We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__s(X)) -> s(activate(X))
  , U21(tt()) -> tt()
  , U31(tt(), N) -> activate(N)
  , U41(tt(), M, N) ->
    U42(isNat(activate(N)), activate(M), activate(N))
  , U42(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , plus(N, s(M)) -> U41(isNat(M), M, N)
  , plus(N, 0()) -> U31(isNat(N), N)
  , 0() -> n__0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

Arguments of following rules are not normal-forms:

{ plus(N, s(M)) -> U41(isNat(M), M, N)
, plus(N, 0()) -> U31(isNat(N), N) }

All above mentioned rules can be savely removed.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__s(X)) -> s(activate(X))
  , U21(tt()) -> tt()
  , U31(tt(), N) -> activate(N)
  , U41(tt(), M, N) ->
    U42(isNat(activate(N)), activate(M), activate(N))
  , U42(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , 0() -> n__0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We add the following dependency tuples:

Strict DPs:
  { U11^#(tt(), V2) ->
    c_1(U12^#(isNat(activate(V2))),
        isNat^#(activate(V2)),
        activate^#(V2))
  , U12^#(tt()) -> c_2()
  , isNat^#(n__0()) -> c_3()
  , isNat^#(n__plus(V1, V2)) ->
    c_4(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) ->
    c_5(U21^#(isNat(activate(V1))),
        isNat^#(activate(V1)),
        activate^#(V1))
  , activate^#(X) -> c_6()
  , activate^#(n__0()) -> c_7(0^#())
  , activate^#(n__plus(X1, X2)) ->
    c_8(plus^#(activate(X1), activate(X2)),
        activate^#(X1),
        activate^#(X2))
  , activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X))
  , U21^#(tt()) -> c_10()
  , 0^#() -> c_16()
  , plus^#(X1, X2) -> c_15()
  , s^#(X) -> c_14()
  , U31^#(tt(), N) -> c_11(activate^#(N))
  , U41^#(tt(), M, N) ->
    c_12(U42^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U42^#(tt(), M, N) ->
    c_13(s^#(plus(activate(N), activate(M))),
         plus^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M)) }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { U11^#(tt(), V2) ->
    c_1(U12^#(isNat(activate(V2))),
        isNat^#(activate(V2)),
        activate^#(V2))
  , U12^#(tt()) -> c_2()
  , isNat^#(n__0()) -> c_3()
  , isNat^#(n__plus(V1, V2)) ->
    c_4(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) ->
    c_5(U21^#(isNat(activate(V1))),
        isNat^#(activate(V1)),
        activate^#(V1))
  , activate^#(X) -> c_6()
  , activate^#(n__0()) -> c_7(0^#())
  , activate^#(n__plus(X1, X2)) ->
    c_8(plus^#(activate(X1), activate(X2)),
        activate^#(X1),
        activate^#(X2))
  , activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X))
  , U21^#(tt()) -> c_10()
  , 0^#() -> c_16()
  , plus^#(X1, X2) -> c_15()
  , s^#(X) -> c_14()
  , U31^#(tt(), N) -> c_11(activate^#(N))
  , U41^#(tt(), M, N) ->
    c_12(U42^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U42^#(tt(), M, N) ->
    c_13(s^#(plus(activate(N), activate(M))),
         plus^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M)) }
Weak Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__s(X)) -> s(activate(X))
  , U21(tt()) -> tt()
  , U31(tt(), N) -> activate(N)
  , U41(tt(), M, N) ->
    U42(isNat(activate(N)), activate(M), activate(N))
  , U42(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , 0() -> n__0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We estimate the number of application of {2,3,6,10,11,12,13} by
applications of Pre({2,3,6,10,11,12,13}) = {1,4,5,7,8,9,14,15,16}.
Here rules are labeled as follows:

  DPs:
    { 1: U11^#(tt(), V2) ->
         c_1(U12^#(isNat(activate(V2))),
             isNat^#(activate(V2)),
             activate^#(V2))
    , 2: U12^#(tt()) -> c_2()
    , 3: isNat^#(n__0()) -> c_3()
    , 4: isNat^#(n__plus(V1, V2)) ->
         c_4(U11^#(isNat(activate(V1)), activate(V2)),
             isNat^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
    , 5: isNat^#(n__s(V1)) ->
         c_5(U21^#(isNat(activate(V1))),
             isNat^#(activate(V1)),
             activate^#(V1))
    , 6: activate^#(X) -> c_6()
    , 7: activate^#(n__0()) -> c_7(0^#())
    , 8: activate^#(n__plus(X1, X2)) ->
         c_8(plus^#(activate(X1), activate(X2)),
             activate^#(X1),
             activate^#(X2))
    , 9: activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X))
    , 10: U21^#(tt()) -> c_10()
    , 11: 0^#() -> c_16()
    , 12: plus^#(X1, X2) -> c_15()
    , 13: s^#(X) -> c_14()
    , 14: U31^#(tt(), N) -> c_11(activate^#(N))
    , 15: U41^#(tt(), M, N) ->
          c_12(U42^#(isNat(activate(N)), activate(M), activate(N)),
               isNat^#(activate(N)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
    , 16: U42^#(tt(), M, N) ->
          c_13(s^#(plus(activate(N), activate(M))),
               plus^#(activate(N), activate(M)),
               activate^#(N),
               activate^#(M)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { U11^#(tt(), V2) ->
    c_1(U12^#(isNat(activate(V2))),
        isNat^#(activate(V2)),
        activate^#(V2))
  , isNat^#(n__plus(V1, V2)) ->
    c_4(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) ->
    c_5(U21^#(isNat(activate(V1))),
        isNat^#(activate(V1)),
        activate^#(V1))
  , activate^#(n__0()) -> c_7(0^#())
  , activate^#(n__plus(X1, X2)) ->
    c_8(plus^#(activate(X1), activate(X2)),
        activate^#(X1),
        activate^#(X2))
  , activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X))
  , U31^#(tt(), N) -> c_11(activate^#(N))
  , U41^#(tt(), M, N) ->
    c_12(U42^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U42^#(tt(), M, N) ->
    c_13(s^#(plus(activate(N), activate(M))),
         plus^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M)) }
Weak DPs:
  { U12^#(tt()) -> c_2()
  , isNat^#(n__0()) -> c_3()
  , activate^#(X) -> c_6()
  , U21^#(tt()) -> c_10()
  , 0^#() -> c_16()
  , plus^#(X1, X2) -> c_15()
  , s^#(X) -> c_14() }
Weak Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__s(X)) -> s(activate(X))
  , U21(tt()) -> tt()
  , U31(tt(), N) -> activate(N)
  , U41(tt(), M, N) ->
    U42(isNat(activate(N)), activate(M), activate(N))
  , U42(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , 0() -> n__0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We estimate the number of application of {4} by applications of
Pre({4}) = {1,2,3,5,6,7,8,9}. Here rules are labeled as follows:

  DPs:
    { 1: U11^#(tt(), V2) ->
         c_1(U12^#(isNat(activate(V2))),
             isNat^#(activate(V2)),
             activate^#(V2))
    , 2: isNat^#(n__plus(V1, V2)) ->
         c_4(U11^#(isNat(activate(V1)), activate(V2)),
             isNat^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
    , 3: isNat^#(n__s(V1)) ->
         c_5(U21^#(isNat(activate(V1))),
             isNat^#(activate(V1)),
             activate^#(V1))
    , 4: activate^#(n__0()) -> c_7(0^#())
    , 5: activate^#(n__plus(X1, X2)) ->
         c_8(plus^#(activate(X1), activate(X2)),
             activate^#(X1),
             activate^#(X2))
    , 6: activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X))
    , 7: U31^#(tt(), N) -> c_11(activate^#(N))
    , 8: U41^#(tt(), M, N) ->
         c_12(U42^#(isNat(activate(N)), activate(M), activate(N)),
              isNat^#(activate(N)),
              activate^#(N),
              activate^#(M),
              activate^#(N))
    , 9: U42^#(tt(), M, N) ->
         c_13(s^#(plus(activate(N), activate(M))),
              plus^#(activate(N), activate(M)),
              activate^#(N),
              activate^#(M))
    , 10: U12^#(tt()) -> c_2()
    , 11: isNat^#(n__0()) -> c_3()
    , 12: activate^#(X) -> c_6()
    , 13: U21^#(tt()) -> c_10()
    , 14: 0^#() -> c_16()
    , 15: plus^#(X1, X2) -> c_15()
    , 16: s^#(X) -> c_14() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { U11^#(tt(), V2) ->
    c_1(U12^#(isNat(activate(V2))),
        isNat^#(activate(V2)),
        activate^#(V2))
  , isNat^#(n__plus(V1, V2)) ->
    c_4(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) ->
    c_5(U21^#(isNat(activate(V1))),
        isNat^#(activate(V1)),
        activate^#(V1))
  , activate^#(n__plus(X1, X2)) ->
    c_8(plus^#(activate(X1), activate(X2)),
        activate^#(X1),
        activate^#(X2))
  , activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X))
  , U31^#(tt(), N) -> c_11(activate^#(N))
  , U41^#(tt(), M, N) ->
    c_12(U42^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U42^#(tt(), M, N) ->
    c_13(s^#(plus(activate(N), activate(M))),
         plus^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M)) }
Weak DPs:
  { U12^#(tt()) -> c_2()
  , isNat^#(n__0()) -> c_3()
  , activate^#(X) -> c_6()
  , activate^#(n__0()) -> c_7(0^#())
  , U21^#(tt()) -> c_10()
  , 0^#() -> c_16()
  , plus^#(X1, X2) -> c_15()
  , s^#(X) -> c_14() }
Weak Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__s(X)) -> s(activate(X))
  , U21(tt()) -> tt()
  , U31(tt(), N) -> activate(N)
  , U41(tt(), M, N) ->
    U42(isNat(activate(N)), activate(M), activate(N))
  , U42(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , 0() -> n__0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ U12^#(tt()) -> c_2()
, isNat^#(n__0()) -> c_3()
, activate^#(X) -> c_6()
, activate^#(n__0()) -> c_7(0^#())
, U21^#(tt()) -> c_10()
, 0^#() -> c_16()
, plus^#(X1, X2) -> c_15()
, s^#(X) -> c_14() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { U11^#(tt(), V2) ->
    c_1(U12^#(isNat(activate(V2))),
        isNat^#(activate(V2)),
        activate^#(V2))
  , isNat^#(n__plus(V1, V2)) ->
    c_4(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) ->
    c_5(U21^#(isNat(activate(V1))),
        isNat^#(activate(V1)),
        activate^#(V1))
  , activate^#(n__plus(X1, X2)) ->
    c_8(plus^#(activate(X1), activate(X2)),
        activate^#(X1),
        activate^#(X2))
  , activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X))
  , U31^#(tt(), N) -> c_11(activate^#(N))
  , U41^#(tt(), M, N) ->
    c_12(U42^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U42^#(tt(), M, N) ->
    c_13(s^#(plus(activate(N), activate(M))),
         plus^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M)) }
Weak Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__s(X)) -> s(activate(X))
  , U21(tt()) -> tt()
  , U31(tt(), N) -> activate(N)
  , U41(tt(), M, N) ->
    U42(isNat(activate(N)), activate(M), activate(N))
  , U42(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , 0() -> n__0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

