*** 1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        and(tt(),X) -> activate(X)
        isNat(X) -> n__isNat(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        isNat(n__s(V1)) -> isNat(activate(V1))
        plus(N,0()) -> U11(isNat(N),N)
        plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N)
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,activate,and,isNat,plus,s}/{n__0,n__isNat,n__plus,n__s,tt}
    Applied Processor:
      InnermostRuleRemoval
    Proof:
      Arguments of following rules are not normal-forms.
        plus(N,0()) -> U11(isNat(N),N)
        plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N)
      All above mentioned rules can be savely removed.
*** 1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        and(tt(),X) -> activate(X)
        isNat(X) -> n__isNat(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        isNat(n__s(V1)) -> isNat(activate(V1))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,activate,and,isNat,plus,s}/{n__0,n__isNat,n__plus,n__s,tt}
    Applied Processor:
      Bounds {initialAutomaton = perSymbol, enrichment = match}
    Proof:
      The problem is match-bounded by 5.
      The enriched problem is compatible with follwoing automaton.
        0_0() -> 1
        0_1() -> 2
        0_1() -> 4
        0_1() -> 5
        0_1() -> 19
        0_1() -> 20
        0_1() -> 23
        0_1() -> 24
        U11_0(7,7) -> 2
        U11_0(7,8) -> 2
        U11_0(7,9) -> 2
        U11_0(7,10) -> 2
        U11_0(7,13) -> 2
        U11_0(8,7) -> 2
        U11_0(8,8) -> 2
        U11_0(8,9) -> 2
        U11_0(8,10) -> 2
        U11_0(8,13) -> 2
        U11_0(9,7) -> 2
        U11_0(9,8) -> 2
        U11_0(9,9) -> 2
        U11_0(9,10) -> 2
        U11_0(9,13) -> 2
        U11_0(10,7) -> 2
        U11_0(10,8) -> 2
        U11_0(10,9) -> 2
        U11_0(10,10) -> 2
        U11_0(10,13) -> 2
        U11_0(13,7) -> 2
        U11_0(13,8) -> 2
        U11_0(13,9) -> 2
        U11_0(13,10) -> 2
        U11_0(13,13) -> 2
        U21_0(7,7,7) -> 3
        U21_0(7,7,8) -> 3
        U21_0(7,7,9) -> 3
        U21_0(7,7,10) -> 3
        U21_0(7,7,13) -> 3
        U21_0(7,8,7) -> 3
        U21_0(7,8,8) -> 3
        U21_0(7,8,9) -> 3
        U21_0(7,8,10) -> 3
        U21_0(7,8,13) -> 3
        U21_0(7,9,7) -> 3
        U21_0(7,9,8) -> 3
        U21_0(7,9,9) -> 3
        U21_0(7,9,10) -> 3
        U21_0(7,9,13) -> 3
        U21_0(7,10,7) -> 3
        U21_0(7,10,8) -> 3
        U21_0(7,10,9) -> 3
        U21_0(7,10,10) -> 3
        U21_0(7,10,13) -> 3
        U21_0(7,13,7) -> 3
        U21_0(7,13,8) -> 3
        U21_0(7,13,9) -> 3
        U21_0(7,13,10) -> 3
        U21_0(7,13,13) -> 3
        U21_0(8,7,7) -> 3
        U21_0(8,7,8) -> 3
        U21_0(8,7,9) -> 3
        U21_0(8,7,10) -> 3
        U21_0(8,7,13) -> 3
        U21_0(8,8,7) -> 3
        U21_0(8,8,8) -> 3
        U21_0(8,8,9) -> 3
        U21_0(8,8,10) -> 3
        U21_0(8,8,13) -> 3
        U21_0(8,9,7) -> 3
        U21_0(8,9,8) -> 3
        U21_0(8,9,9) -> 3
        U21_0(8,9,10) -> 3
        U21_0(8,9,13) -> 3
        U21_0(8,10,7) -> 3
        U21_0(8,10,8) -> 3
        U21_0(8,10,9) -> 3
        U21_0(8,10,10) -> 3
        U21_0(8,10,13) -> 3
        U21_0(8,13,7) -> 3
        U21_0(8,13,8) -> 3
        U21_0(8,13,9) -> 3
        U21_0(8,13,10) -> 3
        U21_0(8,13,13) -> 3
        U21_0(9,7,7) -> 3
        U21_0(9,7,8) -> 3
        U21_0(9,7,9) -> 3
        U21_0(9,7,10) -> 3
        U21_0(9,7,13) -> 3
        U21_0(9,8,7) -> 3
        U21_0(9,8,8) -> 3
        U21_0(9,8,9) -> 3
        U21_0(9,8,10) -> 3
        U21_0(9,8,13) -> 3
        U21_0(9,9,7) -> 3
        U21_0(9,9,8) -> 3
        U21_0(9,9,9) -> 3
        U21_0(9,9,10) -> 3
        U21_0(9,9,13) -> 3
        U21_0(9,10,7) -> 3
        U21_0(9,10,8) -> 3
        U21_0(9,10,9) -> 3
        U21_0(9,10,10) -> 3
        U21_0(9,10,13) -> 3
        U21_0(9,13,7) -> 3
        U21_0(9,13,8) -> 3
        U21_0(9,13,9) -> 3
        U21_0(9,13,10) -> 3
        U21_0(9,13,13) -> 3
        U21_0(10,7,7) -> 3
