'(x)  
                                         ,I(0()))  
                                      ,Log'#(x))   
                8: Log'#(O(x)) -> c_19(+#(Log'(x)  
                                         ,I(0()))  
                                      ,Log'#(x))   
              Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
              SPACE(?,?)on application of the dependency pairs
                {2}
              These cover all (indirect) predecessors of dependency pairs
                {2,6}
              their number of applications is equally bounded.
              The dependency pairs are shifted into the weak component.
          *** 1.1.1.1.1.1.1.1.1.1.1.1.2.2.2.1 Progress [(?,O(n^1))]  ***
              Considered Problem:
                Strict DP Rules:
                  +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
                  +#(O(x),I(y)) -> c_6(+#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
                  +#(I(x),O(y)) -> c_5(+#(x,y))
                  +#(O(x),O(y)) -> c_7(+#(x,y))
                  Log#(x) -> c_16(Log'#(x))
                  Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
                  Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
                Weak TRS Rules:
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(x,0()) -> x
                  +(0(),x) -> x
                  +(I(x),I(y)) -> O(+(+(x,y),I(0())))
                  +(I(x),O(y)) -> I(+(x,y))
                  +(O(x),I(y)) -> I(+(x,y))
                  +(O(x),O(y)) -> O(+(x,y))
                  Log'(0()) -> 0()
                  Log'(I(x)) -> +(Log'(x),I(0()))
                  Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
                  O(0()) -> 0()
                  ge(x,0()) -> true()
                  ge(0(),I(x)) -> false()
                  ge(0(),O(x)) -> ge(0(),x)
                  ge(I(x),I(y)) -> ge(x,y)
                  ge(I(x),O(y)) -> ge(x,y)
                  ge(O(x),I(y)) -> not(ge(y,x))
                  ge(O(x),O(y)) -> ge(x,y)
                  if(false(),x,y) -> y
                  if(true(),x,y) -> x
                  not(false()) -> true()
                  not(true()) -> false()
                Signature:
                  {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
              Applied Processor:
                NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a matrix interpretation of kind constructor based matrix interpretation:
                The following argument positions are considered usable:
                  uargs(c_1) = {1,2},
                  uargs(c_4) = {1,2},
                  uargs(c_5) = {1},
                  uargs(c_6) = {1},
                  uargs(c_7) = {1},
                  uargs(c_16) = {1},
                  uargs(c_18) = {1,2},
                  uargs(c_19) = {1,2}
                
                Following symbols are considered usable:
                  {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}
                TcT has computed the following interpretation:
                      p(+) = [1] x1 + [2] x2 + [0]                                                                  
                      p(-) = [0]                                                                                    
                      p(0) = [0]                                                                                    
                      p(1) = [0]                                                                                    
                     p(BS) = [0]                                                                                    
                      p(I) = [1] x1 + [4]                                                                           
                      p(L) = [1] x1 + [0]                                                                           
                    p(Log) = [2] x1 + [0]                                                                           
                   p(Log') = [5]                                                                                    
                    p(Max) = [0]                                                                                    
                    p(Min) = [1]                                                                                    
                      p(N) = [1]                                                                                    
                      p(O) = [1] x1 + [4]                                                                           
                   p(Size) = [0]                                                                                    
                    p(Val) = [1] x1 + [1]                                                                           
                     p(WB) = [0]                                                                                    
                    p(and) = [1] x1 + [4] x2 + [1]                                                                  
                  p(false) = [0]                                                                                    
                     p(ge) = [2] x2 + [0]                                                                           
                     p(if) = [4]                                                                                    
                      p(l) = [1]                                                                                    
                    p(not) = [2] x1 + [5]                                                                           
                      p(r) = [0]                                                                                    
                   p(true) = [4]                                                                                    
                     p(+#) = [2] x2 + [0]                                                                           
                     p(-#) = [4] x2 + [0]                                                                           
                    p(BS#) = [0]                                                                                    
                   p(Log#) = [2] x1 + [7]                                                                           
                  p(Log'#) = [2] x1 + [4]                                                                           
                   p(Max#) = [1] x1 + [0]                                                                           
                   p(Min#) = [0]                                                                                    
                     p(O#) = [1]                                                                                    
                  p(Size#) = [2] x1 + [0]                                                                           
                   p(Val#) = [1] x1 + [1]                                                                           
                    p(WB#) = [0]                                                                                    
                   p(and#) = [4] x2 + [0]                                                                           
                    p(ge#) = [0]                                                                                    
                    p(if#) = [4] x2 + [1]                                                                           
                   p(not#) = [2]                                                                                    
                    p(c_1) = [2] x1 + [1] x2 + [0]                                                                  
                    p(c_2) = [0]                                                                                    
                    p(c_3) = [1]                                                                                    
                    p(c_4) = [1] x1 + [1] x2 + [0]                                                                  
                    p(c_5) = [1] x1 + [0]                                                                           
                    p(c_6) = [1] x1 + [5]                                                                           
                    p(c_7) = [1] x1 + [0]                                                                           
                    p(c_8) = [1]                                                                                    
                    p(c_9) = [1]                                                                                    
                   p(c_10) = [1]                                                                                    
                   p(c_11) = [2]                                                                                    
                   p(c_12) = [4] x1 + [2]                                                                           
                   p(c_13) = [4]                                                                                    
                   p(c_14) = [0]                                                                                    
                   p(c_15) = [4] x1 + [1] x3 + [4] x4 + [4] x9 + [1]                                                
                   p(c_16) = [1] x1 + [3]                                                                           
                   p(c_17) = [0]                                                                                    
                   p(c_18) = [1] x1 + [1] x2 + [0]                                                                  
                   p(c_19) = [1] x1 + [1] x2 + [0]                                                                  
                   p(c_20) = [0]                                                                                    
                   p(c_21) = [1] x1 + [0]                                                                           
                   p(c_22) = [1]                                                                                    
                   p(c_23) = [2]                                                                                    
                   p(c_24) = [0]                                                                                    
                   p(c_25) = [1]                                                                                    
                   p(c_26) = [1] x2 + [4]                                                                           
                   p(c_27) = [0]                                                                                    
                   p(c_28) = [1]                                                                                    
                   p(c_29) = [0]                                                                                    
                   p(c_30) = [1] x1 + [1] x3 + [1] x4 + [1] x5 + [4] x6 + [1] x7 + [4] x12 + [1] x13 + [1] x16 + [1]
                   p(c_31) = [0]                                                                                    
                   p(c_32) = [4]                                                                                    
                   p(c_33) = [0]                                                                                    
                   p(c_34) = [0]                                                                                    
                   p(c_35) = [0]                                                                                    
                   p(c_36) = [4] x1 + [0]                                                                           
                   p(c_37) = [4]                                                                                    
                   p(c_38) = [2] x1 + [0]                                                                           
                   p(c_39) = [4] x1 + [2]                                                                           
                   p(c_40) = [0]                                                                                    
                   p(c_41) = [0]                                                                                    
                   p(c_42) = [0]                                                                                    
                   p(c_43) = [1]                                                                                    
                
                Following rules are strictly oriented:
                +#(O(x),I(y)) = [2] y + [8] 
                              > [2] y + [5] 
                              = c_6(+#(x,y))
                
                
                Following rules are (at-least) weakly oriented:
                 +#(x,+(y,z)) =  [2] y + [4] z + [0]           
                              >= [2] y + [4] z + [0]           
                              =  c_1(+#(+(x,y),z),+#(x,y))     
                
                +#(I(x),I(y)) =  [2] y + [8]                   
                              >= [2] y + [8]                   
                              =  c_4(+#(+(x,y),I(0())),+#(x,y))
                
                +#(I(x),O(y)) =  [2] y + [8]                   
                              >= [2] y + [0]                   
                              =  c_5(+#(x,y))                  
                
                +#(O(x),O(y)) =  [2] y + [8]                   
                              >= [2] y + [0]                   
                              =  c_7(+#(x,y))                  
                
                      Log#(x) =  [2] x + [7]                   
                              >= [2] x + [7]                   
                              =  c_16(Log'#(x))                
                
                  Log'#(I(x)) =  [2] x + [12]                  
                              >= [2] x + [12]                  
                              =  c_18(+#(Log'(x),I(0()))       
                                     ,Log'#(x))                
                
                  Log'#(O(x)) =  [2] x + [12]                  
                              >= [2] x + [12]                  
                              =  c_19(+#(Log'(x),I(0()))       
                                     ,Log'#(x))                
                
          *** 1.1.1.1.1.1.1.1.1.1.1.1.2.2.2.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
                  +#(I(x),O(y)) -> c_5(+#(x,y))
                  +#(O(x),I(y)) -> c_6(+#(x,y))
                  +#(O(x),O(y)) -> c_7(+#(x,y))
                  Log#(x) -> c_16(Log'#(x))
                  Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
                  Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
                Weak TRS Rules:
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(x,0()) -> x
                  +(0(),x) -> x
                  +(I(x),I(y)) -> O(+(+(x,y),I(0())))
                  +(I(x),O(y)) -> I(+(x,y))
                  +(O(x),I(y)) -> I(+(x,y))
                  +(O(x),O(y)) -> O(+(x,y))
                  Log'(0()) -> 0()
                  Log'(I(x)) -> +(Log'(x),I(0()))
                  Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
                  O(0()) -> 0()
                  ge(x,0()) -> true()
                  ge(0(),I(x)) -> false()
                  ge(0(),O(x)) -> ge(0(),x)
                  ge(I(x),I(y)) -> ge(x,y)
                  ge(I(x),O(y)) -> ge(x,y)
                  ge(O(x),I(y)) -> not(ge(y,x))
                  ge(O(x),O(y)) -> ge(x,y)
                  if(false(),x,y) -> y
                  if(true(),x,y) -> x
                  not(false()) -> true()
                  not(true()) -> false()
                Signature:
                  {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.1.1.1.1.1.1.2.2.2.2 Progress [(?,O(n^2))]  ***
              Considered Problem:
                Strict DP Rules:
                  +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
                  +#(I(x),O(y)) -> c_5(+#(x,y))
                  +#(O(x),I(y)) -> c_6(+#(x,y))
                  +#(O(x),O(y)) -> c_7(+#(x,y))
                  Log#(x) -> c_16(Log'#(x))
                  Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
                  Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
                Weak TRS Rules:
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(x,0()) -> x
                  +(0(),x) -> x
                  +(I(x),I(y)) -> O(+(+(x,y),I(0())))
                  +(I(x),O(y)) -> I(+(x,y))
                  +(O(x),I(y)) -> I(+(x,y))
                  +(O(x),O(y)) -> O(+(x,y))
                  Log'(0()) -> 0()
                  Log'(I(x)) -> +(Log'(x),I(0()))
                  Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
                  O(0()) -> 0()
                  ge(x,0()) -> true()
                  ge(0(),I(x)) -> false()
                  ge(0(),O(x)) -> ge(0(),x)
                  ge(I(x),I(y)) -> ge(x,y)
                  ge(I(x),O(y)) -> ge(x,y)
                  ge(O(x),I(y)) -> not(ge(y,x))
                  ge(O(x),O(y)) -> ge(x,y)
                  if(false(),x,y) -> y
                  if(true(),x,y) -> x
                  not(false()) -> true()
                  not(true()) -> false()
                Signature:
                  {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
              Applied Processor:
                PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
              Proof:
                We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                  1: +#(I(x),I(y)) -> c_4(+#(+(x,y) 
                                            ,I(0()))
                                         ,+#(x,y))  
                  
                Consider the set of all dependency pairs
                  1: +#(I(x),I(y)) -> c_4(+#(+(x,y)  
                                            ,I(0())) 
                                         ,+#(x,y))   
                  2: +#(x,+(y,z)) -> c_1(+#(+(x,y),z)
                                        ,+#(x,y))    
                  3: +#(I(x),O(y)) -> c_5(+#(x,y))   
                  4: +#(O(x),I(y)) -> c_6(+#(x,y))   
                  5: +#(O(x),O(y)) -> c_7(+#(x,y))   
                  6: Log#(x) -> c_16(Log'#(x))       
                  7: Log'#(I(x)) -> c_18(+#(Log'(x)  
                                           ,I(0()))  
                                        ,Log'#(x))   
                  8: Log'#(O(x)) -> c_19(+#(Log'(x)  
                                           ,I(0()))  
                                        ,Log'#(x))   
                Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2))
                SPACE(?,?)on application of the dependency pairs
                  {1}
                These cover all (indirect) predecessors of dependency pairs
                  {1,6}
                their number of applications is equally bounded.
                The dependency pairs are shifted into the weak component.
            *** 1.1.1.1.1.1.1.1.1.1.1.1.2.2.2.2.1 Progress [(?,O(n^2))]  ***
                Considered Problem:
                  Strict DP Rules:
                    +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
                    +#(I(x),O(y)) -> c_5(+#(x,y))
                    +#(O(x),I(y)) -> c_6(+#(x,y))
                    +#(O(x),O(y)) -> c_7(+#(x,y))
                    Log#(x) -> c_16(Log'#(x))
                    Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
                    Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
                  Weak TRS Rules:
                    +(x,+(y,z)) -> +(+(x,y),z)
                    +(x,0()) -> x
                    +(0(),x) -> x
                    +(I(x),I(y)) -> O(+(+(x,y),I(0())))
                    +(I(x),O(y)) -> I(+(x,y))
                    +(O(x),I(y)) -> I(+(x,y))
                    +(O(x),O(y)) -> O(+(x,y))
                    Log'(0()) -> 0()
                    Log'(I(x)) -> +(Log'(x),I(0()))
                    Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
                    O(0()) -> 0()
                    ge(x,0()) -> true()
                    ge(0(),I(x)) -> false()
                    ge(0(),O(x)) -> ge(0(),x)
                    ge(I(x),I(y)) -> ge(x,y)
                    ge(I(x),O(y)) -> ge(x,y)
                    ge(O(x),I(y)) -> not(ge(y,x))
                    ge(O(x),O(y)) -> ge(x,y)
                    if(false(),x,y) -> y
                    if(true(),x,y) -> x
                    not(false()) -> true()
                    not(true()) -> false()
                  Signature:
                    {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
                  Obligation:
                    Innermost
                    basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
                Applied Processor:
                  NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
                Proof:
                  We apply a polynomial interpretation of kind constructor-based(mixed(2)):
                  The following argument positions are considered usable:
                    uargs(c_1) = {1,2},
                    uargs(c_4) = {1,2},
                    uargs(c_5) = {1},
                    uargs(c_6) = {1},
                    uargs(c_7) = {1},
                    uargs(c_16) = {1},
                    uargs(c_18) = {1,2},
                    uargs(c_19) = {1,2}
                  
