*** 1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),N) -> activate(N) U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) U42(tt(),M,N) -> s(plus(activate(N),activate(M))) activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(X1,X2) activate(n__s(X)) -> s(X) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) plus(N,0()) -> U31(isNat(N),N) plus(N,s(M)) -> U41(isNat(M),M,N) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) Weak DP Rules: Weak TRS Rules: Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0} Obligation: Innermost basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt} Applied Processor: InnermostRuleRemoval Proof: Arguments of following rules are not normal-forms. plus(N,0()) -> U31(isNat(N),N) plus(N,s(M)) -> U41(isNat(M),M,N) All above mentioned rules can be savely removed. *** 1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),N) -> activate(N) U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) U42(tt(),M,N) -> s(plus(activate(N),activate(M))) activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(X1,X2) activate(n__s(X)) -> s(X) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) Weak DP Rules: Weak TRS Rules: Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0} Obligation: Innermost basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1,2}, uargs(U12) = {1}, uargs(U21) = {1}, uargs(U42) = {1,2,3}, uargs(isNat) = {1}, uargs(plus) = {1,2}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(U11) = [1] x1 + [1] x2 + [0] p(U12) = [1] x1 + [0] p(U21) = [1] x1 + [0] p(U31) = [1] x2 + [0] p(U41) = [1] x2 + [2] x3 + [0] p(U42) = [1] x1 + [1] x2 + [1] x3 + [9] p(activate) = [1] x1 + [0] p(isNat) = [1] x1 + [8] p(n__0) = [9] p(n__plus) = [1] x1 + [1] x2 + [0] p(n__s) = [1] x1 + [0] p(plus) = [1] x1 + [1] x2 + [5] p(s) = [1] x1 + [12] p(tt) = [8] Following rules are strictly oriented: activate(n__0()) = [9] > [0] = 0() isNat(n__0()) = [17] > [8] = tt() plus(X1,X2) = [1] X1 + [1] X2 + [5] > [1] X1 + [1] X2 + [0] = n__plus(X1,X2) s(X) = [1] X + [12] > [1] X + [0] = n__s(X) Following rules are (at-least) weakly oriented: 0() = [0] >= [9] = n__0() U11(tt(),V2) = [1] V2 + [8] >= [1] V2 + [8] = U12(isNat(activate(V2))) U12(tt()) = [8] >= [8] = tt() U21(tt()) = [8] >= [8] = tt() U31(tt(),N) = [1] N + [0] >= [1] N + [0] = activate(N) U41(tt(),M,N) = [1] M + [2] N + [0] >= [1] M + [2] N + [17] = U42(isNat(activate(N)) ,activate(M) ,activate(N)) U42(tt(),M,N) = [1] M + [1] N + [17] >= [1] M + [1] N + [17] = s(plus(activate(N),activate(M))) activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [5] = plus(X1,X2) activate(n__s(X)) = [1] X + [0] >= [1] X + [12] = s(X) isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [8] >= [1] V1 + [1] V2 + [8] = U11(isNat(activate(V1)) ,activate(V2)) isNat(n__s(V1)) = [1] V1 + [8] >= [1] V1 + [8] = U21(isNat(activate(V1))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),N) -> activate(N) U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) U42(tt(),M,N) -> s(plus(activate(N),activate(M))) activate(X) -> X activate(n__plus(X1,X2)) -> plus(X1,X2) activate(n__s(X)) -> s(X) isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) Weak DP Rules: Weak TRS Rules: activate(n__0()) -> 0() isNat(n__0()) -> tt() plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0} Obligation: Innermost basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1,2}, uargs(U12) = {1}, uargs(U21) = {1}, uargs(U42) = {1,2,3}, uargs(isNat) = {1}, uargs(plus) = {1,2}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [1] p(U11) = [1] x1 + [1] x2 + [13] p(U12) = [1] x1 + [0] p(U21) = [1] x1 + [0] p(U31) = [1] x2 + [0] p(U41) = [1] x2 + [2] x3 + [0] p(U42) = [1] x1 + [1] x2 + [1] x3 + [15] p(activate) = [1] x1 + [0] p(isNat) = [1] x1 + [2] p(n__0) = [1] p(n__plus) = [1] x1 + [1] x2 + [3] p(n__s) = [1] x1 + [15] p(plus) = [1] x1 + [1] x2 + [3] p(s) = [1] x1 + [15] p(tt) = [3] Following rules are strictly oriented: U11(tt(),V2) = [1] V2 + [16] > [1] V2 + [2] = U12(isNat(activate(V2))) isNat(n__s(V1)) = [1] V1 + [17] > [1] V1 + [2] = U21(isNat(activate(V1))) Following rules are (at-least) weakly oriented: 0() = [1] >= [1] = n__0() U12(tt()) = [3] >= [3] = tt() U21(tt()) = [3] >= [3] = tt() U31(tt(),N) = [1] N + [0] >= [1] N + [0] = activate(N) U41(tt(),M,N) = [1] M + [2] N + [0] >= [1] M + [2] N + [17] = U42(isNat(activate(N)) ,activate(M) ,activate(N)) U42(tt(),M,N) = [1] M + [1] N + [18] >= [1] M + [1] N + [18] = s(plus(activate(N),activate(M))) activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__0()) = [1] >= [1] = 0() activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [3] >= [1] X1 + [1] X2 + [3] = plus(X1,X2) activate(n__s(X)) = [1] X + [15] >= [1] X + [15] = s(X) isNat(n__0()) = [3] >= [3] = tt() isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [5] >= [1] V1 + [1] V2 + [15] = U11(isNat(activate(V1)) ,activate(V2)) plus(X1,X2) = [1] X1 + [1] X2 + [3] >= [1] X1 + [1] X2 + [3] = n__plus(X1,X2) s(X) = [1] X + [15] >= [1] X + [15] = n__s(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: 0() -> n__0() U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),N) -> activate(N) U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) U42(tt(),M,N) -> s(plus(activate(N),activate(M))) activate(X) -> X activate(n__plus(X1,X2)) -> plus(X1,X2) activate(n__s(X)) -> s(X) isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) Weak DP Rules: Weak TRS Rules: U11(tt(),V2) -> U12(isNat(activate(V2))) activate(n__0()) -> 0() isNat(n__0()) -> tt() isNat(n__s(V1)) -> U21(isNat(activate(V1))) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0} Obligation: Innermost basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1,2}, uargs(U12) = {1}, uargs(U21) = {1}, uargs(U42) = {1,2,3}, uargs(isNat) = {1}, uargs(plus) = {1,2}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(U11) = [1] x1 + [1] x2 + [7] p(U12) = [1] x1 + [0] p(U21) = [1] x1 + [1] p(U31) = [2] x1 + [4] x2 + [0] p(U41) = [3] x2 + [2] x3 + [0] p(U42) = [1] x1 + [1] x2 + [1] x3 + [7] p(activate) = [1] x1 + [0] p(isNat) = [1] x1 + [2] p(n__0) = [2] p(n__plus) = [1] x1 + [1] x2 + [1] p(n__s) = [1] x1 + [1] p(plus) = [1] x1 + [1] x2 + [1] p(s) = [1] x1 + [1] p(tt) = [4] Following rules are strictly oriented: U21(tt()) = [5] > [4] = tt() U31(tt(),N) = [4] N + [8] > [1] N + [0] = activate(N) U42(tt(),M,N) = [1] M + [1] N + [11] > [1] M + [1] N + [2] = s(plus(activate(N),activate(M))) Following rules are (at-least) weakly oriented: 0() = [0] >= [2] = n__0() U11(tt(),V2) = [1] V2 + [11] >= [1] V2 + [2] = U12(isNat(activate(V2))) U12(tt()) = [4] >= [4] = tt() U41(tt(),M,N) = [3] M + [2] N + [0] >= [1] M + [2] N + [9] = U42(isNat(activate(N)) ,activate(M) ,activate(N)) activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__0()) = [2] >= [0] = 0() activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [1] >= [1] X1 + [1] X2 + [1] = plus(X1,X2) activate(n__s(X)) = [1] X + [1] >= [1] X + [1] = s(X) isNat(n__0()) = [4] >= [4] = tt() isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [3] >= [1] V1 + [1] V2 + [9] = U11(isNat(activate(V1)) ,activate(V2)) isNat(n__s(V1)) = [1] V1 + [3] >= [1] V1 + [3] = U21(isNat(activate(V1))) plus(X1,X2) = [1] X1 + [1] X2 + [1] >= [1] X1 + [1] X2 + [1] = n__plus(X1,X2) s(X) = [1] X + [1] >= [1] X + [1] = n__s(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: 0() -> n__0() U12(tt()) -> tt() U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) activate(X) -> X