We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { U11(tt(), N) -> activate(N)
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__isNat(X)) -> isNat(X)
  , activate(n__s(X)) -> s(activate(X))
  , U21(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , plus(N, s(M)) -> U21(and(isNat(M), n__isNat(N)), M, N)
  , plus(N, 0()) -> U11(isNat(N), N)
  , and(tt(), X) -> activate(X)
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , isNat(n__s(V1)) -> isNat(activate(V1))
  , 0() -> n__0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

Arguments of following rules are not normal-forms:

{ plus(N, s(M)) -> U21(and(isNat(M), n__isNat(N)), M, N)
, plus(N, 0()) -> U11(isNat(N), N) }

All above mentioned rules can be savely removed.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { U11(tt(), N) -> activate(N)
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__isNat(X)) -> isNat(X)
  , activate(n__s(X)) -> s(activate(X))
  , U21(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , and(tt(), X) -> activate(X)
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , isNat(n__s(V1)) -> isNat(activate(V1))
  , 0() -> n__0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(s) = {1}, Uargs(plus) = {1, 2}, Uargs(and) = {1, 2},
  Uargs(isNat) = {1}, Uargs(n__isNat) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

      [U11](x1, x2) = [1] x1 + [1] x2 + [4]
                                           
               [tt] = [0]                  
                                           
     [activate](x1) = [1] x1 + [0]         
                                           
  [U21](x1, x2, x3) = [1] x2 + [1] x3 + [2]
                                           
            [s](x1) = [1] x1 + [0]         
                                           
     [plus](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
      [and](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
        [isNat](x1) = [1] x1 + [0]         
                                           
             [n__0] = [0]                  
                                           
  [n__plus](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
     [n__isNat](x1) = [1] x1 + [0]         
                                           
         [n__s](x1) = [1] x1 + [0]         
                                           
                [0] = [1]                  

The order satisfies the following ordering constraints:

               [U11(tt(), N)] =  [1] N + [4]                                       
                              >  [1] N + [0]                                       
                              =  [activate(N)]                                     
                                                                                   
                [activate(X)] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [X]                                               
                                                                                   
           [activate(n__0())] =  [0]                                               
                              ?  [1]                                               
                              =  [0()]                                             
                                                                                   
  [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [0]                             
                              >= [1] X1 + [1] X2 + [0]                             
                              =  [plus(activate(X1), activate(X2))]                
                                                                                   
      [activate(n__isNat(X))] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [isNat(X)]                                        
                                                                                   
          [activate(n__s(X))] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [s(activate(X))]                                  
                                                                                   
            [U21(tt(), M, N)] =  [1] N + [1] M + [2]                               
                              >  [1] N + [1] M + [0]                               
                              =  [s(plus(activate(N), activate(M)))]               
                                                                                   
                       [s(X)] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [n__s(X)]                                         
                                                                                   
               [plus(X1, X2)] =  [1] X1 + [1] X2 + [0]                             
                              >= [1] X1 + [1] X2 + [0]                             
                              =  [n__plus(X1, X2)]                                 
                                                                                   
               [and(tt(), X)] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [activate(X)]                                     
                                                                                   
                   [isNat(X)] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [n__isNat(X)]                                     
                                                                                   
              [isNat(n__0())] =  [0]                                               
                              >= [0]                                               
                              =  [tt()]                                            
                                                                                   
     [isNat(n__plus(V1, V2))] =  [1] V1 + [1] V2 + [0]                             
                              >= [1] V1 + [1] V2 + [0]                             
                              =  [and(isNat(activate(V1)), n__isNat(activate(V2)))]
                                                                                   
            [isNat(n__s(V1))] =  [1] V1 + [0]                                      
                              >= [1] V1 + [0]                                      
                              =  [isNat(activate(V1))]                             
                                                                                   
                        [0()] =  [1]                                               
                              >  [0]                                               
                              =  [n__0()]                                          
                                                                                   