                  Following symbols are considered usable:
                    {+,Log',O,ge,if,not,+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}
                  TcT has computed the following interpretation:
                        p(+) = x1 + x2     
                        p(-) = 0           
                        p(0) = 0           
                        p(1) = 0           
                       p(BS) = 0           
                        p(I) = 1 + x1      
                        p(L) = 0           
                      p(Log) = 0           
                     p(Log') = x1          
                      p(Max) = 0           
                      p(Min) = 0           
                        p(N) = 0           
                        p(O) = 1 + x1      
                     p(Size) = 0           
                      p(Val) = 0           
                       p(WB) = 0           
                      p(and) = 0           
                    p(false) = 0           
                       p(ge) = 1           
                       p(if) = x1*x2 + x3  
                        p(l) = 0           
                      p(not) = 1           
                        p(r) = 0           
                     p(true) = 1           
                       p(+#) = x1*x2 + x2^2
                       p(-#) = 0           
                      p(BS#) = 0           
                     p(Log#) = 1 + x1^2    
                    p(Log'#) = x1^2        
                     p(Max#) = 0           
                     p(Min#) = 0           
                       p(O#) = 0           
                    p(Size#) = 0           
                     p(Val#) = 0           
                      p(WB#) = 0           
                     p(and#) = 0           
                      p(ge#) = 0           
                      p(if#) = 0           
                     p(not#) = 0           
                      p(c_1) = x1 + x2     
                      p(c_2) = 0           
                      p(c_3) = 0           
                      p(c_4) = x1 + x2     
                      p(c_5) = x1          
                      p(c_6) = 1 + x1      
                      p(c_7) = x1          
                      p(c_8) = 0           
                      p(c_9) = 0           
                     p(c_10) = 0           
                     p(c_11) = 0           
                     p(c_12) = 0           
                     p(c_13) = 0           
                     p(c_14) = 0           
                     p(c_15) = 0           
                     p(c_16) = x1          
                     p(c_17) = 0           
                     p(c_18) = x1 + x2     
                     p(c_19) = x1 + x2     
                     p(c_20) = 0           
                     p(c_21) = 0           
                     p(c_22) = 0           
                     p(c_23) = 0           
                     p(c_24) = 0           
                     p(c_25) = 0           
                     p(c_26) = 0           
                     p(c_27) = 0           
                     p(c_28) = 0           
                     p(c_29) = 0           
                     p(c_30) = 0           
                     p(c_31) = 0           
                     p(c_32) = 0           
                     p(c_33) = 0           
                     p(c_34) = 0           
                     p(c_35) = 0           
                     p(c_36) = 0           
                     p(c_37) = 0           
                     p(c_38) = 0           
                     p(c_39) = 0           
                     p(c_40) = 0           
                     p(c_41) = 0           
                     p(c_42) = 0           
                     p(c_43) = 0           
                  
                  Following rules are strictly oriented:
                  +#(I(x),I(y)) = 2 + x + x*y + 3*y + y^2       
                                > 1 + x + x*y + y + y^2         
                                = c_4(+#(+(x,y),I(0())),+#(x,y))
                  
                  
                  Following rules are (at-least) weakly oriented:
                     +#(x,+(y,z)) =  x*y + x*z + 2*y*z + y^2 + z^2
                                  >= x*y + x*z + y*z + y^2 + z^2  
                                  =  c_1(+#(+(x,y),z),+#(x,y))    
                  
                    +#(I(x),O(y)) =  2 + x + x*y + 3*y + y^2      
                                  >= x*y + y^2                    
                                  =  c_5(+#(x,y))                 
                  
                    +#(O(x),I(y)) =  2 + x + x*y + 3*y + y^2      
                                  >= 1 + x*y + y^2                
                                  =  c_6(+#(x,y))                 
                  
                    +#(O(x),O(y)) =  2 + x + x*y + 3*y + y^2      
                                  >= x*y + y^2                    
                                  =  c_7(+#(x,y))                 
                  
                          Log#(x) =  1 + x^2                      
                                  >= x^2                          
                                  =  c_16(Log'#(x))               
                  
                      Log'#(I(x)) =  1 + 2*x + x^2                
                                  >= 1 + x + x^2                  
                                  =  c_18(+#(Log'(x),I(0()))      
                                         ,Log'#(x))               
                  
                      Log'#(O(x)) =  1 + 2*x + x^2                
                                  >= 1 + x + x^2                  
                                  =  c_19(+#(Log'(x),I(0()))      
                                         ,Log'#(x))               
                  
                      +(x,+(y,z)) =  x + y + z                    
                                  >= x + y + z                    
                                  =  +(+(x,y),z)                  
                  
                         +(x,0()) =  x                            
                                  >= x                            
                                  =  x                            
                  
                         +(0(),x) =  x                            
                                  >= x                            
                                  =  x                            
                  
                     +(I(x),I(y)) =  2 + x + y                    
                                  >= 2 + x + y                    
                                  =  O(+(+(x,y),I(0())))          
                  
                     +(I(x),O(y)) =  2 + x + y                    
                                  >= 1 + x + y                    
                                  =  I(+(x,y))                    
                  
                     +(O(x),I(y)) =  2 + x + y                    
                                  >= 1 + x + y                    
                                  =  I(+(x,y))                    
                  
                     +(O(x),O(y)) =  2 + x + y                    
                                  >= 1 + x + y                    
                                  =  O(+(x,y))                    
                  
                        Log'(0()) =  0                            
                                  >= 0                            
                                  =  0()                          
                  
                       Log'(I(x)) =  1 + x                        
                                  >= 1 + x                        
                                  =  +(Log'(x),I(0()))            
                  
                       Log'(O(x)) =  1 + x                        
                                  >= 1 + x                        
                                  =  if(ge(x,I(0()))              
                                       ,+(Log'(x),I(0()))         
                                       ,0())                      
                  
                           O(0()) =  1                            
                                  >= 0                            
                                  =  0()                          
                  
                        ge(x,0()) =  1                            
                                  >= 1                            
                                  =  true()                       
                  
                     ge(0(),I(x)) =  1                            
                                  >= 0                            
                                  =  false()                      
                  
                     ge(0(),O(x)) =  1                            
                                  >= 1                            
                                  =  ge(0(),x)                    
                  
                    ge(I(x),I(y)) =  1                            
                                  >= 1                            
                                  =  ge(x,y)                      
                  
                    ge(I(x),O(y)) =  1                            
                                  >= 1                            
                                  =  ge(x,y)                      
                  
                    ge(O(x),I(y)) =  1                            
                                  >= 1                            
                                  =  not(ge(y,x))                 
                  
                    ge(O(x),O(y)) =  1                            
                                  >= 1                            
                                  =  ge(x,y)                      
                  
                  if(false(),x,y) =  y                            
                                  >= y                            
                                  =  y                            
                  
                   if(true(),x,y) =  x + y                        
                                  >= x                            
                                  =  x                            
                  
                     not(false()) =  1                            
                                  >= 1                            
                                  =  true()                       
                  
                      not(true()) =  1                            
                                  >= 0                            
                                  =  false()                      
                  
            *** 1.1.1.1.1.1.1.1.1.1.1.1.2.2.2.2.1.1 Progress [(?,O(1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
                    +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
                    +#(I(x),O(y)) -> c_5(+#(x,y))
                    +#(O(x),I(y)) -> c_6(+#(x,y))
                    +#(O(x),O(y)) -> c_7(+#(x,y))
                    Log#(x) -> c_16(Log'#(x))
                    Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
                    Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
                  Weak TRS Rules:
                    +(x,+(y,z)) -> +(+(x,y),z)
                    +(x,0()) -> x
                    +(0(),x) -> x
                    +(I(x),I(y)) -> O(+(+(x,y),I(0())))
                    +(I(x),O(y)) -> I(+(x,y))
                    +(O(x),I(y)) -> I(+(x,y))
                    +(O(x),O(y)) -> O(+(x,y))
                    Log'(0()) -> 0()
                    Log'(I(x)) -> +(Log'(x),I(0()))
                    Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
                    O(0()) -> 0()
                    ge(x,0()) -> true()
                    ge(0(),I(x)) -> false()
                    ge(0(),O(x)) -> ge(0(),x)
                    ge(I(x),I(y)) -> ge(x,y)
                    ge(I(x),O(y)) -> ge(x,y)
                    ge(O(x),I(y)) -> not(ge(y,x))
                    ge(O(x),O(y)) -> ge(x,y)
                    if(false(),x,y) -> y
                    if(true(),x,y) -> x
                    not(false()) -> true()
                    not(true()) -> false()
                  Signature:
                    {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
                  Obligation:
                    Innermost
                    basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
                Applied Processor:
                  Assumption
                Proof:
                  ()
            
            *** 1.1.1.1.1.1.1.1.1.1.1.1.2.2.2.2.2 Progress [(O(1),O(1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
                    +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
                    +#(I(x),O(y)) -> c_5(+#(x,y))
                    +#(O(x),I(y)) -> c_6(+#(x,y))
                    +#(O(x),O(y)) -> c_7(+#(x,y))
                    Log#(x) -> c_16(Log'#(x))
                    Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
                    Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
                  Weak TRS Rules:
                    +(x,+(y,z)) -> +(+(x,y),z)
                    +(x,0()) -> x
                    +(0(),x) -> x
                    +(I(x),I(y)) -> O(+(+(x,y),I(0())))
                    +(I(x),O(y)) -> I(+(x,y))
                    +(O(x),I(y)) -> I(+(x,y))
                    +(O(x),O(y)) -> O(+(x,y))
                    Log'(0()) -> 0()
                    Log'(I(x)) -> +(Log'(x),I(0()))
                    Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
                    O(0()) -> 0()
                    ge(x,0()) -> true()
                    ge(0(),I(x)) -> false()
                    ge(0(),O(x)) -> ge(0(),x)
                    ge(I(x),I(y)) -> ge(x,y)
                    ge(I(x),O(y)) -> ge(x,y)
                    ge(O(x),I(y)) -> not(ge(y,x))
                    ge(O(x),O(y)) -> ge(x,y)
                    if(false(),x,y) -> y
                    if(true(),x,y) -> x
                    not(false()) -> true()
                    not(true()) -> false()
                  Signature:
                    {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
                  Obligation:
                    Innermost
                    basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
                Applied Processor:
                  RemoveWeakSuffixes
                Proof:
                  Consider the dependency graph
                    1:W:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
                       -->_2 +#(O(x),O(y)) -> c_7(+#(x,y)):5
                       -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
                       -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
                       -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
                       -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):3
                       -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
                       -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
                       -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
                       -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
                       -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
                    
                    2:W:+#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
                       -->_2 +#(O(x),O(y)) -> c_7(+#(x,y)):5
                       -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
                       -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
                       -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):3
                       -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
                       -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
                       -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
                    
                    3:W:+#(I(x),O(y)) -> c_5(+#(x,y))
                       -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
                       -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
                       -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
                       -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
                       -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
                    
                    4:W:+#(O(x),I(y)) -> c_6(+#(x,y))
                       -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
                       -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
                       -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
                       -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
                       -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
                    
                    5:W:+#(O(x),O(y)) -> c_7(+#(x,y))
                       -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
                       -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
                       -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
                       -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
                       -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
                    
                    6:W:Log#(x) -> c_16(Log'#(x))
                       -->_1 Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x)):8
                       -->_1 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):7
                    
                    7:W:Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
                       -->_2 Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x)):8
                       -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):7
                       -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
                       -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
                    
                    8:W:Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
                       -->_2 Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x)):8
                       -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):7
                       -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
                       -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
                    
                  The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                    6: Log#(x) -> c_16(Log'#(x))       
                    8: Log'#(O(x)) -> c_19(+#(Log'(x)  
                                             ,I(0()))  
                                          ,Log'#(x))   
                    7: Log'#(I(x)) -> c_18(+#(Log'(x)  
                                             ,I(0()))  
                                          ,Log'#(x))   
                    1: +#(x,+(y,z)) -> c_1(+#(+(x,y),z)
                                          ,+#(x,y))    
                    5: +#(O(x),O(y)) -> c_7(+#(x,y))   
                    4: +#(O(x),I(y)) -> c_6(+#(x,y))   
                    3: +#(I(x),O(y)) -> c_5(+#(x,y))   
                    2: +#(I(x),I(y)) -> c_4(+#(+(x,y)  
                                              ,I(0())) 
                                           ,+#(x,y))   
            *** 1.1.1.1.1.1.1.1.1.1.1.1.2.2.2.2.2.1 Progress [(O(1),O(1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    
                  Weak TRS Rules:
                    +(x,+(y,z)) -> +(+(x,y),z)
                    +(x,0()) -> x
                    +(0(),x) -> x
                    +(I(x),I(y)) -> O(+(+(x,y),I(0())))
                    +(I(x),O(y)) -> I(+(x,y))
                    +(O(x),I(y)) -> I(+(x,y))
                    +(O(x),O(y)) -> O(+(x,y))
                    Log'(0()) -> 0()
                    Log'(I(x)) -> +(Log'(x),I(0()))
                    Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
                    O(0()) -> 0()
                    ge(x,0()) -> true()
                    ge(0(),I(x)) -> false()
                    ge(0(),O(x)) -> ge(0(),x)
                    ge(I(x),I(y)) -> ge(x,y)
                    ge(I(x),O(y)) -> ge(x,y)
                    ge(O(x),I(y)) -> not(ge(y,x))
                    ge(O(x),O(y)) -> ge(x,y)
                    if(false(),x,y) -> y
                    if(true(),x,y) -> x
                    not(false()) -> true()
                    not(true()) -> false()
                  Signature:
                    {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
                  Obligation:
                    Innermost
                    basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
                Applied Processor:
                  EmptyProcessor
                Proof:
                  The problem is already closed. The intended complexity is O(1).
            
