*** 1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),N) -> activate(N)
        U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
        U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        plus(N,0()) -> U31(isNat(N),N)
        plus(N,s(M)) -> U41(isNat(M),M,N)
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      InnermostRuleRemoval
    Proof:
      Arguments of following rules are not normal-forms.
        plus(N,0()) -> U31(isNat(N),N)
        plus(N,s(M)) -> U41(isNat(M),M,N)
      All above mentioned rules can be savely removed.
*** 1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),N) -> activate(N)
        U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
        U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U42) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                           
               p(U11) = [1] x1 + [1] x2 + [0]         
               p(U12) = [1] x1 + [0]                  
               p(U21) = [1] x1 + [0]                  
               p(U31) = [1] x2 + [3]                  
               p(U41) = [1] x2 + [2] x3 + [0]         
               p(U42) = [1] x1 + [1] x2 + [1] x3 + [9]
          p(activate) = [1] x1 + [0]                  
             p(isNat) = [1] x1 + [8]                  
              p(n__0) = [10]                          
           p(n__plus) = [1] x1 + [1] x2 + [0]         
              p(n__s) = [1] x1 + [0]                  
              p(plus) = [1] x1 + [1] x2 + [0]         
                 p(s) = [1] x1 + [3]                  
                p(tt) = [0]                           
        
        Following rules are strictly oriented:
             U31(tt(),N) = [1] N + [3]                     
                         > [1] N + [0]                     
                         = activate(N)                     
        
           U42(tt(),M,N) = [1] M + [1] N + [9]             
                         > [1] M + [1] N + [3]             
                         = s(plus(activate(N),activate(M)))
        
        activate(n__0()) = [10]                            
                         > [0]                             
                         = 0()                             
        
           isNat(n__0()) = [18]                            
                         > [0]                             
                         = tt()                            
        
                    s(X) = [1] X + [3]                     
                         > [1] X + [0]                     
                         = n__s(X)                         
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                            
                                 >= [10]                           
                                 =  n__0()                         
        
                    U11(tt(),V2) =  [1] V2 + [0]                   
                                 >= [1] V2 + [8]                   
                                 =  U12(isNat(activate(V2)))       
        
                       U12(tt()) =  [0]                            
                                 >= [0]                            
                                 =  tt()                           
        
                       U21(tt()) =  [0]                            
                                 >= [0]                            
                                 =  tt()                           
        
                   U41(tt(),M,N) =  [1] M + [2] N + [0]            
                                 >= [1] M + [2] N + [17]           
                                 =  U42(isNat(activate(N))         
                                       ,activate(M)                
                                       ,activate(N))               
        
                     activate(X) =  [1] X + [0]                    
                                 >= [1] X + [0]                    
                                 =  X                              
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]          
                                 >= [1] X1 + [1] X2 + [0]          
                                 =  plus(activate(X1),activate(X2))
        
               activate(n__s(X)) =  [1] X + [0]                    
                                 >= [1] X + [3]                    
                                 =  s(activate(X))                 
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [8]          
                                 >= [1] V1 + [1] V2 + [8]          
                                 =  U11(isNat(activate(V1))        
                                       ,activate(V2))              
        
                 isNat(n__s(V1)) =  [1] V1 + [8]                   
                                 >= [1] V1 + [8]                   
                                 =  U21(isNat(activate(V1)))       
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [0]          
                                 >= [1] X1 + [1] X2 + [0]          
                                 =  n__plus(X1,X2)                 
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
        activate(X) -> X
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
      Weak DP Rules:
        
      Weak TRS Rules:
        U31(tt(),N) -> activate(N)
        U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(n__0()) -> 0()
        isNat(n__0()) -> tt()
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U42) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                           
               p(U11) = [1] x1 + [1] x2 + [2]         
               p(U12) = [1] x1 + [0]                  
               p(U21) = [1] x1 + [0]                  
               p(U31) = [1] x2 + [0]                  
               p(U41) = [1] x2 + [2] x3 + [0]         
               p(U42) = [1] x1 + [1] x2 + [1] x3 + [1]
          p(activate) = [1] x1 + [0]                  
             p(isNat) = [1] x1 + [0]                  
              p(n__0) = [0]                           
           p(n__plus) = [1] x1 + [1] x2 + [4]         
              p(n__s) = [1] x1 + [0]                  
              p(plus) = [1] x1 + [1] x2 + [1]         
                 p(s) = [1] x1 + [0]                  
                p(tt) = [0]                           
        