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__isNat(X)) -> isNat(X)
  , activate(n__s(X)) -> s(activate(X))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , and(tt(), X) -> activate(X)
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , isNat(n__s(V1)) -> isNat(activate(V1)) }
Weak Trs:
  { U11(tt(), N) -> activate(N)
  , U21(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , 0() -> n__0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(s) = {1}, Uargs(plus) = {1, 2}, Uargs(and) = {1, 2},
  Uargs(isNat) = {1}, Uargs(n__isNat) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

      [U11](x1, x2) = [1] x1 + [1] x2 + [4]         
                                                    
               [tt] = [1]                           
                                                    
     [activate](x1) = [1] x1 + [0]                  
                                                    
  [U21](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [7]
                                                    
            [s](x1) = [1] x1 + [0]                  
                                                    
     [plus](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                    
      [and](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                    
        [isNat](x1) = [1] x1 + [0]                  
                                                    
             [n__0] = [0]                           
                                                    
  [n__plus](x1, x2) = [1] x1 + [1] x2 + [1]         
                                                    
     [n__isNat](x1) = [1] x1 + [0]                  
                                                    
         [n__s](x1) = [1] x1 + [0]                  
                                                    
                [0] = [5]                           

The order satisfies the following ordering constraints:

               [U11(tt(), N)] =  [1] N + [5]                                       
                              >  [1] N + [0]                                       
                              =  [activate(N)]                                     
                                                                                   
                [activate(X)] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [X]                                               
                                                                                   
           [activate(n__0())] =  [0]                                               
                              ?  [5]                                               
                              =  [0()]                                             
                                                                                   
  [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [1]                             
                              >  [1] X1 + [1] X2 + [0]                             
                              =  [plus(activate(X1), activate(X2))]                
                                                                                   
      [activate(n__isNat(X))] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [isNat(X)]                                        
                                                                                   
          [activate(n__s(X))] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [s(activate(X))]                                  
                                                                                   
            [U21(tt(), M, N)] =  [1] N + [1] M + [8]                               
                              >  [1] N + [1] M + [0]                               
                              =  [s(plus(activate(N), activate(M)))]               
                                                                                   
                       [s(X)] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [n__s(X)]                                         
                                                                                   
               [plus(X1, X2)] =  [1] X1 + [1] X2 + [0]                             
                              ?  [1] X1 + [1] X2 + [1]                             
                              =  [n__plus(X1, X2)]                                 
                                                                                   
               [and(tt(), X)] =  [1] X + [1]                                       
                              >  [1] X + [0]                                       
                              =  [activate(X)]                                     
                                                                                   
                   [isNat(X)] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [n__isNat(X)]                                     
                                                                                   
              [isNat(n__0())] =  [0]                                               
                              ?  [1]                                               
                              =  [tt()]                                            
                                                                                   
     [isNat(n__plus(V1, V2))] =  [1] V1 + [1] V2 + [1]                             
                              >  [1] V1 + [1] V2 + [0]                             
                              =  [and(isNat(activate(V1)), n__isNat(activate(V2)))]
                                                                                   
            [isNat(n__s(V1))] =  [1] V1 + [0]                                      
                              >= [1] V1 + [0]                                      
                              =  [isNat(activate(V1))]                             
                                                                                   
                        [0()] =  [5]                                               
                              >  [0]                                               
                              =  [n__0()]                                          
                                                                                   

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__isNat(X)) -> isNat(X)
  , activate(n__s(X)) -> s(activate(X))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__s(V1)) -> isNat(activate(V1)) }
Weak Trs:
  { U11(tt(), N) -> activate(N)
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , U21(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , and(tt(), X) -> activate(X)
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , 0() -> n__0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(s) = {1}, Uargs(plus) = {1, 2}, Uargs(and) = {1, 2},
  Uargs(isNat) = {1}, Uargs(n__isNat) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

      [U11](x1, x2) = [1] x2 + [4]                  
                                                    
               [tt] = [4]                           
                                                    
     [activate](x1) = [1] x1 + [0]                  
                                                    
  [U21](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [5]
                                                    