Due to missing edges in the dependency-graph, the right-hand sides
of following rules could be simplified:

  { U11^#(tt(), V2) ->
    c_1(U12^#(isNat(activate(V2))),
        isNat^#(activate(V2)),
        activate^#(V2))
  , isNat^#(n__s(V1)) ->
    c_5(U21^#(isNat(activate(V1))),
        isNat^#(activate(V1)),
        activate^#(V1))
  , activate^#(n__plus(X1, X2)) ->
    c_8(plus^#(activate(X1), activate(X2)),
        activate^#(X1),
        activate^#(X2))
  , activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X))
  , U42^#(tt(), M, N) ->
    c_13(s^#(plus(activate(N), activate(M))),
         plus^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
  , isNat^#(n__plus(V1, V2)) ->
    c_2(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
  , activate^#(n__plus(X1, X2)) ->
    c_4(activate^#(X1), activate^#(X2))
  , activate^#(n__s(X)) -> c_5(activate^#(X))
  , U31^#(tt(), N) -> c_6(activate^#(N))
  , U41^#(tt(), M, N) ->
    c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
        isNat^#(activate(N)),
        activate^#(N),
        activate^#(M),
        activate^#(N))
  , U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
Weak Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__s(X)) -> s(activate(X))
  , U21(tt()) -> tt()
  , U31(tt(), N) -> activate(N)
  , U41(tt(), M, N) ->
    U42(isNat(activate(N)), activate(M), activate(N))
  , U42(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , 0() -> n__0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We replace rewrite rules by usable rules:

  Weak Usable Rules:
    { U11(tt(), V2) -> U12(isNat(activate(V2)))
    , U12(tt()) -> tt()
    , isNat(n__0()) -> tt()
    , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
    , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
    , activate(X) -> X
    , activate(n__0()) -> 0()
    , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
    , activate(n__s(X)) -> s(activate(X))
    , U21(tt()) -> tt()
    , s(X) -> n__s(X)
    , plus(X1, X2) -> n__plus(X1, X2)
    , 0() -> n__0() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
  , isNat^#(n__plus(V1, V2)) ->
    c_2(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
  , activate^#(n__plus(X1, X2)) ->
    c_4(activate^#(X1), activate^#(X2))
  , activate^#(n__s(X)) -> c_5(activate^#(X))
  , U31^#(tt(), N) -> c_6(activate^#(N))
  , U41^#(tt(), M, N) ->
    c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
        isNat^#(activate(N)),
        activate^#(N),
        activate^#(M),
        activate^#(N))
  , U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
Weak Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__s(X)) -> s(activate(X))
  , U21(tt()) -> tt()
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , 0() -> n__0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

Consider the dependency graph

  1: U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
     -->_2 activate^#(n__s(X)) -> c_5(activate^#(X)) :5
     -->_2 activate^#(n__plus(X1, X2)) ->
           c_4(activate^#(X1), activate^#(X2)) :4
     -->_1 isNat^#(n__s(V1)) ->
           c_3(isNat^#(activate(V1)), activate^#(V1)) :3
     -->_1 isNat^#(n__plus(V1, V2)) ->
           c_2(U11^#(isNat(activate(V1)), activate(V2)),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :2
  
  2: isNat^#(n__plus(V1, V2)) ->
     c_2(U11^#(isNat(activate(V1)), activate(V2)),
         isNat^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
     -->_4 activate^#(n__s(X)) -> c_5(activate^#(X)) :5
     -->_3 activate^#(n__s(X)) -> c_5(activate^#(X)) :5
     -->_4 activate^#(n__plus(X1, X2)) ->
           c_4(activate^#(X1), activate^#(X2)) :4
     -->_3 activate^#(n__plus(X1, X2)) ->
           c_4(activate^#(X1), activate^#(X2)) :4
     -->_2 isNat^#(n__s(V1)) ->
           c_3(isNat^#(activate(V1)), activate^#(V1)) :3
     -->_2 isNat^#(n__plus(V1, V2)) ->
           c_2(U11^#(isNat(activate(V1)), activate(V2)),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :2
     -->_1 U11^#(tt(), V2) ->
           c_1(isNat^#(activate(V2)), activate^#(V2)) :1
  
  3: isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
     -->_2 activate^#(n__s(X)) -> c_5(activate^#(X)) :5
     -->_2 activate^#(n__plus(X1, X2)) ->
           c_4(activate^#(X1), activate^#(X2)) :4
     -->_1 isNat^#(n__s(V1)) ->
           c_3(isNat^#(activate(V1)), activate^#(V1)) :3
     -->_1 isNat^#(n__plus(V1, V2)) ->
           c_2(U11^#(isNat(activate(V1)), activate(V2)),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :2
  
  4: activate^#(n__plus(X1, X2)) ->
     c_4(activate^#(X1), activate^#(X2))
     -->_2 activate^#(n__s(X)) -> c_5(activate^#(X)) :5
     -->_1 activate^#(n__s(X)) -> c_5(activate^#(X)) :5
     -->_2 activate^#(n__plus(X1, X2)) ->
           c_4(activate^#(X1), activate^#(X2)) :4
     -->_1 activate^#(n__plus(X1, X2)) ->
           c_4(activate^#(X1), activate^#(X2)) :4
  
  5: activate^#(n__s(X)) -> c_5(activate^#(X))
     -->_1 activate^#(n__s(X)) -> c_5(activate^#(X)) :5
     -->_1 activate^#(n__plus(X1, X2)) ->
           c_4(activate^#(X1), activate^#(X2)) :4
  
  6: U31^#(tt(), N) -> c_6(activate^#(N))
     -->_1 activate^#(n__s(X)) -> c_5(activate^#(X)) :5
     -->_1 activate^#(n__plus(X1, X2)) ->
           c_4(activate^#(X1), activate^#(X2)) :4
  
  7: U41^#(tt(), M, N) ->
     c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
     -->_1 U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) :8
     -->_5 activate^#(n__s(X)) -> c_5(activate^#(X)) :5
     -->_4 activate^#(n__s(X)) -> c_5(activate^#(X)) :5
     -->_3 activate^#(n__s(X)) -> c_5(activate^#(X)) :5
     -->_5 activate^#(n__plus(X1, X2)) ->
           c_4(activate^#(X1), activate^#(X2)) :4
     -->_4 activate^#(n__plus(X1, X2)) ->
           c_4(activate^#(X1), activate^#(X2)) :4
     -->_3 activate^#(n__plus(X1, X2)) ->
           c_4(activate^#(X1), activate^#(X2)) :4
     -->_2 isNat^#(n__s(V1)) ->
           c_3(isNat^#(activate(V1)), activate^#(V1)) :3
     -->_2 isNat^#(n__plus(V1, V2)) ->
           c_2(U11^#(isNat(activate(V1)), activate(V2)),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :2
  
  8: U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M))
     -->_2 activate^#(n__s(X)) -> c_5(activate^#(X)) :5
     -->_1 activate^#(n__s(X)) -> c_5(activate^#(X)) :5
     -->_2 activate^#(n__plus(X1, X2)) ->
           c_4(activate^#(X1), activate^#(X2)) :4
     -->_1 activate^#(n__plus(X1, X2)) ->
           c_4(activate^#(X1), activate^#(X2)) :4
  

Following roots of the dependency graph are removed, as the
considered set of starting terms is closed under reduction with
respect to these rules (modulo compound contexts).

