*** 1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        and(tt(),X) -> activate(X)
        isNat(X) -> n__isNat(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        isNat(n__s(V1)) -> isNat(activate(V1))
        plus(N,0()) -> U11(isNat(N),N)
        plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N)
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,activate,and,isNat,plus,s}/{n__0,n__isNat,n__plus,n__s,tt}
    Applied Processor:
      InnermostRuleRemoval
    Proof:
      Arguments of following rules are not normal-forms.
        plus(N,0()) -> U11(isNat(N),N)
        plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N)
      All above mentioned rules can be savely removed.
*** 1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        and(tt(),X) -> activate(X)
        isNat(X) -> n__isNat(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        isNat(n__s(V1)) -> isNat(activate(V1))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,activate,and,isNat,plus,s}/{n__0,n__isNat,n__plus,n__s,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isNat) = {1},
          uargs(n__isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
               p(U11) = [1] x2 + [0]         
               p(U21) = [1] x2 + [1] x3 + [0]
          p(activate) = [1] x1 + [9]         
               p(and) = [1] x1 + [1] x2 + [7]
             p(isNat) = [1] x1 + [0]         
              p(n__0) = [9]                  
          p(n__isNat) = [1] x1 + [0]         
           p(n__plus) = [1] x1 + [1] x2 + [1]
              p(n__s) = [1] x1 + [0]         
              p(plus) = [1] x1 + [1] x2 + [3]
                 p(s) = [1] x1 + [0]         
                p(tt) = [0]                  
        
        Following rules are strictly oriented:
                  activate(X) = [1] X + [9]          
                              > [1] X + [0]          
                              = X                    
        
             activate(n__0()) = [18]                 
                              > [0]                  
                              = 0()                  
        
        activate(n__isNat(X)) = [1] X + [9]          
                              > [1] X + [0]          
                              = isNat(X)             
        
                isNat(n__0()) = [9]                  
                              > [0]                  
                              = tt()                 
        
                  plus(X1,X2) = [1] X1 + [1] X2 + [3]
                              > [1] X1 + [1] X2 + [1]
                              = n__plus(X1,X2)       
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                             
                                 >= [9]                             
                                 =  n__0()                          
        
                     U11(tt(),N) =  [1] N + [0]                     
                                 >= [1] N + [9]                     
                                 =  activate(N)                     
        
                   U21(tt(),M,N) =  [1] M + [1] N + [0]             
                                 >= [1] M + [1] N + [21]            
                                 =  s(plus(activate(N),activate(M)))
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [10]          
                                 >= [1] X1 + [1] X2 + [21]          
                                 =  plus(activate(X1),activate(X2)) 
        
               activate(n__s(X)) =  [1] X + [9]                     
                                 >= [1] X + [9]                     
                                 =  s(activate(X))                  
        
                     and(tt(),X) =  [1] X + [7]                     
                                 >= [1] X + [9]                     
                                 =  activate(X)                     
        
                        isNat(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  n__isNat(X)                     
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [1]           
                                 >= [1] V1 + [1] V2 + [25]          
                                 =  and(isNat(activate(V1))         
                                       ,n__isNat(activate(V2)))     
        
                 isNat(n__s(V1)) =  [1] V1 + [0]                    
                                 >= [1] V1 + [9]                    
                                 =  isNat(activate(V1))             
        
                            s(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  n__s(X)                         
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        and(tt(),X) -> activate(X)
        isNat(X) -> n__isNat(X)
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        isNat(n__s(V1)) -> isNat(activate(V1))
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        isNat(n__0()) -> tt()
        plus(X1,X2) -> n__plus(X1,X2)
      Signature:
        {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,activate,and,isNat,plus,s}/{n__0,n__isNat,n__plus,n__s,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isNat) = {1},
          uargs(n__isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [1]                  
               p(U11) = [1] x1 + [9] x2 + [9]
               p(U21) = [9] x2 + [3] x3 + [2]
          p(activate) = [1] x1 + [2]         
               p(and) = [1] x1 + [1] x2 + [2]
             p(isNat) = [1] x1 + [2]         
              p(n__0) = [9]                  
          p(n__isNat) = [1] x1 + [14]        
           p(n__plus) = [1] x1 + [1] x2 + [1]
              p(n__s) = [1] x1 + [10]        
              p(plus) = [1] x1 + [1] x2 + [1]
                 p(s) = [1] x1 + [2]         
                p(tt) = [8]                  
        
