*** 1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: 0() -> n__0() U11(tt(),N) -> activate(N) U21(tt(),M,N) -> s(plus(activate(N),activate(M))) activate(X) -> X activate(n__0()) -> 0() activate(n__isNat(X)) -> isNat(X) activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) and(tt(),X) -> activate(X) isNat(X) -> n__isNat(X) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) isNat(n__s(V1)) -> isNat(activate(V1)) plus(N,0()) -> U11(isNat(N),N) plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) Weak DP Rules: Weak TRS Rules: Signature: {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0} Obligation: Innermost basic terms: {0,U11,U21,activate,and,isNat,plus,s}/{n__0,n__isNat,n__plus,n__s,tt} Applied Processor: InnermostRuleRemoval Proof: Arguments of following rules are not normal-forms. plus(N,0()) -> U11(isNat(N),N) plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N) All above mentioned rules can be savely removed. *** 1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: 0() -> n__0() U11(tt(),N) -> activate(N) U21(tt(),M,N) -> s(plus(activate(N),activate(M))) activate(X) -> X activate(n__0()) -> 0() activate(n__isNat(X)) -> isNat(X) activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) and(tt(),X) -> activate(X) isNat(X) -> n__isNat(X) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) isNat(n__s(V1)) -> isNat(activate(V1)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) Weak DP Rules: Weak TRS Rules: Signature: {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0} Obligation: Innermost basic terms: {0,U11,U21,activate,and,isNat,plus,s}/{n__0,n__isNat,n__plus,n__s,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(and) = {1,2}, uargs(isNat) = {1}, uargs(n__isNat) = {1}, uargs(plus) = {1,2}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(U11) = [1] x2 + [0] p(U21) = [1] x2 + [1] x3 + [0] p(activate) = [1] x1 + [9] p(and) = [1] x1 + [1] x2 + [7] p(isNat) = [1] x1 + [0] p(n__0) = [9] p(n__isNat) = [1] x1 + [0] p(n__plus) = [1] x1 + [1] x2 + [1] p(n__s) = [1] x1 + [0] p(plus) = [1] x1 + [1] x2 + [3] p(s) = [1] x1 + [0] p(tt) = [0] Following rules are strictly oriented: activate(X) = [1] X + [9] > [1] X + [0] = X activate(n__0()) = [18] > [0] = 0() activate(n__isNat(X)) = [1] X + [9] > [1] X + [0] = isNat(X) isNat(n__0()) = [9] > [0] = tt() plus(X1,X2) = [1] X1 + [1] X2 + [3] > [1] X1 + [1] X2 + [1] = n__plus(X1,X2) Following rules are (at-least) weakly oriented: 0() = [0] >= [9] = n__0() U11(tt(),N) = [1] N + [0] >= [1] N + [9] = activate(N) U21(tt(),M,N) = [1] M + [1] N + [0] >= [1] M + [1] N + [21] = s(plus(activate(N),activate(M))) activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [10] >= [1] X1 + [1] X2 + [21] = plus(activate(X1),activate(X2)) activate(n__s(X)) = [1] X + [9] >= [1] X + [9] = s(activate(X)) and(tt(),X) = [1] X + [7] >= [1] X + [9] = activate(X) isNat(X) = [1] X + [0] >= [1] X + [0] = n__isNat(X) isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [1] >= [1] V1 + [1] V2 + [25] = and(isNat(activate(V1)) ,n__isNat(activate(V2))) isNat(n__s(V1)) = [1] V1 + [0] >= [1] V1 + [9] = isNat(activate(V1)) s(X) = [1] X + [0] >= [1] X + [0] = n__s(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: 0() -> n__0() U11(tt(),N) -> activate(N) U21(tt(),M,N) -> s(plus(activate(N),activate(M))) activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) and(tt(),X) -> activate(X) isNat(X) -> n__isNat(X) isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) isNat(n__s(V1)) -> isNat(activate(V1)) s(X) -> n__s(X) Weak DP Rules: Weak TRS Rules: activate(X) -> X activate(n__0()) -> 0() activate(n__isNat(X)) -> isNat(X) isNat(n__0()) -> tt() plus(X1,X2) -> n__plus(X1,X2) Signature: {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0} Obligation: Innermost basic terms: {0,U11,U21,activate,and,isNat,plus,s}/{n__0,n__isNat,n__plus,n__s,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(and) = {1,2}, uargs(isNat) = {1}, uargs(n__isNat) = {1}, uargs(plus) = {1,2}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [1] p(U11) = [1] x1 + [9] x2 + [9] p(U21) = [9] x2 + [3] x3 + [2] p(activate) = [1] x1 + [2] p(and) = [1] x1 + [1] x2 + [2] p(isNat) = [1] x1 + [2] p(n__0) = [9] p(n__isNat) = [1] x1 + [14] p(n__plus) = [1] x1 + [1] x2 + [1] p(n__s) = [1] x1 + [10] p(plus) = [1] x1 + [1] x2 + [1] p(s) = [1] x1 + [2] p(tt) = [8] Following rules are strictly oriented: U11(tt(),N) = [9] N + [17] > [1] N + [2] = activate(N) activate(n__s(X)) = [1] X + [12] > [1] X + [4] = s(activate(X)) and(tt(),X) = [1] X + [10] > [1] X + [2] = activate(X) isNat(n__s(V1)) = [1] V1 + [12] > [1] V1 + [4] = isNat(activate(V1)) Following rules are (at-least) weakly oriented: 0() = [1] >= [9] = n__0() U21(tt(),M,N) = [9] M + [3] N + [2] >= [1] M + [1] N + [7] = s(plus(activate(N),activate(M))) activate(X) = [1] X + [2] >= [1] X + [0] = X activate(n__0()) = [11] >= [1] = 0() activate(n__isNat(X)) = [1] X + [16] >= [1] X + [2] = isNat(X) activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [3] >= [1] X1 + [1] X2 + [5] = plus(activate(X1),activate(X2)) isNat(X) = [1] X + [2] >= [1] X + [14] = n__isNat(X) isNat(n__0()) = [11] >= [8] = tt() isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [3] >= [1] V1 + [1] V2 + [22] = and(isNat(activate(V1)) ,n__isNat(activate(V2))) plus(X1,X2) = [1] X1 + [1] X2 + [1] >= [1] X1 + [1] X2 + [1] = n__plus(X1,X2) s(X) = [1] X + [2] >= [1] X + [10] = n__s(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: 0() -> n__0() U21(tt(),M,N) -> s(plus(activate(N),activate(M))) activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) isNat(X) -> n__isNat(X) isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) s(X) -> n__s(X) Weak DP Rules: Weak TRS Rules: U11(tt(),N) -> activate(N) activate(X) -> X activate(n__0()) -> 0() activate(n__isNat(X)) -> isNat(X) activate(n__s(X)) -> s(activate(X)) and(tt(),X) -> activate(X) isNat(n__0()) -> tt() isNat(n__s(V1)) -> isNat(activate(V1)) plus(X1,X2) -> n__plus(X1,X2) Signature: {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0} Obligation: Innermost basic terms: {0,U11,U21,activate,and,isNat,plus,s}/{n__0,n__isNat,n__plus,n__s,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(and) = {1,2}, uargs(isNat) = {1}, uargs(n__isNat) = {1}, uargs(plus) = {1,2}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(U11) = [8] x2 + [0] p(U21) = [1] x2 + [8] x3 + [9] p(activate) = [1] x1 + [0] p(and) = [1] x1 + [1] x2 + [4] p(isNat) = [1] x1 + [0] p(n__0) = [3] p(n__isNat) = [1] x1 + [4] p(n__plus) = [1] x1 + [1] x2 + [0] p(n__s) = [1] x1 + [1] p(plus) = [1] x1 + [1] x2 + [3] p(s) = [1] x1 + [0] p(tt) = [1] Following rules are strictly oriented: U21(tt(),M,N) = [1] M + [8] N + [9] > [1] M + [1] N + [3] = s(plus(activate(N),activate(M))) Following rules are (at-least) weakly oriented: 0() = [0] >= [3] = n__0() U11(tt(),N) = [8] N + [0] >= [1] N + [0] = activate(N) activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__0()) = [3] >= [0] = 0() activate(n__isNat(X)) = [1] X + [4] >= [1] X + [0] = isNat(X) activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [3] = plus(activate(X1),activate(X2)) activate(n__s(X)) = [1] X + [1] >= [1] X + [0] = s(activate(X)) and(tt(),X) = [1] X + [5] >= [1] X + [0] = activate(X) isNat(X) = [1] X + [0] >= [1] X + [4] = n__isNat(X) isNat(n__0()) = [3] >= [1] = tt() isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [0] >= [1] V1 + [1] V2 + [8] = and(isNat(activate(V1)) ,n__isNat(activate(V2))) isNat(n__s(V1)) = [1] V1 + [1] >= [1] V1 + [0] = isNat(activate(V1)) plus(X1,X2) = [1] X1 + [1] X2 + [3] >= [1] X1 + [1] X2 + [0] = n__plus(X1,X2) s(X) = [1] X + [0] >= [1] X + [1] = n__s(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: 0() -> n__0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) isNat(X) -> n__isNat(X) isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) s(X) -> n__s(X) Weak DP Rules: Weak TRS Rules: U11(tt(),N) -> activate(N) U21(tt(),M,N) -> s(plus(activate(N),activate(M))) activate(X) -> X activate(n__0()) -> 0() activate(n__isNat(X)) -> isNat(X) activate(n__s(X)) -> s(activate(X)) and(tt(),X) -> activate(X) isNat(n__0()) -> tt() isNat(n__s(V1)) -> isNat(activate(V1)) plus(X1,X2) -> n__plus(X1,X2) Signature: {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0} Obligation: Innermost basic terms: {0,U11,U21,activate,and,isNat,plus,s}/{n__0,n__isNat,n__plus,n__s,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(and) = {1,2}, uargs(isNat) = {1}, uargs(n__isNat) = {1}, uargs(plus) = {1,2}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(U11) = [4] x2 + [2] p(U21) = [1] x1 + [1] x2 + [3] x3 + [1] p(activate) = [1] x1 + [0] p(and) = [1] x1 + [1] x2 + [0] p(isNat) = [1] x1 + [0] p(n__0) = [3] p(n__isNat) = [1] x1 + [0] p(n__plus) = [1] x1 + [1] x2 + [1] p(n__s) = [1] x1 + [0] p(plus) = [1] x1 + [1] x2 + [1] p(s) = [1] x1 + [0] p(tt) = [0] Following rules are strictly oriented: isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [1] > [1] V1 + [1] V2 + [0] = and(isNat(activate(V1)) ,n__isNat(activate(V2))) Following rules are (at-least) weakly oriented: 0() = [0] >= [3] = n__0() U11(tt(),N) = [4] N + [2] >= [1] N + [0] = activate(N) U21(tt(),M,N) = [1] M + [3] N + [1] >= [1] M + [1] N + [1] = s(plus(activate(N),activate(M))) activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__0()) = [3] >= [0] = 