  *** 1.1.1.1.1.1.1.1.2 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          -#(I(x),I(y)) -> c_10(-#(x,y))
          -#(I(x),O(y)) -> c_11(-#(x,y))
          -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
          -#(O(x),O(y)) -> c_13(-#(x,y))
          Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
          Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
          Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
          ge#(0(),O(x)) -> c_35(ge#(0(),x))
          ge#(I(x),I(y)) -> c_36(ge#(x,y))
          ge#(I(x),O(y)) -> c_37(ge#(x,y))
          ge#(O(x),I(y)) -> c_38(ge#(y,x))
          ge#(O(x),O(y)) -> c_39(ge#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
          +#(I(x),O(y)) -> c_5(+#(x,y))
          +#(O(x),I(y)) -> c_6(+#(x,y))
          +#(O(x),O(y)) -> c_7(+#(x,y))
        Weak TRS Rules:
          +(x,+(y,z)) -> +(+(x,y),z)
          +(x,0()) -> x
          +(0(),x) -> x
          +(I(x),I(y)) -> O(+(+(x,y),I(0())))
          +(I(x),O(y)) -> I(+(x,y))
          +(O(x),I(y)) -> I(+(x,y))
          +(O(x),O(y)) -> O(+(x,y))
          -(x,0()) -> x
          -(0(),x) -> 0()
          -(I(x),I(y)) -> O(-(x,y))
          -(I(x),O(y)) -> I(-(x,y))
          -(O(x),I(y)) -> I(-(-(x,y),I(1())))
          -(O(x),O(y)) -> O(-(x,y))
          Log'(0()) -> 0()
          Log'(I(x)) -> +(Log'(x),I(0()))
          Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
          O(0()) -> 0()
          ge(x,0()) -> true()
          ge(0(),I(x)) -> false()
          ge(0(),O(x)) -> ge(0(),x)
          ge(I(x),I(y)) -> ge(x,y)
          ge(I(x),O(y)) -> ge(x,y)
          ge(O(x),I(y)) -> not(ge(y,x))
          ge(O(x),O(y)) -> ge(x,y)
          if(false(),x,y) -> y
          if(true(),x,y) -> x
          not(false()) -> true()
          not(true()) -> false()
        Signature:
          {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/2,c_17/0,c_18/2,c_19/3,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        Obligation:
          Innermost
          basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:-#(I(x),I(y)) -> c_10(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          2:S:-#(I(x),O(y)) -> c_11(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          3:S:-#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
             -->_2 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_2 -#(I(x),I(y)) -> c_10(-#(x,y)):1
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          4:S:-#(O(x),O(y)) -> c_13(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          5:S:Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):7
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):6
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          6:S:Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):16
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):14
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):7
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):6
          
          7:S:Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):16
             -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):14
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_3 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):7
             -->_3 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):6
          
          8:S:ge#(0(),O(x)) -> c_35(ge#(0(),x))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
          
          9:S:ge#(I(x),I(y)) -> c_36(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
          
          10:S:ge#(I(x),O(y)) -> c_37(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
          
          11:S:ge#(O(x),I(y)) -> c_38(ge#(y,x))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
          
          12:S:ge#(O(x),O(y)) -> c_39(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
          
          13:W:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
             -->_2 +#(O(x),O(y)) -> c_7(+#(x,y)):17
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):17
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):16
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):16
             -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):15
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):15
             -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):14
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):14
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):13
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):13
          
          14:W:+#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
             -->_2 +#(O(x),O(y)) -> c_7(+#(x,y)):17
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):16
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):16
             -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):15
             -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):14
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):14
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):13
          
          15:W:+#(I(x),O(y)) -> c_5(+#(x,y))
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):17
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):16
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):15
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):14
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):13
          
          16:W:+#(O(x),I(y)) -> c_6(+#(x,y))
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):17
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):16
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):15
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):14
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):13
          
          17:W:+#(O(x),O(y)) -> c_7(+#(x,y))
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):17
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):16
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):15
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):14
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):13
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          16: +#(O(x),I(y)) -> c_6(+#(x,y))   
          17: +#(O(x),O(y)) -> c_7(+#(x,y))   
          15: +#(I(x),O(y)) -> c_5(+#(x,y))   
          14: +#(I(x),I(y)) -> c_4(+#(+(x,y)  
                                     ,I(0())) 
                                  ,+#(x,y))   
          13: +#(x,+(y,z)) -> c_1(+#(+(x,y),z)
                                 ,+#(x,y))    
  *** 1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          -#(I(x),I(y)) -> c_10(-#(x,y))
          -#(I(x),O(y)) -> c_11(-#(x,y))
          -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
          -#(O(x),O(y)) -> c_13(-#(x,y))
          Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
          Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
          Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
          ge#(0(),O(x)) -> c_35(ge#(0(),x))
          ge#(I(x),I(y)) -> c_36(ge#(x,y))
          ge#(I(x),O(y)) -> c_37(ge#(x,y))
          ge#(O(x),I(y)) -> c_38(ge#(y,x))
          ge#(O(x),O(y)) -> c_39(ge#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          +(x,+(y,z)) -> +(+(x,y),z)
          +(x,0()) -> x
          +(0(),x) -> x
          +(I(x),I(y)) -> O(+(+(x,y),I(0())))
          +(I(x),O(y)) -> I(+(x,y))
          +(O(x),I(y)) -> I(+(x,y))
          +(O(x),O(y)) -> O(+(x,y))
          -(x,0()) -> x
          -(0(),x) -> 0()
          -(I(x),I(y)) -> O(-(x,y))
          -(I(x),O(y)) -> I(-(x,y))
          -(O(x),I(y)) -> I(-(-(x,y),I(1())))
          -(O(x),O(y)) -> O(-(x,y))
          Log'(0()) -> 0()
          Log'(I(x)) -> +(Log'(x),I(0()))
          Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
          O(0()) -> 0()
          ge(x,0()) -> true()
          ge(0(),I(x)) -> false()
          ge(0(),O(x)) -> ge(0(),x)
          ge(I(x),I(y)) -> ge(x,y)
          ge(I(x),O(y)) -> ge(x,y)
          ge(O(x),I(y)) -> not(ge(y,x))
          ge(O(x),O(y)) -> ge(x,y)
          if(false(),x,y) -> y
          if(true(),x,y) -> x
          not(false()) -> true()
          not(true()) -> false()
        Signature:
          {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/2,c_17/0,c_18/2,c_19/3,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        Obligation:
          Innermost
          basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
      Applied Processor:
        SimplifyRHS
      Proof:
        Consider the dependency graph
          1:S:-#(I(x),I(y)) -> c_10(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          2:S:-#(I(x),O(y)) -> c_11(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          3:S:-#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
             -->_2 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_2 -#(I(x),I(y)) -> c_10(-#(x,y)):1
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          4:S:-#(O(x),O(y)) -> c_13(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          5:S:Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):7
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):6
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          6:S:Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):7
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):6
          
          7:S:Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_3 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):7
             -->_3 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):6
          
          8:S:ge#(0(),O(x)) -> c_35(ge#(0(),x))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
          
          9:S:ge#(I(x),I(y)) -> c_36(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
          
          10:S:ge#(I(x),O(y)) -> c_37(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
          
          11:S:ge#(O(x),I(y)) -> c_38(ge#(y,x))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
          
          12:S:ge#(O(x),O(y)) -> c_39(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          Log'#(I(x)) -> c_18(Log'#(x))
          Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
  *** 1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          -#(I(x),I(y)) -> c_10(-#(x,y))
          -#(I(x),O(y)) -> c_11(-#(x,y))
          -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
          -#(O(x),O(y)) -> c_13(-#(x,y))
          Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
          Log'#(I(x)) -> c_18(Log'#(x))
          Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
          ge#(0(),O(x)) -> c_35(ge#(0(),x))
          ge#(I(x),I(y)) -> c_36(ge#(x,y))
          ge#(I(x),O(y)) -> c_37(ge#(x,y))
          ge#(O(x),I(y)) -> c_38(ge#(y,x))
          ge#(O(x),O(y)) -> c_39(ge#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          +(x,+(y,z)) -> +(+(x,y),z)
          +(x,0()) -> x
          +(0(),x) -> x
          +(I(x),I(y)) -> O(+(+(x,y),I(0())))
          +(I(x),O(y)) -> I(+(x,y))
          +(O(x),I(y)) -> I(+(x,y))
          +(O(x),O(y)) -> O(+(x,y))
          -(x,0()) -> x
          -(0(),x) -> 0()
          -(I(x),I(y)) -> O(-(x,y))
          -(I(x),O(y)) -> I(-(x,y))
          -(O(x),I(y)) -> I(-(-(x,y),I(1())))
          -(O(x),O(y)) -> O(-(x,y))
          Log'(0()) -> 0()
          Log'(I(x)) -> +(Log'(x),I(0()))
          Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
          O(0()) -> 0()
          ge(x,0()) -> true()
          ge(0(),I(x)) -> false()
          ge(0(),O(x)) -> ge(0(),x)
          ge(I(x),I(y)) -> ge(x,y)
          ge(I(x),O(y)) -> ge(x,y)
          ge(O(x),I(y)) -> not(ge(y,x))
          ge(O(x),O(y)) -> ge(x,y)
          if(false(),x,y) -> y
          if(true(),x,y) -> x
          not(false()) -> true()
          not(true()) -> false()
        Signature:
          {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/2,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        Obligation:
          Innermost
          basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
      Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
      Proof:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          Strict DP Rules:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
            Log'#(I(x)) -> c_18(Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
          Weak TRS Rules:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
          Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/2,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
          Obligation:
            Innermost
            basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
        
        Problem (S)
          Strict DP Rules:
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
            Log'#(I(x)) -> c_18(Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
          Weak TRS Rules:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
          Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/2,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
          Obligation:
            Innermost
            basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
    *** 1.1.1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
            Log'#(I(x)) -> c_18(Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
          Weak TRS Rules:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
          Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/2,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
          Obligation:
            Innermost
            basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:S:-#(I(x),I(y)) -> c_10(-#(x,y))
               -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
               -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
               -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
               -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
            
            2:S:-#(I(x),O(y)) -> c_11(-#(x,y))
               -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
               -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
               -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
               -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
            
            3:S:-#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
               -->_2 -#(O(x),O(y)) -> c_13(-#(x,y)):4
               -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
               -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
               -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):2
               -->_2 -#(I(x),I(y)) -> c_10(-#(x,y)):1
               -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
            
            4:S:-#(O(x),O(y)) -> c_13(-#(x,y))
               -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
               -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
               -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
               -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
            
            5:W:Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
               -->_2 Log'#(I(x)) -> c_18(Log'#(x)):6
               -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):7
               -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
               -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
            
            6:W:Log'#(I(x)) -> c_18(Log'#(x))
               -->_1 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):7
               -->_1 Log'#(I(x)) -> c_18(Log'#(x)):6
            
            7:W:Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
               -->_2 Log'#(I(x)) -> c_18(Log'#(x)):6
               -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
               -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
               -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):7
            
            8:W:ge#(0(),O(x)) -> c_35(ge#(0(),x))
               -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
            
            9:W:ge#(I(x),I(y)) -> c_36(ge#(x,y))
               -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
               -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
               -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
               -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
               -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
            
            10:W:ge#(I(x),O(y)) -> c_37(ge#(x,y))
               -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
               -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
               -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
               -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
               -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
            
            11:W:ge#(O(x),I(y)) -> c_38(ge#(y,x))
               -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
               -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
               -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
               -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
               -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
            
            12:W:ge#(O(x),O(y)) -> c_39(ge#(x,y))
               -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
               -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
               -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
               -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
               -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            7:  Log'#(O(x)) -> c_19(ge#(x       
                                       ,I(0())) 
                                   ,Log'#(x))   
            6:  Log'#(I(x)) -> c_18(Log'#(x))   
            11: ge#(O(x),I(y)) -> c_38(ge#(y,x))
            12: ge#(O(x),O(y)) -> c_39(ge#(x,y))
            10: ge#(I(x),O(y)) -> c_37(ge#(x,y))
            9:  ge#(I(x),I(y)) -> c_36(ge#(x,y))
            8:  ge#(0(),O(x)) -> c_35(ge#(0()   
                                         ,x))   
    *** 1.1.1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
          Weak TRS Rules:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
          Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/2,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
          Obligation:
            Innermost
            basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
        Applied Processor:
          SimplifyRHS
        Proof:
          Consider the dependency graph
            1:S:-#(I(x),I(y)) -> c_10(-#(x,y))
               -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
               -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
               -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
               -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
            
            2:S:-#(I(x),O(y)) -> c_11(-#(x,y))
               -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
               -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
               -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
               -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
            
            3:S:-#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
               -->_2 -#(O(x),O(y)) -> c_13(-#(x,y)):4
               -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
               -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
               -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):2
               -->_2 -#(I(x),I(y)) -> c_10(-#(x,y)):1
               -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
            
            4:S:-#(O(x),O(y)) -> c_13(-#(x,y))
               -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
               -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
               -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
               -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
            
            5:W:Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
               -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
               -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
            
          Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
            Log#(x) -> c_16(-#(Log'(x),I(0())))
    *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            Log#(x) -> c_16(-#(Log'(x),I(0())))
          Weak TRS Rules:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
          Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
          Obligation:
            Innermost
            basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            2: -#(I(x),O(y)) -> c_11(-#(x,y))
            
          Consider the set of all dependency pairs
            1: -#(I(x),I(y)) -> c_10(-#(x,y))  
            2: -#(I(x),O(y)) -> c_11(-#(x,y))  
            3: -#(O(x),I(y)) -> c_12(-#(-(x,y) 
                                       ,I(1()))
                                    ,-#(x,y))  
            4: -#(O(x),O(y)) -> c_13(-#(x,y))  
            5: Log#(x) -> c_16(-#(Log'(x)      
                                 ,I(0())))     
          Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
          SPACE(?,?)on application of the dependency pairs
            {2}
          These cover all (indirect) predecessors of dependency pairs
            {2,5}
          their number of applications is equally bounded.
          The dependency pairs are shifted into the weak component.
      *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              -#(I(x),I(y)) -> c_10(-#(x,y))
              -#(I(x),O(y)) -> c_11(-#(x,y))
              -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
              -#(O(x),O(y)) -> c_13(-#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              Log#(x) -> c_16(-#(Log'(x),I(0())))
            Weak TRS Rules:
              +(x,+(y,z)) -> +(+(x,y),z)
              +(x,0()) -> x
              +(0(),x) -> x
              +(I(x),I(y)) -> O(+(+(x,y),I(0())))
              +(I(x),O(y)) -> I(+(x,y))
              +(O(x),I(y)) -> I(+(x,y))
              +(O(x),O(y)) -> O(+(x,y))
              -(x,0()) -> x
              -(0(),x) -> 0()
              -(I(x),I(y)) -> O(-(x,y))
              -(I(x),O(y)) -> I(-(x,y))
              -(O(x),I(y)) -> I(-(-(x,y),I(1())))
              -(O(x),O(y)) -> O(-(x,y))
              Log'(0()) -> 0()
              Log'(I(x)) -> +(Log'(x),I(0()))
              Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
              O(0()) -> 0()
              ge(x,0()) -> true()
              ge(0(),I(x)) -> false()
              ge(0(),O(x)) -> ge(0(),x)
              ge(I(x),I(y)) -> ge(x,y)
              ge(I(x),O(y)) -> ge(x,y)
              ge(O(x),I(y)) -> not(ge(y,x))
              ge(O(x),O(y)) -> ge(x,y)
              if(false(),x,y) -> y
              if(true(),x,y) -> x
              not(false()) -> true()
              not(true()) -> false()
            Signature:
              {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
            Obligation:
              Innermost
              basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
          Applied Processor:
            NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation:
            The following argument positions are considered usable:
              uargs(c_10) = {1},
              uargs(c_11) = {1},
              uargs(c_12) = {1,2},
              uargs(c_13) = {1},
              uargs(c_16) = {1}
            
