*** 1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),N) -> activate(N)
        U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
        U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        plus(N,0()) -> U31(isNat(N),N)
        plus(N,s(M)) -> U41(isNat(M),M,N)
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      InnermostRuleRemoval
    Proof:
      Arguments of following rules are not normal-forms.
        plus(N,0()) -> U31(isNat(N),N)
        plus(N,s(M)) -> U41(isNat(M),M,N)
      All above mentioned rules can be savely removed.
*** 1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),N) -> activate(N)
        U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
        U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U42) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                           
               p(U11) = [1] x1 + [1] x2 + [0]         
               p(U12) = [1] x1 + [0]                  
               p(U21) = [1] x1 + [0]                  
               p(U31) = [1] x2 + [0]                  
               p(U41) = [1] x2 + [2] x3 + [0]         
               p(U42) = [1] x1 + [1] x2 + [1] x3 + [9]
          p(activate) = [1] x1 + [0]                  
             p(isNat) = [1] x1 + [8]                  
              p(n__0) = [9]                           
           p(n__plus) = [1] x1 + [1] x2 + [0]         
              p(n__s) = [1] x1 + [0]                  
              p(plus) = [1] x1 + [1] x2 + [5]         
                 p(s) = [1] x1 + [12]                 
                p(tt) = [8]                           
        
        Following rules are strictly oriented:
        activate(n__0()) = [9]                  
                         > [0]                  
                         = 0()                  
        
           isNat(n__0()) = [17]                 
                         > [8]                  
                         = tt()                 
        
             plus(X1,X2) = [1] X1 + [1] X2 + [5]
                         > [1] X1 + [1] X2 + [0]
                         = n__plus(X1,X2)       
        
                    s(X) = [1] X + [12]         
                         > [1] X + [0]          
                         = n__s(X)              
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                             
                                 >= [9]                             
                                 =  n__0()                          
        
                    U11(tt(),V2) =  [1] V2 + [8]                    
                                 >= [1] V2 + [8]                    
                                 =  U12(isNat(activate(V2)))        
        
                       U12(tt()) =  [8]                             
                                 >= [8]                             
                                 =  tt()                            
        
                       U21(tt()) =  [8]                             
                                 >= [8]                             
                                 =  tt()                            
        
                     U31(tt(),N) =  [1] N + [0]                     
                                 >= [1] N + [0]                     
                                 =  activate(N)                     
        
                   U41(tt(),M,N) =  [1] M + [2] N + [0]             
                                 >= [1] M + [2] N + [17]            
                                 =  U42(isNat(activate(N))          
                                       ,activate(M)                 
                                       ,activate(N))                
        
                   U42(tt(),M,N) =  [1] M + [1] N + [17]            
                                 >= [1] M + [1] N + [17]            
                                 =  s(plus(activate(N),activate(M)))
        
                     activate(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  X                               
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]           
                                 >= [1] X1 + [1] X2 + [5]           
                                 =  plus(X1,X2)                     
        
               activate(n__s(X)) =  [1] X + [0]                     
                                 >= [1] X + [12]                    
                                 =  s(X)                            
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [8]           
                                 >= [1] V1 + [1] V2 + [8]           
                                 =  U11(isNat(activate(V1))         
                                       ,activate(V2))               
        
                 isNat(n__s(V1)) =  [1] V1 + [8]                    
                                 >= [1] V1 + [8]                    
                                 =  U21(isNat(activate(V1)))        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),N) -> activate(N)
        U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
        U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(n__0()) -> 0()
        isNat(n__0()) -> tt()
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U42) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [1]                            
               p(U11) = [1] x1 + [1] x2 + [13]         
               p(U12) = [1] x1 + [0]                   
               p(U21) = [1] x1 + [0]                   
               p(U31) = [1] x2 + [0]                   
               p(U41) = [1] x2 + [2] x3 + [0]          
               p(U42) = [1] x1 + [1] x2 + [1] x3 + [15]
          p(activate) = [1] x1 + [0]                   
             p(isNat) = [1] x1 + [2]                   
              p(n__0) = [1]                            
           p(n__plus) = [1] x1 + [1] x2 + [3]          
              p(n__s) = [1] x1 + [15]                  
              p(plus) = [1] x1 + [1] x2 + [3]          
                 p(s) = [1] x1 + [15]                  
                p(tt) = [3]                            
        