0() activate(n__isNat(X)) = [1] X + [0] >= [1] X + [0] = isNat(X) activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [1] >= [1] X1 + [1] X2 + [1] = plus(activate(X1),activate(X2)) activate(n__s(X)) = [1] X + [0] >= [1] X + [0] = s(activate(X)) and(tt(),X) = [1] X + [0] >= [1] X + [0] = activate(X) isNat(X) = [1] X + [0] >= [1] X + [0] = n__isNat(X) isNat(n__0()) = [3] >= [0] = tt() isNat(n__s(V1)) = [1] V1 + [0] >= [1] V1 + [0] = isNat(activate(V1)) plus(X1,X2) = [1] X1 + [1] X2 + [1] >= [1] X1 + [1] X2 + [1] = n__plus(X1,X2) s(X) = [1] X + [0] >= [1] X + [0] = n__s(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: 0() -> n__0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) isNat(X) -> n__isNat(X) s(X) -> n__s(X) Weak DP Rules: Weak TRS Rules: U11(tt(),N) -> activate(N) U21(tt(),M,N) -> s(plus(activate(N),activate(M))) activate(X) -> X activate(n__0()) -> 0() activate(n__isNat(X)) -> isNat(X) activate(n__s(X)) -> s(activate(X)) and(tt(),X) -> activate(X) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) isNat(n__s(V1)) -> isNat(activate(V1)) plus(X1,X2) -> n__plus(X1,X2) Signature: {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0} Obligation: Innermost basic terms: {0,U11,U21,activate,and,isNat,plus,s}/{n__0,n__isNat,n__plus,n__s,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(and) = {1,2}, uargs(isNat) = {1}, uargs(n__isNat) = {1}, uargs(plus) = {1,2}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [3] p(U11) = [5] x2 + [4] p(U21) = [5] x1 + [1] x2 + [4] x3 + [0] p(activate) = [1] x1 + [2] p(and) = [1] x1 + [1] x2 + [0] p(isNat) = [1] x1 + [1] p(n__0) = [2] p(n__isNat) = [1] x1 + [0] p(n__plus) = [1] x1 + [1] x2 + [7] p(n__s) = [1] x1 + [4] p(plus) = [1] x1 + [1] x2 + [7] p(s) = [1] x1 + [0] p(tt) = [3] Following rules are strictly oriented: 0() = [3] > [2] = n__0() isNat(X) = [1] X + [1] > [1] X + [0] = n__isNat(X) Following rules are (at-least) weakly oriented: U11(tt(),N) = [5] N + [4] >= [1] N + [2] = activate(N) U21(tt(),M,N) = [1] M + [4] N + [15] >= [1] M + [1] N + [11] = s(plus(activate(N),activate(M))) activate(X) = [1] X + [2] >= [1] X + [0] = X activate(n__0()) = [4] >= [3] = 0() activate(n__isNat(X)) = [1] X + [2] >= [1] X + [1] = isNat(X) activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [9] >= [1] X1 + [1] X2 + [11] = plus(activate(X1),activate(X2)) activate(n__s(X)) = [1] X + [6] >= [1] X + [2] = s(activate(X)) and(tt(),X) = [1] X + [3] >= [1] X + [2] = activate(X) isNat(n__0()) = [3] >= [3] = tt() isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [8] >= [1] V1 + [1] V2 + [5] = and(isNat(activate(V1)) ,n__isNat(activate(V2))) isNat(n__s(V1)) = [1] V1 + [5] >= [1] V1 + [3] = isNat(activate(V1)) plus(X1,X2) = [1] X1 + [1] X2 + [7] >= [1] X1 + [1] X2 + [7] = n__plus(X1,X2) s(X) = [1] X + [0] >= [1] X + [4] = n__s(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) s(X) -> n__s(X) Weak DP Rules: Weak TRS Rules: 0() -> n__0() U11(tt(),N) -> activate(N) U21(tt(),M,N) -> s(plus(activate(N),activate(M))) activate(X) -> X