  { U31^#(tt(), N) -> c_6(activate^#(N)) }


We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
  , isNat^#(n__plus(V1, V2)) ->
    c_2(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
  , activate^#(n__plus(X1, X2)) ->
    c_4(activate^#(X1), activate^#(X2))
  , activate^#(n__s(X)) -> c_5(activate^#(X))
  , U41^#(tt(), M, N) ->
    c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
        isNat^#(activate(N)),
        activate^#(N),
        activate^#(M),
        activate^#(N))
  , U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
Weak Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__s(X)) -> s(activate(X))
  , U21(tt()) -> tt()
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , 0() -> n__0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We analyse the complexity of following sub-problems (R) and (S).
Problem (S) is obtained from the input problem by shifting strict
rules from (R) into the weak component:

Problem (R):
------------
  Strict DPs:
    { activate^#(n__plus(X1, X2)) ->
      c_4(activate^#(X1), activate^#(X2))
    , activate^#(n__s(X)) -> c_5(activate^#(X))
    , U41^#(tt(), M, N) ->
      c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
          isNat^#(activate(N)),
          activate^#(N),
          activate^#(M),
          activate^#(N))
    , U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
  Weak DPs:
    { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
    , isNat^#(n__plus(V1, V2)) ->
      c_2(U11^#(isNat(activate(V1)), activate(V2)),
          isNat^#(activate(V1)),
          activate^#(V1),
          activate^#(V2))
    , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1)) }
  Weak Trs:
    { U11(tt(), V2) -> U12(isNat(activate(V2)))
    , U12(tt()) -> tt()
    , isNat(n__0()) -> tt()
    , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
    , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
    , activate(X) -> X
    , activate(n__0()) -> 0()
    , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
    , activate(n__s(X)) -> s(activate(X))
    , U21(tt()) -> tt()
    , s(X) -> n__s(X)
    , plus(X1, X2) -> n__plus(X1, X2)
    , 0() -> n__0() }
  StartTerms: basic terms
  Strategy: innermost

Problem (S):
------------
  Strict DPs:
    { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
    , isNat^#(n__plus(V1, V2)) ->
      c_2(U11^#(isNat(activate(V1)), activate(V2)),
          isNat^#(activate(V1)),
          activate^#(V1),
          activate^#(V2))
    , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1)) }
  Weak DPs:
    { activate^#(n__plus(X1, X2)) ->
      c_4(activate^#(X1), activate^#(X2))
    , activate^#(n__s(X)) -> c_5(activate^#(X))
    , U41^#(tt(), M, N) ->
      c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
          isNat^#(activate(N)),
          activate^#(N),
          activate^#(M),
          activate^#(N))
    , U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
  Weak Trs:
    { U11(tt(), V2) -> U12(isNat(activate(V2)))
    , U12(tt()) -> tt()
    , isNat(n__0()) -> tt()
    , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
    , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
    , activate(X) -> X
    , activate(n__0()) -> 0()
    , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
    , activate(n__s(X)) -> s(activate(X))
    , U21(tt()) -> tt()
    , s(X) -> n__s(X)
    , plus(X1, X2) -> n__plus(X1, X2)
    , 0() -> n__0() }
  StartTerms: basic terms
  Strategy: innermost

Overall, the transformation results in the following sub-problem(s):

Generated new problems:
-----------------------
R) Strict DPs:
     { activate^#(n__plus(X1, X2)) ->
       c_4(activate^#(X1), activate^#(X2))
     , activate^#(n__s(X)) -> c_5(activate^#(X))
     , U41^#(tt(), M, N) ->
       c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
           isNat^#(activate(N)),
           activate^#(N),
           activate^#(M),
           activate^#(N))
     , U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
   Weak DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1)) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
     , activate(n__s(X)) -> s(activate(X))
     , U21(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0() }
   StartTerms: basic terms
   Strategy: innermost
   
   This problem was proven YES(O(1),O(n^2)).

S) Strict DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1)) }
   Weak DPs:
     { activate^#(n__plus(X1, X2)) ->
       c_4(activate^#(X1), activate^#(X2))
     , activate^#(n__s(X)) -> c_5(activate^#(X))
     , U41^#(tt(), M, N) ->
       c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
           isNat^#(activate(N)),
           activate^#(N),
           activate^#(M),
           activate^#(N))
     , U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
     , activate(n__s(X)) -> s(activate(X))
     , U21(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0() }
   StartTerms: basic terms
   Strategy: innermost
   
   This problem was proven YES(O(1),O(n^1)).


Proofs for generated problems:
------------------------------
R) We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(n^2)).
   
   Strict DPs:
     { activate^#(n__plus(X1, X2)) ->
       c_4(activate^#(X1), activate^#(X2))
     , activate^#(n__s(X)) -> c_5(activate^#(X))
     , U41^#(tt(), M, N) ->
       c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
           isNat^#(activate(N)),
           activate^#(N),
           activate^#(M),
           activate^#(N))
     , U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
   Weak DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1)) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
     , activate(n__s(X)) -> s(activate(X))
     , U21(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0() }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(n^2))
   
   We analyse the complexity of following sub-problems (R) and (S).
   Problem (S) is obtained from the input problem by shifting strict
   rules from (R) into the weak component:
   
   Problem (R):
   ------------
     Strict DPs:
       { activate^#(n__plus(X1, X2)) ->
         c_4(activate^#(X1), activate^#(X2))
       , activate^#(n__s(X)) -> c_5(activate^#(X))
       , U41^#(tt(), M, N) ->
         c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
             isNat^#(activate(N)),
             activate^#(N),
             activate^#(M),
             activate^#(N)) }
     Weak DPs:
       { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
       , isNat^#(n__plus(V1, V2)) ->
         c_2(U11^#(isNat(activate(V1)), activate(V2)),
             isNat^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
       , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
       , U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
     Weak Trs:
       { U11(tt(), V2) -> U12(isNat(activate(V2)))
       , U12(tt()) -> tt()
       , isNat(n__0()) -> tt()
       , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
       , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
       , activate(X) -> X
       , activate(n__0()) -> 0()
       , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
       , activate(n__s(X)) -> s(activate(X))
       , U21(tt()) -> tt()
       , s(X) -> n__s(X)
       , plus(X1, X2) -> n__plus(X1, X2)
       , 0() -> n__0() }
     StartTerms: basic terms
     Strategy: innermost
   
   Problem (S):
   ------------
     Strict DPs:
       { U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
     Weak DPs:
       { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
       , isNat^#(n__plus(V1, V2)) ->
         c_2(U11^#(isNat(activate(V1)), activate(V2)),
             isNat^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
       , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
       , activate^#(n__plus(X1, X2)) ->
         c_4(activate^#(X1), activate^#(X2))
       , activate^#(n__s(X)) -> c_5(activate^#(X))
       , U41^#(tt(), M, N) ->
         c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
             isNat^#(activate(N)),
             activate^#(N),
             activate^#(M),
             activate^#(N)) }
     Weak Trs:
       { U11(tt(), V2) -> U12(isNat(activate(V2)))
       , U12(tt()) -> tt()
       , isNat(n__0()) -> tt()
       , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
       , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
       , activate(X) -> X
       , activate(n__0()) -> 0()
       , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
       , activate(n__s(X)) -> s(activate(X))
       , U21(tt()) -> tt()
       , s(X) -> n__s(X)
       , plus(X1, X2) -> n__plus(X1, X2)
       , 0() -> n__0() }
     StartTerms: basic terms
     Strategy: innermost
   
   Overall, the transformation results in the following sub-problem(s):
   
   Generated new problems:
   -----------------------
   R) Strict DPs:
        { activate^#(n__plus(X1, X2)) ->
          c_4(activate^#(X1), activate^#(X2))
        , activate^#(n__s(X)) -> c_5(activate^#(X))
        , U41^#(tt(), M, N) ->
          c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
              isNat^#(activate(N)),
              activate^#(N),
              activate^#(M),
              activate^#(N)) }
      Weak DPs:
        { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
        , isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)),
              activate^#(V1),
              activate^#(V2))
        , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
        , U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
      Weak Trs:
        { U11(tt(), V2) -> U12(isNat(activate(V2)))
        , U12(tt()) -> tt()
        , isNat(n__0()) -> tt()
        , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
        , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        , activate(X) -> X
        , activate(n__0()) -> 0()
        , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
        , activate(n__s(X)) -> s(activate(X))
        , U21(tt()) -> tt()
        , s(X) -> n__s(X)
        , plus(X1, X2) -> n__plus(X1, X2)
        , 0() -> n__0() }
      StartTerms: basic terms
      Strategy: innermost
      
      This problem was proven YES(O(1),O(n^2)).
   
   S) Strict DPs:
        { U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
      Weak DPs:
        { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
        , isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)),
              activate^#(V1),
              activate^#(V2))
        , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
        , activate^#(n__plus(X1, X2)) ->
          c_4(activate^#(X1), activate^#(X2))
        , activate^#(n__s(X)) -> c_5(activate^#(X))
        , U41^#(tt(), M, N) ->
          c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
              isNat^#(activate(N)),
              activate^#(N),
              activate^#(M),
              activate^#(N)) }
      Weak Trs:
        { U11(tt(), V2) -> U12(isNat(activate(V2)))
        , U12(tt()) -> tt()
        , isNat(n__0()) -> tt()
        , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
        , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        , activate(X) -> X
        , activate(n__0()) -> 0()
        , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
        , activate(n__s(X)) -> s(activate(X))
        , U21(tt()) -> tt()
        , s(X) -> n__s(X)
        , plus(X1, X2) -> n__plus(X1, X2)
        , 0() -> n__0() }
      StartTerms: basic terms
      Strategy: innermost
      
      This problem was proven YES(O(1),O(1)).
   