        Following rules are strictly oriented:
           U11(tt(),V2) = [1] V2 + [16]           
                        > [1] V2 + [2]            
                        = U12(isNat(activate(V2)))
        
        isNat(n__s(V1)) = [1] V1 + [17]           
                        > [1] V1 + [2]            
                        = U21(isNat(activate(V1)))
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [1]                             
                                 >= [1]                             
                                 =  n__0()                          
        
                       U12(tt()) =  [3]                             
                                 >= [3]                             
                                 =  tt()                            
        
                       U21(tt()) =  [3]                             
                                 >= [3]                             
                                 =  tt()                            
        
                     U31(tt(),N) =  [1] N + [0]                     
                                 >= [1] N + [0]                     
                                 =  activate(N)                     
        
                   U41(tt(),M,N) =  [1] M + [2] N + [0]             
                                 >= [1] M + [2] N + [17]            
                                 =  U42(isNat(activate(N))          
                                       ,activate(M)                 
                                       ,activate(N))                
        
                   U42(tt(),M,N) =  [1] M + [1] N + [18]            
                                 >= [1] M + [1] N + [18]            
                                 =  s(plus(activate(N),activate(M)))
        
                     activate(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  X                               
        
                activate(n__0()) =  [1]                             
                                 >= [1]                             
                                 =  0()                             
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [3]           
                                 >= [1] X1 + [1] X2 + [3]           
                                 =  plus(X1,X2)                     
        
               activate(n__s(X)) =  [1] X + [15]                    
                                 >= [1] X + [15]                    
                                 =  s(X)                            
        
                   isNat(n__0()) =  [3]                             
                                 >= [3]                             
                                 =  tt()                            
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [5]           
                                 >= [1] V1 + [1] V2 + [15]          
                                 =  U11(isNat(activate(V1))         
                                       ,activate(V2))               
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [3]           
                                 >= [1] X1 + [1] X2 + [3]           
                                 =  n__plus(X1,X2)                  
        
                            s(X) =  [1] X + [15]                    
                                 >= [1] X + [15]                    
                                 =  n__s(X)                         
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),N) -> activate(N)
        U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
        U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        activate(n__0()) -> 0()
        isNat(n__0()) -> tt()
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U42) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                           
               p(U11) = [1] x1 + [1] x2 + [7]         
               p(U12) = [1] x1 + [0]                  
               p(U21) = [1] x1 + [1]                  
               p(U31) = [2] x1 + [4] x2 + [0]         
               p(U41) = [3] x2 + [2] x3 + [0]         
               p(U42) = [1] x1 + [1] x2 + [1] x3 + [7]
          p(activate) = [1] x1 + [0]                  
             p(isNat) = [1] x1 + [2]                  
              p(n__0) = [2]                           
           p(n__plus) = [1] x1 + [1] x2 + [1]         
              p(n__s) = [1] x1 + [1]                  
              p(plus) = [1] x1 + [1] x2 + [1]         
                 p(s) = [1] x1 + [1]                  
                p(tt) = [4]                           
        
        Following rules are strictly oriented:
            U21(tt()) = [5]                             
                      > [4]                             
                      = tt()                            
        
          U31(tt(),N) = [4] N + [8]                     
                      > [1] N + [0]                     
                      = activate(N)                     
        
        U42(tt(),M,N) = [1] M + [1] N + [11]            
                      > [1] M + [1] N + [2]             
                      = s(plus(activate(N),activate(M)))
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                     
                                 >= [2]                     
                                 =  n__0()                  
        
                    U11(tt(),V2) =  [1] V2 + [11]           
                                 >= [1] V2 + [2]            
                                 =  U12(isNat(activate(V2)))
        
                       U12(tt()) =  [4]                     
                                 >= [4]                     
                                 =  tt()                    
        