activate(n__0()) -> 0() activate(n__isNat(X)) -> isNat(X) activate(n__s(X)) -> s(activate(X)) and(tt(),X) -> activate(X) isNat(X) -> n__isNat(X) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) isNat(n__s(V1)) -> isNat(activate(V1)) plus(X1,X2) -> n__plus(X1,X2) Signature: {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0} Obligation: Innermost basic terms: {0,U11,U21,activate,and,isNat,plus,s}/{n__0,n__isNat,n__plus,n__s,tt} Applied Processor: NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(and) = {1,2}, uargs(isNat) = {1}, uargs(n__isNat) = {1}, uargs(plus) = {1,2}, uargs(s) = {1} Following symbols are considered usable: {0,U11,U21,activate,and,isNat,plus,s} TcT has computed the following interpretation: p(0) = [2] [0] p(U11) = [2 1] x1 + [1 1] x2 + [0] [5 0] [2 1] [3] p(U21) = [0 1] x1 + [2 3] x2 + [4 3] x3 + [1] [2 0] [4 4] [4 1] [0] p(activate) = [1 1] x1 + [0] [0 1] [0] p(and) = [1 1] x1 + [1 2] x2 + [0] [0 0] [0 2] [0] p(isNat) = [1 0] x1 + [0] [0 0] [0] p(n__0) = [2] [0] p(n__isNat) = [1 0] x1 + [0] [0 0] [0] p(n__plus) = [1 1] x1 + [1 1] x2 + [0] [0 1] [0 1] [0] p(n__s) = [1 1] x1 + [0] [0 1] [2] p(plus) = [1 1] x1 + [1 1] x2 + [0] [0 1] [0 1] [0] p(s) = [1 1] x1 + [1] [0 1] [2] p(tt) = [1] [0] Following rules are strictly oriented: s(X) = [1 1] X + [1] [0 1] [2] > [1 1] X + [0] [0 1] [2] = n__s(X) Following rules are (at-least) weakly oriented: 0() = [2] [0] >= [2] [0] = n__0() U11(tt(),N) = [1 1] N + [2] [2 1] [8] >= [1 1] N + [0] [0 1] [0] = activate(N) U21(tt(),M,N) = [2 3] M + [4 3] N + [1] [4 4] [4 1] [2] >= [1 3] M + [1 3] N + [1] [0 1] [0 1] [2] = s(plus(activate(N),activate(M))) activate(X) = [1 1] X + [0] [0 1] [0] >= [1 0] X + [0] [0 1] [0] = X activate(n__0()) = [2] [0] >= [2] [0] = 0() activate(n__isNat(X)) = [1 0] X + [0] [0 0] [0] >= [1 0] X + [0] [0 0] [0] = isNat(X) activate(n__plus(X1,X2)) = [1 2] X1 + [1 2] X2 + [0] [0 1] [0 1] [0] >= [1 2] X1 + [1 2] X2 + [0] [0 1] [0 1] [0] = plus(activate(X1),activate(X2)) activate(n__s(X)) = [1 2] X + [2] [0 1] [2] >= [1 2] X + [1] [0 1] [2] = s(activate(X)) and(tt(),X) = [1 2] X + [1] [0 2] [0] >= [1 1] X + [0] [0 1] [0] = activate(X) isNat(X) = [1 0] X + [0] [0 0] [0] >= [1 0] X + [0] [0 0] [0] = n__isNat(X) isNat(n__0()) = [2] [0] >= [1] [0] = tt() isNat(n__plus(V1,V2)) = [1 1] V1 + [1 1] V2 + [0] [0 0] [0 0] [0] >= [1 1] V1 + [1 1] V2 + [0] [0 0] [0 0] [0] = and(isNat(activate(V1)) ,n__isNat(activate(V2))) isNat(n__s(V1)) = [1 1] V1 + [0] [0 0] [0] >= [1 1] V1 + [0] [0 0] [0] = isNat(activate(V1)) plus(X1,X2) = [1 1] X1 + [1 1] X2 + [0] [0 1] [0 1] [0] >= [1 1] X1 + [1 1] X2 + [0] [0 1] [0 1] [0] = n__plus(X1,X2) *** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) Weak DP Rules: Weak TRS Rules: 0() -> n__0() U11(tt(),N) -> activate(N) U21(tt(),M,N) -> s(plus(activate(N),activate(M))) activate(X) -> X activate(n__0()) -> 0() activate(n__isNat(X)) -> isNat(X) activate(n__s(X)) -> s(activate(X)) and(tt(),X) -> activate(X) isNat(X) -> n__isNat(X) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) isNat(n__s(V1)) -> isNat(activate(V1)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) Signature: {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0} Obligation: Innermost basic terms: {0,U11,U21,activate,and,isNat,plus,s}/{n__0,n__isNat,n__plus,n__s,tt} Applied Processor: NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(and) = {1,2}, uargs(isNat) = {1}, uargs(n__isNat) = {1}, uargs(plus) = {1,2}, uargs(s) = {1} Following symbols are considered usable: {0,U11,U21,activate,and,isNat,plus,s} TcT has computed the following interpretation: p(0) = [2] [4] p(U11) = [4 2] x2 + [6] [0 1] [0] p(U21) = [1 0] x1 + [1 7] x2 + [1 6] x3 + [6] [0 2] [4 1] [0 4] [2] p(activate) = [1 2] x1 + [0] [0 1] [0] p(and) = [1 0] x1 + [1 2] x2 + [2] [0 0] [0 1] [1] p(isNat) = [1 1] x1 + [0] [0 1] [0] p(n__0) = [2] [4] p(n__isNat) = [1 0] x1 + [0] [0 1] [0] p(n__plus) = [1 2] x1 + [1 3] x2 + [1] [0 1] [0 1] [1] p(n__s) = [1 2] x1 + [0] [0 1] [0] p(plus) = [1 2] x1 + [1 3] x2 + [1] [0 1] [0 1] [1] p(s) = [1 2] x1 + [0] [0 1] [0] p(tt) = [2] [0] Following rules are strictly oriented: activate(n__plus(X1,X2)) = [1 4] X1 + [1 5] X2 + [3] [0 1] [0 1] [1] > [1 4] X1 + [1 5] X2 + [1] [0 1] [0 1] [1] = plus(activate(X1),activate(X2)) Following rules are (at-least) weakly oriented: 0() = [2] [4] >= [2] [4] = n__0() U11(tt(),N) = [4 2] N + [6] [0 1] [0] >= [1 2] N + [0] [0 1] [0] = activate(N) U21(tt(),M,N) = [1 7] M + [1 6] N + [8] [4 1] [0 4] [2] >= [1 7] M + [1 6] N + [3] [0 1] [0 1] [1] = s(plus(activate(N),activate(M))) activate(X) = [1 2] X + [0] [0 1] [0] >= [1 0] X + [0] [0 1] [0] = X activate(n__0()) = [10] [4] >= [2] [4] = 0() activate(n__isNat(X)) = [1 2] X + [0] [0 1] [0] >= [1 1] X + [0] [0 1] [0] = isNat(X) activate(n__s(X)) = [1 4] X + [0] [0 1] [0] >= [1 4] X + [0] [0 1] [0] = s(activate(X)) and(tt(),X) = [1 2] X + [4] [0 1] [1] >= [1 2] X + [0] [0 1] [0] = activate(X) isNat(X) = [1 1] X + [0] [0 1] [0] >= [1 0] X + [0] [0 1] [0] = n__isNat(X) isNat(n__0()) = [6] [4] >= [2] [0] = tt() isNat(n__plus(V1,V2)) = [1 3] V1 + [1 4] V2 + [2] [0 1] [0 1] [1] >= [1 3] V1 + [1 4] V2 + [2] [0 0] [0 1] [1] = and(isNat(activate(V1)) ,n__isNat(activate(V2))) isNat(n__s(V1)) = [1 3] V1 + [0] [0 1] [0] >= [1 3] V1 + [0] [0 1] [0] = isNat(activate(V1)) plus(X1,X2) = [1 2] X1 + [1 3] X2 + [1] [0 1] [0 1] [1] >= [1 2] X1 + [1 3] X2 + [1] [0 1] [0 1] [1] = n__plus(X1,X2) s(X) = [1 2] X + [0] [0 1] [0] >= [1 2] X + [0] [0 1] [0] = n__s(X) *** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: 0() -> n__0() U11(tt(),N) -> activate(N) U21(tt(),M,N) -> s(plus(activate(N),activate(M))) activate(X) -> X activate(n__0()) -> 0() activate(n__isNat(X)) -> isNat(X) activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) and(tt(),X) -> activate(X) isNat(X) -> n__isNat(X) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2))) isNat(n__s(V1)) -> isNat(activate(V1)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) Signature: {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0} Obligation: Innermost basic terms: {0,U11,U21,activate,and,isNat,plus,s}/{n__0,n__isNat,n__plus,n__s,tt} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).