        Following rules are strictly oriented:
                    U11(tt(),V2) = [1] V2 + [2]                   
                                 > [1] V2 + [0]                   
                                 = U12(isNat(activate(V2)))       
        
        activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [4]          
                                 > [1] X1 + [1] X2 + [1]          
                                 = plus(activate(X1),activate(X2))
        
           isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [4]          
                                 > [1] V1 + [1] V2 + [2]          
                                 = U11(isNat(activate(V1))        
                                      ,activate(V2))              
        
        
        Following rules are (at-least) weakly oriented:
                      0() =  [0]                             
                          >= [0]                             
                          =  n__0()                          
        
                U12(tt()) =  [0]                             
                          >= [0]                             
                          =  tt()                            
        
                U21(tt()) =  [0]                             
                          >= [0]                             
                          =  tt()                            
        
              U31(tt(),N) =  [1] N + [0]                     
                          >= [1] N + [0]                     
                          =  activate(N)                     
        
            U41(tt(),M,N) =  [1] M + [2] N + [0]             
                          >= [1] M + [2] N + [1]             
                          =  U42(isNat(activate(N))          
                                ,activate(M)                 
                                ,activate(N))                
        
            U42(tt(),M,N) =  [1] M + [1] N + [1]             
                          >= [1] M + [1] N + [1]             
                          =  s(plus(activate(N),activate(M)))
        
              activate(X) =  [1] X + [0]                     
                          >= [1] X + [0]                     
                          =  X                               
        
         activate(n__0()) =  [0]                             
                          >= [0]                             
                          =  0()                             
        
        activate(n__s(X)) =  [1] X + [0]                     
                          >= [1] X + [0]                     
                          =  s(activate(X))                  
        
            isNat(n__0()) =  [0]                             
                          >= [0]                             
                          =  tt()                            
        
          isNat(n__s(V1)) =  [1] V1 + [0]                    
                          >= [1] V1 + [0]                    
                          =  U21(isNat(activate(V1)))        
        
              plus(X1,X2) =  [1] X1 + [1] X2 + [1]           
                          >= [1] X1 + [1] X2 + [4]           
                          =  n__plus(X1,X2)                  
        
                     s(X) =  [1] X + [0]                     
                          >= [1] X + [0]                     
                          =  n__s(X)                         
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
        activate(X) -> X
        activate(n__s(X)) -> s(activate(X))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U31(tt(),N) -> activate(N)
        U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U42) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                           
               p(U11) = [1] x1 + [1] x2 + [2]         
               p(U12) = [1] x1 + [2]                  
               p(U21) = [1] x1 + [0]                  
               p(U31) = [1] x2 + [0]                  
               p(U41) = [1] x2 + [2] x3 + [0]         
               p(U42) = [1] x1 + [1] x2 + [1] x3 + [5]
          p(activate) = [1] x1 + [0]                  
             p(isNat) = [1] x1 + [4]                  
              p(n__0) = [0]                           
           p(n__plus) = [1] x1 + [1] x2 + [2]         
              p(n__s) = [1] x1 + [2]                  
              p(plus) = [1] x1 + [1] x2 + [2]         
                 p(s) = [1] x1 + [7]                  
                p(tt) = [4]                           
        
        Following rules are strictly oriented:
              U12(tt()) = [6]                     
                        > [4]                     
                        = tt()                    
        
        isNat(n__s(V1)) = [1] V1 + [6]            
                        > [1] V1 + [4]            
                        = U21(isNat(activate(V1)))
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                             
                                 >= [0]                             
                                 =  n__0()                          
        
                    U11(tt(),V2) =  [1] V2 + [6]                    
                                 >= [1] V2 + [6]                    
                                 =  U12(isNat(activate(V2)))        
        
                       U21(tt()) =  [4]                             
                                 >= [4]                             
                                 =  tt()                            
        
                     U31(tt(),N) =  [1] N + [0]                     
                                 >= [1] N + [0]                     
                                 =  activate(N)                     
        
                   U41(tt(),M,N) =  [1] M + [2] N + [0]             
                                 >= [1] M + [2] N + [9]             
                                 =  U42(isNat(activate(N))          
                                       ,activate(M)                 
                                       ,activate(N))                
        