            Following symbols are considered usable:
              {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}
            TcT has computed the following interpretation:
                  p(+) = [0]                                                                                                         
                  p(-) = [0]                                                                                                         
                  p(0) = [0]                                                                                                         
                  p(1) = [0]                                                                                                         
                 p(BS) = [0]                                                                                                         
                  p(I) = [1] x1 + [0]                                                                                                
                  p(L) = [1] x1 + [0]                                                                                                
                p(Log) = [0]                                                                                                         
               p(Log') = [0]                                                                                                         
                p(Max) = [0]                                                                                                         
                p(Min) = [0]                                                                                                         
                  p(N) = [1] x1 + [1] x2 + [1] x3 + [0]                                                                              
                  p(O) = [4] x1 + [4]                                                                                                
               p(Size) = [0]                                                                                                         
                p(Val) = [0]                                                                                                         
                 p(WB) = [0]                                                                                                         
                p(and) = [0]                                                                                                         
              p(false) = [0]                                                                                                         
                 p(ge) = [0]                                                                                                         
                 p(if) = [0]                                                                                                         
                  p(l) = [0]                                                                                                         
                p(not) = [0]                                                                                                         
                  p(r) = [0]                                                                                                         
               p(true) = [0]                                                                                                         
                 p(+#) = [0]                                                                                                         
                 p(-#) = [1] x2 + [0]                                                                                                
                p(BS#) = [0]                                                                                                         
               p(Log#) = [1]                                                                                                         
              p(Log'#) = [0]                                                                                                         
               p(Max#) = [0]                                                                                                         
               p(Min#) = [0]                                                                                                         
                 p(O#) = [0]                                                                                                         
              p(Size#) = [0]                                                                                                         
               p(Val#) = [0]                                                                                                         
                p(WB#) = [1] x1 + [0]                                                                                                
               p(and#) = [0]                                                                                                         
                p(ge#) = [1] x1 + [0]                                                                                                
                p(if#) = [4] x1 + [1] x2 + [0]                                                                                       
               p(not#) = [4] x1 + [0]                                                                                                
                p(c_1) = [1] x2 + [0]                                                                                                
                p(c_2) = [0]                                                                                                         
                p(c_3) = [0]                                                                                                         
                p(c_4) = [1] x1 + [2] x2 + [0]                                                                                       
                p(c_5) = [1] x1 + [0]                                                                                                
                p(c_6) = [0]                                                                                                         
                p(c_7) = [0]                                                                                                         
                p(c_8) = [0]                                                                                                         
                p(c_9) = [0]                                                                                                         
               p(c_10) = [1] x1 + [0]                                                                                                
               p(c_11) = [4] x1 + [0]                                                                                                
               p(c_12) = [1] x1 + [1] x2 + [0]                                                                                       
               p(c_13) = [2] x1 + [4]                                                                                                
               p(c_14) = [0]                                                                                                         
               p(c_15) = [4] x2 + [1] x4 + [1] x6 + [1] x7 + [0]                                                                     
               p(c_16) = [1] x1 + [0]                                                                                                
               p(c_17) = [0]                                                                                                         
               p(c_18) = [1] x1 + [0]                                                                                                
               p(c_19) = [1] x2 + [0]                                                                                                
               p(c_20) = [0]                                                                                                         
               p(c_21) = [4] x1 + [0]                                                                                                
               p(c_22) = [0]                                                                                                         
               p(c_23) = [1] x1 + [0]                                                                                                
               p(c_24) = [0]                                                                                                         
               p(c_25) = [0]                                                                                                         
               p(c_26) = [4] x2 + [1] x4 + [2]                                                                                       
               p(c_27) = [0]                                                                                                         
               p(c_28) = [0]                                                                                                         
               p(c_29) = [0]                                                                                                         
               p(c_30) = [2] x1 + [1] x2 + [1] x7 + [1] x8 + [1] x9 + [1] x10 + [1] x11 + [1] x12 + [1] x13 + [1] x14 + [2] x16 + [0]
               p(c_31) = [0]                                                                                                         
               p(c_32) = [0]                                                                                                         
               p(c_33) = [0]                                                                                                         
               p(c_34) = [0]                                                                                                         
               p(c_35) = [2] x1 + [0]                                                                                                
               p(c_36) = [1] x1 + [0]                                                                                                
               p(c_37) = [1] x1 + [0]                                                                                                
               p(c_38) = [1] x1 + [0]                                                                                                
               p(c_39) = [2] x1 + [0]                                                                                                
               p(c_40) = [0]                                                                                                         
               p(c_41) = [0]                                                                                                         
               p(c_42) = [0]                                                                                                         
               p(c_43) = [0]                                                                                                         
            
            Following rules are strictly oriented:
            -#(I(x),O(y)) = [4] y + [4]  
                          > [4] y + [0]  
                          = c_11(-#(x,y))
            
            
            Following rules are (at-least) weakly oriented:
            -#(I(x),I(y)) =  [1] y + [0]                    
                          >= [1] y + [0]                    
                          =  c_10(-#(x,y))                  
            
            -#(O(x),I(y)) =  [1] y + [0]                    
                          >= [1] y + [0]                    
                          =  c_12(-#(-(x,y),I(1())),-#(x,y))
            
            -#(O(x),O(y)) =  [4] y + [4]                    
                          >= [2] y + [4]                    
                          =  c_13(-#(x,y))                  
            
                  Log#(x) =  [1]                            
                          >= [0]                            
                          =  c_16(-#(Log'(x),I(0())))       
            
      *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              -#(I(x),I(y)) -> c_10(-#(x,y))
              -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
              -#(O(x),O(y)) -> c_13(-#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              -#(I(x),O(y)) -> c_11(-#(x,y))
              Log#(x) -> c_16(-#(Log'(x),I(0())))
            Weak TRS Rules:
              +(x,+(y,z)) -> +(+(x,y),z)
              +(x,0()) -> x
              +(0(),x) -> x
              +(I(x),I(y)) -> O(+(+(x,y),I(0())))
              +(I(x),O(y)) -> I(+(x,y))
              +(O(x),I(y)) -> I(+(x,y))
              +(O(x),O(y)) -> O(+(x,y))
              -(x,0()) -> x
              -(0(),x) -> 0()
              -(I(x),I(y)) -> O(-(x,y))
              -(I(x),O(y)) -> I(-(x,y))
              -(O(x),I(y)) -> I(-(-(x,y),I(1())))
              -(O(x),O(y)) -> O(-(x,y))
              Log'(0()) -> 0()
              Log'(I(x)) -> +(Log'(x),I(0()))
              Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
              O(0()) -> 0()
              ge(x,0()) -> true()
              ge(0(),I(x)) -> false()
              ge(0(),O(x)) -> ge(0(),x)
              ge(I(x),I(y)) -> ge(x,y)
              ge(I(x),O(y)) -> ge(x,y)
              ge(O(x),I(y)) -> not(ge(y,x))
              ge(O(x),O(y)) -> ge(x,y)
              if(false(),x,y) -> y
              if(true(),x,y) -> x
              not(false()) -> true()
              not(true()) -> false()
            Signature:
              {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
            Obligation:
              Innermost
              basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1.2 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              -#(I(x),I(y)) -> c_10(-#(x,y))
              -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
              -#(O(x),O(y)) -> c_13(-#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              -#(I(x),O(y)) -> c_11(-#(x,y))
              Log#(x) -> c_16(-#(Log'(x),I(0())))
            Weak TRS Rules:
              +(x,+(y,z)) -> +(+(x,y),z)
              +(x,0()) -> x
              +(0(),x) -> x
              +(I(x),I(y)) -> O(+(+(x,y),I(0())))
              +(I(x),O(y)) -> I(+(x,y))
              +(O(x),I(y)) -> I(+(x,y))
              +(O(x),O(y)) -> O(+(x,y))
              -(x,0()) -> x
              -(0(),x) -> 0()
              -(I(x),I(y)) -> O(-(x,y))
              -(I(x),O(y)) -> I(-(x,y))
              -(O(x),I(y)) -> I(-(-(x,y),I(1())))
              -(O(x),O(y)) -> O(-(x,y))
              Log'(0()) -> 0()
              Log'(I(x)) -> +(Log'(x),I(0()))
              Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
              O(0()) -> 0()
              ge(x,0()) -> true()
              ge(0(),I(x)) -> false()
              ge(0(),O(x)) -> ge(0(),x)
              ge(I(x),I(y)) -> ge(x,y)
              ge(I(x),O(y)) -> ge(x,y)
              ge(O(x),I(y)) -> not(ge(y,x))
              ge(O(x),O(y)) -> ge(x,y)
              if(false(),x,y) -> y
              if(true(),x,y) -> x
              not(false()) -> true()
              not(true()) -> false()
            Signature:
              {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
            Obligation:
              Innermost
              basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              3: -#(O(x),O(y)) -> c_13(-#(x,y))
              
            Consider the set of all dependency pairs
              1: -#(I(x),I(y)) -> c_10(-#(x,y))  
              2: -#(O(x),I(y)) -> c_12(-#(-(x,y) 
                                         ,I(1()))
                                      ,-#(x,y))  
              3: -#(O(x),O(y)) -> c_13(-#(x,y))  
              4: -#(I(x),O(y)) -> c_11(-#(x,y))  
              5: Log#(x) -> c_16(-#(Log'(x)      
                                   ,I(0())))     
            Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
            SPACE(?,?)on application of the dependency pairs
              {3}
            These cover all (indirect) predecessors of dependency pairs
              {3,5}
            their number of applications is equally bounded.
            The dependency pairs are shifted into the weak component.
        *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                -#(I(x),I(y)) -> c_10(-#(x,y))
                -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
                -#(O(x),O(y)) -> c_13(-#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                -#(I(x),O(y)) -> c_11(-#(x,y))
                Log#(x) -> c_16(-#(Log'(x),I(0())))
              Weak TRS Rules:
                +(x,+(y,z)) -> +(+(x,y),z)
                +(x,0()) -> x
                +(0(),x) -> x
                +(I(x),I(y)) -> O(+(+(x,y),I(0())))
                +(I(x),O(y)) -> I(+(x,y))
                +(O(x),I(y)) -> I(+(x,y))
                +(O(x),O(y)) -> O(+(x,y))
                -(x,0()) -> x
                -(0(),x) -> 0()
                -(I(x),I(y)) -> O(-(x,y))
                -(I(x),O(y)) -> I(-(x,y))
                -(O(x),I(y)) -> I(-(-(x,y),I(1())))
                -(O(x),O(y)) -> O(-(x,y))
                Log'(0()) -> 0()
                Log'(I(x)) -> +(Log'(x),I(0()))
                Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
                O(0()) -> 0()
                ge(x,0()) -> true()
                ge(0(),I(x)) -> false()
                ge(0(),O(x)) -> ge(0(),x)
                ge(I(x),I(y)) -> ge(x,y)
                ge(I(x),O(y)) -> ge(x,y)
                ge(O(x),I(y)) -> not(ge(y,x))
                ge(O(x),O(y)) -> ge(x,y)
                if(false(),x,y) -> y
                if(true(),x,y) -> x
                not(false()) -> true()
                not(true()) -> false()
              Signature:
                {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
              Obligation:
                Innermost
                basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
            Applied Processor:
              NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a matrix interpretation of kind constructor based matrix interpretation:
              The following argument positions are considered usable:
                uargs(c_10) = {1},
                uargs(c_11) = {1},
                uargs(c_12) = {1,2},
                uargs(c_13) = {1},
                uargs(c_16) = {1}
              
              Following symbols are considered usable:
                {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}
              TcT has computed the following interpretation:
                    p(+) = [1] x1 + [1]                                                                  
                    p(-) = [0]                                                                           
                    p(0) = [2]                                                                           
                    p(1) = [0]                                                                           
                   p(BS) = [0]                                                                           
                    p(I) = [1] x1 + [0]                                                                  
                    p(L) = [1] x1 + [0]                                                                  
                  p(Log) = [0]                                                                           
                 p(Log') = [0]                                                                           
                  p(Max) = [0]                                                                           
                  p(Min) = [0]                                                                           
                    p(N) = [1] x1 + [1] x2 + [1] x3 + [0]                                                
                    p(O) = [4] x1 + [2]                                                                  
                 p(Size) = [0]                                                                           
                  p(Val) = [0]                                                                           
                   p(WB) = [1] x1 + [0]                                                                  
                  p(and) = [2] x1 + [2]                                                                  
                p(false) = [1]                                                                           
                   p(ge) = [0]                                                                           
                   p(if) = [1] x1 + [1] x2 + [5] x3 + [3]                                                
                    p(l) = [0]                                                                           
                  p(not) = [0]                                                                           
                    p(r) = [0]                                                                           
                 p(true) = [0]                                                                           
                   p(+#) = [0]                                                                           
                   p(-#) = [1] x2 + [0]                                                                  
                  p(BS#) = [0]                                                                           
                 p(Log#) = [2]                                                                           
                p(Log'#) = [0]                                                                           
                 p(Max#) = [0]                                                                           
                 p(Min#) = [0]                                                                           
                   p(O#) = [0]                                                                           
                p(Size#) = [0]                                                                           
                 p(Val#) = [0]                                                                           
                  p(WB#) = [0]                                                                           
                 p(and#) = [0]                                                                           
                  p(ge#) = [0]                                                                           
                  p(if#) = [0]                                                                           
                 p(not#) = [0]                                                                           
                  p(c_1) = [2] x1 + [4] x2 + [2]                                                         
                  p(c_2) = [2]                                                                           
                  p(c_3) = [0]                                                                           
                  p(c_4) = [4] x1 + [0]                                                                  
                  p(c_5) = [2] x1 + [4]                                                                  
                  p(c_6) = [4] x1 + [1]                                                                  
                  p(c_7) = [4]                                                                           
                  p(c_8) = [0]                                                                           
                  p(c_9) = [2]                                                                           
                 p(c_10) = [1] x1 + [0]                                                                  
                 p(c_11) = [1] x1 + [0]                                                                  
                 p(c_12) = [2] x1 + [1] x2 + [0]                                                         
                 p(c_13) = [1] x1 + [0]                                                                  
                 p(c_14) = [0]                                                                           
                 p(c_15) = [1] x1 + [2] x6 + [2]                                                         
                 p(c_16) = [1] x1 + [0]                                                                  
                 p(c_17) = [0]                                                                           
                 p(c_18) = [2] x1 + [0]                                                                  
                 p(c_19) = [1] x1 + [1] x2 + [0]                                                         
                 p(c_20) = [1]                                                                           
                 p(c_21) = [1]                                                                           
                 p(c_22) = [0]                                                                           
                 p(c_23) = [1] x1 + [0]                                                                  
                 p(c_24) = [1]                                                                           
                 p(c_25) = [1]                                                                           
                 p(c_26) = [4] x2 + [4] x4 + [0]                                                         
                 p(c_27) = [2]                                                                           
                 p(c_28) = [2]                                                                           
                 p(c_29) = [0]                                                                           
                 p(c_30) = [2] x3 + [1] x4 + [1] x6 + [1] x8 + [1] x9 + [1] x10 + [2] x13 + [2] x14 + [4]
                 p(c_31) = [0]                                                                           
                 p(c_32) = [0]                                                                           
                 p(c_33) = [1]                                                                           
                 p(c_34) = [0]                                                                           
                 p(c_35) = [1] x1 + [0]                                                                  
                 p(c_36) = [1]                                                                           
                 p(c_37) = [1]                                                                           
                 p(c_38) = [2]                                                                           
                 p(c_39) = [0]                                                                           
                 p(c_40) = [0]                                                                           
                 p(c_41) = [1]                                                                           
                 p(c_42) = [4]                                                                           
                 p(c_43) = [0]                                                                           
              