   
   Proofs for generated problems:
   ------------------------------
   R) We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(n^2)).
      
      Strict DPs:
        { activate^#(n__plus(X1, X2)) ->
          c_4(activate^#(X1), activate^#(X2))
        , activate^#(n__s(X)) -> c_5(activate^#(X))
        , U41^#(tt(), M, N) ->
          c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
              isNat^#(activate(N)),
              activate^#(N),
              activate^#(M),
              activate^#(N)) }
      Weak DPs:
        { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
        , isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)),
              activate^#(V1),
              activate^#(V2))
        , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
        , U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
      Weak Trs:
        { U11(tt(), V2) -> U12(isNat(activate(V2)))
        , U12(tt()) -> tt()
        , isNat(n__0()) -> tt()
        , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
        , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        , activate(X) -> X
        , activate(n__0()) -> 0()
        , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
        , activate(n__s(X)) -> s(activate(X))
        , U21(tt()) -> tt()
        , s(X) -> n__s(X)
        , plus(X1, X2) -> n__plus(X1, X2)
        , 0() -> n__0() }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(n^2))
      
      We decompose the input problem according to the dependency graph
      into the upper component
      
        { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
        , isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)),
              activate^#(V1),
              activate^#(V2))
        , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
        , U41^#(tt(), M, N) ->
          c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
              isNat^#(activate(N)),
              activate^#(N),
              activate^#(M),
              activate^#(N))
        , U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
      
      and lower component
      
        { activate^#(n__plus(X1, X2)) ->
          c_4(activate^#(X1), activate^#(X2))
        , activate^#(n__s(X)) -> c_5(activate^#(X)) }
      
      Further, following extension rules are added to the lower
      component.
      
      { U11^#(tt(), V2) -> isNat^#(activate(V2))
      , U11^#(tt(), V2) -> activate^#(V2)
      , isNat^#(n__plus(V1, V2)) ->
        U11^#(isNat(activate(V1)), activate(V2))
      , isNat^#(n__plus(V1, V2)) -> isNat^#(activate(V1))
      , isNat^#(n__plus(V1, V2)) -> activate^#(V1)
      , isNat^#(n__plus(V1, V2)) -> activate^#(V2)
      , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
      , isNat^#(n__s(V1)) -> activate^#(V1)
      , U41^#(tt(), M, N) -> isNat^#(activate(N))
      , U41^#(tt(), M, N) -> activate^#(M)
      , U41^#(tt(), M, N) -> activate^#(N)
      , U41^#(tt(), M, N) ->
        U42^#(isNat(activate(N)), activate(M), activate(N))
      , U42^#(tt(), M, N) -> activate^#(M)
      , U42^#(tt(), M, N) -> activate^#(N) }
      
      TcT solves the upper component with certificate YES(O(1),O(n^1)).
      
      Sub-proof:
      ----------
        We are left with following problem, upon which TcT provides the
        certificate YES(O(1),O(n^1)).
        
        Strict DPs:
          { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
          , isNat^#(n__plus(V1, V2)) ->
            c_2(U11^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)),
                activate^#(V1),
                activate^#(V2))
          , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
          , U41^#(tt(), M, N) ->
            c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
                isNat^#(activate(N)),
                activate^#(N),
                activate^#(M),
                activate^#(N))
          , U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
        Weak Trs:
          { U11(tt(), V2) -> U12(isNat(activate(V2)))
          , U12(tt()) -> tt()
          , isNat(n__0()) -> tt()
          , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
          , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          , activate(X) -> X
          , activate(n__0()) -> 0()
          , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
          , activate(n__s(X)) -> s(activate(X))
          , U21(tt()) -> tt()
          , s(X) -> n__s(X)
          , plus(X1, X2) -> n__plus(X1, X2)
          , 0() -> n__0() }
        Obligation:
          innermost runtime complexity
        Answer:
          YES(O(1),O(n^1))
        
        We estimate the number of application of {5} by applications of
        Pre({5}) = {4}. Here rules are labeled as follows:
        
          DPs:
            { 1: U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
            , 2: isNat^#(n__plus(V1, V2)) ->
                 c_2(U11^#(isNat(activate(V1)), activate(V2)),
                     isNat^#(activate(V1)),
                     activate^#(V1),
                     activate^#(V2))
            , 3: isNat^#(n__s(V1)) ->
                 c_3(isNat^#(activate(V1)), activate^#(V1))
            , 4: U41^#(tt(), M, N) ->
                 c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
                     isNat^#(activate(N)),
                     activate^#(N),
                     activate^#(M),
                     activate^#(N))
            , 5: U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
        
        We are left with following problem, upon which TcT provides the
        certificate YES(O(1),O(n^1)).
        
        Strict DPs:
          { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
          , isNat^#(n__plus(V1, V2)) ->
            c_2(U11^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)),
                activate^#(V1),
                activate^#(V2))
          , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
          , U41^#(tt(), M, N) ->
            c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
                isNat^#(activate(N)),
                activate^#(N),
                activate^#(M),
                activate^#(N)) }
        Weak DPs:
          { U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
        Weak Trs:
          { U11(tt(), V2) -> U12(isNat(activate(V2)))
          , U12(tt()) -> tt()
          , isNat(n__0()) -> tt()
          , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
          , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          , activate(X) -> X
          , activate(n__0()) -> 0()
          , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
          , activate(n__s(X)) -> s(activate(X))
          , U21(tt()) -> tt()
          , s(X) -> n__s(X)
          , plus(X1, X2) -> n__plus(X1, X2)
          , 0() -> n__0() }
        Obligation:
          innermost runtime complexity
        Answer:
          YES(O(1),O(n^1))
        
        The following weak DPs constitute a sub-graph of the DG that is
        closed under successors. The DPs are removed.
        
        { U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
        
        We are left with following problem, upon which TcT provides the
        certificate YES(O(1),O(n^1)).
        
        Strict DPs:
          { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
          , isNat^#(n__plus(V1, V2)) ->
            c_2(U11^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)),
                activate^#(V1),
                activate^#(V2))
          , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
          , U41^#(tt(), M, N) ->
            c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
                isNat^#(activate(N)),
                activate^#(N),
                activate^#(M),
                activate^#(N)) }
        Weak Trs:
          { U11(tt(), V2) -> U12(isNat(activate(V2)))
          , U12(tt()) -> tt()
          , isNat(n__0()) -> tt()
          , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
          , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          , activate(X) -> X
          , activate(n__0()) -> 0()
          , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
          , activate(n__s(X)) -> s(activate(X))
          , U21(tt()) -> tt()
          , s(X) -> n__s(X)
          , plus(X1, X2) -> n__plus(X1, X2)
          , 0() -> n__0() }
        Obligation:
          innermost runtime complexity
        Answer:
          YES(O(1),O(n^1))
        
        Due to missing edges in the dependency-graph, the right-hand sides
        of following rules could be simplified:
        
          { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
          , isNat^#(n__plus(V1, V2)) ->
            c_2(U11^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)),
                activate^#(V1),
                activate^#(V2))
          , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
          , U41^#(tt(), M, N) ->
            c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
                isNat^#(activate(N)),
                activate^#(N),
                activate^#(M),
                activate^#(N)) }
        
        We are left with following problem, upon which TcT provides the
        certificate YES(O(1),O(n^1)).
        
        Strict DPs:
          { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
          , isNat^#(n__plus(V1, V2)) ->
            c_2(U11^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)))
          , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
          , U41^#(tt(), M, N) -> c_4(isNat^#(activate(N))) }
        Weak Trs:
          { U11(tt(), V2) -> U12(isNat(activate(V2)))
          , U12(tt()) -> tt()
          , isNat(n__0()) -> tt()
          , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
          , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          , activate(X) -> X
          , activate(n__0()) -> 0()
          , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
          , activate(n__s(X)) -> s(activate(X))
          , U21(tt()) -> tt()
          , s(X) -> n__s(X)
          , plus(X1, X2) -> n__plus(X1, X2)
          , 0() -> n__0() }
        Obligation:
          innermost runtime complexity
        Answer:
          YES(O(1),O(n^1))
        
        We use the processor 'matrix interpretation of dimension 1' to
        orient following rules strictly.
        
        DPs:
          { 1: U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
          , 4: U41^#(tt(), M, N) -> c_4(isNat^#(activate(N))) }
        
        Sub-proof:
        ----------
          The following argument positions are usable:
            Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1},
            Uargs(c_4) = {1}
          
          TcT has computed the following constructor-based matrix
          interpretation satisfying not(EDA).
          