        U21_0(10,7,8) -> 3
        U21_0(10,7,9) -> 3
        U21_0(10,7,10) -> 3
        U21_0(10,7,13) -> 3
        U21_0(10,8,7) -> 3
        U21_0(10,8,8) -> 3
        U21_0(10,8,9) -> 3
        U21_0(10,8,10) -> 3
        U21_0(10,8,13) -> 3
        U21_0(10,9,7) -> 3
        U21_0(10,9,8) -> 3
        U21_0(10,9,9) -> 3
        U21_0(10,9,10) -> 3
        U21_0(10,9,13) -> 3
        U21_0(10,10,7) -> 3
        U21_0(10,10,8) -> 3
        U21_0(10,10,9) -> 3
        U21_0(10,10,10) -> 3
        U21_0(10,10,13) -> 3
        U21_0(10,13,7) -> 3
        U21_0(10,13,8) -> 3
        U21_0(10,13,9) -> 3
        U21_0(10,13,10) -> 3
        U21_0(10,13,13) -> 3
        U21_0(13,7,7) -> 3
        U21_0(13,7,8) -> 3
        U21_0(13,7,9) -> 3
        U21_0(13,7,10) -> 3
        U21_0(13,7,13) -> 3
        U21_0(13,8,7) -> 3
        U21_0(13,8,8) -> 3
        U21_0(13,8,9) -> 3
        U21_0(13,8,10) -> 3
        U21_0(13,8,13) -> 3
        U21_0(13,9,7) -> 3
        U21_0(13,9,8) -> 3
        U21_0(13,9,9) -> 3
        U21_0(13,9,10) -> 3
        U21_0(13,9,13) -> 3
        U21_0(13,10,7) -> 3
        U21_0(13,10,8) -> 3
        U21_0(13,10,9) -> 3
        U21_0(13,10,10) -> 3
        U21_0(13,10,13) -> 3
        U21_0(13,13,7) -> 3
        U21_0(13,13,8) -> 3
        U21_0(13,13,9) -> 3
        U21_0(13,13,10) -> 3
        U21_0(13,13,13) -> 3
        activate_0(7) -> 4
        activate_0(8) -> 4
        activate_0(9) -> 4
        activate_0(10) -> 4
        activate_0(13) -> 4
        activate_1(7) -> 2
        activate_1(7) -> 5
        activate_1(8) -> 2
        activate_1(8) -> 5
        activate_1(9) -> 2
        activate_1(9) -> 5
        activate_1(10) -> 2
        activate_1(10) -> 5
        activate_1(13) -> 2
        activate_1(13) -> 5
        activate_1(16) -> 21
        activate_1(16) -> 24
        activate_1(18) -> 21
        activate_1(18) -> 24
        activate_2(7) -> 19
        activate_2(7) -> 20
        activate_2(8) -> 20
        activate_2(9) -> 20
        activate_2(10) -> 20
        activate_2(13) -> 20
        activate_2(16) -> 2
        activate_2(16) -> 4
        activate_2(16) -> 5
        activate_2(16) -> 6
        activate_2(16) -> 15
        activate_2(16) -> 17
        activate_2(16) -> 20
        activate_2(16) -> 21
        activate_2(16) -> 24
        activate_2(18) -> 2
        activate_2(18) -> 4
        activate_2(18) -> 5
        activate_2(18) -> 6
        activate_2(18) -> 15
        activate_2(18) -> 17
        activate_2(18) -> 20
        activate_2(18) -> 21
        activate_2(18) -> 24
        activate_2(22) -> 2
        activate_2(22) -> 4
        activate_2(22) -> 5
        activate_2(22) -> 6
        activate_2(22) -> 15
        activate_2(22) -> 17
        activate_2(22) -> 20
        activate_2(22) -> 21
        activate_2(22) -> 24
        activate_3(7) -> 23
        activate_3(7) -> 24
        activate_3(8) -> 24
        activate_3(9) -> 24
        activate_3(10) -> 24
        activate_3(13) -> 24
        activate_3(18) -> 2
        activate_3(18) -> 4
        activate_3(18) -> 5
        activate_3(18) -> 6
        activate_3(18) -> 15
        activate_3(18) -> 17
        activate_3(18) -> 20
        activate_3(18) -> 21
        activate_3(18) -> 24
        activate_3(22) -> 2
        activate_3(22) -> 4
        activate_3(22) -> 5
        activate_3(22) -> 6
        activate_3(22) -> 15
        activate_3(22) -> 17
        activate_3(22) -> 20
        activate_3(22) -> 21
        activate_3(22) -> 24
        activate_4(22) -> 2
        activate_4(22) -> 4
        activate_4(22) -> 5
        activate_4(22) -> 6
        activate_4(22) -> 15
        activate_4(22) -> 17
        activate_4(22) -> 20
        activate_4(22) -> 21
        activate_4(22) -> 24
        and_0(7,7) -> 5
        and_0(7,8) -> 5
        and_0(7,9) -> 5
        and_0(7,10) -> 5
        and_0(7,13) -> 5
        and_0(8,7) -> 5
        and_0(8,8) -> 5
        and_0(8,9) -> 5
        and_0(8,10) -> 5
        and_0(8,13) -> 5
        and_0(9,7) -> 5
        and_0(9,8) -> 5
        and_0(9,9) -> 5