              Following rules are strictly oriented:
              -#(O(x),O(y)) = [4] y + [2]  
                            > [1] y + [0]  
                            = c_13(-#(x,y))
              
              
              Following rules are (at-least) weakly oriented:
              -#(I(x),I(y)) =  [1] y + [0]                    
                            >= [1] y + [0]                    
                            =  c_10(-#(x,y))                  
              
              -#(I(x),O(y)) =  [4] y + [2]                    
                            >= [1] y + [0]                    
                            =  c_11(-#(x,y))                  
              
              -#(O(x),I(y)) =  [1] y + [0]                    
                            >= [1] y + [0]                    
                            =  c_12(-#(-(x,y),I(1())),-#(x,y))
              
                    Log#(x) =  [2]                            
                            >= [2]                            
                            =  c_16(-#(Log'(x),I(0())))       
              
        *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1.2.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                -#(I(x),I(y)) -> c_10(-#(x,y))
                -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                -#(I(x),O(y)) -> c_11(-#(x,y))
                -#(O(x),O(y)) -> c_13(-#(x,y))
                Log#(x) -> c_16(-#(Log'(x),I(0())))
              Weak TRS Rules:
                +(x,+(y,z)) -> +(+(x,y),z)
                +(x,0()) -> x
                +(0(),x) -> x
                +(I(x),I(y)) -> O(+(+(x,y),I(0())))
                +(I(x),O(y)) -> I(+(x,y))
                +(O(x),I(y)) -> I(+(x,y))
                +(O(x),O(y)) -> O(+(x,y))
                -(x,0()) -> x
                -(0(),x) -> 0()
                -(I(x),I(y)) -> O(-(x,y))
                -(I(x),O(y)) -> I(-(x,y))
                -(O(x),I(y)) -> I(-(-(x,y),I(1())))
                -(O(x),O(y)) -> O(-(x,y))
                Log'(0()) -> 0()
                Log'(I(x)) -> +(Log'(x),I(0()))
                Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
                O(0()) -> 0()
                ge(x,0()) -> true()
                ge(0(),I(x)) -> false()
                ge(0(),O(x)) -> ge(0(),x)
                ge(I(x),I(y)) -> ge(x,y)
                ge(I(x),O(y)) -> ge(x,y)
                ge(O(x),I(y)) -> not(ge(y,x))
                ge(O(x),O(y)) -> ge(x,y)
                if(false(),x,y) -> y
                if(true(),x,y) -> x
                not(false()) -> true()
                not(true()) -> false()
              Signature:
                {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
              Obligation:
                Innermost
                basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1.2.2 Progress [(?,O(n^2))]  ***
            Considered Problem:
              Strict DP Rules:
                -#(I(x),I(y)) -> c_10(-#(x,y))
                -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                -#(I(x),O(y)) -> c_11(-#(x,y))
                -#(O(x),O(y)) -> c_13(-#(x,y))
                Log#(x) -> c_16(-#(Log'(x),I(0())))
              Weak TRS Rules:
                +(x,+(y,z)) -> +(+(x,y),z)
                +(x,0()) -> x
                +(0(),x) -> x
                +(I(x),I(y)) -> O(+(+(x,y),I(0())))
                +(I(x),O(y)) -> I(+(x,y))
                +(O(x),I(y)) -> I(+(x,y))
                +(O(x),O(y)) -> O(+(x,y))
                -(x,0()) -> x
                -(0(),x) -> 0()
                -(I(x),I(y)) -> O(-(x,y))
                -(I(x),O(y)) -> I(-(x,y))
                -(O(x),I(y)) -> I(-(-(x,y),I(1())))
                -(O(x),O(y)) -> O(-(x,y))
                Log'(0()) -> 0()
                Log'(I(x)) -> +(Log'(x),I(0()))
                Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
                O(0()) -> 0()
                ge(x,0()) -> true()
                ge(0(),I(x)) -> false()
                ge(0(),O(x)) -> ge(0(),x)
                ge(I(x),I(y)) -> ge(x,y)
                ge(I(x),O(y)) -> ge(x,y)
                ge(O(x),I(y)) -> not(ge(y,x))
                ge(O(x),O(y)) -> ge(x,y)
                if(false(),x,y) -> y
                if(true(),x,y) -> x
                not(false()) -> true()
                not(true()) -> false()
              Signature:
                {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
              Obligation:
                Innermost
                basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                1: -#(I(x),I(y)) -> c_10(-#(x,y))
                
              Consider the set of all dependency pairs
                1: -#(I(x),I(y)) -> c_10(-#(x,y))  
                2: -#(O(x),I(y)) -> c_12(-#(-(x,y) 
                                           ,I(1()))
                                        ,-#(x,y))  
                3: -#(I(x),O(y)) -> c_11(-#(x,y))  
                4: -#(O(x),O(y)) -> c_13(-#(x,y))  
                5: Log#(x) -> c_16(-#(Log'(x)      
                                     ,I(0())))     
              Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
              SPACE(?,?)on application of the dependency pairs
                {1}
              These cover all (indirect) predecessors of dependency pairs
                {1,5}
              their number of applications is equally bounded.
              The dependency pairs are shifted into the weak component.
          *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1.2.2.1 Progress [(?,O(n^1))]  ***
              Considered Problem:
                Strict DP Rules:
                  -#(I(x),I(y)) -> c_10(-#(x,y))
                  -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  -#(I(x),O(y)) -> c_11(-#(x,y))
                  -#(O(x),O(y)) -> c_13(-#(x,y))
                  Log#(x) -> c_16(-#(Log'(x),I(0())))
                Weak TRS Rules:
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(x,0()) -> x
                  +(0(),x) -> x
                  +(I(x),I(y)) -> O(+(+(x,y),I(0())))
                  +(I(x),O(y)) -> I(+(x,y))
                  +(O(x),I(y)) -> I(+(x,y))
                  +(O(x),O(y)) -> O(+(x,y))
                  -(x,0()) -> x
                  -(0(),x) -> 0()
                  -(I(x),I(y)) -> O(-(x,y))
                  -(I(x),O(y)) -> I(-(x,y))
                  -(O(x),I(y)) -> I(-(-(x,y),I(1())))
                  -(O(x),O(y)) -> O(-(x,y))
                  Log'(0()) -> 0()
                  Log'(I(x)) -> +(Log'(x),I(0()))
                  Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
                  O(0()) -> 0()
                  ge(x,0()) -> true()
                  ge(0(),I(x)) -> false()
                  ge(0(),O(x)) -> ge(0(),x)
                  ge(I(x),I(y)) -> ge(x,y)
                  ge(I(x),O(y)) -> ge(x,y)
                  ge(O(x),I(y)) -> not(ge(y,x))
                  ge(O(x),O(y)) -> ge(x,y)
                  if(false(),x,y) -> y
                  if(true(),x,y) -> x
                  not(false()) -> true()
                  not(true()) -> false()
                Signature:
                  {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
              Applied Processor:
                NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a matrix interpretation of kind constructor based matrix interpretation:
                The following argument positions are considered usable:
                  uargs(c_10) = {1},
                  uargs(c_11) = {1},
                  uargs(c_12) = {1,2},
                  uargs(c_13) = {1},
                  uargs(c_16) = {1}
                
                Following symbols are considered usable:
                  {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}
                TcT has computed the following interpretation:
                      p(+) = [2]                                                                                    
                      p(-) = [0]                                                                                    
                      p(0) = [0]                                                                                    
                      p(1) = [0]                                                                                    
                     p(BS) = [0]                                                                                    
                      p(I) = [1] x1 + [2]                                                                           
                      p(L) = [1]                                                                                    
                    p(Log) = [0]                                                                                    
                   p(Log') = [1]                                                                                    
                    p(Max) = [4]                                                                                    
                    p(Min) = [1]                                                                                    
                      p(N) = [1] x1 + [0]                                                                           
                      p(O) = [4] x1 + [4]                                                                           
                   p(Size) = [1] x1 + [2]                                                                           
                    p(Val) = [2] x1 + [0]                                                                           
                     p(WB) = [1] x1 + [0]                                                                           
                    p(and) = [0]                                                                                    
                  p(false) = [1]                                                                                    
                     p(ge) = [3] x1 + [1]                                                                           
                     p(if) = [3] x1 + [1] x2 + [5]                                                                  
                      p(l) = [1]                                                                                    
                    p(not) = [2] x1 + [0]                                                                           
                      p(r) = [1]                                                                                    
                   p(true) = [0]                                                                                    
                     p(+#) = [1] x1 + [4]                                                                           
                     p(-#) = [2] x2 + [0]                                                                           
                    p(BS#) = [1] x1 + [0]                                                                           
                   p(Log#) = [1] x1 + [5]                                                                           
                  p(Log'#) = [4]                                                                                    
                   p(Max#) = [1]                                                                                    
                   p(Min#) = [0]                                                                                    
                     p(O#) = [1] x1 + [1]                                                                           
                  p(Size#) = [1] x1 + [0]                                                                           
                   p(Val#) = [4] x1 + [1]                                                                           
                    p(WB#) = [0]                                                                                    
                   p(and#) = [4] x1 + [1] x2 + [0]                                                                  
                    p(ge#) = [1] x2 + [2]                                                                           
                    p(if#) = [2] x1 + [4] x3 + [2]                                                                  
                   p(not#) = [4] x1 + [1]                                                                           
                    p(c_1) = [0]                                                                                    
                    p(c_2) = [1]                                                                                    
                    p(c_3) = [4]                                                                                    
                    p(c_4) = [1] x2 + [0]                                                                           
                    p(c_5) = [2] x1 + [0]                                                                           
                    p(c_6) = [4]                                                                                    
                    p(c_7) = [0]                                                                                    
                    p(c_8) = [2]                                                                                    
                    p(c_9) = [4]                                                                                    
                   p(c_10) = [1] x1 + [0]                                                                           
                   p(c_11) = [1] x1 + [4]                                                                           
                   p(c_12) = [1] x1 + [1] x2 + [0]                                                                  
                   p(c_13) = [4] x1 + [0]                                                                           
                   p(c_14) = [0]                                                                                    
                   p(c_15) = [1] x3 + [2] x5 + [1] x7 + [2] x8 + [1]                                                
                   p(c_16) = [1] x1 + [0]                                                                           
                   p(c_17) = [1]                                                                                    
                   p(c_18) = [1]                                                                                    
                   p(c_19) = [0]                                                                                    
                   p(c_20) = [0]                                                                                    
                   p(c_21) = [1] x1 + [0]                                                                           
                   p(c_22) = [1]                                                                                    
                   p(c_23) = [1]                                                                                    
                   p(c_24) = [0]                                                                                    
                   p(c_25) = [2]                                                                                    
                   p(c_26) = [1] x1 + [2] x2 + [1] x4 + [0]                                                         
                   p(c_27) = [4]                                                                                    
                   p(c_28) = [2]                                                                                    
                   p(c_29) = [0]                                                                                    
                   p(c_30) = [4] x1 + [1] x3 + [2] x5 + [1] x6 + [4] x7 + [1] x8 + [1] x10 + [1] x13 + [2] x16 + [1]
                   p(c_31) = [0]                                                                                    
                   p(c_32) = [0]                                                                                    
                   p(c_33) = [1]                                                                                    
                   p(c_34) = [0]                                                                                    
                   p(c_35) = [1]                                                                                    
                   p(c_36) = [1] x1 + [1]                                                                           
                   p(c_37) = [0]                                                                                    
                   p(c_38) = [1]                                                                                    
                   p(c_39) = [0]                                                                                    
                   p(c_40) = [4]                                                                                    
                   p(c_41) = [1]                                                                                    
                   p(c_42) = [0]                                                                                    
                   p(c_43) = [2]                                                                                    
                
                Following rules are strictly oriented:
                -#(I(x),I(y)) = [2] y + [4]  
                              > [2] y + [0]  
                              = c_10(-#(x,y))
                
                
                Following rules are (at-least) weakly oriented:
                -#(I(x),O(y)) =  [8] y + [8]                    
                              >= [2] y + [4]                    
                              =  c_11(-#(x,y))                  
                
                -#(O(x),I(y)) =  [2] y + [4]                    
                              >= [2] y + [4]                    
                              =  c_12(-#(-(x,y),I(1())),-#(x,y))
                
                -#(O(x),O(y)) =  [8] y + [8]                    
                              >= [8] y + [0]                    
                              =  c_13(-#(x,y))                  
                
                      Log#(x) =  [1] x + [5]                    
                              >= [4]                            
                              =  c_16(-#(Log'(x),I(0())))       
                