                   U41(tt(),M,N) =  [3] M + [2] N + [0]     
                                 >= [1] M + [2] N + [9]     
                                 =  U42(isNat(activate(N))  
                                       ,activate(M)         
                                       ,activate(N))        
        
                     activate(X) =  [1] X + [0]             
                                 >= [1] X + [0]             
                                 =  X                       
        
                activate(n__0()) =  [2]                     
                                 >= [0]                     
                                 =  0()                     
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [1]   
                                 >= [1] X1 + [1] X2 + [1]   
                                 =  plus(X1,X2)             
        
               activate(n__s(X)) =  [1] X + [1]             
                                 >= [1] X + [1]             
                                 =  s(X)                    
        
                   isNat(n__0()) =  [4]                     
                                 >= [4]                     
                                 =  tt()                    
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [3]   
                                 >= [1] V1 + [1] V2 + [9]   
                                 =  U11(isNat(activate(V1)) 
                                       ,activate(V2))       
        
                 isNat(n__s(V1)) =  [1] V1 + [3]            
                                 >= [1] V1 + [3]            
                                 =  U21(isNat(activate(V1)))
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [1]   
                                 >= [1] X1 + [1] X2 + [1]   
                                 =  n__plus(X1,X2)          
        
                            s(X) =  [1] X + [1]             
                                 >= [1] X + [1]             
                                 =  n__s(X)                 
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U12(tt()) -> tt()
        U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
        activate(X) -> X
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U21(tt()) -> tt()
        U31(tt(),N) -> activate(N)
        U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(n__0()) -> 0()
        isNat(n__0()) -> tt()
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U42) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                           
               p(U11) = [1] x1 + [1] x2 + [0]         
               p(U12) = [1] x1 + [0]                  
               p(U21) = [1] x1 + [1]                  
               p(U31) = [4] x2 + [4]                  
               p(U41) = [1] x2 + [2] x3 + [2]         
               p(U42) = [1] x1 + [1] x2 + [1] x3 + [1]
          p(activate) = [1] x1 + [0]                  
             p(isNat) = [1] x1 + [0]                  
              p(n__0) = [0]                           
           p(n__plus) = [1] x1 + [1] x2 + [0]         
              p(n__s) = [1] x1 + [1]                  
              p(plus) = [1] x1 + [1] x2 + [0]         
                 p(s) = [1] x1 + [1]                  
                p(tt) = [0]                           
        
        Following rules are strictly oriented:
        U41(tt(),M,N) = [1] M + [2] N + [2]   
                      > [1] M + [2] N + [1]   
                      = U42(isNat(activate(N))
                           ,activate(M)       
                           ,activate(N))      
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                             
                                 >= [0]                             
                                 =  n__0()                          
        
                    U11(tt(),V2) =  [1] V2 + [0]                    
                                 >= [1] V2 + [0]                    
                                 =  U12(isNat(activate(V2)))        
        
                       U12(tt()) =  [0]                             
                                 >= [0]                             
                                 =  tt()                            
        
                       U21(tt()) =  [1]                             
                                 >= [0]                             
                                 =  tt()                            
        
                     U31(tt(),N) =  [4] N + [4]                     
                                 >= [1] N + [0]                     
                                 =  activate(N)                     
        
                   U42(tt(),M,N) =  [1] M + [1] N + [1]             
                                 >= [1] M + [1] N + [1]             
                                 =  s(plus(activate(N),activate(M)))
        
                     activate(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  X                               
        
                activate(n__0()) =  [0]                             
                                 >= [0]                             
                                 =  0()                             
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]           
                                 >= [1] X1 + [1] X2 + [0]           
                                 =  plus(X1,X2)                     
        
               activate(n__s(X)) =  [1] X + [1]                     
                                 >= [1] X + [1]                     
                                 =  s(X)                            
        
                   isNat(n__0()) =  [0]                             
                                 >= [0]                             
                                 =  tt()                            
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [0]           
                                 >= [1] V1 + [1] V2 + [0]           
                                 =  U11(isNat(activate(V1))         
                                       ,activate(V2))               
        
                 isNat(n__s(V1)) =  [1] V1 + [1]                    
                                 >= [1] V1 + [1]                    
                                 =  U21(isNat(activate(V1)))        
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [0]           
                                 >= [1] X1 + [1] X2 + [0]           
                                 =  n__plus(X1,X2)                  
        