        Following rules are strictly oriented:
              U11(tt(),N) = [9] N + [17]       
                          > [1] N + [2]        
                          = activate(N)        
        
        activate(n__s(X)) = [1] X + [12]       
                          > [1] X + [4]        
                          = s(activate(X))     
        
              and(tt(),X) = [1] X + [10]       
                          > [1] X + [2]        
                          = activate(X)        
        
          isNat(n__s(V1)) = [1] V1 + [12]      
                          > [1] V1 + [4]       
                          = isNat(activate(V1))
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [1]                             
                                 >= [9]                             
                                 =  n__0()                          
        
                   U21(tt(),M,N) =  [9] M + [3] N + [2]             
                                 >= [1] M + [1] N + [7]             
                                 =  s(plus(activate(N),activate(M)))
        
                     activate(X) =  [1] X + [2]                     
                                 >= [1] X + [0]                     
                                 =  X                               
        
                activate(n__0()) =  [11]                            
                                 >= [1]                             
                                 =  0()                             
        
           activate(n__isNat(X)) =  [1] X + [16]                    
                                 >= [1] X + [2]                     
                                 =  isNat(X)                        
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [3]           
                                 >= [1] X1 + [1] X2 + [5]           
                                 =  plus(activate(X1),activate(X2)) 
        
                        isNat(X) =  [1] X + [2]                     
                                 >= [1] X + [14]                    
                                 =  n__isNat(X)                     
        
                   isNat(n__0()) =  [11]                            
                                 >= [8]                             
                                 =  tt()                            
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [3]           
                                 >= [1] V1 + [1] V2 + [22]          
                                 =  and(isNat(activate(V1))         
                                       ,n__isNat(activate(V2)))     
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [1]           
                                 >= [1] X1 + [1] X2 + [1]           
                                 =  n__plus(X1,X2)                  
        
                            s(X) =  [1] X + [2]                     
                                 >= [1] X + [10]                    
                                 =  n__s(X)                         
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        isNat(X) -> n__isNat(X)
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt(),N) -> activate(N)
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        activate(n__s(X)) -> s(activate(X))
        and(tt(),X) -> activate(X)
        isNat(n__0()) -> tt()
        isNat(n__s(V1)) -> isNat(activate(V1))
        plus(X1,X2) -> n__plus(X1,X2)
      Signature:
        {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,activate,and,isNat,plus,s}/{n__0,n__isNat,n__plus,n__s,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isNat) = {1},
          uargs(n__isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
               p(U11) = [8] x2 + [0]         
               p(U21) = [1] x2 + [8] x3 + [9]
          p(activate) = [1] x1 + [0]         
               p(and) = [1] x1 + [1] x2 + [4]
             p(isNat) = [1] x1 + [0]         
              p(n__0) = [3]                  
          p(n__isNat) = [1] x1 + [4]         
           p(n__plus) = [1] x1 + [1] x2 + [0]
              p(n__s) = [1] x1 + [1]         
              p(plus) = [1] x1 + [1] x2 + [3]
                 p(s) = [1] x1 + [0]         
                p(tt) = [1]                  
        
        Following rules are strictly oriented:
        U21(tt(),M,N) = [1] M + [8] N + [9]             
                      > [1] M + [1] N + [3]             
                      = s(plus(activate(N),activate(M)))
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                            
                                 >= [3]                            
                                 =  n__0()                         
        
                     U11(tt(),N) =  [8] N + [0]                    
                                 >= [1] N + [0]                    
                                 =  activate(N)                    
        
                     activate(X) =  [1] X + [0]                    
                                 >= [1] X + [0]                    
                                 =  X                              
        
                activate(n__0()) =  [3]                            
                                 >= [0]                            
                                 =  0()                            
        
           activate(n__isNat(X)) =  [1] X + [4]                    
                                 >= [1] X + [0]                    
                                 =  isNat(X)                       
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]          
                                 >= [1] X1 + [1] X2 + [3]          
                                 =  plus(activate(X1),activate(X2))
        
               activate(n__s(X)) =  [1] X + [1]                    
                                 >= [1] X + [0]                    
                                 =  s(activate(X))                 
        
                     and(tt(),X) =  [1] X + [5]                    
                                 >= [1] X + [0]                    
                                 =  activate(X)                    
        