        and_0(9,10) -> 5
        and_0(9,13) -> 5
        and_0(10,7) -> 5
        and_0(10,8) -> 5
        and_0(10,9) -> 5
        and_0(10,10) -> 5
        and_0(10,13) -> 5
        and_0(13,7) -> 5
        and_0(13,8) -> 5
        and_0(13,9) -> 5
        and_0(13,10) -> 5
        and_0(13,13) -> 5
        and_1(15,16) -> 2
        and_1(15,16) -> 4
        and_1(15,16) -> 5
        and_1(15,16) -> 6
        and_1(15,16) -> 15
        and_1(15,16) -> 17
        and_1(15,16) -> 20
        and_1(20,16) -> 21
        and_1(20,16) -> 24
        and_2(17,18) -> 2
        and_2(17,18) -> 4
        and_2(17,18) -> 5
        and_2(17,18) -> 6
        and_2(17,18) -> 15
        and_2(17,18) -> 17
        and_2(17,18) -> 20
        and_2(20,18) -> 21
        and_2(20,18) -> 24
        and_3(21,22) -> 2
        and_3(21,22) -> 4
        and_3(21,22) -> 5
        and_3(21,22) -> 6
        and_3(21,22) -> 15
        and_3(21,22) -> 17
        and_3(21,22) -> 20
        and_3(21,22) -> 21
        and_3(21,22) -> 24
        isNat_0(7) -> 6
        isNat_0(8) -> 6
        isNat_0(9) -> 6
        isNat_0(10) -> 6
        isNat_0(13) -> 6
        isNat_1(5) -> 2
        isNat_1(5) -> 4
        isNat_1(5) -> 5
        isNat_1(5) -> 6
        isNat_1(5) -> 15
        isNat_1(5) -> 17
        isNat_1(5) -> 20
        isNat_1(5) -> 21
        isNat_1(5) -> 24
        isNat_1(7) -> 2
        isNat_1(7) -> 4
        isNat_1(7) -> 5
        isNat_1(7) -> 20
        isNat_1(7) -> 24
        isNat_1(8) -> 2
        isNat_1(8) -> 4
        isNat_1(8) -> 5
        isNat_1(8) -> 20
        isNat_1(8) -> 24
        isNat_1(9) -> 2
        isNat_1(9) -> 4
        isNat_1(9) -> 5
        isNat_1(9) -> 20
        isNat_1(9) -> 24
        isNat_1(10) -> 2
        isNat_1(10) -> 4
        isNat_1(10) -> 5
        isNat_1(10) -> 20
        isNat_1(10) -> 24
        isNat_1(13) -> 2
        isNat_1(13) -> 4
        isNat_1(13) -> 5
        isNat_1(13) -> 20
        isNat_1(13) -> 24
        isNat_2(5) -> 2
        isNat_2(5) -> 4
        isNat_2(5) -> 5
        isNat_2(5) -> 6
        isNat_2(5) -> 15
        isNat_2(5) -> 17
        isNat_2(5) -> 20
        isNat_2(5) -> 21
        isNat_2(5) -> 24
        isNat_2(19) -> 17
        isNat_2(20) -> 2
        isNat_2(20) -> 4
        isNat_2(20) -> 5
        isNat_2(20) -> 6
        isNat_2(20) -> 15
        isNat_2(20) -> 17
        isNat_2(20) -> 20
        isNat_2(20) -> 21
        isNat_2(20) -> 24
        isNat_3(20) -> 2
        isNat_3(20) -> 4
        isNat_3(20) -> 5
        isNat_3(20) -> 6
        isNat_3(20) -> 15
        isNat_3(20) -> 17
        isNat_3(20) -> 20
        isNat_3(20) -> 21
        isNat_3(20) -> 24
        isNat_3(23) -> 21
        isNat_3(24) -> 2
        isNat_3(24) -> 4
        isNat_3(24) -> 5
        isNat_3(24) -> 6
        isNat_3(24) -> 15
        isNat_3(24) -> 17
        isNat_3(24) -> 20
        isNat_3(24) -> 21
        isNat_3(24) -> 24
        isNat_4(24) -> 2
        isNat_4(24) -> 4
        isNat_4(24) -> 5
        isNat_4(24) -> 6
        isNat_4(24) -> 15
        isNat_4(24) -> 17
        isNat_4(24) -> 20
        isNat_4(24) -> 21
        isNat_4(24) -> 24
        n__0_0() -> 2
        n__0_0() -> 4
        n__0_0() -> 5
        n__0_0() -> 7
        n__0_0() -> 19
        n__0_0() -> 20
        n__0_0() -> 23
        n__0_0() -> 24
        n__0_1() -> 1
        n__0_2() -> 2
        n__0_2() -> 4
        n__0_2() -> 5
        n__0_2() -> 19
        n__0_2() -> 20
        n__0_2() -> 23
        n__0_2() -> 24
        n__isNat_0(7) -> 2
        n__isNat_0(7) -> 4
        n__isNat_0(7) -> 5
        n__isNat_0(7) -> 8
        n__isNat_0(7) -> 20
        n__isNat_0(7) -> 24
        n__isNat_0(8) -> 2
        n__isNat_0(8) -> 4
        n__isNat_0(8) -> 5
        n__isNat_0(8) -> 8
        n__isNat_0(8) -> 20
        n__isNat_0(8) -> 24
        n__isNat_0(9) -> 2
        n__isNat_0(9) -> 4
        n__isNat_0(9) -> 5
        n__isNat_0(9) -> 8
        n__isNat_0(9) -> 20
        n__isNat_0(9) -> 24
        n__isNat_0(10) -> 2