          *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1.2.2.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  -#(I(x),I(y)) -> c_10(-#(x,y))
                  -#(I(x),O(y)) -> c_11(-#(x,y))
                  -#(O(x),O(y)) -> c_13(-#(x,y))
                  Log#(x) -> c_16(-#(Log'(x),I(0())))
                Weak TRS Rules:
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(x,0()) -> x
                  +(0(),x) -> x
                  +(I(x),I(y)) -> O(+(+(x,y),I(0())))
                  +(I(x),O(y)) -> I(+(x,y))
                  +(O(x),I(y)) -> I(+(x,y))
                  +(O(x),O(y)) -> O(+(x,y))
                  -(x,0()) -> x
                  -(0(),x) -> 0()
                  -(I(x),I(y)) -> O(-(x,y))
                  -(I(x),O(y)) -> I(-(x,y))
                  -(O(x),I(y)) -> I(-(-(x,y),I(1())))
                  -(O(x),O(y)) -> O(-(x,y))
                  Log'(0()) -> 0()
                  Log'(I(x)) -> +(Log'(x),I(0()))
                  Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
                  O(0()) -> 0()
                  ge(x,0()) -> true()
                  ge(0(),I(x)) -> false()
                  ge(0(),O(x)) -> ge(0(),x)
                  ge(I(x),I(y)) -> ge(x,y)
                  ge(I(x),O(y)) -> ge(x,y)
                  ge(O(x),I(y)) -> not(ge(y,x))
                  ge(O(x),O(y)) -> ge(x,y)
                  if(false(),x,y) -> y
                  if(true(),x,y) -> x
                  not(false()) -> true()
                  not(true()) -> false()
                Signature:
                  {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1.2.2.2 Progress [(?,O(n^2))]  ***
              Considered Problem:
                Strict DP Rules:
                  -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  -#(I(x),I(y)) -> c_10(-#(x,y))
                  -#(I(x),O(y)) -> c_11(-#(x,y))
                  -#(O(x),O(y)) -> c_13(-#(x,y))
                  Log#(x) -> c_16(-#(Log'(x),I(0())))
                Weak TRS Rules:
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(x,0()) -> x
                  +(0(),x) -> x
                  +(I(x),I(y)) -> O(+(+(x,y),I(0())))
                  +(I(x),O(y)) -> I(+(x,y))
                  +(O(x),I(y)) -> I(+(x,y))
                  +(O(x),O(y)) -> O(+(x,y))
                  -(x,0()) -> x
                  -(0(),x) -> 0()
                  -(I(x),I(y)) -> O(-(x,y))
                  -(I(x),O(y)) -> I(-(x,y))
                  -(O(x),I(y)) -> I(-(-(x,y),I(1())))
                  -(O(x),O(y)) -> O(-(x,y))
                  Log'(0()) -> 0()
                  Log'(I(x)) -> +(Log'(x),I(0()))
                  Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
                  O(0()) -> 0()
                  ge(x,0()) -> true()
                  ge(0(),I(x)) -> false()
                  ge(0(),O(x)) -> ge(0(),x)
                  ge(I(x),I(y)) -> ge(x,y)
                  ge(I(x),O(y)) -> ge(x,y)
                  ge(O(x),I(y)) -> not(ge(y,x))
                  ge(O(x),O(y)) -> ge(x,y)
                  if(false(),x,y) -> y
                  if(true(),x,y) -> x
                  not(false()) -> true()
                  not(true()) -> false()
                Signature:
                  {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
                Obligation:
                  Innermost
                  basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
              Applied Processor:
                PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
              Proof:
                We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                  1: -#(O(x),I(y)) -> c_12(-#(-(x,y) 
                                             ,I(1()))
                                          ,-#(x,y))  
                  
                Consider the set of all dependency pairs
                  1: -#(O(x),I(y)) -> c_12(-#(-(x,y) 
                                             ,I(1()))
                                          ,-#(x,y))  
                  2: -#(I(x),I(y)) -> c_10(-#(x,y))  
                  3: -#(I(x),O(y)) -> c_11(-#(x,y))  
                  4: -#(O(x),O(y)) -> c_13(-#(x,y))  
                  5: Log#(x) -> c_16(-#(Log'(x)      
                                       ,I(0())))     
                Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2))
                SPACE(?,?)on application of the dependency pairs
                  {1}
                These cover all (indirect) predecessors of dependency pairs
                  {1,5}
                their number of applications is equally bounded.
                The dependency pairs are shifted into the weak component.
            *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1.2.2.2.1 Progress [(?,O(n^2))]  ***
                Considered Problem:
                  Strict DP Rules:
                    -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    -#(I(x),I(y)) -> c_10(-#(x,y))
                    -#(I(x),O(y)) -> c_11(-#(x,y))
                    -#(O(x),O(y)) -> c_13(-#(x,y))
                    Log#(x) -> c_16(-#(Log'(x),I(0())))
                  Weak TRS Rules:
                    +(x,+(y,z)) -> +(+(x,y),z)
                    +(x,0()) -> x
                    +(0(),x) -> x
                    +(I(x),I(y)) -> O(+(+(x,y),I(0())))
                    +(I(x),O(y)) -> I(+(x,y))
                    +(O(x),I(y)) -> I(+(x,y))
                    +(O(x),O(y)) -> O(+(x,y))
                    -(x,0()) -> x
                    -(0(),x) -> 0()
                    -(I(x),I(y)) -> O(-(x,y))
                    -(I(x),O(y)) -> I(-(x,y))
                    -(O(x),I(y)) -> I(-(-(x,y),I(1())))
                    -(O(x),O(y)) -> O(-(x,y))
                    Log'(0()) -> 0()
                    Log'(I(x)) -> +(Log'(x),I(0()))
                    Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
                    O(0()) -> 0()
                    ge(x,0()) -> true()
                    ge(0(),I(x)) -> false()
                    ge(0(),O(x)) -> ge(0(),x)
                    ge(I(x),I(y)) -> ge(x,y)
                    ge(I(x),O(y)) -> ge(x,y)
                    ge(O(x),I(y)) -> not(ge(y,x))
                    ge(O(x),O(y)) -> ge(x,y)
                    if(false(),x,y) -> y
                    if(true(),x,y) -> x
                    not(false()) -> true()
                    not(true()) -> false()
                  Signature:
                    {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
                  Obligation:
                    Innermost
                    basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
                Applied Processor:
                  NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
                Proof:
                  We apply a polynomial interpretation of kind constructor-based(mixed(2)):
                  The following argument positions are considered usable:
                    uargs(c_10) = {1},
                    uargs(c_11) = {1},
                    uargs(c_12) = {1,2},
                    uargs(c_13) = {1},
                    uargs(c_16) = {1}
                  
                  Following symbols are considered usable:
                    {+,-,Log',O,if,+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}
                  TcT has computed the following interpretation:
                        p(+) = x1 + x2
                        p(-) = x1     
                        p(0) = 0      
                        p(1) = 0      
                       p(BS) = 0      
                        p(I) = 1 + x1 
                        p(L) = 0      
                      p(Log) = 0      
                     p(Log') = x1^2   
                      p(Max) = 0      
                      p(Min) = 0      
                        p(N) = 0      
                        p(O) = 1 + x1 
                     p(Size) = 0      
                      p(Val) = 0      
                       p(WB) = 0      
                      p(and) = 0      
                    p(false) = 1      
                       p(ge) = x2     
                       p(if) = x2 + x3
                        p(l) = 0      
                      p(not) = 0      
                        p(r) = 0      
                     p(true) = 1      
                       p(+#) = 0      
                       p(-#) = x1*x2  
                      p(BS#) = 0      
                     p(Log#) = x1^2   
                    p(Log'#) = 0      
                     p(Max#) = 0      
                     p(Min#) = 0      
                       p(O#) = 0      
                    p(Size#) = 0      
                     p(Val#) = 0      
                      p(WB#) = 0      
                     p(and#) = 0      
                      p(ge#) = 0      
                      p(if#) = 0      
                     p(not#) = 0      
                      p(c_1) = 0      
                      p(c_2) = 0      
                      p(c_3) = 0      
                      p(c_4) = 0      
                      p(c_5) = 0      
                      p(c_6) = 0      
                      p(c_7) = 0      
                      p(c_8) = 0      
                      p(c_9) = 0      
                     p(c_10) = 1 + x1 
                     p(c_11) = 1 + x1 
                     p(c_12) = x1 + x2
                     p(c_13) = 1 + x1 
                     p(c_14) = 0      
                     p(c_15) = 0      
                     p(c_16) = x1     
                     p(c_17) = 0      
                     p(c_18) = 0      
                     p(c_19) = 0      
                     p(c_20) = 0      
                     p(c_21) = 0      
                     p(c_22) = 0      
                     p(c_23) = 0      
                     p(c_24) = 0      
                     p(c_25) = 0      
                     p(c_26) = 0      
                     p(c_27) = 0      
                     p(c_28) = 0      
                     p(c_29) = 0      
                     p(c_30) = 0      
                     p(c_31) = 0      
                     p(c_32) = 0      
                     p(c_33) = 0      
                     p(c_34) = 0      
                     p(c_35) = 0      
                     p(c_36) = 0      
                     p(c_37) = 0      
                     p(c_38) = 0      
                     p(c_39) = 0      
                     p(c_40) = 0      
                     p(c_41) = 0      
                     p(c_42) = 0      
                     p(c_43) = 0      
                  
                  Following rules are strictly oriented:
                  -#(O(x),I(y)) = 1 + x + x*y + y                
                                > x + x*y                        
                                = c_12(-#(-(x,y),I(1())),-#(x,y))
                  
                  
                  Following rules are (at-least) weakly oriented:
                    -#(I(x),I(y)) =  1 + x + x*y + y         
                                  >= 1 + x*y                 
                                  =  c_10(-#(x,y))           
                  
                    -#(I(x),O(y)) =  1 + x + x*y + y         
                                  >= 1 + x*y                 
                                  =  c_11(-#(x,y))           
                  
                    -#(O(x),O(y)) =  1 + x + x*y + y         
                                  >= 1 + x*y                 
                                  =  c_13(-#(x,y))           
                  
                          Log#(x) =  x^2                     
                                  >= x^2                     
                                  =  c_16(-#(Log'(x),I(0())))
                  
                      +(x,+(y,z)) =  x + y + z               
                                  >= x + y + z               
                                  =  +(+(x,y),z)             
                  
                         +(x,0()) =  x                       
                                  >= x                       
                                  =  x                       
                  
                         +(0(),x) =  x                       
                                  >= x                       
                                  =  x                       
                  
                     +(I(x),I(y)) =  2 + x + y               
                                  >= 2 + x + y               
                                  =  O(+(+(x,y),I(0())))     
                  
                     +(I(x),O(y)) =  2 + x + y               
                                  >= 1 + x + y               
                                  =  I(+(x,y))               
                  
                     +(O(x),I(y)) =  2 + x + y               
                                  >= 1 + x + y               
                                  =  I(+(x,y))               
                  
                     +(O(x),O(y)) =  2 + x + y               
                                  >= 1 + x + y               
                                  =  O(+(x,y))               
                  
                         -(x,0()) =  x                       
                                  >= x                       
                                  =  x                       
                  
                         -(0(),x) =  0                       
                                  >= 0                       
                                  =  0()                     
                  
                     -(I(x),I(y)) =  1 + x                   
                                  >= 1 + x                   
                                  =  O(-(x,y))               
                  
                     -(I(x),O(y)) =  1 + x                   
                                  >= 1 + x                   
                                  =  I(-(x,y))               
                  
                     -(O(x),I(y)) =  1 + x                   
                                  >= 1 + x                   
                                  =  I(-(-(x,y),I(1())))     
                  
                     -(O(x),O(y)) =  1 + x                   
                                  >= 1 + x                   
                                  =  O(-(x,y))               
                  
                        Log'(0()) =  0                       
                                  >= 0                       
                                  =  0()                     
                  
                       Log'(I(x)) =  1 + 2*x + x^2           
                                  >= 1 + x^2                 
                                  =  +(Log'(x),I(0()))       
                  
                       Log'(O(x)) =  1 + 2*x + x^2           
                                  >= 1 + x^2                 
                                  =  if(ge(x,I(0()))         
                                       ,+(Log'(x),I(0()))    
                                       ,0())                 
                  
                           O(0()) =  1                       
                                  >= 0                       
                                  =  0()                     
                  
                  if(false(),x,y) =  x + y                   
                                  >= y                       
                                  =  y                       
                  
                   if(true(),x,y) =  x + y                   
                                  >= x                       
                                  =  x                       
                  
            *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1.2.2.2.1.1 Progress [(?,O(1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    -#(I(x),I(y)) -> c_10(-#(x,y))
                    -#(I(x),O(y)) -> c_11(-#(x,y))
                    -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
                    -#(O(x),O(y)) -> c_13(-#(x,y))
                    Log#(x) -> c_16(-#(Log'(x),I(0())))
                  Weak TRS Rules:
                    +(x,+(y,z)) -> +(+(x,y),z)
                    +(x,0()) -> x
                    +(0(),x) -> x
                    +(I(x),I(y)) -> O(+(+(x,y),I(0())))
                    +(I(x),O(y)) -> I(+(x,y))
                    +(O(x),I(y)) -> I(+(x,y))
                    +(O(x),O(y)) -> O(+(x,y))
                    -(x,0()) -> x
                    -(0(),x) -> 0()
                    -(I(x),I(y)) -> O(-(x,y))
                    -(I(x),O(y)) -> I(-(x,y))
                    -(O(x),I(y)) -> I(-(-(x,y),I(1())))
                    -(O(x),O(y)) -> O(-(x,y))
                    Log'(0()) -> 0()
                    Log'(I(x)) -> +(Log'(x),I(0()))
                    Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
                    O(0()) -> 0()
                    ge(x,0()) -> true()
                    ge(0(),I(x)) -> false()
                    ge(0(),O(x)) -> ge(0(),x)
                    ge(I(x),I(y)) -> ge(x,y)
                    ge(I(x),O(y)) -> ge(x,y)
                    ge(O(x),I(y)) -> not(ge(y,x))
                    ge(O(x),O(y)) -> ge(x,y)
                    if(false(),x,y) -> y
                    if(true(),x,y) -> x
                    not(false()) -> true()
                    not(true()) -> false()
                  Signature:
                    {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
                  Obligation:
                    Innermost
                    basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
                Applied Processor:
                  Assumption
                Proof:
                  ()
            