                            s(X) =  [1] X + [1]                     
                                 >= [1] X + [1]                     
                                 =  n__s(X)                         
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U12(tt()) -> tt()
        activate(X) -> X
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U21(tt()) -> tt()
        U31(tt(),N) -> activate(N)
        U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
        U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(n__0()) -> 0()
        isNat(n__0()) -> tt()
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U42) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                           
               p(U11) = [1] x1 + [1] x2 + [0]         
               p(U12) = [1] x1 + [1]                  
               p(U21) = [1] x1 + [0]                  
               p(U31) = [1] x2 + [2]                  
               p(U41) = [2] x2 + [2] x3 + [3]         
               p(U42) = [1] x1 + [1] x2 + [1] x3 + [3]
          p(activate) = [1] x1 + [0]                  
             p(isNat) = [1] x1 + [0]                  
              p(n__0) = [3]                           
           p(n__plus) = [1] x1 + [1] x2 + [0]         
              p(n__s) = [1] x1 + [1]                  
              p(plus) = [1] x1 + [1] x2 + [0]         
                 p(s) = [1] x1 + [1]                  
                p(tt) = [2]                           
        
        Following rules are strictly oriented:
        U12(tt()) = [3] 
                  > [2] 
                  = tt()
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                             
                                 >= [3]                             
                                 =  n__0()                          
        
                    U11(tt(),V2) =  [1] V2 + [2]                    
                                 >= [1] V2 + [1]                    
                                 =  U12(isNat(activate(V2)))        
        
                       U21(tt()) =  [2]                             
                                 >= [2]                             
                                 =  tt()                            
        
                     U31(tt(),N) =  [1] N + [2]                     
                                 >= [1] N + [0]                     
                                 =  activate(N)                     
        
                   U41(tt(),M,N) =  [2] M + [2] N + [3]             
                                 >= [1] M + [2] N + [3]             
                                 =  U42(isNat(activate(N))          
                                       ,activate(M)                 
                                       ,activate(N))                
        
                   U42(tt(),M,N) =  [1] M + [1] N + [5]             
                                 >= [1] M + [1] N + [1]             
                                 =  s(plus(activate(N),activate(M)))
        
                     activate(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  X                               
        
                activate(n__0()) =  [3]                             
                                 >= [0]                             
                                 =  0()                             
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]           
                                 >= [1] X1 + [1] X2 + [0]           
                                 =  plus(X1,X2)                     
        
               activate(n__s(X)) =  [1] X + [1]                     
                                 >= [1] X + [1]                     
                                 =  s(X)                            
        
                   isNat(n__0()) =  [3]                             
                                 >= [2]                             
                                 =  tt()                            
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [0]           
                                 >= [1] V1 + [1] V2 + [0]           
                                 =  U11(isNat(activate(V1))         
                                       ,activate(V2))               
        
                 isNat(n__s(V1)) =  [1] V1 + [1]                    
                                 >= [1] V1 + [0]                    
                                 =  U21(isNat(activate(V1)))        
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [0]           
                                 >= [1] X1 + [1] X2 + [0]           
                                 =  n__plus(X1,X2)                  
        
                            s(X) =  [1] X + [1]                     
                                 >= [1] X + [1]                     
                                 =  n__s(X)                         
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        activate(X) -> X
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),N) -> activate(N)
        U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
        U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(n__0()) -> 0()
        isNat(n__0()) -> tt()
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U42) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                           
               p(U11) = [1] x1 + [1] x2 + [0]         
               p(U12) = [1] x1 + [0]                  
               p(U21) = [1] x1 + [0]                  
               p(U31) = [1] x1 + [4] x2 + [7]         
               p(U41) = [1] x2 + [4] x3 + [1]         
               p(U42) = [1] x1 + [1] x2 + [1] x3 + [0]
          p(activate) = [1] x1 + [0]                  
             p(isNat) = [1] x1 + [0]                  
              p(n__0) = [5]                           
           p(n__plus) = [1] x1 + [1] x2 + [1]         
              p(n__s) = [1] x1 + [0]                  
              p(plus) = [1] x1 + [1] x2 + [1]         
                 p(s) = [1] x1 + [0]                  
                p(tt) = [1]                           
        