                        isNat(X) =  [1] X + [0]                    
                                 >= [1] X + [4]                    
                                 =  n__isNat(X)                    
        
                   isNat(n__0()) =  [3]                            
                                 >= [1]                            
                                 =  tt()                           
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [0]          
                                 >= [1] V1 + [1] V2 + [8]          
                                 =  and(isNat(activate(V1))        
                                       ,n__isNat(activate(V2)))    
        
                 isNat(n__s(V1)) =  [1] V1 + [1]                   
                                 >= [1] V1 + [0]                   
                                 =  isNat(activate(V1))            
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [3]          
                                 >= [1] X1 + [1] X2 + [0]          
                                 =  n__plus(X1,X2)                 
        
                            s(X) =  [1] X + [0]                    
                                 >= [1] X + [1]                    
                                 =  n__s(X)                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        isNat(X) -> n__isNat(X)
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        activate(n__s(X)) -> s(activate(X))
        and(tt(),X) -> activate(X)
        isNat(n__0()) -> tt()
        isNat(n__s(V1)) -> isNat(activate(V1))
        plus(X1,X2) -> n__plus(X1,X2)
      Signature:
        {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,activate,and,isNat,plus,s}/{n__0,n__isNat,n__plus,n__s,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isNat) = {1},
          uargs(n__isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                           
               p(U11) = [4] x2 + [2]                  
               p(U21) = [1] x1 + [1] x2 + [3] x3 + [1]
          p(activate) = [1] x1 + [0]                  
               p(and) = [1] x1 + [1] x2 + [0]         
             p(isNat) = [1] x1 + [0]                  
              p(n__0) = [3]                           
          p(n__isNat) = [1] x1 + [0]                  
           p(n__plus) = [1] x1 + [1] x2 + [1]         
              p(n__s) = [1] x1 + [0]                  
              p(plus) = [1] x1 + [1] x2 + [1]         
                 p(s) = [1] x1 + [0]                  
                p(tt) = [0]                           
        
        Following rules are strictly oriented:
        isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [1]      
                              > [1] V1 + [1] V2 + [0]      
                              = and(isNat(activate(V1))    
                                   ,n__isNat(activate(V2)))
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                             
                                 >= [3]                             
                                 =  n__0()                          
        
                     U11(tt(),N) =  [4] N + [2]                     
                                 >= [1] N + [0]                     
                                 =  activate(N)                     
        
                   U21(tt(),M,N) =  [1] M + [3] N + [1]             
                                 >= [1] M + [1] N + [1]             
                                 =  s(plus(activate(N),activate(M)))
        
                     activate(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  X                               
        
                activate(n__0()) =  [3]                             
                                 >= [0]                             
                                 =  0()                             
        
           activate(n__isNat(X)) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  isNat(X)                        
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [1]           
                                 >= [1] X1 + [1] X2 + [1]           
                                 =  plus(activate(X1),activate(X2)) 
        
               activate(n__s(X)) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  s(activate(X))                  
        
                     and(tt(),X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  activate(X)                     
        
                        isNat(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  n__isNat(X)                     
        
                   isNat(n__0()) =  [3]                             
                                 >= [0]                             
                                 =  tt()                            
        
                 isNat(n__s(V1)) =  [1] V1 + [0]                    
                                 >= [1] V1 + [0]                    
                                 =  isNat(activate(V1))             
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [1]           
                                 >= [1] X1 + [1] X2 + [1]           
                                 =  n__plus(X1,X2)                  
        
                            s(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  n__s(X)                         
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        isNat(X) -> n__isNat(X)
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        activate(n__s(X)) -> s(activate(X))
        and(tt(),X) -> activate(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        isNat(n__s(V1)) -> isNat(activate(V1))
        plus(X1,X2) -> n__plus(X1,X2)
      Signature:
        {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,activate,and,isNat,plus,s}/{n__0,n__isNat,n__plus,n__s,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isNat) = {1},
          uargs(n__isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [3]                           
               p(U11) = [5] x2 + [4]                  
               p(U21) = [5] x1 + [1] x2 + [4] x3 + [0]
          p(activate) = [1] x1 + [2]                  
               p(and) = [1] x1 + [1] x2 + [0]         
             p(isNat) = [1] x1 + [1]                  
              p(n__0) = [2]                           
          p(n__isNat) = [1] x1 + [0]                  
           p(n__plus) = [1] x1 + [1] x2 + [7]         
              p(n__s) = [1] x1 + [4]                  
              p(plus) = [1] x1 + [1] x2 + [7]         
                 p(s) = [1] x1 + [0]                  
                p(tt) = [3]                           
        