                   U42(tt(),M,N) =  [1] M + [1] N + [9]             
                                 >= [1] M + [1] N + [9]             
                                 =  s(plus(activate(N),activate(M)))
        
                     activate(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  X                               
        
                activate(n__0()) =  [0]                             
                                 >= [0]                             
                                 =  0()                             
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [2]           
                                 >= [1] X1 + [1] X2 + [2]           
                                 =  plus(activate(X1),activate(X2)) 
        
               activate(n__s(X)) =  [1] X + [2]                     
                                 >= [1] X + [7]                     
                                 =  s(activate(X))                  
        
                   isNat(n__0()) =  [4]                             
                                 >= [4]                             
                                 =  tt()                            
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [6]           
                                 >= [1] V1 + [1] V2 + [6]           
                                 =  U11(isNat(activate(V1))         
                                       ,activate(V2))               
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [2]           
                                 >= [1] X1 + [1] X2 + [2]           
                                 =  n__plus(X1,X2)                  
        
                            s(X) =  [1] X + [7]                     
                                 >= [1] X + [2]                     
                                 =  n__s(X)                         
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U21(tt()) -> tt()
        U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
        activate(X) -> X
        activate(n__s(X)) -> s(activate(X))
        plus(X1,X2) -> n__plus(X1,X2)
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U31(tt(),N) -> activate(N)
        U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U42) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                           
               p(U11) = [1] x1 + [1] x2 + [5]         
               p(U12) = [1] x1 + [0]                  
               p(U21) = [1] x1 + [2]                  
               p(U31) = [5] x1 + [5] x2 + [4]         
               p(U41) = [1] x2 + [3] x3 + [0]         
               p(U42) = [1] x1 + [1] x2 + [1] x3 + [1]
          p(activate) = [1] x1 + [0]                  
             p(isNat) = [1] x1 + [0]                  
              p(n__0) = [1]                           
           p(n__plus) = [1] x1 + [1] x2 + [5]         
              p(n__s) = [1] x1 + [2]                  
              p(plus) = [1] x1 + [1] x2 + [0]         
                 p(s) = [1] x1 + [2]                  
                p(tt) = [1]                           
        
        Following rules are strictly oriented:
        U21(tt()) = [3] 
                  > [1] 
                  = tt()
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                             
                                 >= [1]                             
                                 =  n__0()                          
        
                    U11(tt(),V2) =  [1] V2 + [6]                    
                                 >= [1] V2 + [0]                    
                                 =  U12(isNat(activate(V2)))        
        
                       U12(tt()) =  [1]                             
                                 >= [1]                             
                                 =  tt()                            
        
                     U31(tt(),N) =  [5] N + [9]                     
                                 >= [1] N + [0]                     
                                 =  activate(N)                     
        
                   U41(tt(),M,N) =  [1] M + [3] N + [0]             
                                 >= [1] M + [2] N + [1]             
                                 =  U42(isNat(activate(N))          
                                       ,activate(M)                 
                                       ,activate(N))                
        
                   U42(tt(),M,N) =  [1] M + [1] N + [2]             
                                 >= [1] M + [1] N + [2]             
                                 =  s(plus(activate(N),activate(M)))
        
                     activate(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  X                               
        
                activate(n__0()) =  [1]                             
                                 >= [0]                             
                                 =  0()                             
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [5]           
                                 >= [1] X1 + [1] X2 + [0]           
                                 =  plus(activate(X1),activate(X2)) 
        
               activate(n__s(X)) =  [1] X + [2]                     
                                 >= [1] X + [2]                     
                                 =  s(activate(X))                  
        
                   isNat(n__0()) =  [1]                             
                                 >= [1]                             
                                 =  tt()                            
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [5]           
                                 >= [1] V1 + [1] V2 + [5]           
                                 =  U11(isNat(activate(V1))         
                                       ,activate(V2))               
        
                 isNat(n__s(V1)) =  [1] V1 + [2]                    
                                 >= [1] V1 + [2]                    
                                 =  U21(isNat(activate(V1)))        
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [0]           
                                 >= [1] X1 + [1] X2 + [5]           
                                 =  n__plus(X1,X2)                  
        