        Following rules are strictly oriented:
        isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [1]  
                              > [1] V1 + [1] V2 + [0]  
                              = U11(isNat(activate(V1))
                                   ,activate(V2))      
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                             
                                 >= [5]                             
                                 =  n__0()                          
        
                    U11(tt(),V2) =  [1] V2 + [1]                    
                                 >= [1] V2 + [0]                    
                                 =  U12(isNat(activate(V2)))        
        
                       U12(tt()) =  [1]                             
                                 >= [1]                             
                                 =  tt()                            
        
                       U21(tt()) =  [1]                             
                                 >= [1]                             
                                 =  tt()                            
        
                     U31(tt(),N) =  [4] N + [8]                     
                                 >= [1] N + [0]                     
                                 =  activate(N)                     
        
                   U41(tt(),M,N) =  [1] M + [4] N + [1]             
                                 >= [1] M + [2] N + [0]             
                                 =  U42(isNat(activate(N))          
                                       ,activate(M)                 
                                       ,activate(N))                
        
                   U42(tt(),M,N) =  [1] M + [1] N + [1]             
                                 >= [1] M + [1] N + [1]             
                                 =  s(plus(activate(N),activate(M)))
        
                     activate(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  X                               
        
                activate(n__0()) =  [5]                             
                                 >= [0]                             
                                 =  0()                             
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [1]           
                                 >= [1] X1 + [1] X2 + [1]           
                                 =  plus(X1,X2)                     
        
               activate(n__s(X)) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  s(X)                            
        
                   isNat(n__0()) =  [5]                             
                                 >= [1]                             
                                 =  tt()                            
        
                 isNat(n__s(V1)) =  [1] V1 + [0]                    
                                 >= [1] V1 + [0]                    
                                 =  U21(isNat(activate(V1)))        
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [1]           
                                 >= [1] X1 + [1] X2 + [1]           
                                 =  n__plus(X1,X2)                  
        
                            s(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  n__s(X)                         
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        activate(X) -> X
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),N) -> activate(N)
        U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
        U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(n__0()) -> 0()
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U42) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                           
               p(U11) = [1] x1 + [1] x2 + [0]         
               p(U12) = [1] x1 + [0]                  
               p(U21) = [1] x1 + [0]                  
               p(U31) = [1] x2 + [1]                  
               p(U41) = [1] x2 + [2] x3 + [7]         
               p(U42) = [1] x1 + [1] x2 + [1] x3 + [1]
          p(activate) = [1] x1 + [1]                  
             p(isNat) = [1] x1 + [3]                  
              p(n__0) = [4]                           
           p(n__plus) = [1] x1 + [1] x2 + [2]         
              p(n__s) = [1] x1 + [1]                  
              p(plus) = [1] x1 + [1] x2 + [2]         
                 p(s) = [1] x1 + [1]                  
                p(tt) = [4]                           
        
        Following rules are strictly oriented:
                     activate(X) = [1] X + [1]          
                                 > [1] X + [0]          
                                 = X                    
        
        activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [3]
                                 > [1] X1 + [1] X2 + [2]
                                 = plus(X1,X2)          
        
               activate(n__s(X)) = [1] X + [2]          
                                 > [1] X + [1]          
                                 = s(X)                 
        
        
        Following rules are (at-least) weakly oriented:
                          0() =  [0]                             
                              >= [4]                             
                              =  n__0()                          
        
                 U11(tt(),V2) =  [1] V2 + [4]                    
                              >= [1] V2 + [4]                    
                              =  U12(isNat(activate(V2)))        
        
                    U12(tt()) =  [4]                             
                              >= [4]                             
                              =  tt()                            
        
                    U21(tt()) =  [4]                             
                              >= [4]                             
                              =  tt()                            
        
                  U31(tt(),N) =  [1] N + [1]                     
                              >= [1] N + [1]                     
                              =  activate(N)                     
        
                U41(tt(),M,N) =  [1] M + [2] N + [7]             
                              >= [1] M + [2] N + [7]             
                              =  U42(isNat(activate(N))          
                                    ,activate(M)                 
                                    ,activate(N))                
        