        Following rules are strictly oriented:
             0() = [3]        
                 > [2]        
                 = n__0()     
        
        isNat(X) = [1] X + [1]
                 > [1] X + [0]
                 = n__isNat(X)
        
        
        Following rules are (at-least) weakly oriented:
                     U11(tt(),N) =  [5] N + [4]                     
                                 >= [1] N + [2]                     
                                 =  activate(N)                     
        
                   U21(tt(),M,N) =  [1] M + [4] N + [15]            
                                 >= [1] M + [1] N + [11]            
                                 =  s(plus(activate(N),activate(M)))
        
                     activate(X) =  [1] X + [2]                     
                                 >= [1] X + [0]                     
                                 =  X                               
        
                activate(n__0()) =  [4]                             
                                 >= [3]                             
                                 =  0()                             
        
           activate(n__isNat(X)) =  [1] X + [2]                     
                                 >= [1] X + [1]                     
                                 =  isNat(X)                        
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [9]           
                                 >= [1] X1 + [1] X2 + [11]          
                                 =  plus(activate(X1),activate(X2)) 
        
               activate(n__s(X)) =  [1] X + [6]                     
                                 >= [1] X + [2]                     
                                 =  s(activate(X))                  
        
                     and(tt(),X) =  [1] X + [3]                     
                                 >= [1] X + [2]                     
                                 =  activate(X)                     
        
                   isNat(n__0()) =  [3]                             
                                 >= [3]                             
                                 =  tt()                            
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [8]           
                                 >= [1] V1 + [1] V2 + [5]           
                                 =  and(isNat(activate(V1))         
                                       ,n__isNat(activate(V2)))     
        
                 isNat(n__s(V1)) =  [1] V1 + [5]                    
                                 >= [1] V1 + [3]                    
                                 =  isNat(activate(V1))             
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [7]           
                                 >= [1] X1 + [1] X2 + [7]           
                                 =  n__plus(X1,X2)                  
        
                            s(X) =  [1] X + [0]                     
                                 >= [1] X + [4]                     
                                 =  n__s(X)                         
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        activate(n__s(X)) -> s(activate(X))
        and(tt(),X) -> activate(X)
        isNat(X) -> n__isNat(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        isNat(n__s(V1)) -> isNat(activate(V1))
        plus(X1,X2) -> n__plus(X1,X2)
      Signature:
        {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,activate,and,isNat,plus,s}/{n__0,n__isNat,n__plus,n__s,tt}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(and) = {1,2},
        uargs(isNat) = {1},
        uargs(n__isNat) = {1},
        uargs(plus) = {1,2},
        uargs(s) = {1}
      
      Following symbols are considered usable:
        {0,U11,U21,activate,and,isNat,plus,s}
      TcT has computed the following interpretation:
               p(0) = [2]                      
                      [0]                      
             p(U11) = [2 1] x1 + [1 1] x2 + [0]
                      [5 0]      [2 1]      [3]
             p(U21) = [0 1] x1 + [2 3] x2 + [4 
                      3] x3 + [1]              
                      [2 0]      [4 4]      [4 
                      1]      [0]              
        p(activate) = [1 1] x1 + [0]           
                      [0 1]      [0]           
             p(and) = [1 1] x1 + [1 2] x2 + [0]
                      [0 0]      [0 2]      [0]
           p(isNat) = [1 0] x1 + [0]           
                      [0 0]      [0]           
            p(n__0) = [2]                      
                      [0]                      
        p(n__isNat) = [1 0] x1 + [0]           
                      [0 0]      [0]           
         p(n__plus) = [1 1] x1 + [1 1] x2 + [0]
                      [0 1]      [0 1]      [0]
            p(n__s) = [1 1] x1 + [0]           
                      [0 1]      [2]           
            p(plus) = [1 1] x1 + [1 1] x2 + [0]
                      [0 1]      [0 1]      [0]
               p(s) = [1 1] x1 + [1]           
                      [0 1]      [2]           
              p(tt) = [1]                      
                      [0]                      
      
      Following rules are strictly oriented:
      s(X) = [1 1] X + [1]
             [0 1]     [2]
           > [1 1] X + [0]
             [0 1]     [2]
           = n__s(X)      
      
      
      Following rules are (at-least) weakly oriented:
                           0() =  [2]                             
                                  [0]                             
                               >= [2]                             
                                  [0]                             
                               =  n__0()                          
      