                        [U11](x1, x2) = [1]                  
                                                             
                                 [tt] = [1]                  
                                                             
                            [U12](x1) = [1]                  
                                                             
                          [isNat](x1) = [1]                  
                                                             
                       [activate](x1) = [1] x1 + [0]         
                                                             
                            [U21](x1) = [1]                  
                                                             
                              [s](x1) = [1] x1 + [0]         
                                                             
                       [plus](x1, x2) = [1] x1 + [1] x2 + [1]
                                                             
                               [n__0] = [0]                  
                                                             
                    [n__plus](x1, x2) = [1] x1 + [1] x2 + [1]
                                                             
                           [n__s](x1) = [1] x1 + [0]         
                                                             
                                  [0] = [0]                  
                                                             
                      [U11^#](x1, x2) = [1] x1 + [1] x2 + [0]
                                                             
                        [isNat^#](x1) = [1] x1 + [0]         
                                                             
                     [activate^#](x1) = [0]                  
                                                             
                  [U41^#](x1, x2, x3) = [4] x2 + [7] x3 + [4]
                                                             
                  [U42^#](x1, x2, x3) = [0]                  
                                                             
                        [c_1](x1, x2) = [0]                  
                                                             
                [c_2](x1, x2, x3, x4) = [0]                  
                                                             
                        [c_3](x1, x2) = [0]                  
                                                             
            [c_7](x1, x2, x3, x4, x5) = [0]                  
                                                             
                        [c_8](x1, x2) = [0]                  
                                                             
                                  [c] = [0]                  
                                                             
                            [c_1](x1) = [1] x1 + [0]         
                                                             
                        [c_2](x1, x2) = [1] x1 + [1] x2 + [0]
                                                             
                            [c_3](x1) = [1] x1 + [0]         
                                                             
                            [c_4](x1) = [1] x1 + [0]         
          
          The order satisfies the following ordering constraints:
          
                        [U11(tt(), V2)] =  [1]                                           
                                        >= [1]                                           
                                        =  [U12(isNat(activate(V2)))]                    
                                                                                         
                            [U12(tt())] =  [1]                                           
                                        >= [1]                                           
                                        =  [tt()]                                        
                                                                                         
                        [isNat(n__0())] =  [1]                                           
                                        >= [1]                                           
                                        =  [tt()]                                        
                                                                                         
               [isNat(n__plus(V1, V2))] =  [1]                                           
                                        >= [1]                                           
                                        =  [U11(isNat(activate(V1)), activate(V2))]      
                                                                                         
                      [isNat(n__s(V1))] =  [1]                                           
                                        >= [1]                                           
                                        =  [U21(isNat(activate(V1)))]                    
                                                                                         
                          [activate(X)] =  [1] X + [0]                                   
                                        >= [1] X + [0]                                   
                                        =  [X]                                           
                                                                                         
                     [activate(n__0())] =  [0]                                           
                                        >= [0]                                           
                                        =  [0()]                                         
                                                                                         
            [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [1]                         
                                        >= [1] X1 + [1] X2 + [1]                         
                                        =  [plus(activate(X1), activate(X2))]            
                                                                                         
                    [activate(n__s(X))] =  [1] X + [0]                                   
                                        >= [1] X + [0]                                   
                                        =  [s(activate(X))]                              
                                                                                         
                            [U21(tt())] =  [1]                                           
                                        >= [1]                                           
                                        =  [tt()]                                        
                                                                                         
                                 [s(X)] =  [1] X + [0]                                   
                                        >= [1] X + [0]                                   
                                        =  [n__s(X)]                                     
                                                                                         
                         [plus(X1, X2)] =  [1] X1 + [1] X2 + [1]                         
                                        >= [1] X1 + [1] X2 + [1]                         
                                        =  [n__plus(X1, X2)]                             
                                                                                         
                                  [0()] =  [0]                                           
                                        >= [0]                                           
                                        =  [n__0()]                                      
                                                                                         
                      [U11^#(tt(), V2)] =  [1] V2 + [1]                                  
                                        >  [1] V2 + [0]                                  
                                        =  [c_1(isNat^#(activate(V2)))]                  
                                                                                         
             [isNat^#(n__plus(V1, V2))] =  [1] V2 + [1] V1 + [1]                         
                                        >= [1] V2 + [1] V1 + [1]                         
                                        =  [c_2(U11^#(isNat(activate(V1)), activate(V2)),
                                                isNat^#(activate(V1)))]                  
                                                                                         
                    [isNat^#(n__s(V1))] =  [1] V1 + [0]                                  
                                        >= [1] V1 + [0]                                  
                                        =  [c_3(isNat^#(activate(V1)))]                  
                                                                                         
                    [U41^#(tt(), M, N)] =  [7] N + [4] M + [4]                           
                                        >  [1] N + [0]                                   
                                        =  [c_4(isNat^#(activate(N)))]                   
                                                                                         
        
        The strictly oriented rules are moved into the weak component.
        
        We are left with following problem, upon which TcT provides the
        certificate YES(O(1),O(n^1)).
        
        Strict DPs:
          { isNat^#(n__plus(V1, V2)) ->
            c_2(U11^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)))
          , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1))) }
        Weak DPs:
          { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
          , U41^#(tt(), M, N) -> c_4(isNat^#(activate(N))) }
        Weak Trs:
          { U11(tt(), V2) -> U12(isNat(activate(V2)))
          , U12(tt()) -> tt()
          , isNat(n__0()) -> tt()
          , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
          , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          , activate(X) -> X
          , activate(n__0()) -> 0()
          , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
          , activate(n__s(X)) -> s(activate(X))
          , U21(tt()) -> tt()
          , s(X) -> n__s(X)
          , plus(X1, X2) -> n__plus(X1, X2)
          , 0() -> n__0() }
        Obligation:
          innermost runtime complexity
        Answer:
          YES(O(1),O(n^1))
        
        We use the processor 'matrix interpretation of dimension 1' to
        orient following rules strictly.
        
        DPs:
          { 1: isNat^#(n__plus(V1, V2)) ->
               c_2(U11^#(isNat(activate(V1)), activate(V2)),
                   isNat^#(activate(V1)))
          , 2: isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
          , 3: U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
          , 4: U41^#(tt(), M, N) -> c_4(isNat^#(activate(N))) }
        Trs:
          { isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
          , isNat(n__s(V1)) -> U21(isNat(activate(V1))) }
        
        Sub-proof:
        ----------
          The following argument positions are usable:
            Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1},
            Uargs(c_4) = {1}
          
          TcT has computed the following constructor-based matrix
          interpretation satisfying not(EDA).
          
                        [U11](x1, x2) = [0]                  
                                                             
                                 [tt] = [0]                  
                                                             
                            [U12](x1) = [0]                  
                                                             
                          [isNat](x1) = [1] x1 + [0]         
                                                             
                       [activate](x1) = [1] x1 + [0]         
                                                             
                            [U21](x1) = [0]                  
                                                             
                              [s](x1) = [1] x1 + [3]         
                                                             
                       [plus](x1, x2) = [1] x1 + [1] x2 + [4]
                                                             
                               [n__0] = [0]                  
                                                             
                    [n__plus](x1, x2) = [1] x1 + [1] x2 + [4]
                                                             
                           [n__s](x1) = [1] x1 + [3]         
                                                             
                                  [0] = [0]                  
                                                             
                      [U11^#](x1, x2) = [2] x2 + [4]         
                                                             
                        [isNat^#](x1) = [2] x1 + [3]         
                                                             
                     [activate^#](x1) = [0]                  
                                                             
                  [U41^#](x1, x2, x3) = [4] x2 + [7] x3 + [7]
                                                             
                  [U42^#](x1, x2, x3) = [0]                  
                                                             
                        [c_1](x1, x2) = [0]                  
                                                             
                [c_2](x1, x2, x3, x4) = [0]                  
                                                             
                        [c_3](x1, x2) = [0]                  
                                                             
            [c_7](x1, x2, x3, x4, x5) = [0]                  
                                                             
                        [c_8](x1, x2) = [0]                  
                                                             
                                  [c] = [0]                  
                                                             
                            [c_1](x1) = [1] x1 + [0]         
                                                             
                        [c_2](x1, x2) = [1] x1 + [1] x2 + [0]
                                                             
                            [c_3](x1) = [1] x1 + [5]         
                                                             
                            [c_4](x1) = [1] x1 + [0]         
          
          The order satisfies the following ordering constraints:
          
                        [U11(tt(), V2)] =  [0]                                           
                                        >= [0]                                           
                                        =  [U12(isNat(activate(V2)))]                    
                                                                                         
                            [U12(tt())] =  [0]                                           
                                        >= [0]                                           
                                        =  [tt()]                                        
                                                                                         
                        [isNat(n__0())] =  [0]                                           
                                        >= [0]                                           
                                        =  [tt()]                                        
                                                                                         
               [isNat(n__plus(V1, V2))] =  [1] V2 + [1] V1 + [4]                         
                                        >  [0]                                           
                                        =  [U11(isNat(activate(V1)), activate(V2))]      
                                                                                         
                      [isNat(n__s(V1))] =  [1] V1 + [3]                                  
                                        >  [0]                                           
                                        =  [U21(isNat(activate(V1)))]                    
                                                                                         
                          [activate(X)] =  [1] X + [0]                                   
                                        >= [1] X + [0]                                   
                                        =  [X]                                           
                                                                                         
                     [activate(n__0())] =  [0]                                           
                                        >= [0]                                           
                                        =  [0()]                                         
                                                                                         
            [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [4]                         
                                        >= [1] X1 + [1] X2 + [4]                         
                                        =  [plus(activate(X1), activate(X2))]            
                                                                                         
                    [activate(n__s(X))] =  [1] X + [3]                                   
                                        >= [1] X + [3]                                   
                                        =  [s(activate(X))]                              
                                                                                         
                            [U21(tt())] =  [0]                                           
                                        >= [0]                                           
                                        =  [tt()]                                        
                                                                                         
                                 [s(X)] =  [1] X + [3]                                   
                                        >= [1] X + [3]                                   
                                        =  [n__s(X)]                                     
                                                                                         
                         [plus(X1, X2)] =  [1] X1 + [1] X2 + [4]                         
                                        >= [1] X1 + [1] X2 + [4]                         
                                        =  [n__plus(X1, X2)]                             
                                                                                         
                                  [0()] =  [0]                                           
                                        >= [0]                                           
                                        =  [n__0()]                                      
                                                                                         
                      [U11^#(tt(), V2)] =  [2] V2 + [4]                                  
                                        >  [2] V2 + [3]                                  
                                        =  [c_1(isNat^#(activate(V2)))]                  
                                                                                         
             [isNat^#(n__plus(V1, V2))] =  [2] V2 + [2] V1 + [11]                        
                                        >  [2] V2 + [2] V1 + [7]                         
                                        =  [c_2(U11^#(isNat(activate(V1)), activate(V2)),
                                                isNat^#(activate(V1)))]                  
                                                                                         
                    [isNat^#(n__s(V1))] =  [2] V1 + [9]                                  
                                        >  [2] V1 + [8]                                  
                                        =  [c_3(isNat^#(activate(V1)))]                  
                                                                                         
                    [U41^#(tt(), M, N)] =  [7] N + [4] M + [7]                           
                                        >  [2] N + [3]                                   
                                        =  [c_4(isNat^#(activate(N)))]                   
                                                                                         
        
        The strictly oriented rules are moved into the weak component.
        