activate(n__plus(X1,X2)) -> plus(X1,X2) activate(n__s(X)) -> s(X) isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) Weak DP Rules: Weak TRS Rules: U11(tt(),V2) -> U12(isNat(activate(V2))) U21(tt()) -> tt() U31(tt(),N) -> activate(N) U42(tt(),M,N) -> s(plus(activate(N),activate(M))) activate(n__0()) -> 0() isNat(n__0()) -> tt() isNat(n__s(V1)) -> U21(isNat(activate(V1))) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0} Obligation: Innermost basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1,2}, uargs(U12) = {1}, uargs(U21) = {1}, uargs(U42) = {1,2,3}, uargs(isNat) = {1}, uargs(plus) = {1,2}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(U11) = [1] x1 + [1] x2 + [0] p(U12) = [1] x1 + [0] p(U21) = [1] x1 + [1] p(U31) = [4] x2 + [4] p(U41) = [1] x2 + [2] x3 + [2] p(U42) = [1] x1 + [1] x2 + [1] x3 + [1] p(activate) = [1] x1 + [0] p(isNat) = [1] x1 + [0] p(n__0) = [0] p(n__plus) = [1] x1 + [1] x2 + [0] p(n__s) = [1] x1 + [1] p(plus) = [1] x1 + [1] x2 + [0] p(s) = [1] x1 + [1] p(tt) = [0] Following rules are strictly oriented: U41(tt(),M,N) = [1] M + [2] N + [2] > [1] M + [2] N + [1] = U42(isNat(activate(N)) ,activate(M) ,activate(N)) Following rules are (at-least) weakly oriented: 0() = [0] >= [0] = n__0() U11(tt(),V2) = [1] V2 + [0] >= [1] V2 + [0] = U12(isNat(activate(V2))) U12(tt()) = [0] >= [0] = tt() U21(tt()) = [1] >= [0] = tt() U31(tt(),N) = [4] N + [4] >= [1] N + [0] = activate(N) U42(tt(),M,N) = [1] M + [1] N + [1] >= [1] M + [1] N + [1] = s(plus(activate(N),activate(M))) activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__0()) = [0] >= [0] = 0() activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = plus(X1,X2) activate(n__s(X)) = [1] X + [1] >= [1] X + [1] = s(X) isNat(n__0()) = [0] >= [0] = tt() isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [0] >= [1] V1 + [1] V2 + [0] = U11(isNat(activate(V1)) ,activate(V2)) isNat(n__s(V1)) = [1] V1 + [1] >= [1] V1 + [1] = U21(isNat(activate(V1))) plus(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = n__plus(X1,X2) s(X) = [1] X + [1] >= [1] X + [1] = n__s(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: 0() -> n__0() U12(tt()) -> tt() activate(X) -> X activate(n__plus(X1,X2)) -> plus(X1,X2) activate(n__s(X)) -> s(X) isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) Weak DP Rules: Weak TRS Rules: U11(tt(),V2) -> U12(isNat(activate(V2))) U21(tt()) -> tt() U31(tt(),N) -> activate(N) U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) U42(tt(),M,N) -> s(plus(activate(N),activate(M))) activate(n__0()) -> 0() isNat(n__0()) -> tt() isNat(n__s(V1)) -> U21(isNat(activate(V1))) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0} Obligation: Innermost basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1,2}, uargs(U12) = {1}, uargs(U21) = {1}, uargs(U42) = {1,2,3}, uargs(isNat) = {1}, uargs(plus) = {1,2}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(U11) = [1] x1 + [1] x2 + [0] p(U12) = [1] x1 + [1] p(U21) = [1] x1 + [0] p(U31) = [1] x2 + [2] p(U41) = [2] x2 + [2] x3 + [3] p(U42) = [1] x1 + [1] x2 + [1] x3 + [3] p(activate) = [1] x1 + [0] p(isNat) = [1] x1 + [0] p(n__0) = [3] p(n__plus) = [1] x1 + [1] x2 + [0] p(n__s) = [1] x1 + [1] p(plus) = [1] x1 + [1] x2 + [0] p(s) = [1] x1 + [1] p(tt) = [2] Following rules are strictly oriented: U12(tt()) = [3] > [2] = tt() Following rules are (at-least) weakly oriented: 0() = [0] >= [3] = n__0() U11(tt(),V2) = [1] V2 + [2] >= [1] V2 + [1] = U12(isNat(activate(V2))) U21(tt()) = [2] >= [2] = tt() U31(tt(),N) = [1] N + [2] >= [1] N + [0] = activate(N) U41(tt(),M,N) = [2] M + [2] N + [3] >= [1] M + [2] N + [3] = U42(isNat(activate(N)) ,activate(M) ,activate(N)) U42(tt(),M,N) = [1] M + [1] N + [5] >= [1] M + [1] N + [1] = s(plus(activate(N),activate(M))) activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__0()) = [3] >= [0] = 0() activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = plus(X1,X2) activate(n__s(X)) = [1] X + [1] >= [1] X + [1] = s(X) isNat(n__0()) = [3] >= [2] = tt() isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [0] >= [1] V1 + [1] V2 + [0] = U11(isNat(activate(V1)) ,activate(V2)) isNat(n__s(V1)) = [1] V1 + [1] >= [1] V1 + [0] = U21(isNat(activate(V1))) plus(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = n__plus(X1,X2) s(X) = [1] X + [1] >= [1] X + [1] = n__s(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: 0() -> n__0() activate(X) -> X activate(n__plus(X1,X2)) -> plus(X1,X2) activate(n__s(X)) -> s(X) isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) Weak DP Rules: Weak TRS Rules: U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),N) -> activate(N) U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) U42(tt(),M,N) -> s(plus(activate(N),activate(M))) activate(n__0()) -> 0() isNat(n__0()) -> tt() isNat(n__s(V1)) -> U21(isNat(activate(V1))) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0} Obligation: Innermost basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1,2}, uargs(U12) = {1}, uargs(U21) = {1}, uargs(U42) = {1,2,3}, uargs(isNat) = {1}, uargs(plus) = {1,2}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(U11) = [1] x1 + [1] x2 + [0] p(U12) = [1] x1 + [0] p(U21) = [1] x1 + [0] p(U31) = [1] x1 + [4] x2 + [7] p(U41) = [1] x2 + [4] x3 + [1] p(U42) = [1] x1 + [1] x2 + [1] x3 + [0] p(activate) = [1] x1 + [0] p(isNat) = [1] x1 + [0] p(n__0) = [5] p(n__plus) = [1] x1 + [1] x2 + [1] p(n__s) = [1] x1 + [0] p(plus) = [1] x1 + [1] x2 + [1] p(s) = [1] x1 + [0] p(tt) = [1] Following rules are strictly oriented: isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [1] > [1] V1 + [1] V2 + [0] = U11(isNat(activate(V1)) ,activate(V2)) Following rules are (at-least) weakly oriented: 0() = [0] >= [5] = n__0() U11(tt(),V2) = [1] V2 + [1] >= [1] V2 + [0] = U12(isNat(activate(V2))) U12(tt()) = [1] >= [1] = tt() U21(tt()) = [1] >= [1] = tt() U31(tt(),N) = [4] N + [8] >= [1] N + [0] = activate(N) U41(tt(),M,N) = [1] M + [4] N + [1] >= [1] M + [2] N + [0] = U42(isNat(activate(N)) ,activate(M) ,activate(N)) U42(tt(),M,N) = [1] M + [1] N + [1] >= [1] M + [1] N + [1] = s(plus(activate(N),activate(M))) activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__0()) = [5] >= [0] = 0() activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [1] >= [1] X1 + [1] X2 + [1] = plus(X1,X2) activate(n__s(X)) = [1] X + [0] >= [1] X + [0] = s(X) isNat(n__0()) = [5] >= [1] = tt() isNat(n__s(V1)) = [1] V1 + [0] >= [1] V1 + [0] = U21(isNat(activate(V1))) plus(X1,X2) = [1] X1 + [1] X2 + [1] >= [1] X1 + [1] X2 + [1] = n__plus(X1,X2) s(X) = [1] X + [0] >= [1] X + [0] = n__s(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: 0() -> n__0() activate(X) -> X activate(n__plus(X1,X2)) -> plus(X1,X2) activate(n__s(X)) -> s(X) Weak DP Rules: Weak TRS Rules: U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),N) -> activate(N) U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) U42(tt(),M,N) -> s(plus(activate(N),activate(M))) activate(n__0()) -> 0() isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0} Obligation: Innermost basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1,2}, uargs(U12) = {1}, uargs(U21) = {1}, uargs(U42) = {1,2,3}, uargs(isNat) = {1}, uargs(plus) = {1,2}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(U11) = [1] x1 + [1] x2 + [0] p(U12) = [1] x1 + [0] p(U21) = [1] x1 + [0] p(U31) = [1] x2 + [1] p(U41) = [1] x2 + [2] x3 + [7] p(U42) = [1] x1 + [1] x2 + [1] x3 + [1] p(activate) = [1] x1 + [1] p(isNat) = [1] x1 + [3] p(n__0) = [4] p(n__plus) = [1] x1 + [1] x2 + [2] p(n__s) = [1] x1 + [1] p(plus) = [1] x1 + [1] x2 + [2] p(s) = [1] x1 + [1] p(tt) = [4] Following rules are strictly oriented: activate(X) = [1] X + [1] > [1] X + [0] = X activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [3] > [1] X1 + [1] X2 + [2] = plus(X1,X2) activate(n__s(X)) = [1] X + [2] > [1] X + [1] = s(X) Following rules are (at-least) weakly oriented: 0() = [0] >= [4] = n__0() U11(tt(),V2) = [1] V2 + [4] >= [1] V2 + [4] = U12(isNat(activate(V2))) U12(tt()) = [4] >= [4] = tt() U21(tt()) = [4] >= [4] = tt() U31(tt(),N) = [1] N + [1] >= [1] N + [1] = activate(N) U41(tt(),M,N) = [1] M + [2] N + [7] >= [1] M + [2] N + [7] = U42(isNat(activate(N)) ,activate(M) ,activate(N)) U42(tt(),M,N) = [1] M + [1] N + [5] >= [1] M + [1] N + [5] = s(plus(activate(N),activate(M))) activate(n__0()) = [5] >= [0] = 0() isNat(n__0()) = [7] >= [4] = tt() isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [5] >= [1] V1 + [1] V2 + [5] = U11(isNat(activate(V1)) ,activate(V2)) isNat(n__s(V1)) = [1] V1 + [4] >= [1] V1 + [4] = U21(isNat(activate(V1))) plus(X1,X2) = [1] X1 + [1] X2 + [2] >= [1] X1 + [1] X2 + [2] = n__plus(X1,X2) s(X) = [1] X + [1] >= [1] X + [1] = n__s(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: 0() -> n__0() Weak DP Rules: Weak TRS Rules: U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),N) -> activate(N) U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) U42(tt(),M,N) -> s(plus(activate(N),activate(M))) activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(X1,X2) activate(n__s(X)) -> s(X) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0} Obligation: Innermost basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1,2}, uargs(U12) = {1}, uargs(U21) = {1}, uargs(U42) = {1,2,3}, uargs(isNat) = {1}, uargs(plus) = {1,2}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [4] p(U11) = [1] x1 + [1] x2 + [1] p(U12) = [1] x1 + [1] p(U21) = [1] x1 + [0] p(U31) = [2] x2 + [2] p(U41) = [1] x1 + [4] x2 + [4] x3 + [7] p(U42) = [1] x1 + [1] x2 + [1] x3 + [6] p(activate) = [1] x1 + [1] p(isNat) = [1] x1 + [0] p(n__0) = [3] p(n__plus) = [1] x1 + [1] x2 + [3] p(n__s) = [1] x1 + [1] p(plus) = [1] x1 + [1] x2 + [4] p(s) = [1] x1 + [1] p(tt) = [2] Following rules are strictly oriented: 0() = [4] > [3] = n__0() Following rules are (at-least) weakly oriented: U11(tt(),V2) = [1] V2 + [3] >= [1] V2 + [2] = U12(isNat(activate(V2))) U12(tt()) = [3] >= [2] = tt() U21(tt()) = [2] >= [2] = tt() U31(tt(),N) = [2] N + [2] >= [1] N + [1] = activate(N) U41(tt(),M,N) = [4] M + [4] N + [9] >= [1] M + [2] N + [9] = U42(isNat(activate(N)) ,activate(M) ,activate(N)) U42(tt(),M,N) = [1] M + [1] N + [8] >= [1] M + [1] N + [7] = s(plus(activate(N),activate(M))) activate(X) = [1] X + [1] >= [1] X + [0] = X activate(n__0()) = [4] >= [4] = 0() activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [4] >= [1] X1 + [1] X2 + [4] = plus(X1,X2) activate(n__s(X)) = [1] X + [2] >= [1] X + [1] = s(X) isNat(n__0()) = [3] >= [2] = tt() isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [3] >= [1] V1 + [1] V2 + [3] = U11(isNat(activate(V1)) ,activate(V2)) isNat(n__s(V1)) = [1] V1 + [1] >= [1] V1 + [1] = U21(isNat(activate(V1))) plus(X1,X2) = [1] X1 + [1] X2 + [4] >= [1] X1 + [1] X2 + [3] = n__plus(X1,X2) s(X) = [1] X + [1] >= [1] X + [1] = n__s(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),N) -> activate(N) U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N)) U42(tt(),M,N) -> s(plus(activate(N),activate(M))) activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(X1,X2) activate(n__s(X)) -> s(X) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0} Obligation: Innermost basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).