                   U11(tt(),N) =  [1 1] N + [2]                   
                                  [2 1]     [8]                   
                               >= [1 1] N + [0]                   
                                  [0 1]     [0]                   
                               =  activate(N)                     
      
                 U21(tt(),M,N) =  [2 3] M + [4 3] N + [1]         
                                  [4 4]     [4 1]     [2]         
                               >= [1 3] M + [1 3] N + [1]         
                                  [0 1]     [0 1]     [2]         
                               =  s(plus(activate(N),activate(M)))
      
                   activate(X) =  [1 1] X + [0]                   
                                  [0 1]     [0]                   
                               >= [1 0] X + [0]                   
                                  [0 1]     [0]                   
                               =  X                               
      
              activate(n__0()) =  [2]                             
                                  [0]                             
                               >= [2]                             
                                  [0]                             
                               =  0()                             
      
         activate(n__isNat(X)) =  [1 0] X + [0]                   
                                  [0 0]     [0]                   
                               >= [1 0] X + [0]                   
                                  [0 0]     [0]                   
                               =  isNat(X)                        
      
      activate(n__plus(X1,X2)) =  [1 2] X1 + [1 2] X2 + [0]       
                                  [0 1]      [0 1]      [0]       
                               >= [1 2] X1 + [1 2] X2 + [0]       
                                  [0 1]      [0 1]      [0]       
                               =  plus(activate(X1),activate(X2)) 
      
             activate(n__s(X)) =  [1 2] X + [2]                   
                                  [0 1]     [2]                   
                               >= [1 2] X + [1]                   
                                  [0 1]     [2]                   
                               =  s(activate(X))                  
      
                   and(tt(),X) =  [1 2] X + [1]                   
                                  [0 2]     [0]                   
                               >= [1 1] X + [0]                   
                                  [0 1]     [0]                   
                               =  activate(X)                     
      
                      isNat(X) =  [1 0] X + [0]                   
                                  [0 0]     [0]                   
                               >= [1 0] X + [0]                   
                                  [0 0]     [0]                   
                               =  n__isNat(X)                     
      
                 isNat(n__0()) =  [2]                             
                                  [0]                             
                               >= [1]                             
                                  [0]                             
                               =  tt()                            
      
         isNat(n__plus(V1,V2)) =  [1 1] V1 + [1 1] V2 + [0]       
                                  [0 0]      [0 0]      [0]       
                               >= [1 1] V1 + [1 1] V2 + [0]       
                                  [0 0]      [0 0]      [0]       
                               =  and(isNat(activate(V1))         
                                     ,n__isNat(activate(V2)))     
      
               isNat(n__s(V1)) =  [1 1] V1 + [0]                  
                                  [0 0]      [0]                  
                               >= [1 1] V1 + [0]                  
                                  [0 0]      [0]                  
                               =  isNat(activate(V1))             
      
                   plus(X1,X2) =  [1 1] X1 + [1 1] X2 + [0]       
                                  [0 1]      [0 1]      [0]       
                               >= [1 1] X1 + [1 1] X2 + [0]       
                                  [0 1]      [0 1]      [0]       
                               =  n__plus(X1,X2)                  
      
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        activate(n__s(X)) -> s(activate(X))
        and(tt(),X) -> activate(X)
        isNat(X) -> n__isNat(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        isNat(n__s(V1)) -> isNat(activate(V1))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,activate,and,isNat,plus,s}/{n__0,n__isNat,n__plus,n__s,tt}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(and) = {1,2},
        uargs(isNat) = {1},
        uargs(n__isNat) = {1},
        uargs(plus) = {1,2},
        uargs(s) = {1}
      
      Following symbols are considered usable:
        {0,U11,U21,activate,and,isNat,plus,s}
      TcT has computed the following interpretation:
               p(0) = [2]                      
                      [4]                      
             p(U11) = [4 2] x2 + [6]           
                      [0 1]      [0]           
             p(U21) = [1 0] x1 + [1 7] x2 + [1 
                      6] x3 + [6]              
                      [0 2]      [4 1]      [0 
                      4]      [2]              
        p(activate) = [1 2] x1 + [0]           
                      [0 1]      [0]           
             p(and) = [1 0] x1 + [1 2] x2 + [2]
                      [0 0]      [0 1]      [1]
           p(isNat) = [1 1] x1 + [0]           
                      [0 1]      [0]           
            p(n__0) = [2]                      
                      [4]                      
        p(n__isNat) = [1 0] x1 + [0]           
                      [0 1]      [0]           
         p(n__plus) = [1 2] x1 + [1 3] x2 + [1]
                      [0 1]      [0 1]      [1]
            p(n__s) = [1 2] x1 + [0]           
                      [0 1]      [0]           
            p(plus) = [1 2] x1 + [1 3] x2 + [1]
                      [0 1]      [0 1]      [1]
               p(s) = [1 2] x1 + [0]           
                      [0 1]      [0]           
              p(tt) = [2]                      
                      [0]                      
      