            *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1.2.2.2.2 Progress [(O(1),O(1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    -#(I(x),I(y)) -> c_10(-#(x,y))
                    -#(I(x),O(y)) -> c_11(-#(x,y))
                    -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
                    -#(O(x),O(y)) -> c_13(-#(x,y))
                    Log#(x) -> c_16(-#(Log'(x),I(0())))
                  Weak TRS Rules:
                    +(x,+(y,z)) -> +(+(x,y),z)
                    +(x,0()) -> x
                    +(0(),x) -> x
                    +(I(x),I(y)) -> O(+(+(x,y),I(0())))
                    +(I(x),O(y)) -> I(+(x,y))
                    +(O(x),I(y)) -> I(+(x,y))
                    +(O(x),O(y)) -> O(+(x,y))
                    -(x,0()) -> x
                    -(0(),x) -> 0()
                    -(I(x),I(y)) -> O(-(x,y))
                    -(I(x),O(y)) -> I(-(x,y))
                    -(O(x),I(y)) -> I(-(-(x,y),I(1())))
                    -(O(x),O(y)) -> O(-(x,y))
                    Log'(0()) -> 0()
                    Log'(I(x)) -> +(Log'(x),I(0()))
                    Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
                    O(0()) -> 0()
                    ge(x,0()) -> true()
                    ge(0(),I(x)) -> false()
                    ge(0(),O(x)) -> ge(0(),x)
                    ge(I(x),I(y)) -> ge(x,y)
                    ge(I(x),O(y)) -> ge(x,y)
                    ge(O(x),I(y)) -> not(ge(y,x))
                    ge(O(x),O(y)) -> ge(x,y)
                    if(false(),x,y) -> y
                    if(true(),x,y) -> x
                    not(false()) -> true()
                    not(true()) -> false()
                  Signature:
                    {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
                  Obligation:
                    Innermost
                    basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
                Applied Processor:
                  RemoveWeakSuffixes
                Proof:
                  Consider the dependency graph
                    1:W:-#(I(x),I(y)) -> c_10(-#(x,y))
                       -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
                       -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
                       -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
                       -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
                    
                    2:W:-#(I(x),O(y)) -> c_11(-#(x,y))
                       -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
                       -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
                       -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
                       -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
                    
                    3:W:-#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
                       -->_2 -#(O(x),O(y)) -> c_13(-#(x,y)):4
                       -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
                       -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
                       -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):2
                       -->_2 -#(I(x),I(y)) -> c_10(-#(x,y)):1
                       -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
                    
                    4:W:-#(O(x),O(y)) -> c_13(-#(x,y))
                       -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
                       -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
                       -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
                       -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
                    
                    5:W:Log#(x) -> c_16(-#(Log'(x),I(0())))
                       -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
                       -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
                    
                  The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                    5: Log#(x) -> c_16(-#(Log'(x)      
                                         ,I(0())))     
                    1: -#(I(x),I(y)) -> c_10(-#(x,y))  
                    4: -#(O(x),O(y)) -> c_13(-#(x,y))  
                    3: -#(O(x),I(y)) -> c_12(-#(-(x,y) 
                                               ,I(1()))
                                            ,-#(x,y))  
                    2: -#(I(x),O(y)) -> c_11(-#(x,y))  
            *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1.2.2.2.2.1 Progress [(O(1),O(1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    
                  Weak TRS Rules:
                    +(x,+(y,z)) -> +(+(x,y),z)
                    +(x,0()) -> x
                    +(0(),x) -> x
                    +(I(x),I(y)) -> O(+(+(x,y),I(0())))
                    +(I(x),O(y)) -> I(+(x,y))
                    +(O(x),I(y)) -> I(+(x,y))
                    +(O(x),O(y)) -> O(+(x,y))
                    -(x,0()) -> x
                    -(0(),x) -> 0()
                    -(I(x),I(y)) -> O(-(x,y))
                    -(I(x),O(y)) -> I(-(x,y))
                    -(O(x),I(y)) -> I(-(-(x,y),I(1())))
                    -(O(x),O(y)) -> O(-(x,y))
                    Log'(0()) -> 0()
                    Log'(I(x)) -> +(Log'(x),I(0()))
                    Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
                    O(0()) -> 0()
                    ge(x,0()) -> true()
                    ge(0(),I(x)) -> false()
                    ge(0(),O(x)) -> ge(0(),x)
                    ge(I(x),I(y)) -> ge(x,y)
                    ge(I(x),O(y)) -> ge(x,y)
                    ge(O(x),I(y)) -> not(ge(y,x))
                    ge(O(x),O(y)) -> ge(x,y)
                    if(false(),x,y) -> y
                    if(true(),x,y) -> x
                    not(false()) -> true()
                    not(true()) -> false()
                  Signature:
                    {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
                  Obligation:
                    Innermost
                    basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
                Applied Processor:
                  EmptyProcessor
                Proof:
                  The problem is already closed. The intended complexity is O(1).
            
    *** 1.1.1.1.1.1.1.1.2.1.1.2 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
            Log'#(I(x)) -> c_18(Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
          Weak TRS Rules:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
          Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/2,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
          Obligation:
            Innermost
            basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:S:Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
               -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):11
               -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):9
               -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):3
               -->_2 Log'#(I(x)) -> c_18(Log'#(x)):2
            
            2:S:Log'#(I(x)) -> c_18(Log'#(x))
               -->_1 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):3
               -->_1 Log'#(I(x)) -> c_18(Log'#(x)):2
            
            3:S:Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
               -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
               -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
               -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):3
               -->_2 Log'#(I(x)) -> c_18(Log'#(x)):2
            
            4:S:ge#(0(),O(x)) -> c_35(ge#(0(),x))
               -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
            
            5:S:ge#(I(x),I(y)) -> c_36(ge#(x,y))
               -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
               -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
               -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
               -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
               -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
            
            6:S:ge#(I(x),O(y)) -> c_37(ge#(x,y))
               -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
               -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
               -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
               -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
               -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
            
            7:S:ge#(O(x),I(y)) -> c_38(ge#(y,x))
               -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
               -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
               -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
               -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
               -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
            
            8:S:ge#(O(x),O(y)) -> c_39(ge#(x,y))
               -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
               -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
               -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
               -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
               -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
            
            9:W:-#(I(x),I(y)) -> c_10(-#(x,y))
               -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):12
               -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):11
               -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):10
               -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):9
            
            10:W:-#(I(x),O(y)) -> c_11(-#(x,y))
               -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):12
               -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):11
               -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):10
               -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):9
            
            11:W:-#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
               -->_2 -#(O(x),O(y)) -> c_13(-#(x,y)):12
               -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):11
               -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):11
               -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):10
               -->_2 -#(I(x),I(y)) -> c_10(-#(x,y)):9
               -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):9
            
            12:W:-#(O(x),O(y)) -> c_13(-#(x,y))
               -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):12
               -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):11
               -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):10
               -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):9
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            11: -#(O(x),I(y)) -> c_12(-#(-(x,y) 
                                        ,I(1()))
                                     ,-#(x,y))  
            12: -#(O(x),O(y)) -> c_13(-#(x,y))  
            10: -#(I(x),O(y)) -> c_11(-#(x,y))  
            9:  -#(I(x),I(y)) -> c_10(-#(x,y))  
    *** 1.1.1.1.1.1.1.1.2.1.1.2.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
            Log'#(I(x)) -> c_18(Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
          Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/2,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
          Obligation:
            Innermost
            basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
        Applied Processor:
          SimplifyRHS
        Proof:
          Consider the dependency graph
            1:S:Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
               -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):3
               -->_2 Log'#(I(x)) -> c_18(Log'#(x)):2
            
            2:S:Log'#(I(x)) -> c_18(Log'#(x))
               -->_1 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):3
               -->_1 Log'#(I(x)) -> c_18(Log'#(x)):2
            
            3:S:Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
               -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
               -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
               -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):3
               -->_2 Log'#(I(x)) -> c_18(Log'#(x)):2
            
            4:S:ge#(0(),O(x)) -> c_35(ge#(0(),x))
               -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
            
            5:S:ge#(I(x),I(y)) -> c_36(ge#(x,y))
               -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
               -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
               -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
               -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
               -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
            
            6:S:ge#(I(x),O(y)) -> c_37(ge#(x,y))
               -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
               -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
               -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
               -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
               -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
            
            7:S:ge#(O(x),I(y)) -> c_38(ge#(y,x))
               -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
               -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
               -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
               -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
               -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
            
            8:S:ge#(O(x),O(y)) -> c_39(ge#(x,y))
               -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
               -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
               -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
               -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
               -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
            
          Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
            Log#(x) -> c_16(Log'#(x))
    *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
          Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
          Obligation:
            Innermost
            basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
        Applied Processor:
          UsableRules
        Proof:
          We replace rewrite rules by usable rules:
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
    *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
          Obligation:
            Innermost
            basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            1: Log#(x) -> c_16(Log'#(x))       
            3: Log'#(O(x)) -> c_19(ge#(x       
                                      ,I(0())) 
                                  ,Log'#(x))   
            4: ge#(0(),O(x)) -> c_35(ge#(0()   
                                        ,x))   
            6: ge#(I(x),O(y)) -> c_37(ge#(x,y))
            7: ge#(O(x),I(y)) -> c_38(ge#(y,x))
            8: ge#(O(x),O(y)) -> c_39(ge#(x,y))
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              Log#(x) -> c_16(Log'#(x))
              Log'#(I(x)) -> c_18(Log'#(x))
              Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
              ge#(0(),O(x)) -> c_35(ge#(0(),x))
              ge#(I(x),I(y)) -> c_36(ge#(x,y))
              ge#(I(x),O(y)) -> c_37(ge#(x,y))
              ge#(O(x),I(y)) -> c_38(ge#(y,x))
              ge#(O(x),O(y)) -> c_39(ge#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              
            Signature:
              {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
            Obligation:
              Innermost
              basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
          Applied Processor:
            NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation:
            The following argument positions are considered usable:
              uargs(c_16) = {1},
              uargs(c_18) = {1},
              uargs(c_19) = {1,2},
              uargs(c_35) = {1},
              uargs(c_36) = {1},
              uargs(c_37) = {1},
              uargs(c_38) = {1},
              uargs(c_39) = {1}
            
            Following symbols are considered usable:
              {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}
            TcT has computed the following interpretation:
                  p(+) = [1] x1 + [1] x2 + [1]                                                                 
                  p(-) = [1] x2 + [0]                                                                          
                  p(0) = [0]                                                                                   
                  p(1) = [1]                                                                                   
                 p(BS) = [2]                                                                                   
                  p(I) = [1] x1 + [0]                                                                          
                  p(L) = [1]                                                                                   
                p(Log) = [0]                                                                                   
               p(Log') = [1]                                                                                   
                p(Max) = [1]                                                                                   
                p(Min) = [1] x1 + [1]                                                                          
                  p(N) = [1] x2 + [0]                                                                          
                  p(O) = [6] x1 + [6]                                                                          
               p(Size) = [2]                                                                                   
                p(Val) = [4]                                                                                   
                 p(WB) = [1] x1 + [1]                                                                          
                p(and) = [8] x1 + [1]                                                                          
              p(false) = [0]                                                                                   
                 p(ge) = [8] x1 + [2] x2 + [0]                                                                 
                 p(if) = [8]                                                                                   
                  p(l) = [0]                                                                                   
                p(not) = [0]                                                                                   
                  p(r) = [1]                                                                                   
               p(true) = [1]                                                                                   
                 p(+#) = [1] x1 + [0]                                                                          
                 p(-#) = [1] x2 + [4]                                                                          
                p(BS#) = [1] x1 + [1]                                                                          
               p(Log#) = [8] x1 + [12]                                                                         
              p(Log'#) = [4] x1 + [2]                                                                          
               p(Max#) = [4]                                                                                   
               p(Min#) = [1] x1 + [0]                                                                          
                 p(O#) = [1]                                                                                   
              p(Size#) = [0]                                                                                   
               p(Val#) = [2] x1 + [1]                                                                          
                p(WB#) = [2] x1 + [1]                                                                          
               p(and#) = [2] x1 + [1] x2 + [0]                                                                 
                p(ge#) = [1] x1 + [3] x2 + [0]                                                                 
                p(if#) = [8] x1 + [4] x2 + [0]                                                                 
               p(not#) = [2]                                                                                   
                p(c_1) = [1] x1 + [0]                                                                          
                p(c_2) = [1]                                                                                   
                p(c_3) = [0]                                                                                   
                p(c_4) = [1] x1 + [8] x2 + [0]                                                                 
                p(c_5) = [8] x1 + [4]                                                                          
                p(c_6) = [0]                                                                                   
                p(c_7) = [1]                                                                                   
                p(c_8) = [1]                                                                                   
                p(c_9) = [0]                                                                                   
               p(c_10) = [1] x1 + [2]                                                                          
               p(c_11) = [8] x1 + [8]                                                                          
               p(c_12) = [1] x1 + [1] x2 + [2]                                                                 
               p(c_13) = [4] x1 + [0]                                                                          
               p(c_14) = [4]                                                                                   
               p(c_15) = [1] x4 + [2] x7 + [2] x8 + [0]                                                        
               p(c_16) = [2] x1 + [1]                                                                          
               p(c_17) = [4]                                                                                   
               p(c_18) = [1] x1 + [0]                                                                          
               p(c_19) = [1] x1 + [4] x2 + [14]                                                                
               p(c_20) = [1]                                                                                   
               p(c_21) = [1]                                                                                   
               p(c_22) = [0]                                                                                   
               p(c_23) = [1] x1 + [0]                                                                          
               p(c_24) = [1]                                                                                   
               p(c_25) = [2]                                                                                   
               p(c_26) = [1] x1 + [2] x3 + [1]                                                                 
               p(c_27) = [4]                                                                                   
               p(c_28) = [1]                                                                                   
               p(c_29) = [2]                                                                                   
               p(c_30) = [1] x1 + [1] x3 + [1] x4 + [1] x5 + [1] x6 + [1] x7 + [8] x9 + [2] x12 + [1] x13 + [1]
               p(c_31) = [2]                                                                                   
               p(c_32) = [0]                                                                                   
               p(c_33) = [1]                                                                                   
               p(c_34) = [0]                                                                                   
               p(c_35) = [2] x1 + [8]                                                                          
               p(c_36) = [1] x1 + [0]                                                                          
               p(c_37) = [1] x1 + [0]                                                                          
               p(c_38) = [2] x1 + [0]                                                                          
               p(c_39) = [3] x1 + [14]                                                                         
               p(c_40) = [1]                                                                                   
               p(c_41) = [4]                                                                                   
               p(c_42) = [1]                                                                                   
               p(c_43) = [1]                                                                                   
            
            Following rules are strictly oriented:
                   Log#(x) = [8] x + [12]                
                           > [8] x + [5]                 
                           = c_16(Log'#(x))              
            
               Log'#(O(x)) = [24] x + [26]               
                           > [17] x + [22]               
                           = c_19(ge#(x,I(0())),Log'#(x))
            
             ge#(0(),O(x)) = [18] x + [18]               
                           > [6] x + [8]                 
                           = c_35(ge#(0(),x))            
            
            ge#(I(x),O(y)) = [1] x + [18] y + [18]       
                           > [1] x + [3] y + [0]         
                           = c_37(ge#(x,y))              
            
            ge#(O(x),I(y)) = [6] x + [3] y + [6]         
                           > [6] x + [2] y + [0]         
                           = c_38(ge#(y,x))              
            
            ge#(O(x),O(y)) = [6] x + [18] y + [24]       
                           > [3] x + [9] y + [14]        
                           = c_39(ge#(x,y))              
            