            [s](x1) = [1] x1 + [0]                  
                                                    
     [plus](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                    
      [and](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                    
        [isNat](x1) = [1] x1 + [0]                  
                                                    
             [n__0] = [0]                           
                                                    
  [n__plus](x1, x2) = [1] x1 + [1] x2 + [1]         
                                                    
     [n__isNat](x1) = [1] x1 + [1]                  
                                                    
         [n__s](x1) = [1] x1 + [0]                  
                                                    
                [0] = [5]                           

The order satisfies the following ordering constraints:

               [U11(tt(), N)] =  [1] N + [4]                                       
                              >  [1] N + [0]                                       
                              =  [activate(N)]                                     
                                                                                   
                [activate(X)] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [X]                                               
                                                                                   
           [activate(n__0())] =  [0]                                               
                              ?  [5]                                               
                              =  [0()]                                             
                                                                                   
  [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [1]                             
                              >  [1] X1 + [1] X2 + [0]                             
                              =  [plus(activate(X1), activate(X2))]                
                                                                                   
      [activate(n__isNat(X))] =  [1] X + [1]                                       
                              >  [1] X + [0]                                       
                              =  [isNat(X)]                                        
                                                                                   
          [activate(n__s(X))] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [s(activate(X))]                                  
                                                                                   
            [U21(tt(), M, N)] =  [1] N + [1] M + [9]                               
                              >  [1] N + [1] M + [0]                               
                              =  [s(plus(activate(N), activate(M)))]               
                                                                                   
                       [s(X)] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [n__s(X)]                                         
                                                                                   
               [plus(X1, X2)] =  [1] X1 + [1] X2 + [0]                             
                              ?  [1] X1 + [1] X2 + [1]                             
                              =  [n__plus(X1, X2)]                                 
                                                                                   
               [and(tt(), X)] =  [1] X + [4]                                       
                              >  [1] X + [0]                                       
                              =  [activate(X)]                                     
                                                                                   
                   [isNat(X)] =  [1] X + [0]                                       
                              ?  [1] X + [1]                                       
                              =  [n__isNat(X)]                                     
                                                                                   
              [isNat(n__0())] =  [0]                                               
                              ?  [4]                                               
                              =  [tt()]                                            
                                                                                   
     [isNat(n__plus(V1, V2))] =  [1] V1 + [1] V2 + [1]                             
                              >= [1] V1 + [1] V2 + [1]                             
                              =  [and(isNat(activate(V1)), n__isNat(activate(V2)))]
                                                                                   
            [isNat(n__s(V1))] =  [1] V1 + [0]                                      
                              >= [1] V1 + [0]                                      
                              =  [isNat(activate(V1))]                             
                                                                                   
                        [0()] =  [5]                                               
                              >  [0]                                               
                              =  [n__0()]                                          
                                                                                   

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__s(X)) -> s(activate(X))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__s(V1)) -> isNat(activate(V1)) }
Weak Trs:
  { U11(tt(), N) -> activate(N)
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__isNat(X)) -> isNat(X)
  , U21(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , and(tt(), X) -> activate(X)
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , 0() -> n__0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(s) = {1}, Uargs(plus) = {1, 2}, Uargs(and) = {1, 2},
  Uargs(isNat) = {1}, Uargs(n__isNat) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

      [U11](x1, x2) = [1] x2 + [4]                  
                                                    
               [tt] = [4]                           
                                                    
     [activate](x1) = [1] x1 + [0]                  
                                                    
  [U21](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [4]
                                                    
            [s](x1) = [1] x1 + [1]                  
                                                    
     [plus](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                    
      [and](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                    
        [isNat](x1) = [1] x1 + [0]                  
                                                    
             [n__0] = [0]                           
                                                    
  [n__plus](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                    
     [n__isNat](x1) = [1] x1 + [0]                  
                                                    
         [n__s](x1) = [1] x1 + [0]                  
                                                    
                [0] = [5]                           

The order satisfies the following ordering constraints:

               [U11(tt(), N)] =  [1] N + [4]                                       
                              >  [1] N + [0]                                       
                              =  [activate(N)]                                     
                                                                                   
                [activate(X)] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [X]                                               
                                                                                   
           [activate(n__0())] =  [0]                                               
                              ?  [5]                                               
                              =  [0()]                                             
                                                                                   
  [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [0]                             
                              >= [1] X1 + [1] X2 + [0]                             
                              =  [plus(activate(X1), activate(X2))]                
                                                                                   
      [activate(n__isNat(X))] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [isNat(X)]                                        
                                                                                   
          [activate(n__s(X))] =  [1] X + [0]                                       
                              ?  [1] X + [1]                                       
                              =  [s(activate(X))]                                  
                                                                                   
            [U21(tt(), M, N)] =  [1] N + [1] M + [8]                               
                              >  [1] N + [1] M + [1]                               
                              =  [s(plus(activate(N), activate(M)))]               
                                                                                   
                       [s(X)] =  [1] X + [1]                                       
                              >  [1] X + [0]                                       
                              =  [n__s(X)]                                         
                                                                                   
               [plus(X1, X2)] =  [1] X1 + [1] X2 + [0]                             
                              >= [1] X1 + [1] X2 + [0]                             
                              =  [n__plus(X1, X2)]                                 
                                                                                   
               [and(tt(), X)] =  [1] X + [4]                                       
                              >  [1] X + [0]                                       
                              =  [activate(X)]                                     
                                                                                   
                   [isNat(X)] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [n__isNat(X)]                                     
                                                                                   
              [isNat(n__0())] =  [0]                                               
                              ?  [4]                                               
                              =  [tt()]                                            
                                                                                   
     [isNat(n__plus(V1, V2))] =  [1] V1 + [1] V2 + [0]                             
                              >= [1] V1 + [1] V2 + [0]                             
                              =  [and(isNat(activate(V1)), n__isNat(activate(V2)))]
                                                                                   
            [isNat(n__s(V1))] =  [1] V1 + [0]                                      
                              >= [1] V1 + [0]                                      
                              =  [isNat(activate(V1))]                             
                                                                                   
                        [0()] =  [5]                                               
                              >  [0]                                               
                              =  [n__0()]                                          
                                                                                   

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__s(X)) -> s(activate(X))
  , plus(X1, X2) -> n__plus(X1, X2)
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__s(V1)) -> isNat(activate(V1)) }
Weak Trs:
  { U11(tt(), N) -> activate(N)
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__isNat(X)) -> isNat(X)
  , U21(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , and(tt(), X) -> activate(X)
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , 0() -> n__0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(s) = {1}, Uargs(plus) = {1, 2}, Uargs(and) = {1, 2},
  Uargs(isNat) = {1}, Uargs(n__isNat) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

      [U11](x1, x2) = [1] x2 + [4]                  
                                                    
               [tt] = [4]                           
                                                    
     [activate](x1) = [1] x1 + [0]                  
                                                    
  [U21](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [4]
                                                    
            [s](x1) = [1] x1 + [0]                  
                                                    
     [plus](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                    
      [and](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                    
        [isNat](x1) = [1] x1 + [0]                  
                                                    
             [n__0] = [5]                           
                                                    
  [n__plus](x1, x2) = [1] x1 + [1] x2 + [1]         
                                                    
     [n__isNat](x1) = [1] x1 + [0]                  
                                                    
         [n__s](x1) = [1] x1 + [0]                  
                                                    
                [0] = [5]                           

The order satisfies the following ordering constraints:

               [U11(tt(), N)] =  [1] N + [4]                                       
                              >  [1] N + [0]                                       
                              =  [activate(N)]                                     
                                                                                   
                [activate(X)] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [X]                                               
                                                                                   
           [activate(n__0())] =  [5]                                               
                              >= [5]                                               
                              =  [0()]                                             
                                                                                   
  [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [1]                             
                              >  [1] X1 + [1] X2 + [0]                             
                              =  [plus(activate(X1), activate(X2))]                
                                                                                   