                            s(X) =  [1] X + [2]                     
                                 >= [1] X + [2]                     
                                 =  n__s(X)                         
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
        activate(X) -> X
        activate(n__s(X)) -> s(activate(X))
        plus(X1,X2) -> n__plus(X1,X2)
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),N) -> activate(N)
        U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U42) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                           
               p(U11) = [1] x1 + [1] x2 + [0]         
               p(U12) = [1] x1 + [0]                  
               p(U21) = [1] x1 + [0]                  
               p(U31) = [1] x2 + [1]                  
               p(U41) = [1] x2 + [3] x3 + [5]         
               p(U42) = [1] x1 + [1] x2 + [1] x3 + [4]
          p(activate) = [1] x1 + [0]                  
             p(isNat) = [1] x1 + [0]                  
              p(n__0) = [0]                           
           p(n__plus) = [1] x1 + [1] x2 + [7]         
              p(n__s) = [1] x1 + [3]                  
              p(plus) = [1] x1 + [1] x2 + [1]         
                 p(s) = [1] x1 + [3]                  
                p(tt) = [0]                           
        
        Following rules are strictly oriented:
        U41(tt(),M,N) = [1] M + [3] N + [5]   
                      > [1] M + [2] N + [4]   
                      = U42(isNat(activate(N))
                           ,activate(M)       
                           ,activate(N))      
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                             
                                 >= [0]                             
                                 =  n__0()                          
        
                    U11(tt(),V2) =  [1] V2 + [0]                    
                                 >= [1] V2 + [0]                    
                                 =  U12(isNat(activate(V2)))        
        
                       U12(tt()) =  [0]                             
                                 >= [0]                             
                                 =  tt()                            
        
                       U21(tt()) =  [0]                             
                                 >= [0]                             
                                 =  tt()                            
        
                     U31(tt(),N) =  [1] N + [1]                     
                                 >= [1] N + [0]                     
                                 =  activate(N)                     
        
                   U42(tt(),M,N) =  [1] M + [1] N + [4]             
                                 >= [1] M + [1] N + [4]             
                                 =  s(plus(activate(N),activate(M)))
        
                     activate(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  X                               
        
                activate(n__0()) =  [0]                             
                                 >= [0]                             
                                 =  0()                             
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [7]           
                                 >= [1] X1 + [1] X2 + [1]           
                                 =  plus(activate(X1),activate(X2)) 
        
               activate(n__s(X)) =  [1] X + [3]                     
                                 >= [1] X + [3]                     
                                 =  s(activate(X))                  
        
                   isNat(n__0()) =  [0]                             
                                 >= [0]                             
                                 =  tt()                            
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [7]           
                                 >= [1] V1 + [1] V2 + [0]           
                                 =  U11(isNat(activate(V1))         
                                       ,activate(V2))               
        
                 isNat(n__s(V1)) =  [1] V1 + [3]                    
                                 >= [1] V1 + [0]                    
                                 =  U21(isNat(activate(V1)))        
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [1]           
                                 >= [1] X1 + [1] X2 + [7]           
                                 =  n__plus(X1,X2)                  
        
                            s(X) =  [1] X + [3]                     
                                 >= [1] X + [3]                     
                                 =  n__s(X)                         
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        activate(X) -> X
        activate(n__s(X)) -> s(activate(X))
        plus(X1,X2) -> n__plus(X1,X2)
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),N) -> activate(N)
        U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
        U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U42) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [5]                           
               p(U11) = [1] x1 + [1] x2 + [0]         
               p(U12) = [1] x1 + [0]                  
               p(U21) = [1] x1 + [0]                  
               p(U31) = [1] x1 + [5] x2 + [5]         
               p(U41) = [2] x1 + [1] x2 + [4] x3 + [0]
               p(U42) = [1] x1 + [1] x2 + [1] x3 + [5]
          p(activate) = [1] x1 + [1]                  
             p(isNat) = [1] x1 + [0]                  
              p(n__0) = [4]                           
           p(n__plus) = [1] x1 + [1] x2 + [7]         
              p(n__s) = [1] x1 + [1]                  
              p(plus) = [1] x1 + [1] x2 + [5]         
                 p(s) = [1] x1 + [2]                  
                p(tt) = [4]                           
        
        Following rules are strictly oriented:
                0() = [5]        
                    > [4]        
                    = n__0()     
        
        activate(X) = [1] X + [1]
                    > [1] X + [0]
                    = X          
        
        
        Following rules are (at-least) weakly oriented:
                    U11(tt(),V2) =  [1] V2 + [4]                    
                                 >= [1] V2 + [1]                    
                                 =  U12(isNat(activate(V2)))        
        
                       U12(tt()) =  [4]                             
                                 >= [4]                             
                                 =  tt()                            
        
                       U21(tt()) =  [4]                             
                                 >= [4]                             
                                 =  tt()                            
        