            
            Following rules are (at-least) weakly oriented:
               Log'#(I(x)) =  [4] x + [2]        
                           >= [4] x + [2]        
                           =  c_18(Log'#(x))     
            
            ge#(I(x),I(y)) =  [1] x + [3] y + [0]
                           >= [1] x + [3] y + [0]
                           =  c_36(ge#(x,y))     
            
      *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              Log'#(I(x)) -> c_18(Log'#(x))
              ge#(I(x),I(y)) -> c_36(ge#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              Log#(x) -> c_16(Log'#(x))
              Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
              ge#(0(),O(x)) -> c_35(ge#(0(),x))
              ge#(I(x),O(y)) -> c_37(ge#(x,y))
              ge#(O(x),I(y)) -> c_38(ge#(y,x))
              ge#(O(x),O(y)) -> c_39(ge#(x,y))
            Weak TRS Rules:
              
            Signature:
              {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
            Obligation:
              Innermost
              basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.2 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              Log'#(I(x)) -> c_18(Log'#(x))
              ge#(I(x),I(y)) -> c_36(ge#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              Log#(x) -> c_16(Log'#(x))
              Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
              ge#(0(),O(x)) -> c_35(ge#(0(),x))
              ge#(I(x),O(y)) -> c_37(ge#(x,y))
              ge#(O(x),I(y)) -> c_38(ge#(y,x))
              ge#(O(x),O(y)) -> c_39(ge#(x,y))
            Weak TRS Rules:
              
            Signature:
              {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
            Obligation:
              Innermost
              basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:S:Log'#(I(x)) -> c_18(Log'#(x))
                 -->_1 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):4
                 -->_1 Log'#(I(x)) -> c_18(Log'#(x)):1
              
              2:S:ge#(I(x),I(y)) -> c_36(ge#(x,y))
                 -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
                 -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
                 -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
                 -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):5
                 -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):2
              
              3:W:Log#(x) -> c_16(Log'#(x))
                 -->_1 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):4
                 -->_1 Log'#(I(x)) -> c_18(Log'#(x)):1
              
              4:W:Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
                 -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
                 -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):4
                 -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):2
                 -->_2 Log'#(I(x)) -> c_18(Log'#(x)):1
              
              5:W:ge#(0(),O(x)) -> c_35(ge#(0(),x))
                 -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):5
              
              6:W:ge#(I(x),O(y)) -> c_37(ge#(x,y))
                 -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
                 -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
                 -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
                 -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):5
                 -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):2
              
              7:W:ge#(O(x),I(y)) -> c_38(ge#(y,x))
                 -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
                 -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
                 -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
                 -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):5
                 -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):2
              
              8:W:ge#(O(x),O(y)) -> c_39(ge#(x,y))
                 -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
                 -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
                 -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
                 -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):5
                 -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):2
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              5: ge#(0(),O(x)) -> c_35(ge#(0()
                                          ,x))
      *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.2.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              Log'#(I(x)) -> c_18(Log'#(x))
              ge#(I(x),I(y)) -> c_36(ge#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              Log#(x) -> c_16(Log'#(x))
              Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
              ge#(I(x),O(y)) -> c_37(ge#(x,y))
              ge#(O(x),I(y)) -> c_38(ge#(y,x))
              ge#(O(x),O(y)) -> c_39(ge#(x,y))
            Weak TRS Rules:
              
            Signature:
              {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
            Obligation:
              Innermost
              basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              1: Log'#(I(x)) -> c_18(Log'#(x))   
              2: ge#(I(x),I(y)) -> c_36(ge#(x,y))
              
            Consider the set of all dependency pairs
              1: Log'#(I(x)) -> c_18(Log'#(x))   
              2: ge#(I(x),I(y)) -> c_36(ge#(x,y))
              3: Log#(x) -> c_16(Log'#(x))       
              4: Log'#(O(x)) -> c_19(ge#(x       
                                        ,I(0())) 
                                    ,Log'#(x))   
              6: ge#(I(x),O(y)) -> c_37(ge#(x,y))
              7: ge#(O(x),I(y)) -> c_38(ge#(y,x))
              8: ge#(O(x),O(y)) -> c_39(ge#(x,y))
            Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
            SPACE(?,?)on application of the dependency pairs
              {1,2}
            These cover all (indirect) predecessors of dependency pairs
              {1,2,3}
            their number of applications is equally bounded.
            The dependency pairs are shifted into the weak component.
        *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.2.1.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                Log'#(I(x)) -> c_18(Log'#(x))
                ge#(I(x),I(y)) -> c_36(ge#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                Log#(x) -> c_16(Log'#(x))
                Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
                ge#(I(x),O(y)) -> c_37(ge#(x,y))
                ge#(O(x),I(y)) -> c_38(ge#(y,x))
                ge#(O(x),O(y)) -> c_39(ge#(x,y))
              Weak TRS Rules:
                
              Signature:
                {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
              Obligation:
                Innermost
                basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
            Applied Processor:
              NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a matrix interpretation of kind constructor based matrix interpretation:
              The following argument positions are considered usable:
                uargs(c_16) = {1},
                uargs(c_18) = {1},
                uargs(c_19) = {1,2},
                uargs(c_36) = {1},
                uargs(c_37) = {1},
                uargs(c_38) = {1},
                uargs(c_39) = {1}
              
              Following symbols are considered usable:
                {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}
              TcT has computed the following interpretation:
                    p(+) = [1] x2 + [2]                                                                                               
                    p(-) = [1] x2 + [2]                                                                                               
                    p(0) = [0]                                                                                                        
                    p(1) = [1]                                                                                                        
                   p(BS) = [0]                                                                                                        
                    p(I) = [1] x1 + [1]                                                                                               
                    p(L) = [1] x1 + [4]                                                                                               
                  p(Log) = [1] x1 + [0]                                                                                               
                 p(Log') = [1]                                                                                                        
                  p(Max) = [1]                                                                                                        
                  p(Min) = [1] x1 + [0]                                                                                               
                    p(N) = [1] x2 + [2]                                                                                               
                    p(O) = [3] x1 + [3]                                                                                               
                 p(Size) = [1] x1 + [2]                                                                                               
                  p(Val) = [8] x1 + [2]                                                                                               
                   p(WB) = [1]                                                                                                        
                  p(and) = [2] x1 + [2] x2 + [1]                                                                                      
                p(false) = [4]                                                                                                        
                   p(ge) = [8] x1 + [2]                                                                                               
                   p(if) = [1] x2 + [1] x3 + [0]                                                                                      
                    p(l) = [1]                                                                                                        
                  p(not) = [1] x1 + [0]                                                                                               
                    p(r) = [1]                                                                                                        
                 p(true) = [1]                                                                                                        
                   p(+#) = [2] x1 + [1] x2 + [0]                                                                                      
                   p(-#) = [2] x1 + [2]                                                                                               
                  p(BS#) = [8] x1 + [2]                                                                                               
                 p(Log#) = [8] x1 + [14]                                                                                              
                p(Log'#) = [4] x1 + [2]                                                                                               
                 p(Max#) = [0]                                                                                                        
                 p(Min#) = [0]                                                                                                        
                   p(O#) = [0]                                                                                                        
                p(Size#) = [0]                                                                                                        
                 p(Val#) = [0]                                                                                                        
                  p(WB#) = [0]                                                                                                        
                 p(and#) = [8] x2 + [0]                                                                                               
                  p(ge#) = [1] x1 + [1] x2 + [0]                                                                                      
                  p(if#) = [0]                                                                                                        
                 p(not#) = [0]                                                                                                        
                  p(c_1) = [0]                                                                                                        
                  p(c_2) = [0]                                                                                                        
                  p(c_3) = [0]                                                                                                        
                  p(c_4) = [0]                                                                                                        
                  p(c_5) = [0]                                                                                                        
                  p(c_6) = [0]                                                                                                        
                  p(c_7) = [0]                                                                                                        
                  p(c_8) = [0]                                                                                                        
                  p(c_9) = [0]                                                                                                        
                 p(c_10) = [0]                                                                                                        
                 p(c_11) = [0]                                                                                                        
                 p(c_12) = [0]                                                                                                        
                 p(c_13) = [1] x1 + [0]                                                                                               
                 p(c_14) = [4]                                                                                                        
                 p(c_15) = [8] x5 + [0]                                                                                               
                 p(c_16) = [2] x1 + [5]                                                                                               
                 p(c_17) = [4]                                                                                                        
                 p(c_18) = [1] x1 + [0]                                                                                               
                 p(c_19) = [2] x1 + [2] x2 + [8]                                                                                      
                 p(c_20) = [0]                                                                                                        
                 p(c_21) = [0]                                                                                                        
                 p(c_22) = [4]                                                                                                        
                 p(c_23) = [0]                                                                                                        
                 p(c_24) = [0]                                                                                                        
                 p(c_25) = [1]                                                                                                        
                 p(c_26) = [1] x1 + [1] x2 + [0]                                                                                      
                 p(c_27) = [1]                                                                                                        
                 p(c_28) = [1]                                                                                                        
                 p(c_29) = [1]                                                                                                        
                 p(c_30) = [1] x1 + [2] x2 + [1] x4 + [4] x6 + [8] x7 + [1] x9 + [1] x10 + [1] x11 + [8] x13 + [2] x14 + [1] x16 + [0]
                 p(c_31) = [0]                                                                                                        
                 p(c_32) = [1]                                                                                                        
                 p(c_33) = [1]                                                                                                        
                 p(c_34) = [1]                                                                                                        
                 p(c_35) = [2] x1 + [4]                                                                                               
                 p(c_36) = [1] x1 + [0]                                                                                               
                 p(c_37) = [1] x1 + [4]                                                                                               
                 p(c_38) = [1] x1 + [4]                                                                                               
                 p(c_39) = [2] x1 + [0]                                                                                               
                 p(c_40) = [1]                                                                                                        
                 p(c_41) = [2]                                                                                                        
                 p(c_42) = [1]                                                                                                        
                 p(c_43) = [1]                                                                                                        
              
              Following rules are strictly oriented:
                 Log'#(I(x)) = [4] x + [6]        
                             > [4] x + [2]        
                             = c_18(Log'#(x))     
              
              ge#(I(x),I(y)) = [1] x + [1] y + [2]
                             > [1] x + [1] y + [0]
                             = c_36(ge#(x,y))     
              
              
              Following rules are (at-least) weakly oriented:
                     Log#(x) =  [8] x + [14]                
                             >= [8] x + [9]                 
                             =  c_16(Log'#(x))              
              
                 Log'#(O(x)) =  [12] x + [14]               
                             >= [10] x + [14]               
                             =  c_19(ge#(x,I(0())),Log'#(x))
              
              ge#(I(x),O(y)) =  [1] x + [3] y + [4]         
                             >= [1] x + [1] y + [4]         
                             =  c_37(ge#(x,y))              
              
              ge#(O(x),I(y)) =  [3] x + [1] y + [4]         
                             >= [1] x + [1] y + [4]         
                             =  c_38(ge#(y,x))              
              
              ge#(O(x),O(y)) =  [3] x + [3] y + [6]         
                             >= [2] x + [2] y + [0]         
                             =  c_39(ge#(x,y))              
              
        *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.2.1.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                Log#(x) -> c_16(Log'#(x))
                Log'#(I(x)) -> c_18(Log'#(x))
                Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
                ge#(I(x),I(y)) -> c_36(ge#(x,y))
                ge#(I(x),O(y)) -> c_37(ge#(x,y))
                ge#(O(x),I(y)) -> c_38(ge#(y,x))
                ge#(O(x),O(y)) -> c_39(ge#(x,y))
              Weak TRS Rules:
                
              Signature:
                {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
              Obligation:
                Innermost
                basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.2.1.2 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                Log#(x) -> c_16(Log'#(x))
                Log'#(I(x)) -> c_18(Log'#(x))
                Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
                ge#(I(x),I(y)) -> c_36(ge#(x,y))
                ge#(I(x),O(y)) -> c_37(ge#(x,y))
                ge#(O(x),I(y)) -> c_38(ge#(y,x))
                ge#(O(x),O(y)) -> c_39(ge#(x,y))
              Weak TRS Rules:
                
              Signature:
                {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
              Obligation:
                Innermost
                basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
            Applied Processor:
              RemoveWeakSuffixes
            Proof:
              Consider the dependency graph
                1:W:Log#(x) -> c_16(Log'#(x))
                   -->_1 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):3
                   -->_1 Log'#(I(x)) -> c_18(Log'#(x)):2
                
                2:W:Log'#(I(x)) -> c_18(Log'#(x))
                   -->_1 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):3
                   -->_1 Log'#(I(x)) -> c_18(Log'#(x)):2
                
                3:W:Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
                   -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):6
                   -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):4
                   -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):3
                   -->_2 Log'#(I(x)) -> c_18(Log'#(x)):2
                
                4:W:ge#(I(x),I(y)) -> c_36(ge#(x,y))
                   -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):7
                   -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):6
                   -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):5
                   -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):4
                
                5:W:ge#(I(x),O(y)) -> c_37(ge#(x,y))
                   -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):7
                   -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):6
                   -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):5
                   -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):4
                
                6:W:ge#(O(x),I(y)) -> c_38(ge#(y,x))
                   -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):7
                   -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):6
                   -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):5
                   -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):4
                
                7:W:ge#(O(x),O(y)) -> c_39(ge#(x,y))
                   -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):7
                   -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):6
                   -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):5
                   -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):4
                
              The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                1: Log#(x) -> c_16(Log'#(x))       
                3: Log'#(O(x)) -> c_19(ge#(x       
                                          ,I(0())) 
                                      ,Log'#(x))   
                2: Log'#(I(x)) -> c_18(Log'#(x))   
                6: ge#(O(x),I(y)) -> c_38(ge#(y,x))
                7: ge#(O(x),O(y)) -> c_39(ge#(x,y))
                5: ge#(I(x),O(y)) -> c_37(ge#(x,y))
                4: ge#(I(x),I(y)) -> c_36(ge#(x,y))
        *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.2.1.2.1 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                
              Signature:
                {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
              Obligation:
                Innermost
                basic terms: {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}/{0,1,I,L,N,false,l,r,true}
            Applied Processor:
              EmptyProcessor
            Proof:
              The problem is already closed. The intended complexity is O(1).