        n__isNat_0(10) -> 4
        n__isNat_0(10) -> 5
        n__isNat_0(10) -> 8
        n__isNat_0(10) -> 20
        n__isNat_0(10) -> 24
        n__isNat_0(13) -> 2
        n__isNat_0(13) -> 4
        n__isNat_0(13) -> 5
        n__isNat_0(13) -> 8
        n__isNat_0(13) -> 20
        n__isNat_0(13) -> 24
        n__isNat_1(5) -> 2
        n__isNat_1(5) -> 4
        n__isNat_1(5) -> 5
        n__isNat_1(5) -> 6
        n__isNat_1(5) -> 15
        n__isNat_1(5) -> 16
        n__isNat_1(5) -> 17
        n__isNat_1(5) -> 20
        n__isNat_1(5) -> 21
        n__isNat_1(5) -> 24
        n__isNat_1(7) -> 6
        n__isNat_1(8) -> 6
        n__isNat_1(9) -> 6
        n__isNat_1(10) -> 6
        n__isNat_1(13) -> 6
        n__isNat_2(5) -> 2
        n__isNat_2(5) -> 4
        n__isNat_2(5) -> 5
        n__isNat_2(5) -> 6
        n__isNat_2(5) -> 15
        n__isNat_2(5) -> 17
        n__isNat_2(5) -> 20
        n__isNat_2(5) -> 21
        n__isNat_2(5) -> 24
        n__isNat_2(7) -> 2
        n__isNat_2(7) -> 4
        n__isNat_2(7) -> 5
        n__isNat_2(7) -> 20
        n__isNat_2(7) -> 24
        n__isNat_2(8) -> 2
        n__isNat_2(8) -> 4
        n__isNat_2(8) -> 5
        n__isNat_2(8) -> 20
        n__isNat_2(8) -> 24
        n__isNat_2(9) -> 2
        n__isNat_2(9) -> 4
        n__isNat_2(9) -> 5
        n__isNat_2(9) -> 20
        n__isNat_2(9) -> 24
        n__isNat_2(10) -> 2
        n__isNat_2(10) -> 4
        n__isNat_2(10) -> 5
        n__isNat_2(10) -> 20
        n__isNat_2(10) -> 24
        n__isNat_2(13) -> 2
        n__isNat_2(13) -> 4
        n__isNat_2(13) -> 5
        n__isNat_2(13) -> 20
        n__isNat_2(13) -> 24
        n__isNat_2(20) -> 2
        n__isNat_2(20) -> 4
        n__isNat_2(20) -> 5
        n__isNat_2(20) -> 6
        n__isNat_2(20) -> 15
        n__isNat_2(20) -> 17
        n__isNat_2(20) -> 18
        n__isNat_2(20) -> 20
        n__isNat_2(20) -> 21
        n__isNat_2(20) -> 24
        n__isNat_3(5) -> 2
        n__isNat_3(5) -> 4
        n__isNat_3(5) -> 5
        n__isNat_3(5) -> 6
        n__isNat_3(5) -> 15
        n__isNat_3(5) -> 17
        n__isNat_3(5) -> 20
        n__isNat_3(5) -> 21
        n__isNat_3(5) -> 24
        n__isNat_3(19) -> 17
        n__isNat_3(20) -> 2
        n__isNat_3(20) -> 4
        n__isNat_3(20) -> 5
        n__isNat_3(20) -> 6
        n__isNat_3(20) -> 15
        n__isNat_3(20) -> 17
        n__isNat_3(20) -> 20
        n__isNat_3(20) -> 21
        n__isNat_3(20) -> 24
        n__isNat_3(24) -> 2
        n__isNat_3(24) -> 4
        n__isNat_3(24) -> 5
        n__isNat_3(24) -> 6
        n__isNat_3(24) -> 15
        n__isNat_3(24) -> 17
        n__isNat_3(24) -> 20
        n__isNat_3(24) -> 21
        n__isNat_3(24) -> 22
        n__isNat_3(24) -> 24
        n__isNat_4(20) -> 2
        n__isNat_4(20) -> 4
        n__isNat_4(20) -> 5
        n__isNat_4(20) -> 6
        n__isNat_4(20) -> 15
        n__isNat_4(20) -> 17
        n__isNat_4(20) -> 20
        n__isNat_4(20) -> 21
        n__isNat_4(20) -> 24
        n__isNat_4(23) -> 21
        n__isNat_4(24) -> 2
        n__isNat_4(24) -> 4
        n__isNat_4(24) -> 5
        n__isNat_4(24) -> 6
        n__isNat_4(24) -> 15
        n__isNat_4(24) -> 17
        n__isNat_4(24) -> 20
        n__isNat_4(24) -> 21
        n__isNat_4(24) -> 24
        n__isNat_5(24) -> 2
        n__isNat_5(24) -> 4
        n__isNat_5(24) -> 5
        n__isNat_5(24) -> 6
        n__isNat_5(24) -> 15
        n__isNat_5(24) -> 17
        n__isNat_5(24) -> 20
        n__isNat_5(24) -> 21
        n__isNat_5(24) -> 24
        n__plus_0(7,7) -> 2
        n__plus_0(7,7) -> 4
        n__plus_0(7,7) -> 5
        n__plus_0(7,7) -> 9
        n__plus_0(7,7) -> 20
        n__plus_0(7,7) -> 24
        n__plus_0(7,8) -> 2
        n__plus_0(7,8) -> 4
        n__plus_0(7,8) -> 5
        n__plus_0(7,8) -> 9
        n__plus_0(7,8) -> 20
        n__plus_0(7,8) -> 24
        n__plus_0(7,9) -> 2
        n__plus_0(7,9) -> 4
        n__plus_0(7,9) -> 5
        n__plus_0(7,9) -> 9
        n__plus_0(7,9) -> 20
        n__plus_0(7,9) -> 24