                     U31(tt(),N) =  [5] N + [9]                     
                                 >= [1] N + [1]                     
                                 =  activate(N)                     
        
                   U41(tt(),M,N) =  [1] M + [4] N + [8]             
                                 >= [1] M + [2] N + [8]             
                                 =  U42(isNat(activate(N))          
                                       ,activate(M)                 
                                       ,activate(N))                
        
                   U42(tt(),M,N) =  [1] M + [1] N + [9]             
                                 >= [1] M + [1] N + [9]             
                                 =  s(plus(activate(N),activate(M)))
        
                activate(n__0()) =  [5]                             
                                 >= [5]                             
                                 =  0()                             
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [8]           
                                 >= [1] X1 + [1] X2 + [7]           
                                 =  plus(activate(X1),activate(X2)) 
        
               activate(n__s(X)) =  [1] X + [2]                     
                                 >= [1] X + [3]                     
                                 =  s(activate(X))                  
        
                   isNat(n__0()) =  [4]                             
                                 >= [4]                             
                                 =  tt()                            
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [7]           
                                 >= [1] V1 + [1] V2 + [2]           
                                 =  U11(isNat(activate(V1))         
                                       ,activate(V2))               
        
                 isNat(n__s(V1)) =  [1] V1 + [1]                    
                                 >= [1] V1 + [1]                    
                                 =  U21(isNat(activate(V1)))        
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [5]           
                                 >= [1] X1 + [1] X2 + [7]           
                                 =  n__plus(X1,X2)                  
        
                            s(X) =  [1] X + [2]                     
                                 >= [1] X + [1]                     
                                 =  n__s(X)                         
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__s(X)) -> s(activate(X))
        plus(X1,X2) -> n__plus(X1,X2)
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),N) -> activate(N)
        U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
        U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(U11) = {1,2},
        uargs(U12) = {1},
        uargs(U21) = {1},
        uargs(U42) = {1,2,3},
        uargs(isNat) = {1},
        uargs(plus) = {1,2},
        uargs(s) = {1}
      
      Following symbols are considered usable:
        {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}
      TcT has computed the following interpretation:
               p(0) = [4]                      
                      [0]                      
             p(U11) = [1 0] x1 + [1 1] x2 + [2]
                      [0 0]      [0 4]      [0]
             p(U12) = [1 0] x1 + [3]           
                      [0 0]      [0]           
             p(U21) = [1 0] x1 + [1]           
                      [0 0]      [0]           
             p(U31) = [1 4] x1 + [2 4] x2 + [6]
                      [2 0]      [2 1]      [2]
             p(U41) = [0 0] x1 + [1 5] x2 + [2 
                      5] x3 + [2]              
                      [2 2]      [4 4]      [4 
                      4]      [2]              
             p(U42) = [1 0] x1 + [1 4] x2 + [1 
                      3] x3 + [2]              
                      [3 0]      [0 1]      [0 
                      1]      [3]              
        p(activate) = [1 1] x1 + [0]           
                      [0 1]      [0]           
           p(isNat) = [1 0] x1 + [0]           
                      [0 4]      [5]           
            p(n__0) = [4]                      
                      [0]                      
         p(n__plus) = [1 1] x1 + [1 2] x2 + [2]
                      [0 1]      [0 1]      [0]
            p(n__s) = [1 1] x1 + [4]           
                      [0 1]      [2]           
            p(plus) = [1 1] x1 + [1 2] x2 + [2]
                      [0 1]      [0 1]      [0]
               p(s) = [1 1] x1 + [4]           
                      [0 1]      [2]           
              p(tt) = [4]                      
                      [0]                      
      
      Following rules are strictly oriented:
      activate(n__s(X)) = [1 2] X + [6] 
                          [0 1]     [2] 
                        > [1 2] X + [4] 
                          [0 1]     [2] 
                        = s(activate(X))
      
      
      Following rules are (at-least) weakly oriented:
                           0() =  [4]                             
                                  [0]                             
                               >= [4]                             
                                  [0]                             
                               =  n__0()                          
      
                  U11(tt(),V2) =  [1 1] V2 + [6]                  
                                  [0 4]      [0]                  
                               >= [1 1] V2 + [3]                  
                                  [0 0]      [0]                  
                               =  U12(isNat(activate(V2)))        
      
                     U12(tt()) =  [7]                             
                                  [0]                             
                               >= [4]                             
                                  [0]                             
                               =  tt()                            
      