      [activate(n__isNat(X))] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [isNat(X)]                                        
                                                                                   
          [activate(n__s(X))] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [s(activate(X))]                                  
                                                                                   
            [U21(tt(), M, N)] =  [1] N + [1] M + [8]                               
                              >  [1] N + [1] M + [0]                               
                              =  [s(plus(activate(N), activate(M)))]               
                                                                                   
                       [s(X)] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [n__s(X)]                                         
                                                                                   
               [plus(X1, X2)] =  [1] X1 + [1] X2 + [0]                             
                              ?  [1] X1 + [1] X2 + [1]                             
                              =  [n__plus(X1, X2)]                                 
                                                                                   
               [and(tt(), X)] =  [1] X + [4]                                       
                              >  [1] X + [0]                                       
                              =  [activate(X)]                                     
                                                                                   
                   [isNat(X)] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [n__isNat(X)]                                     
                                                                                   
              [isNat(n__0())] =  [5]                                               
                              >  [4]                                               
                              =  [tt()]                                            
                                                                                   
     [isNat(n__plus(V1, V2))] =  [1] V1 + [1] V2 + [1]                             
                              >  [1] V1 + [1] V2 + [0]                             
                              =  [and(isNat(activate(V1)), n__isNat(activate(V2)))]
                                                                                   
            [isNat(n__s(V1))] =  [1] V1 + [0]                                      
                              >= [1] V1 + [0]                                      
                              =  [isNat(activate(V1))]                             
                                                                                   
                        [0()] =  [5]                                               
                              >= [5]                                               
                              =  [n__0()]                                          
                                                                                   

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__s(X)) -> s(activate(X))
  , plus(X1, X2) -> n__plus(X1, X2)
  , isNat(X) -> n__isNat(X)
  , isNat(n__s(V1)) -> isNat(activate(V1)) }
Weak Trs:
  { U11(tt(), N) -> activate(N)
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__isNat(X)) -> isNat(X)
  , U21(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , and(tt(), X) -> activate(X)
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , 0() -> n__0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(s) = {1}, Uargs(plus) = {1, 2}, Uargs(and) = {1, 2},
  Uargs(isNat) = {1}, Uargs(n__isNat) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

      [U11](x1, x2) = [1] x2 + [4]         
                                           
               [tt] = [0]                  
                                           
     [activate](x1) = [1] x1 + [0]         
                                           
  [U21](x1, x2, x3) = [1] x2 + [1] x3 + [5]
                                           
            [s](x1) = [1] x1 + [1]         
                                           
     [plus](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
      [and](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
        [isNat](x1) = [1] x1 + [0]         
                                           
             [n__0] = [0]                  
                                           
  [n__plus](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
     [n__isNat](x1) = [1] x1 + [0]         
                                           
         [n__s](x1) = [1] x1 + [1]         
                                           
                [0] = [1]                  

The order satisfies the following ordering constraints:

               [U11(tt(), N)] =  [1] N + [4]                                       
                              >  [1] N + [0]                                       
                              =  [activate(N)]                                     
                                                                                   
                [activate(X)] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [X]                                               
                                                                                   
           [activate(n__0())] =  [0]                                               
                              ?  [1]                                               
                              =  [0()]                                             
                                                                                   
  [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [0]                             
                              >= [1] X1 + [1] X2 + [0]                             
                              =  [plus(activate(X1), activate(X2))]                
                                                                                   
      [activate(n__isNat(X))] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [isNat(X)]                                        
                                                                                   
          [activate(n__s(X))] =  [1] X + [1]                                       
                              >= [1] X + [1]                                       
                              =  [s(activate(X))]                                  
                                                                                   
            [U21(tt(), M, N)] =  [1] N + [1] M + [5]                               
                              >  [1] N + [1] M + [1]                               
                              =  [s(plus(activate(N), activate(M)))]               
                                                                                   