        n__plus_0(7,10) -> 2
        n__plus_0(7,10) -> 4
        n__plus_0(7,10) -> 5
        n__plus_0(7,10) -> 9
        n__plus_0(7,10) -> 20
        n__plus_0(7,10) -> 24
        n__plus_0(7,13) -> 2
        n__plus_0(7,13) -> 4
        n__plus_0(7,13) -> 5
        n__plus_0(7,13) -> 9
        n__plus_0(7,13) -> 20
        n__plus_0(7,13) -> 24
        n__plus_0(8,7) -> 2
        n__plus_0(8,7) -> 4
        n__plus_0(8,7) -> 5
        n__plus_0(8,7) -> 9
        n__plus_0(8,7) -> 20
        n__plus_0(8,7) -> 24
        n__plus_0(8,8) -> 2
        n__plus_0(8,8) -> 4
        n__plus_0(8,8) -> 5
        n__plus_0(8,8) -> 9
        n__plus_0(8,8) -> 20
        n__plus_0(8,8) -> 24
        n__plus_0(8,9) -> 2
        n__plus_0(8,9) -> 4
        n__plus_0(8,9) -> 5
        n__plus_0(8,9) -> 9
        n__plus_0(8,9) -> 20
        n__plus_0(8,9) -> 24
        n__plus_0(8,10) -> 2
        n__plus_0(8,10) -> 4
        n__plus_0(8,10) -> 5
        n__plus_0(8,10) -> 9
        n__plus_0(8,10) -> 20
        n__plus_0(8,10) -> 24
        n__plus_0(8,13) -> 2
        n__plus_0(8,13) -> 4
        n__plus_0(8,13) -> 5
        n__plus_0(8,13) -> 9
        n__plus_0(8,13) -> 20
        n__plus_0(8,13) -> 24
        n__plus_0(9,7) -> 2
        n__plus_0(9,7) -> 4
        n__plus_0(9,7) -> 5
        n__plus_0(9,7) -> 9
        n__plus_0(9,7) -> 20
        n__plus_0(9,7) -> 24
        n__plus_0(9,8) -> 2
        n__plus_0(9,8) -> 4
        n__plus_0(9,8) -> 5
        n__plus_0(9,8) -> 9
        n__plus_0(9,8) -> 20
        n__plus_0(9,8) -> 24
        n__plus_0(9,9) -> 2
        n__plus_0(9,9) -> 4
        n__plus_0(9,9) -> 5
        n__plus_0(9,9) -> 9
        n__plus_0(9,9) -> 20
        n__plus_0(9,9) -> 24
        n__plus_0(9,10) -> 2
        n__plus_0(9,10) -> 4
        n__plus_0(9,10) -> 5
        n__plus_0(9,10) -> 9
        n__plus_0(9,10) -> 20
        n__plus_0(9,10) -> 24
        n__plus_0(9,13) -> 2
        n__plus_0(9,13) -> 4
        n__plus_0(9,13) -> 5
        n__plus_0(9,13) -> 9
        n__plus_0(9,13) -> 20
        n__plus_0(9,13) -> 24
        n__plus_0(10,7) -> 2
        n__plus_0(10,7) -> 4
        n__plus_0(10,7) -> 5
        n__plus_0(10,7) -> 9
        n__plus_0(10,7) -> 20
        n__plus_0(10,7) -> 24
        n__plus_0(10,8) -> 2
        n__plus_0(10,8) -> 4
        n__plus_0(10,8) -> 5
        n__plus_0(10,8) -> 9
        n__plus_0(10,8) -> 20
        n__plus_0(10,8) -> 24
        n__plus_0(10,9) -> 2
        n__plus_0(10,9) -> 4
        n__plus_0(10,9) -> 5
        n__plus_0(10,9) -> 9
        n__plus_0(10,9) -> 20
        n__plus_0(10,9) -> 24
        n__plus_0(10,10) -> 2
        n__plus_0(10,10) -> 4
        n__plus_0(10,10) -> 5
        n__plus_0(10,10) -> 9
        n__plus_0(10,10) -> 20
        n__plus_0(10,10) -> 24
        n__plus_0(10,13) -> 2
        n__plus_0(10,13) -> 4
        n__plus_0(10,13) -> 5
        n__plus_0(10,13) -> 9
        n__plus_0(10,13) -> 20
        n__plus_0(10,13) -> 24
        n__plus_0(13,7) -> 2
        n__plus_0(13,7) -> 4
        n__plus_0(13,7) -> 5
        n__plus_0(13,7) -> 9
        n__plus_0(13,7) -> 20
        n__plus_0(13,7) -> 24
        n__plus_0(13,8) -> 2
        n__plus_0(13,8) -> 4
        n__plus_0(13,8) -> 5
        n__plus_0(13,8) -> 9
        n__plus_0(13,8) -> 20
        n__plus_0(13,8) -> 24
        n__plus_0(13,9) -> 2
        n__plus_0(13,9) -> 4
        n__plus_0(13,9) -> 5
        n__plus_0(13,9) -> 9
        n__plus_0(13,9) -> 20
        n__plus_0(13,9) -> 24
        n__plus_0(13,10) -> 2
        n__plus_0(13,10) -> 4
        n__plus_0(13,10) -> 5
        n__plus_0(13,10) -> 9
        n__plus_0(13,10) -> 20
        n__plus_0(13,10) -> 24
        n__plus_0(13,13) -> 2
        n__plus_0(13,13) -> 4
        n__plus_0(13,13) -> 5
        n__plus_0(13,13) -> 9
        n__plus_0(13,13) -> 20
        n__plus_0(13,13) -> 24
        n__plus_1(7,7) -> 11
        n__plus_1(7,8) -> 11
        n__plus_1(7,9) -> 11
        n__plus_1(7,10) -> 11
        n__plus_1(7,13) -> 11
        n__plus_1(8,7) -> 11
        n__plus_1(8,8) -> 11