                     U21(tt()) =  [5]                             
                                  [0]                             
                               >= [4]                             
                                  [0]                             
                               =  tt()                            
      
                   U31(tt(),N) =  [2 4] N + [10]                  
                                  [2 1]     [10]                  
                               >= [1 1] N + [0]                   
                                  [0 1]     [0]                   
                               =  activate(N)                     
      
                 U41(tt(),M,N) =  [1 5] M + [2 5] N + [2]         
                                  [4 4]     [4 4]     [10]        
                               >= [1 5] M + [2 5] N + [2]         
                                  [0 1]     [3 4]     [3]         
                               =  U42(isNat(activate(N))          
                                     ,activate(M)                 
                                     ,activate(N))                
      
                 U42(tt(),M,N) =  [1 4] M + [1 3] N + [6]         
                                  [0 1]     [0 1]     [15]        
                               >= [1 4] M + [1 3] N + [6]         
                                  [0 1]     [0 1]     [2]         
                               =  s(plus(activate(N),activate(M)))
      
                   activate(X) =  [1 1] X + [0]                   
                                  [0 1]     [0]                   
                               >= [1 0] X + [0]                   
                                  [0 1]     [0]                   
                               =  X                               
      
              activate(n__0()) =  [4]                             
                                  [0]                             
                               >= [4]                             
                                  [0]                             
                               =  0()                             
      
      activate(n__plus(X1,X2)) =  [1 2] X1 + [1 3] X2 + [2]       
                                  [0 1]      [0 1]      [0]       
                               >= [1 2] X1 + [1 3] X2 + [2]       
                                  [0 1]      [0 1]      [0]       
                               =  plus(activate(X1),activate(X2)) 
      
                 isNat(n__0()) =  [4]                             
                                  [5]                             
                               >= [4]                             
                                  [0]                             
                               =  tt()                            
      
         isNat(n__plus(V1,V2)) =  [1 1] V1 + [1 2] V2 + [2]       
                                  [0 4]      [0 4]      [5]       
                               >= [1 1] V1 + [1 2] V2 + [2]       
                                  [0 0]      [0 4]      [0]       
                               =  U11(isNat(activate(V1))         
                                     ,activate(V2))               
      
               isNat(n__s(V1)) =  [1 1] V1 + [4]                  
                                  [0 4]      [13]                 
                               >= [1 1] V1 + [1]                  
                                  [0 0]      [0]                  
                               =  U21(isNat(activate(V1)))        
      
                   plus(X1,X2) =  [1 1] X1 + [1 2] X2 + [2]       
                                  [0 1]      [0 1]      [0]       
                               >= [1 1] X1 + [1 2] X2 + [2]       
                                  [0 1]      [0 1]      [0]       
                               =  n__plus(X1,X2)                  
      
                          s(X) =  [1 1] X + [4]                   
                                  [0 1]     [2]                   
                               >= [1 1] X + [4]                   
                                  [0 1]     [2]                   
                               =  n__s(X)                         
      
*** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        plus(X1,X2) -> n__plus(X1,X2)
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),N) -> activate(N)
        U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
        U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(U11) = {1,2},
        uargs(U12) = {1},
        uargs(U21) = {1},
        uargs(U42) = {1,2,3},
        uargs(isNat) = {1},
        uargs(plus) = {1,2},
        uargs(s) = {1}
      
      Following symbols are considered usable:
        {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}
      TcT has computed the following interpretation:
               p(0) = [0]                      
                      [0]                      
             p(U11) = [1 0] x1 + [2 4] x2 + [0]
                      [0 0]      [0 0]      [0]
             p(U12) = [1 1] x1 + [0]           
                      [0 0]      [0]           
             p(U21) = [1 0] x1 + [0]           
                      [0 1]      [4]           
             p(U31) = [1 0] x1 + [1 1] x2 + [0]
                      [1 0]      [4 2]      [3]
             p(U41) = [2 1] x1 + [1 7] x2 + [3 
                      7] x3 + [5]              
                      [2 0]      [4 2]      [4 
                      7]      [4]              
             p(U42) = [1 0] x1 + [1 6] x2 + [1 
                      4] x3 + [3]              
                      [2 0]      [0 1]      [0 
                      2]      [2]              
        p(activate) = [1 1] x1 + [0]           
                      [0 1]      [0]           
           p(isNat) = [2 0] x1 + [4]           
                      [0 2]      [0]           
            p(n__0) = [0]                      
                      [0]                      
         p(n__plus) = [1 1] x1 + [1 3] x2 + [0]
                      [0 1]      [0 1]      [2]
            p(n__s) = [1 2] x1 + [0]           
                      [0 1]      [4]           
            p(plus) = [1 1] x1 + [1 3] x2 + [1]
                      [0 1]      [0 1]      [2]
               p(s) = [1 2] x1 + [0]           
                      [0 1]      [4]           
              p(tt) = [4]                      
                      [0]                      
      