                       [s(X)] =  [1] X + [1]                                       
                              >= [1] X + [1]                                       
                              =  [n__s(X)]                                         
                                                                                   
               [plus(X1, X2)] =  [1] X1 + [1] X2 + [0]                             
                              >= [1] X1 + [1] X2 + [0]                             
                              =  [n__plus(X1, X2)]                                 
                                                                                   
               [and(tt(), X)] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [activate(X)]                                     
                                                                                   
                   [isNat(X)] =  [1] X + [0]                                       
                              >= [1] X + [0]                                       
                              =  [n__isNat(X)]                                     
                                                                                   
              [isNat(n__0())] =  [0]                                               
                              >= [0]                                               
                              =  [tt()]                                            
                                                                                   
     [isNat(n__plus(V1, V2))] =  [1] V1 + [1] V2 + [0]                             
                              >= [1] V1 + [1] V2 + [0]                             
                              =  [and(isNat(activate(V1)), n__isNat(activate(V2)))]
                                                                                   
            [isNat(n__s(V1))] =  [1] V1 + [1]                                      
                              >  [1] V1 + [0]                                      
                              =  [isNat(activate(V1))]                             
                                                                                   
                        [0()] =  [1]                                               
                              >  [0]                                               
                              =  [n__0()]                                          
                                                                                   

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__s(X)) -> s(activate(X))
  , plus(X1, X2) -> n__plus(X1, X2)
  , isNat(X) -> n__isNat(X) }
Weak Trs:
  { U11(tt(), N) -> activate(N)
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__isNat(X)) -> isNat(X)
  , U21(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , and(tt(), X) -> activate(X)
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , isNat(n__s(V1)) -> isNat(activate(V1))
  , 0() -> n__0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(s) = {1}, Uargs(plus) = {1, 2}, Uargs(and) = {1, 2},
  Uargs(isNat) = {1}, Uargs(n__isNat) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

      [U11](x1, x2) = [1] x2 + [6]                  
                                                    
               [tt] = [7]                           
                                                    
     [activate](x1) = [1] x1 + [2]                  
                                                    
  [U21](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [7]
                                                    
            [s](x1) = [1] x1 + [6]                  
                                                    
     [plus](x1, x2) = [1] x1 + [1] x2 + [4]         
                                                    
      [and](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                    
        [isNat](x1) = [1] x1 + [3]                  
                                                    
             [n__0] = [4]                           
                                                    
  [n__plus](x1, x2) = [1] x1 + [1] x2 + [7]         
                                                    
     [n__isNat](x1) = [1] x1 + [2]                  
                                                    
         [n__s](x1) = [1] x1 + [6]                  
                                                    
                [0] = [5]                           

The order satisfies the following ordering constraints:

               [U11(tt(), N)] =  [1] N + [6]                                       
                              >  [1] N + [2]                                       
                              =  [activate(N)]                                     
                                                                                   
                [activate(X)] =  [1] X + [2]                                       
                              >  [1] X + [0]                                       
                              =  [X]                                               
                                                                                   
           [activate(n__0())] =  [6]                                               
                              >  [5]                                               
                              =  [0()]                                             
                                                                                   
  [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [9]                             
                              >  [1] X1 + [1] X2 + [8]                             
                              =  [plus(activate(X1), activate(X2))]                
                                                                                   
      [activate(n__isNat(X))] =  [1] X + [4]                                       
                              >  [1] X + [3]                                       
                              =  [isNat(X)]                                        
                                                                                   
          [activate(n__s(X))] =  [1] X + [8]                                       
                              >= [1] X + [8]                                       
                              =  [s(activate(X))]                                  
                                                                                   
            [U21(tt(), M, N)] =  [1] N + [1] M + [14]                              
                              >= [1] N + [1] M + [14]                              
                              =  [s(plus(activate(N), activate(M)))]               
                                                                                   
                       [s(X)] =  [1] X + [6]                                       
                              >= [1] X + [6]                                       
                              =  [n__s(X)]                                         
                                                                                   