        n__plus_1(8,9) -> 11
        n__plus_1(8,10) -> 11
        n__plus_1(8,13) -> 11
        n__plus_1(9,7) -> 11
        n__plus_1(9,8) -> 11
        n__plus_1(9,9) -> 11
        n__plus_1(9,10) -> 11
        n__plus_1(9,13) -> 11
        n__plus_1(10,7) -> 11
        n__plus_1(10,8) -> 11
        n__plus_1(10,9) -> 11
        n__plus_1(10,10) -> 11
        n__plus_1(10,13) -> 11
        n__plus_1(13,7) -> 11
        n__plus_1(13,8) -> 11
        n__plus_1(13,9) -> 11
        n__plus_1(13,10) -> 11
        n__plus_1(13,13) -> 11
        n__plus_2(2,2) -> 14
        n__plus_2(7,7) -> 2
        n__plus_2(7,7) -> 4
        n__plus_2(7,7) -> 5
        n__plus_2(7,7) -> 20
        n__plus_2(7,7) -> 24
        n__plus_2(7,8) -> 2
        n__plus_2(7,8) -> 4
        n__plus_2(7,8) -> 5
        n__plus_2(7,8) -> 20
        n__plus_2(7,8) -> 24
        n__plus_2(7,9) -> 2
        n__plus_2(7,9) -> 4
        n__plus_2(7,9) -> 5
        n__plus_2(7,9) -> 20
        n__plus_2(7,9) -> 24
        n__plus_2(7,10) -> 2
        n__plus_2(7,10) -> 4
        n__plus_2(7,10) -> 5
        n__plus_2(7,10) -> 20
        n__plus_2(7,10) -> 24
        n__plus_2(7,13) -> 2
        n__plus_2(7,13) -> 4
        n__plus_2(7,13) -> 5
        n__plus_2(7,13) -> 20
        n__plus_2(7,13) -> 24
        n__plus_2(8,7) -> 2
        n__plus_2(8,7) -> 4
        n__plus_2(8,7) -> 5
        n__plus_2(8,7) -> 20
        n__plus_2(8,7) -> 24
        n__plus_2(8,8) -> 2
        n__plus_2(8,8) -> 4
        n__plus_2(8,8) -> 5
        n__plus_2(8,8) -> 20
        n__plus_2(8,8) -> 24
        n__plus_2(8,9) -> 2
        n__plus_2(8,9) -> 4
        n__plus_2(8,9) -> 5
        n__plus_2(8,9) -> 20
        n__plus_2(8,9) -> 24
        n__plus_2(8,10) -> 2
        n__plus_2(8,10) -> 4
        n__plus_2(8,10) -> 5
        n__plus_2(8,10) -> 20
        n__plus_2(8,10) -> 24
        n__plus_2(8,13) -> 2
        n__plus_2(8,13) -> 4
        n__plus_2(8,13) -> 5
        n__plus_2(8,13) -> 20
        n__plus_2(8,13) -> 24
        n__plus_2(9,7) -> 2
        n__plus_2(9,7) -> 4
        n__plus_2(9,7) -> 5
        n__plus_2(9,7) -> 20
        n__plus_2(9,7) -> 24
        n__plus_2(9,8) -> 2
        n__plus_2(9,8) -> 4
        n__plus_2(9,8) -> 5
        n__plus_2(9,8) -> 20
        n__plus_2(9,8) -> 24
        n__plus_2(9,9) -> 2
        n__plus_2(9,9) -> 4
        n__plus_2(9,9) -> 5
        n__plus_2(9,9) -> 20
        n__plus_2(9,9) -> 24
        n__plus_2(9,10) -> 2
        n__plus_2(9,10) -> 4
        n__plus_2(9,10) -> 5
        n__plus_2(9,10) -> 20
        n__plus_2(9,10) -> 24
        n__plus_2(9,13) -> 2
        n__plus_2(9,13) -> 4
        n__plus_2(9,13) -> 5
        n__plus_2(9,13) -> 20
        n__plus_2(9,13) -> 24
        n__plus_2(10,7) -> 2
        n__plus_2(10,7) -> 4
        n__plus_2(10,7) -> 5
        n__plus_2(10,7) -> 20
        n__plus_2(10,7) -> 24
        n__plus_2(10,8) -> 2
        n__plus_2(10,8) -> 4
        n__plus_2(10,8) -> 5
        n__plus_2(10,8) -> 20
        n__plus_2(10,8) -> 24
        n__plus_2(10,9) -> 2
        n__plus_2(10,9) -> 4
        n__plus_2(10,9) -> 5
        n__plus_2(10,9) -> 20
        n__plus_2(10,9) -> 24
        n__plus_2(10,10) -> 2
        n__plus_2(10,10) -> 4
        n__plus_2(10,10) -> 5
        n__plus_2(10,10) -> 20
        n__plus_2(10,10) -> 24
        n__plus_2(10,13) -> 2
        n__plus_2(10,13) -> 4
        n__plus_2(10,13) -> 5
        n__plus_2(10,13) -> 20
        n__plus_2(10,13) -> 24
        n__plus_2(13,7) -> 2
        n__plus_2(13,7) -> 4
        n__plus_2(13,7) -> 5
        n__plus_2(13,7) -> 20
        n__plus_2(13,7) -> 24
        n__plus_2(13,8) -> 2
        n__plus_2(13,8) -> 4
        n__plus_2(13,8) -> 5
        n__plus_2(13,8) -> 20
        n__plus_2(13,8) -> 24
        n__plus_2(13,9) -> 2
        n__plus_2(13,9) -> 4
        n__plus_2(13,9) -> 5
        n__plus_2(13,9) -> 20
        n__plus_2(13,9) -> 24
        n__plus_2(13,10) -> 2
        n__plus_2(13,10) -> 4
        n__plus_2(13,10) -> 5
        n__plus_2(13,10) -> 20
        n__plus_2(13,10) -> 24
        n__plus_2(13,13) -> 2