      Following rules are strictly oriented:
      plus(X1,X2) = [1 1] X1 + [1 3] X2 + [1]
                    [0 1]      [0 1]      [2]
                  > [1 1] X1 + [1 3] X2 + [0]
                    [0 1]      [0 1]      [2]
                  = n__plus(X1,X2)           
      
      
      Following rules are (at-least) weakly oriented:
                           0() =  [0]                             
                                  [0]                             
                               >= [0]                             
                                  [0]                             
                               =  n__0()                          
      
                  U11(tt(),V2) =  [2 4] V2 + [4]                  
                                  [0 0]      [0]                  
                               >= [2 4] V2 + [4]                  
                                  [0 0]      [0]                  
                               =  U12(isNat(activate(V2)))        
      
                     U12(tt()) =  [4]                             
                                  [0]                             
                               >= [4]                             
                                  [0]                             
                               =  tt()                            
      
                     U21(tt()) =  [4]                             
                                  [4]                             
                               >= [4]                             
                                  [0]                             
                               =  tt()                            
      
                   U31(tt(),N) =  [1 1] N + [4]                   
                                  [4 2]     [7]                   
                               >= [1 1] N + [0]                   
                                  [0 1]     [0]                   
                               =  activate(N)                     
      
                 U41(tt(),M,N) =  [1 7] M + [3 7] N + [13]        
                                  [4 2]     [4 7]     [12]        
                               >= [1 7] M + [3 7] N + [7]         
                                  [0 1]     [4 6]     [10]        
                               =  U42(isNat(activate(N))          
                                     ,activate(M)                 
                                     ,activate(N))                
      
                 U42(tt(),M,N) =  [1 6] M + [1 4] N + [7]         
                                  [0 1]     [0 2]     [10]        
                               >= [1 6] M + [1 4] N + [5]         
                                  [0 1]     [0 1]     [6]         
                               =  s(plus(activate(N),activate(M)))
      
                   activate(X) =  [1 1] X + [0]                   
                                  [0 1]     [0]                   
                               >= [1 0] X + [0]                   
                                  [0 1]     [0]                   
                               =  X                               
      
              activate(n__0()) =  [0]                             
                                  [0]                             
                               >= [0]                             
                                  [0]                             
                               =  0()                             
      
      activate(n__plus(X1,X2)) =  [1 2] X1 + [1 4] X2 + [2]       
                                  [0 1]      [0 1]      [2]       
                               >= [1 2] X1 + [1 4] X2 + [1]       
                                  [0 1]      [0 1]      [2]       
                               =  plus(activate(X1),activate(X2)) 
      
             activate(n__s(X)) =  [1 3] X + [4]                   
                                  [0 1]     [4]                   
                               >= [1 3] X + [0]                   
                                  [0 1]     [4]                   
                               =  s(activate(X))                  
      
                 isNat(n__0()) =  [4]                             
                                  [0]                             
                               >= [4]                             
                                  [0]                             
                               =  tt()                            
      
         isNat(n__plus(V1,V2)) =  [2 2] V1 + [2 6] V2 + [4]       
                                  [0 2]      [0 2]      [4]       
                               >= [2 2] V1 + [2 6] V2 + [4]       
                                  [0 0]      [0 0]      [0]       
                               =  U11(isNat(activate(V1))         
                                     ,activate(V2))               
      
               isNat(n__s(V1)) =  [2 4] V1 + [4]                  
                                  [0 2]      [8]                  
                               >= [2 2] V1 + [4]                  
                                  [0 2]      [4]                  
                               =  U21(isNat(activate(V1)))        
      
                          s(X) =  [1 2] X + [0]                   
                                  [0 1]     [4]                   
                               >= [1 2] X + [0]                   
                                  [0 1]     [4]                   
                               =  n__s(X)                         
      
*** 1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),N) -> activate(N)
        U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
        U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).