        We are left with following problem, upon which TcT provides the
        certificate YES(O(1),O(1)).
        
        Weak DPs:
          { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
          , isNat^#(n__plus(V1, V2)) ->
            c_2(U11^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)))
          , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
          , U41^#(tt(), M, N) -> c_4(isNat^#(activate(N))) }
        Weak Trs:
          { U11(tt(), V2) -> U12(isNat(activate(V2)))
          , U12(tt()) -> tt()
          , isNat(n__0()) -> tt()
          , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
          , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          , activate(X) -> X
          , activate(n__0()) -> 0()
          , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
          , activate(n__s(X)) -> s(activate(X))
          , U21(tt()) -> tt()
          , s(X) -> n__s(X)
          , plus(X1, X2) -> n__plus(X1, X2)
          , 0() -> n__0() }
        Obligation:
          innermost runtime complexity
        Answer:
          YES(O(1),O(1))
        
        The following weak DPs constitute a sub-graph of the DG that is
        closed under successors. The DPs are removed.
        
        { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
        , isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)))
        , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
        , U41^#(tt(), M, N) -> c_4(isNat^#(activate(N))) }
        
        We are left with following problem, upon which TcT provides the
        certificate YES(O(1),O(1)).
        
        Weak Trs:
          { U11(tt(), V2) -> U12(isNat(activate(V2)))
          , U12(tt()) -> tt()
          , isNat(n__0()) -> tt()
          , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
          , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          , activate(X) -> X
          , activate(n__0()) -> 0()
          , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
          , activate(n__s(X)) -> s(activate(X))
          , U21(tt()) -> tt()
          , s(X) -> n__s(X)
          , plus(X1, X2) -> n__plus(X1, X2)
          , 0() -> n__0() }
        Obligation:
          innermost runtime complexity
        Answer:
          YES(O(1),O(1))
        
        No rule is usable, rules are removed from the input problem.
        
        We are left with following problem, upon which TcT provides the
        certificate YES(O(1),O(1)).
        
        Rules: Empty
        Obligation:
          innermost runtime complexity
        Answer:
          YES(O(1),O(1))
        
        Empty rules are trivially bounded
      
      We return to the main proof.
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(n^1)).
      
      Strict DPs:
        { activate^#(n__plus(X1, X2)) ->
          c_4(activate^#(X1), activate^#(X2))
        , activate^#(n__s(X)) -> c_5(activate^#(X)) }
      Weak DPs:
        { U11^#(tt(), V2) -> isNat^#(activate(V2))
        , U11^#(tt(), V2) -> activate^#(V2)
        , isNat^#(n__plus(V1, V2)) ->
          U11^#(isNat(activate(V1)), activate(V2))
        , isNat^#(n__plus(V1, V2)) -> isNat^#(activate(V1))
        , isNat^#(n__plus(V1, V2)) -> activate^#(V1)
        , isNat^#(n__plus(V1, V2)) -> activate^#(V2)
        , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
        , isNat^#(n__s(V1)) -> activate^#(V1)
        , U41^#(tt(), M, N) -> isNat^#(activate(N))
        , U41^#(tt(), M, N) -> activate^#(M)
        , U41^#(tt(), M, N) -> activate^#(N)
        , U41^#(tt(), M, N) ->
          U42^#(isNat(activate(N)), activate(M), activate(N))
        , U42^#(tt(), M, N) -> activate^#(M)
        , U42^#(tt(), M, N) -> activate^#(N) }
      Weak Trs:
        { U11(tt(), V2) -> U12(isNat(activate(V2)))
        , U12(tt()) -> tt()
        , isNat(n__0()) -> tt()
        , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
        , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        , activate(X) -> X
        , activate(n__0()) -> 0()
        , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
        , activate(n__s(X)) -> s(activate(X))
        , U21(tt()) -> tt()
        , s(X) -> n__s(X)
        , plus(X1, X2) -> n__plus(X1, X2)
        , 0() -> n__0() }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(n^1))
      
      We use the processor 'matrix interpretation of dimension 1' to
      orient following rules strictly.
      
      DPs:
        { 1: activate^#(n__plus(X1, X2)) ->
             c_4(activate^#(X1), activate^#(X2))
        , 2: activate^#(n__s(X)) -> c_5(activate^#(X))
        , 3: U11^#(tt(), V2) -> isNat^#(activate(V2))
        , 4: U11^#(tt(), V2) -> activate^#(V2)
        , 5: isNat^#(n__plus(V1, V2)) ->
             U11^#(isNat(activate(V1)), activate(V2))
        , 6: isNat^#(n__plus(V1, V2)) -> isNat^#(activate(V1))
        , 7: isNat^#(n__plus(V1, V2)) -> activate^#(V1)
        , 8: isNat^#(n__plus(V1, V2)) -> activate^#(V2)
        , 9: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
        , 11: U41^#(tt(), M, N) -> isNat^#(activate(N)) }
      
      Sub-proof:
      ----------
        The following argument positions are usable:
          Uargs(c_4) = {1, 2}, Uargs(c_5) = {1}
        
        TcT has computed the following constructor-based matrix
        interpretation satisfying not(EDA).
        
                [U11](x1, x2) = [1] x1 + [0]         
                                                     
                         [tt] = [1]                  
                                                     
                    [U12](x1) = [1] x1 + [0]         
                                                     
                  [isNat](x1) = [1]                  
                                                     
               [activate](x1) = [1] x1 + [0]         
                                                     
                    [U21](x1) = [1] x1 + [0]         
                                                     
                      [s](x1) = [1] x1 + [1]         
                                                     
               [plus](x1, x2) = [1] x1 + [1] x2 + [4]
                                                     
                       [n__0] = [0]                  
                                                     
            [n__plus](x1, x2) = [1] x1 + [1] x2 + [4]
                                                     
                   [n__s](x1) = [1] x1 + [1]         
                                                     
                          [0] = [0]                  
                                                     
              [U11^#](x1, x2) = [4] x1 + [3] x2 + [0]
                                                     
                [isNat^#](x1) = [3] x1 + [0]         
                                                     
             [activate^#](x1) = [3] x1 + [3]         
                                                     
          [U41^#](x1, x2, x3) = [7] x2 + [7] x3 + [3]
                                                     
          [U42^#](x1, x2, x3) = [3] x2 + [4] x3 + [3]
                                                     
                [c_4](x1, x2) = [1] x1 + [1] x2 + [4]
                                                     
                    [c_5](x1) = [1] x1 + [0]         
        
        The order satisfies the following ordering constraints:
        
                        [U11(tt(), V2)] =  [1]                                                  
                                        >= [1]                                                  
                                        =  [U12(isNat(activate(V2)))]                           
                                                                                                
                            [U12(tt())] =  [1]                                                  
                                        >= [1]                                                  
                                        =  [tt()]                                               
                                                                                                
                        [isNat(n__0())] =  [1]                                                  
                                        >= [1]                                                  
                                        =  [tt()]                                               
                                                                                                
               [isNat(n__plus(V1, V2))] =  [1]                                                  
                                        >= [1]                                                  
                                        =  [U11(isNat(activate(V1)), activate(V2))]             
                                                                                                
                      [isNat(n__s(V1))] =  [1]                                                  
                                        >= [1]                                                  
                                        =  [U21(isNat(activate(V1)))]                           
                                                                                                
                          [activate(X)] =  [1] X + [0]                                          
                                        >= [1] X + [0]                                          
                                        =  [X]                                                  
                                                                                                
                     [activate(n__0())] =  [0]                                                  
                                        >= [0]                                                  
                                        =  [0()]                                                
                                                                                                
            [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [4]                                
                                        >= [1] X1 + [1] X2 + [4]                                
                                        =  [plus(activate(X1), activate(X2))]                   
                                                                                                
                    [activate(n__s(X))] =  [1] X + [1]                                          
                                        >= [1] X + [1]                                          
                                        =  [s(activate(X))]                                     
                                                                                                
                            [U21(tt())] =  [1]                                                  
                                        >= [1]                                                  
                                        =  [tt()]                                               
                                                                                                
                                 [s(X)] =  [1] X + [1]                                          
                                        >= [1] X + [1]                                          
                                        =  [n__s(X)]                                            
                                                                                                
                         [plus(X1, X2)] =  [1] X1 + [1] X2 + [4]                                
                                        >= [1] X1 + [1] X2 + [4]                                
                                        =  [n__plus(X1, X2)]                                    
                                                                                                