        n__plus_2(13,13) -> 4
        n__plus_2(13,13) -> 5
        n__plus_2(13,13) -> 20
        n__plus_2(13,13) -> 24
        n__s_0(7) -> 2
        n__s_0(7) -> 4
        n__s_0(7) -> 5
        n__s_0(7) -> 10
        n__s_0(7) -> 20
        n__s_0(7) -> 24
        n__s_0(8) -> 2
        n__s_0(8) -> 4
        n__s_0(8) -> 5
        n__s_0(8) -> 10
        n__s_0(8) -> 20
        n__s_0(8) -> 24
        n__s_0(9) -> 2
        n__s_0(9) -> 4
        n__s_0(9) -> 5
        n__s_0(9) -> 10
        n__s_0(9) -> 20
        n__s_0(9) -> 24
        n__s_0(10) -> 2
        n__s_0(10) -> 4
        n__s_0(10) -> 5
        n__s_0(10) -> 10
        n__s_0(10) -> 20
        n__s_0(10) -> 24
        n__s_0(13) -> 2
        n__s_0(13) -> 4
        n__s_0(13) -> 5
        n__s_0(13) -> 10
        n__s_0(13) -> 20
        n__s_0(13) -> 24
        n__s_1(7) -> 12
        n__s_1(8) -> 12
        n__s_1(9) -> 12
        n__s_1(10) -> 12
        n__s_1(13) -> 12
        n__s_2(7) -> 2
        n__s_2(7) -> 4
        n__s_2(7) -> 5
        n__s_2(7) -> 20
        n__s_2(7) -> 24
        n__s_2(8) -> 2
        n__s_2(8) -> 4
        n__s_2(8) -> 5
        n__s_2(8) -> 20
        n__s_2(8) -> 24
        n__s_2(9) -> 2
        n__s_2(9) -> 4
        n__s_2(9) -> 5
        n__s_2(9) -> 20
        n__s_2(9) -> 24
        n__s_2(10) -> 2
        n__s_2(10) -> 4
        n__s_2(10) -> 5
        n__s_2(10) -> 20
        n__s_2(10) -> 24
        n__s_2(13) -> 2
        n__s_2(13) -> 4
        n__s_2(13) -> 5
        n__s_2(13) -> 20
        n__s_2(13) -> 24
        n__s_2(14) -> 3
        plus_0(7,7) -> 11
        plus_0(7,8) -> 11
        plus_0(7,9) -> 11
        plus_0(7,10) -> 11
        plus_0(7,13) -> 11
        plus_0(8,7) -> 11
        plus_0(8,8) -> 11
        plus_0(8,9) -> 11
        plus_0(8,10) -> 11
        plus_0(8,13) -> 11
        plus_0(9,7) -> 11
        plus_0(9,8) -> 11
        plus_0(9,9) -> 11
        plus_0(9,10) -> 11
        plus_0(9,13) -> 11
        plus_0(10,7) -> 11
        plus_0(10,8) -> 11
        plus_0(10,9) -> 11
        plus_0(10,10) -> 11
        plus_0(10,13) -> 11
        plus_0(13,7) -> 11
        plus_0(13,8) -> 11
        plus_0(13,9) -> 11
        plus_0(13,10) -> 11
        plus_0(13,13) -> 11
        plus_1(2,2) -> 14
        plus_1(7,7) -> 2
        plus_1(7,7) -> 4
        plus_1(7,7) -> 5
        plus_1(7,7) -> 20
        plus_1(7,7) -> 24
        plus_1(7,8) -> 2
        plus_1(7,8) -> 4
        plus_1(7,8) -> 5
        plus_1(7,8) -> 20
        plus_1(7,8) -> 24
        plus_1(7,9) -> 2
        plus_1(7,9) -> 4
        plus_1(7,9) -> 5
        plus_1(7,9) -> 20
        plus_1(7,9) -> 24
        plus_1(7,10) -> 2
        plus_1(7,10) -> 4
        plus_1(7,10) -> 5
        plus_1(7,10) -> 20
        plus_1(7,10) -> 24
        plus_1(7,13) -> 2
        plus_1(7,13) -> 4
        plus_1(7,13) -> 5
        plus_1(7,13) -> 20
        plus_1(7,13) -> 24
        plus_1(8,7) -> 2
        plus_1(8,7) -> 4
        plus_1(8,7) -> 5
        plus_1(8,7) -> 20
        plus_1(8,7) -> 24
        plus_1(8,8) -> 2
        plus_1(8,8) -> 4
        plus_1(8,8) -> 5
        plus_1(8,8) -> 20
        plus_1(8,8) -> 24
        plus_1(8,9) -> 2
        plus_1(8,9) -> 4
        plus_1(8,9) -> 5
        plus_1(8,9) -> 20
        plus_1(8,9) -> 24
        plus_1(8,10) -> 2
        plus_1(8,10) -> 4
        plus_1(8,10) -> 5
        plus_1(8,10) -> 20
        plus_1(8,10) -> 24
        plus_1(8,13) -> 2
        plus_1(8,13) -> 4
        plus_1(8,13) -> 5
        plus_1(8,13) -> 20
        plus_1(8,13) -> 24
        plus_1(9,7) -> 2
        plus_1(9,7) -> 4
        plus_1(9,7) -> 5
        plus_1(9,7) -> 20
        plus_1(9,7) -> 24
        plus_1(9,8) -> 2
        plus_1(9,8) -> 4
        plus_1(9,8) -> 5
        plus_1(9,8) -> 20
        plus_1(9,8) -> 24
        plus_1(9,9) -> 2
        plus_1(9,9) -> 4
        plus_1(9,9) -> 5
        plus_1(9,9) -> 20
        plus_1(9,9) -> 24
        plus_1(9,10) -> 2
        plus_1(9,10) -> 4
        plus_1(9,10) -> 5
        plus_1(9,10) -> 20