               [plus(X1, X2)] =  [1] X1 + [1] X2 + [4]                             
                              ?  [1] X1 + [1] X2 + [7]                             
                              =  [n__plus(X1, X2)]                                 
                                                                                   
               [and(tt(), X)] =  [1] X + [7]                                       
                              >  [1] X + [2]                                       
                              =  [activate(X)]                                     
                                                                                   
                   [isNat(X)] =  [1] X + [3]                                       
                              >  [1] X + [2]                                       
                              =  [n__isNat(X)]                                     
                                                                                   
              [isNat(n__0())] =  [7]                                               
                              >= [7]                                               
                              =  [tt()]                                            
                                                                                   
     [isNat(n__plus(V1, V2))] =  [1] V1 + [1] V2 + [10]                            
                              >  [1] V1 + [1] V2 + [9]                             
                              =  [and(isNat(activate(V1)), n__isNat(activate(V2)))]
                                                                                   
            [isNat(n__s(V1))] =  [1] V1 + [9]                                      
                              >  [1] V1 + [5]                                      
                              =  [isNat(activate(V1))]                             
                                                                                   
                        [0()] =  [5]                                               
                              >  [4]                                               
                              =  [n__0()]                                          
                                                                                   

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { activate(n__s(X)) -> s(activate(X))
  , plus(X1, X2) -> n__plus(X1, X2) }
Weak Trs:
  { U11(tt(), N) -> activate(N)
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__isNat(X)) -> isNat(X)
  , U21(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , and(tt(), X) -> activate(X)
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , isNat(n__s(V1)) -> isNat(activate(V1))
  , 0() -> n__0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We use the processor 'matrix interpretation of dimension 2' to
orient following rules strictly.

Trs:
  { activate(n__s(X)) -> s(activate(X))
  , plus(X1, X2) -> n__plus(X1, X2) }

The induced complexity on above rules (modulo remaining rules) is
YES(?,O(n^2)) . These rules are moved into the corresponding weak
component(s).

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(s) = {1}, Uargs(plus) = {1, 2}, Uargs(and) = {1, 2},
    Uargs(isNat) = {1}, Uargs(n__isNat) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
        [U11](x1, x2) = [7 7] x2 + [5]                      
                        [7 7]      [4]                      
                                                            
                 [tt] = [1]                                 
                        [0]                                 
                                                            
       [activate](x1) = [1 2] x1 + [1]                      
                        [0 1]      [0]                      
                                                            
    [U21](x1, x2, x3) = [6 0] x1 + [7 7] x2 + [7 7] x3 + [7]
                        [0 0]      [7 7]      [7 7]      [4]
                                                            
              [s](x1) = [1 3] x1 + [0]                      
                        [0 1]      [1]                      
                                                            
       [plus](x1, x2) = [1 2] x1 + [1 2] x2 + [4]           
                        [0 1]      [0 1]      [2]           
                                                            
        [and](x1, x2) = [1 0] x1 + [1 2] x2 + [0]           
                        [0 0]      [0 1]      [0]           
                                                            
          [isNat](x1) = [1 4] x1 + [4]                      
                        [0 1]      [0]                      
                                                            
               [n__0] = [4]                                 
                        [0]                                 
                                                            
    [n__plus](x1, x2) = [1 2] x1 + [1 2] x2 + [1]           
                        [0 1]      [0 1]      [2]           
                                                            
       [n__isNat](x1) = [1 2] x1 + [3]                      
                        [0 1]      [0]                      
                                                            
           [n__s](x1) = [1 3] x1 + [0]                      
                        [0 1]      [1]                      
                                                            
                  [0] = [5]                                 
                        [0]                                 
  
  The order satisfies the following ordering constraints:
  
                 [U11(tt(), N)] =  [7 7] N + [5]                                     
                                   [7 7]     [4]                                     
                                >  [1 2] N + [1]                                     
                                   [0 1]     [0]                                     
                                =  [activate(N)]                                     
                                                                                     