      Following rules are strictly oriented:
      activate(n__plus(X1,X2)) = [1 4] X1 + [1 5] X2 + [3]      
                                 [0 1]      [0 1]      [1]      
                               > [1 4] X1 + [1 5] X2 + [1]      
                                 [0 1]      [0 1]      [1]      
                               = plus(activate(X1),activate(X2))
      
      
      Following rules are (at-least) weakly oriented:
                        0() =  [2]                             
                               [4]                             
                            >= [2]                             
                               [4]                             
                            =  n__0()                          
      
                U11(tt(),N) =  [4 2] N + [6]                   
                               [0 1]     [0]                   
                            >= [1 2] N + [0]                   
                               [0 1]     [0]                   
                            =  activate(N)                     
      
              U21(tt(),M,N) =  [1 7] M + [1 6] N + [8]         
                               [4 1]     [0 4]     [2]         
                            >= [1 7] M + [1 6] N + [3]         
                               [0 1]     [0 1]     [1]         
                            =  s(plus(activate(N),activate(M)))
      
                activate(X) =  [1 2] X + [0]                   
                               [0 1]     [0]                   
                            >= [1 0] X + [0]                   
                               [0 1]     [0]                   
                            =  X                               
      
           activate(n__0()) =  [10]                            
                               [4]                             
                            >= [2]                             
                               [4]                             
                            =  0()                             
      
      activate(n__isNat(X)) =  [1 2] X + [0]                   
                               [0 1]     [0]                   
                            >= [1 1] X + [0]                   
                               [0 1]     [0]                   
                            =  isNat(X)                        
      
          activate(n__s(X)) =  [1 4] X + [0]                   
                               [0 1]     [0]                   
                            >= [1 4] X + [0]                   
                               [0 1]     [0]                   
                            =  s(activate(X))                  
      
                and(tt(),X) =  [1 2] X + [4]                   
                               [0 1]     [1]                   
                            >= [1 2] X + [0]                   
                               [0 1]     [0]                   
                            =  activate(X)                     
      
                   isNat(X) =  [1 1] X + [0]                   
                               [0 1]     [0]                   
                            >= [1 0] X + [0]                   
                               [0 1]     [0]                   
                            =  n__isNat(X)                     
      
              isNat(n__0()) =  [6]                             
                               [4]                             
                            >= [2]                             
                               [0]                             
                            =  tt()                            
      
      isNat(n__plus(V1,V2)) =  [1 3] V1 + [1 4] V2 + [2]       
                               [0 1]      [0 1]      [1]       
                            >= [1 3] V1 + [1 4] V2 + [2]       
                               [0 0]      [0 1]      [1]       
                            =  and(isNat(activate(V1))         
                                  ,n__isNat(activate(V2)))     
      
            isNat(n__s(V1)) =  [1 3] V1 + [0]                  
                               [0 1]      [0]                  
                            >= [1 3] V1 + [0]                  
                               [0 1]      [0]                  
                            =  isNat(activate(V1))             
      
                plus(X1,X2) =  [1 2] X1 + [1 3] X2 + [1]       
                               [0 1]      [0 1]      [1]       
                            >= [1 2] X1 + [1 3] X2 + [1]       
                               [0 1]      [0 1]      [1]       
                            =  n__plus(X1,X2)                  
      
                       s(X) =  [1 2] X + [0]                   
                               [0 1]     [0]                   
                            >= [1 2] X + [0]                   
                               [0 1]     [0]                   
                            =  n__s(X)                         
      
*** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        and(tt(),X) -> activate(X)
        isNat(X) -> n__isNat(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        isNat(n__s(V1)) -> isNat(activate(V1))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,activate,and,isNat,plus,s}/{n__0,n__isNat,n__plus,n__s,tt}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).