        plus_1(9,10) -> 24
        plus_1(9,13) -> 2
        plus_1(9,13) -> 4
        plus_1(9,13) -> 5
        plus_1(9,13) -> 20
        plus_1(9,13) -> 24
        plus_1(10,7) -> 2
        plus_1(10,7) -> 4
        plus_1(10,7) -> 5
        plus_1(10,7) -> 20
        plus_1(10,7) -> 24
        plus_1(10,8) -> 2
        plus_1(10,8) -> 4
        plus_1(10,8) -> 5
        plus_1(10,8) -> 20
        plus_1(10,8) -> 24
        plus_1(10,9) -> 2
        plus_1(10,9) -> 4
        plus_1(10,9) -> 5
        plus_1(10,9) -> 20
        plus_1(10,9) -> 24
        plus_1(10,10) -> 2
        plus_1(10,10) -> 4
        plus_1(10,10) -> 5
        plus_1(10,10) -> 20
        plus_1(10,10) -> 24
        plus_1(10,13) -> 2
        plus_1(10,13) -> 4
        plus_1(10,13) -> 5
        plus_1(10,13) -> 20
        plus_1(10,13) -> 24
        plus_1(13,7) -> 2
        plus_1(13,7) -> 4
        plus_1(13,7) -> 5
        plus_1(13,7) -> 20
        plus_1(13,7) -> 24
        plus_1(13,8) -> 2
        plus_1(13,8) -> 4
        plus_1(13,8) -> 5
        plus_1(13,8) -> 20
        plus_1(13,8) -> 24
        plus_1(13,9) -> 2
        plus_1(13,9) -> 4
        plus_1(13,9) -> 5
        plus_1(13,9) -> 20
        plus_1(13,9) -> 24
        plus_1(13,10) -> 2
        plus_1(13,10) -> 4
        plus_1(13,10) -> 5
        plus_1(13,10) -> 20
        plus_1(13,10) -> 24
        plus_1(13,13) -> 2
        plus_1(13,13) -> 4
        plus_1(13,13) -> 5
        plus_1(13,13) -> 20
        plus_1(13,13) -> 24
        s_0(7) -> 12
        s_0(8) -> 12
        s_0(9) -> 12
        s_0(10) -> 12
        s_0(13) -> 12
        s_1(7) -> 2
        s_1(7) -> 4
        s_1(7) -> 5
        s_1(7) -> 20
        s_1(7) -> 24
        s_1(8) -> 2
        s_1(8) -> 4
        s_1(8) -> 5
        s_1(8) -> 20
        s_1(8) -> 24
        s_1(9) -> 2
        s_1(9) -> 4
        s_1(9) -> 5
        s_1(9) -> 20
        s_1(9) -> 24
        s_1(10) -> 2
        s_1(10) -> 4
        s_1(10) -> 5
        s_1(10) -> 20
        s_1(10) -> 24
        s_1(13) -> 2
        s_1(13) -> 4
        s_1(13) -> 5
        s_1(13) -> 20
        s_1(13) -> 24
        s_1(14) -> 3
        tt_0() -> 2
        tt_0() -> 4
        tt_0() -> 5
        tt_0() -> 13
        tt_0() -> 20
        tt_0() -> 24
        tt_1() -> 2
        tt_1() -> 4
        tt_1() -> 5
        tt_1() -> 6
        tt_1() -> 15
        tt_1() -> 17
        tt_1() -> 20
        tt_1() -> 21
        tt_1() -> 24
        tt_2() -> 2
        tt_2() -> 4
        tt_2() -> 5
        tt_2() -> 6
        tt_2() -> 15
        tt_2() -> 17
        tt_2() -> 20
        tt_2() -> 21
        tt_2() -> 24
        tt_3() -> 2
        tt_3() -> 4
        tt_3() -> 5
        tt_3() -> 6
        tt_3() -> 15
        tt_3() -> 17
        tt_3() -> 20
        tt_3() -> 21
        tt_3() -> 24
        7 -> 2
        7 -> 4
        7 -> 5
        7 -> 19
        7 -> 20
        7 -> 23
        7 -> 24
        8 -> 2
        8 -> 4
        8 -> 5
        8 -> 20
        8 -> 24
        9 -> 2
        9 -> 4
        9 -> 5
        9 -> 20
        9 -> 24
        10 -> 2
        10 -> 4
        10 -> 5
        10 -> 20
        10 -> 24
        13 -> 2
        13 -> 4
        13 -> 5
        13 -> 20
        13 -> 24
        16 -> 2
        16 -> 4
        16 -> 5
        16 -> 6
        16 -> 15
        16 -> 17
        16 -> 20
        16 -> 21
        16 -> 24
        18 -> 2
        18 -> 4
        18 -> 5
        18 -> 6
        18 -> 15
        18 -> 17
        18 -> 20
        18 -> 21
        18 -> 24
        22 -> 2
        22 -> 4
        22 -> 5
        22 -> 6
        22 -> 15
        22 -> 17
        22 -> 20
        22 -> 21
        22 -> 24
*** 1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        and(tt(),X) -> activate(X)
        isNat(X) -> n__isNat(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        isNat(n__s(V1)) -> isNat(activate(V1))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,activate,and,isNat,plus,s}/{n__0,n__isNat,n__plus,n__s,tt}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).