                  [activate(X)] =  [1 2] X + [1]                                     
                                   [0 1]     [0]                                     
                                >  [1 0] X + [0]                                     
                                   [0 1]     [0]                                     
                                =  [X]                                               
                                                                                     
             [activate(n__0())] =  [5]                                               
                                   [0]                                               
                                >= [5]                                               
                                   [0]                                               
                                =  [0()]                                             
                                                                                     
    [activate(n__plus(X1, X2))] =  [1 4] X1 + [1 4] X2 + [6]                         
                                   [0 1]      [0 1]      [2]                         
                                >= [1 4] X1 + [1 4] X2 + [6]                         
                                   [0 1]      [0 1]      [2]                         
                                =  [plus(activate(X1), activate(X2))]                
                                                                                     
        [activate(n__isNat(X))] =  [1 4] X + [4]                                     
                                   [0 1]     [0]                                     
                                >= [1 4] X + [4]                                     
                                   [0 1]     [0]                                     
                                =  [isNat(X)]                                        
                                                                                     
            [activate(n__s(X))] =  [1 5] X + [3]                                     
                                   [0 1]     [1]                                     
                                >  [1 5] X + [1]                                     
                                   [0 1]     [1]                                     
                                =  [s(activate(X))]                                  
                                                                                     
              [U21(tt(), M, N)] =  [7 7] N + [7 7] M + [13]                          
                                   [7 7]     [7 7]     [4]                           
                                >  [1 7] N + [1 7] M + [12]                          
                                   [0 1]     [0 1]     [3]                           
                                =  [s(plus(activate(N), activate(M)))]               
                                                                                     
                         [s(X)] =  [1 3] X + [0]                                     
                                   [0 1]     [1]                                     
                                >= [1 3] X + [0]                                     
                                   [0 1]     [1]                                     
                                =  [n__s(X)]                                         
                                                                                     
                 [plus(X1, X2)] =  [1 2] X1 + [1 2] X2 + [4]                         
                                   [0 1]      [0 1]      [2]                         
                                >  [1 2] X1 + [1 2] X2 + [1]                         
                                   [0 1]      [0 1]      [2]                         
                                =  [n__plus(X1, X2)]                                 
                                                                                     
                 [and(tt(), X)] =  [1 2] X + [1]                                     
                                   [0 1]     [0]                                     
                                >= [1 2] X + [1]                                     
                                   [0 1]     [0]                                     
                                =  [activate(X)]                                     
                                                                                     
                     [isNat(X)] =  [1 4] X + [4]                                     
                                   [0 1]     [0]                                     
                                >  [1 2] X + [3]                                     
                                   [0 1]     [0]                                     
                                =  [n__isNat(X)]                                     
                                                                                     
                [isNat(n__0())] =  [8]                                               
                                   [0]                                               
                                >  [1]                                               
                                   [0]                                               
                                =  [tt()]                                            
                                                                                     
       [isNat(n__plus(V1, V2))] =  [1 6] V1 + [1 6] V2 + [13]                        
                                   [0 1]      [0 1]      [2]                         
                                >  [1 6] V1 + [1 6] V2 + [9]                         
                                   [0 0]      [0 1]      [0]                         
                                =  [and(isNat(activate(V1)), n__isNat(activate(V2)))]
                                                                                     
              [isNat(n__s(V1))] =  [1 7] V1 + [8]                                    
                                   [0 1]      [1]                                    
                                >  [1 6] V1 + [5]                                    
                                   [0 1]      [0]                                    
                                =  [isNat(activate(V1))]                             
                                                                                     
                          [0()] =  [5]                                               
                                   [0]                                               
                                >  [4]                                               
                                   [0]                                               
                                =  [n__0()]                                          
                                                                                     

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak Trs:
  { U11(tt(), N) -> activate(N)
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__isNat(X)) -> isNat(X)
  , activate(n__s(X)) -> s(activate(X))
  , U21(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , and(tt(), X) -> activate(X)
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , isNat(n__s(V1)) -> isNat(activate(V1))
  , 0() -> n__0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^2))