                U42(tt(),M,N) =  [1] M + [1] N + [5]             
                              >= [1] M + [1] N + [5]             
                              =  s(plus(activate(N),activate(M)))
        
             activate(n__0()) =  [5]                             
                              >= [0]                             
                              =  0()                             
        
                isNat(n__0()) =  [7]                             
                              >= [4]                             
                              =  tt()                            
        
        isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [5]           
                              >= [1] V1 + [1] V2 + [5]           
                              =  U11(isNat(activate(V1))         
                                    ,activate(V2))               
        
              isNat(n__s(V1)) =  [1] V1 + [4]                    
                              >= [1] V1 + [4]                    
                              =  U21(isNat(activate(V1)))        
        
                  plus(X1,X2) =  [1] X1 + [1] X2 + [2]           
                              >= [1] X1 + [1] X2 + [2]           
                              =  n__plus(X1,X2)                  
        
                         s(X) =  [1] X + [1]                     
                              >= [1] X + [1]                     
                              =  n__s(X)                         
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),N) -> activate(N)
        U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
        U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U42) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [4]                           
               p(U11) = [1] x1 + [1] x2 + [1]         
               p(U12) = [1] x1 + [1]                  
               p(U21) = [1] x1 + [0]                  
               p(U31) = [2] x2 + [2]                  
               p(U41) = [1] x1 + [4] x2 + [4] x3 + [7]
               p(U42) = [1] x1 + [1] x2 + [1] x3 + [6]
          p(activate) = [1] x1 + [1]                  
             p(isNat) = [1] x1 + [0]                  
              p(n__0) = [3]                           
           p(n__plus) = [1] x1 + [1] x2 + [3]         
              p(n__s) = [1] x1 + [1]                  
              p(plus) = [1] x1 + [1] x2 + [4]         
                 p(s) = [1] x1 + [1]                  
                p(tt) = [2]                           
        
        Following rules are strictly oriented:
        0() = [4]   
            > [3]   
            = n__0()
        
        
        Following rules are (at-least) weakly oriented:
                    U11(tt(),V2) =  [1] V2 + [3]                    
                                 >= [1] V2 + [2]                    
                                 =  U12(isNat(activate(V2)))        
        
                       U12(tt()) =  [3]                             
                                 >= [2]                             
                                 =  tt()                            
        
                       U21(tt()) =  [2]                             
                                 >= [2]                             
                                 =  tt()                            
        
                     U31(tt(),N) =  [2] N + [2]                     
                                 >= [1] N + [1]                     
                                 =  activate(N)                     
        
                   U41(tt(),M,N) =  [4] M + [4] N + [9]             
                                 >= [1] M + [2] N + [9]             
                                 =  U42(isNat(activate(N))          
                                       ,activate(M)                 
                                       ,activate(N))                
        
                   U42(tt(),M,N) =  [1] M + [1] N + [8]             
                                 >= [1] M + [1] N + [7]             
                                 =  s(plus(activate(N),activate(M)))
        
                     activate(X) =  [1] X + [1]                     
                                 >= [1] X + [0]                     
                                 =  X                               
        
                activate(n__0()) =  [4]                             
                                 >= [4]                             
                                 =  0()                             
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [4]           
                                 >= [1] X1 + [1] X2 + [4]           
                                 =  plus(X1,X2)                     
        
               activate(n__s(X)) =  [1] X + [2]                     
                                 >= [1] X + [1]                     
                                 =  s(X)                            
        
                   isNat(n__0()) =  [3]                             
                                 >= [2]                             
                                 =  tt()                            
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [3]           
                                 >= [1] V1 + [1] V2 + [3]           
                                 =  U11(isNat(activate(V1))         
                                       ,activate(V2))               
        
                 isNat(n__s(V1)) =  [1] V1 + [1]                    
                                 >= [1] V1 + [1]                    
                                 =  U21(isNat(activate(V1)))        
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [4]           
                                 >= [1] X1 + [1] X2 + [3]           
                                 =  n__plus(X1,X2)                  
        
                            s(X) =  [1] X + [1]                     
                                 >= [1] X + [1]                     
                                 =  n__s(X)                         
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),N) -> activate(N)
        U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
        U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).