                                  [0()] =  [0]                                                  
                                        >= [0]                                                  
                                        =  [n__0()]                                             
                                                                                                
                      [U11^#(tt(), V2)] =  [3] V2 + [4]                                         
                                        >  [3] V2 + [0]                                         
                                        =  [isNat^#(activate(V2))]                              
                                                                                                
                      [U11^#(tt(), V2)] =  [3] V2 + [4]                                         
                                        >  [3] V2 + [3]                                         
                                        =  [activate^#(V2)]                                     
                                                                                                
             [isNat^#(n__plus(V1, V2))] =  [3] V2 + [3] V1 + [12]                               
                                        >  [3] V2 + [4]                                         
                                        =  [U11^#(isNat(activate(V1)), activate(V2))]           
                                                                                                
             [isNat^#(n__plus(V1, V2))] =  [3] V2 + [3] V1 + [12]                               
                                        >  [3] V1 + [0]                                         
                                        =  [isNat^#(activate(V1))]                              
                                                                                                
             [isNat^#(n__plus(V1, V2))] =  [3] V2 + [3] V1 + [12]                               
                                        >  [3] V1 + [3]                                         
                                        =  [activate^#(V1)]                                     
                                                                                                
             [isNat^#(n__plus(V1, V2))] =  [3] V2 + [3] V1 + [12]                               
                                        >  [3] V2 + [3]                                         
                                        =  [activate^#(V2)]                                     
                                                                                                
                    [isNat^#(n__s(V1))] =  [3] V1 + [3]                                         
                                        >  [3] V1 + [0]                                         
                                        =  [isNat^#(activate(V1))]                              
                                                                                                
                    [isNat^#(n__s(V1))] =  [3] V1 + [3]                                         
                                        >= [3] V1 + [3]                                         
                                        =  [activate^#(V1)]                                     
                                                                                                
          [activate^#(n__plus(X1, X2))] =  [3] X1 + [3] X2 + [15]                               
                                        >  [3] X1 + [3] X2 + [10]                               
                                        =  [c_4(activate^#(X1), activate^#(X2))]                
                                                                                                
                  [activate^#(n__s(X))] =  [3] X + [6]                                          
                                        >  [3] X + [3]                                          
                                        =  [c_5(activate^#(X))]                                 
                                                                                                
                    [U41^#(tt(), M, N)] =  [7] N + [7] M + [3]                                  
                                        >  [3] N + [0]                                          
                                        =  [isNat^#(activate(N))]                               
                                                                                                
                    [U41^#(tt(), M, N)] =  [7] N + [7] M + [3]                                  
                                        >= [3] M + [3]                                          
                                        =  [activate^#(M)]                                      
                                                                                                
                    [U41^#(tt(), M, N)] =  [7] N + [7] M + [3]                                  
                                        >= [3] N + [3]                                          
                                        =  [activate^#(N)]                                      
                                                                                                
                    [U41^#(tt(), M, N)] =  [7] N + [7] M + [3]                                  
                                        >= [4] N + [3] M + [3]                                  
                                        =  [U42^#(isNat(activate(N)), activate(M), activate(N))]
                                                                                                
                    [U42^#(tt(), M, N)] =  [4] N + [3] M + [3]                                  
                                        >= [3] M + [3]                                          
                                        =  [activate^#(M)]                                      
                                                                                                
                    [U42^#(tt(), M, N)] =  [4] N + [3] M + [3]                                  
                                        >= [3] N + [3]                                          
                                        =  [activate^#(N)]                                      
                                                                                                
      
      We return to the main proof. Consider the set of all dependency
      pairs
      
      :
        { 1: activate^#(n__plus(X1, X2)) ->
             c_4(activate^#(X1), activate^#(X2))
        , 2: activate^#(n__s(X)) -> c_5(activate^#(X))
        , 3: U11^#(tt(), V2) -> isNat^#(activate(V2))
        , 4: U11^#(tt(), V2) -> activate^#(V2)
        , 5: isNat^#(n__plus(V1, V2)) ->
             U11^#(isNat(activate(V1)), activate(V2))
        , 6: isNat^#(n__plus(V1, V2)) -> isNat^#(activate(V1))
        , 7: isNat^#(n__plus(V1, V2)) -> activate^#(V1)
        , 8: isNat^#(n__plus(V1, V2)) -> activate^#(V2)
        , 9: isNat^#(n__s(V1)) -> isNat^#(activate(V1))
        , 10: isNat^#(n__s(V1)) -> activate^#(V1)
        , 11: U41^#(tt(), M, N) -> isNat^#(activate(N))
        , 12: U41^#(tt(), M, N) -> activate^#(M)
        , 13: U41^#(tt(), M, N) -> activate^#(N)
        , 14: U41^#(tt(), M, N) ->
              U42^#(isNat(activate(N)), activate(M), activate(N))
        , 15: U42^#(tt(), M, N) -> activate^#(M)
        , 16: U42^#(tt(), M, N) -> activate^#(N) }
      
      Processor 'matrix interpretation of dimension 1' induces the
      complexity certificate YES(?,O(n^1)) on application of dependency
      pairs {1,2,3,4,5,6,7,8,9,11}. These cover all (indirect)
      predecessors of dependency pairs
      {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}, their number of
      application is equally bounded. The dependency pairs are shifted
      into the weak component.
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Weak DPs:
        { U11^#(tt(), V2) -> isNat^#(activate(V2))
        , U11^#(tt(), V2) -> activate^#(V2)
        , isNat^#(n__plus(V1, V2)) ->
          U11^#(isNat(activate(V1)), activate(V2))
        , isNat^#(n__plus(V1, V2)) -> isNat^#(activate(V1))
        , isNat^#(n__plus(V1, V2)) -> activate^#(V1)
        , isNat^#(n__plus(V1, V2)) -> activate^#(V2)
        , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
        , isNat^#(n__s(V1)) -> activate^#(V1)
        , activate^#(n__plus(X1, X2)) ->
          c_4(activate^#(X1), activate^#(X2))
        , activate^#(n__s(X)) -> c_5(activate^#(X))
        , U41^#(tt(), M, N) -> isNat^#(activate(N))
        , U41^#(tt(), M, N) -> activate^#(M)
        , U41^#(tt(), M, N) -> activate^#(N)
        , U41^#(tt(), M, N) ->
          U42^#(isNat(activate(N)), activate(M), activate(N))
        , U42^#(tt(), M, N) -> activate^#(M)
        , U42^#(tt(), M, N) -> activate^#(N) }
      Weak Trs:
        { U11(tt(), V2) -> U12(isNat(activate(V2)))
        , U12(tt()) -> tt()
        , isNat(n__0()) -> tt()
        , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
        , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        , activate(X) -> X
        , activate(n__0()) -> 0()
        , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
        , activate(n__s(X)) -> s(activate(X))
        , U21(tt()) -> tt()
        , s(X) -> n__s(X)
        , plus(X1, X2) -> n__plus(X1, X2)
        , 0() -> n__0() }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      The following weak DPs constitute a sub-graph of the DG that is
      closed under successors. The DPs are removed.
      
      { U11^#(tt(), V2) -> isNat^#(activate(V2))
      , U11^#(tt(), V2) -> activate^#(V2)
      , isNat^#(n__plus(V1, V2)) ->
        U11^#(isNat(activate(V1)), activate(V2))
      , isNat^#(n__plus(V1, V2)) -> isNat^#(activate(V1))
      , isNat^#(n__plus(V1, V2)) -> activate^#(V1)
      , isNat^#(n__plus(V1, V2)) -> activate^#(V2)
      , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
      , isNat^#(n__s(V1)) -> activate^#(V1)
      , activate^#(n__plus(X1, X2)) ->
        c_4(activate^#(X1), activate^#(X2))
      , activate^#(n__s(X)) -> c_5(activate^#(X))
      , U41^#(tt(), M, N) -> isNat^#(activate(N))
      , U41^#(tt(), M, N) -> activate^#(M)
      , U41^#(tt(), M, N) -> activate^#(N)
      , U41^#(tt(), M, N) ->
        U42^#(isNat(activate(N)), activate(M), activate(N))
      , U42^#(tt(), M, N) -> activate^#(M)
      , U42^#(tt(), M, N) -> activate^#(N) }
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Weak Trs:
        { U11(tt(), V2) -> U12(isNat(activate(V2)))
        , U12(tt()) -> tt()
        , isNat(n__0()) -> tt()
        , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
        , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        , activate(X) -> X
        , activate(n__0()) -> 0()
        , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
        , activate(n__s(X)) -> s(activate(X))
        , U21(tt()) -> tt()
        , s(X) -> n__s(X)
        , plus(X1, X2) -> n__plus(X1, X2)
        , 0() -> n__0() }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      No rule is usable, rules are removed from the input problem.
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Rules: Empty
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      Empty rules are trivially bounded
   
   S) We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Strict DPs:
        { U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
      Weak DPs:
        { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
        , isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)),
              activate^#(V1),
              activate^#(V2))
        , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
        , activate^#(n__plus(X1, X2)) ->
          c_4(activate^#(X1), activate^#(X2))
        , activate^#(n__s(X)) -> c_5(activate^#(X))
        , U41^#(tt(), M, N) ->
          c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
              isNat^#(activate(N)),
              activate^#(N),
              activate^#(M),
              activate^#(N)) }
      Weak Trs:
        { U11(tt(), V2) -> U12(isNat(activate(V2)))
        , U12(tt()) -> tt()
        , isNat(n__0()) -> tt()
        , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
        , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        , activate(X) -> X
        , activate(n__0()) -> 0()
        , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
        , activate(n__s(X)) -> s(activate(X))
        , U21(tt()) -> tt()
        , s(X) -> n__s(X)
        , plus(X1, X2) -> n__plus(X1, X2)
        , 0() -> n__0() }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      The following weak DPs constitute a sub-graph of the DG that is
      closed under successors. The DPs are removed.
      
      { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
      , isNat^#(n__plus(V1, V2)) ->
        c_2(U11^#(isNat(activate(V1)), activate(V2)),
            isNat^#(activate(V1)),
            activate^#(V1),
            activate^#(V2))
      , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
      , activate^#(n__plus(X1, X2)) ->
        c_4(activate^#(X1), activate^#(X2))
      , activate^#(n__s(X)) -> c_5(activate^#(X)) }
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Strict DPs:
        { U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
      Weak DPs:
        { U41^#(tt(), M, N) ->
          c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
              isNat^#(activate(N)),
              activate^#(N),
              activate^#(M),
              activate^#(N)) }
      Weak Trs:
        { U11(tt(), V2) -> U12(isNat(activate(V2)))
        , U12(tt()) -> tt()
        , isNat(n__0()) -> tt()
        , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
        , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        , activate(X) -> X
        , activate(n__0()) -> 0()
        , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
        , activate(n__s(X)) -> s(activate(X))
        , U21(tt()) -> tt()
        , s(X) -> n__s(X)
        , plus(X1, X2) -> n__plus(X1, X2)
        , 0() -> n__0() }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      Due to missing edges in the dependency-graph, the right-hand sides
      of following rules could be simplified:
      
        { U41^#(tt(), M, N) ->
          c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
              isNat^#(activate(N)),
              activate^#(N),
              activate^#(M),
              activate^#(N))
        , U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Strict DPs: { U42^#(tt(), M, N) -> c_1() }
      Weak DPs:
        { U41^#(tt(), M, N) ->
          c_2(U42^#(isNat(activate(N)), activate(M), activate(N))) }
      Weak Trs:
        { U11(tt(), V2) -> U12(isNat(activate(V2)))
        , U12(tt()) -> tt()
        , isNat(n__0()) -> tt()
        , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
        , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        , activate(X) -> X
        , activate(n__0()) -> 0()
        , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
        , activate(n__s(X)) -> s(activate(X))
        , U21(tt()) -> tt()
        , s(X) -> n__s(X)
        , plus(X1, X2) -> n__plus(X1, X2)
        , 0() -> n__0() }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      The dependency graph contains no loops, we remove all dependency
      pairs.
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Weak Trs:
        { U11(tt(), V2) -> U12(isNat(activate(V2)))
        , U12(tt()) -> tt()
        , isNat(n__0()) -> tt()
        , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
        , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        , activate(X) -> X
        , activate(n__0()) -> 0()
        , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
        , activate(n__s(X)) -> s(activate(X))
        , U21(tt()) -> tt()
        , s(X) -> n__s(X)
        , plus(X1, X2) -> n__plus(X1, X2)
        , 0() -> n__0() }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      No rule is usable, rules are removed from the input problem.
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Rules: Empty
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      Empty rules are trivially bounded
   

S) We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(n^1)).
   
   Strict DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1)) }
   Weak DPs:
     { activate^#(n__plus(X1, X2)) ->
       c_4(activate^#(X1), activate^#(X2))
     , activate^#(n__s(X)) -> c_5(activate^#(X))
     , U41^#(tt(), M, N) ->
       c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
           isNat^#(activate(N)),
           activate^#(N),
           activate^#(M),
           activate^#(N))
     , U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
     , activate(n__s(X)) -> s(activate(X))
     , U21(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0() }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(n^1))
   
   The following weak DPs constitute a sub-graph of the DG that is
   closed under successors. The DPs are removed.
   
   { activate^#(n__plus(X1, X2)) ->
     c_4(activate^#(X1), activate^#(X2))
   , activate^#(n__s(X)) -> c_5(activate^#(X))
   , U42^#(tt(), M, N) -> c_8(activate^#(N), activate^#(M)) }
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(n^1)).
   
   Strict DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1)) }
   Weak DPs:
     { U41^#(tt(), M, N) ->
       c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
           isNat^#(activate(N)),
           activate^#(N),
           activate^#(M),
           activate^#(N)) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
     , activate(n__s(X)) -> s(activate(X))
     , U21(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0() }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(n^1))
   
   Due to missing edges in the dependency-graph, the right-hand sides
   of following rules could be simplified:
   
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
     , U41^#(tt(), M, N) ->
       c_7(U42^#(isNat(activate(N)), activate(M), activate(N)),
           isNat^#(activate(N)),
           activate^#(N),
           activate^#(M),
           activate^#(N)) }
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(n^1)).
   
   Strict DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1))) }
   Weak DPs: { U41^#(tt(), M, N) -> c_4(isNat^#(activate(N))) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
     , activate(n__s(X)) -> s(activate(X))
     , U21(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0() }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(n^1))
   
   We use the processor 'matrix interpretation of dimension 1' to
   orient following rules strictly.
   
   DPs:
     { 2: isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)))
     , 4: U41^#(tt(), M, N) -> c_4(isNat^#(activate(N))) }
   
   Sub-proof:
   ----------
     The following argument positions are usable:
       Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1},
       Uargs(c_4) = {1}
     
     TcT has computed the following constructor-based matrix
     interpretation satisfying not(EDA).
     
             [U11](x1, x2) = [1] x1 + [0]         
                                                  
                      [tt] = [1]                  
                                                  
                 [U12](x1) = [1] x1 + [0]         
                                                  
               [isNat](x1) = [1]                  
                                                  
            [activate](x1) = [1] x1 + [0]         
                                                  
                 [U21](x1) = [1] x1 + [0]         
                                                  
                   [s](x1) = [1] x1 + [0]         
                                                  
            [plus](x1, x2) = [1] x1 + [1] x2 + [4]
                                                  
                    [n__0] = [7]                  
                                                  
         [n__plus](x1, x2) = [1] x1 + [1] x2 + [4]
                                                  
                [n__s](x1) = [1] x1 + [0]         
                                                  
                       [0] = [7]                  
                                                  
           [U11^#](x1, x2) = [2] x1 + [2] x2 + [1]
                                                  
             [isNat^#](x1) = [2] x1 + [3]         
                                                  
       [U41^#](x1, x2, x3) = [4] x2 + [7] x3 + [5]
                                                  
                 [c_1](x1) = [1] x1 + [0]         
                                                  
             [c_2](x1, x2) = [1] x1 + [1] x2 + [4]
                                                  
                 [c_3](x1) = [1] x1 + [0]         
                                                  
                 [c_4](x1) = [1] x1 + [0]         
     
     The order satisfies the following ordering constraints:
     
                   [U11(tt(), V2)] =  [1]                                           
                                   >= [1]                                           
                                   =  [U12(isNat(activate(V2)))]                    
                                                                                    
                       [U12(tt())] =  [1]                                           
                                   >= [1]                                           
                                   =  [tt()]                                        
                                                                                    
                   [isNat(n__0())] =  [1]                                           
                                   >= [1]                                           
                                   =  [tt()]                                        
                                                                                    
          [isNat(n__plus(V1, V2))] =  [1]                                           
                                   >= [1]                                           
                                   =  [U11(isNat(activate(V1)), activate(V2))]      
                                                                                    
                 [isNat(n__s(V1))] =  [1]                                           
                                   >= [1]                                           
                                   =  [U21(isNat(activate(V1)))]                    
                                                                                    
                     [activate(X)] =  [1] X + [0]                                   
                                   >= [1] X + [0]                                   
                                   =  [X]                                           
                                                                                    
                [activate(n__0())] =  [7]                                           
                                   >= [7]                                           
                                   =  [0()]                                         
                                                                                    
       [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [4]                         
                                   >= [1] X1 + [1] X2 + [4]                         
                                   =  [plus(activate(X1), activate(X2))]            
                                                                                    
               [activate(n__s(X))] =  [1] X + [0]                                   
                                   >= [1] X + [0]                                   
                                   =  [s(activate(X))]                              
                                                                                    
                       [U21(tt())] =  [1]                                           
                                   >= [1]                                           
                                   =  [tt()]                                        
                                                                                    
                            [s(X)] =  [1] X + [0]                                   
                                   >= [1] X + [0]                                   
                                   =  [n__s(X)]                                     
                                                                                    
                    [plus(X1, X2)] =  [1] X1 + [1] X2 + [4]                         
                                   >= [1] X1 + [1] X2 + [4]                         
                                   =  [n__plus(X1, X2)]                             
                                                                                    
                             [0()] =  [7]                                           
                                   >= [7]                                           
                                   =  [n__0()]                                      
                                                                                    
                 [U11^#(tt(), V2)] =  [2] V2 + [3]                                  
                                   >= [2] V2 + [3]                                  
                                   =  [c_1(isNat^#(activate(V2)))]                  
                                                                                    
        [isNat^#(n__plus(V1, V2))] =  [2] V2 + [2] V1 + [11]                        
                                   >  [2] V2 + [2] V1 + [10]                        
                                   =  [c_2(U11^#(isNat(activate(V1)), activate(V2)),
                                           isNat^#(activate(V1)))]                  
                                                                                    
               [isNat^#(n__s(V1))] =  [2] V1 + [3]                                  
                                   >= [2] V1 + [3]                                  
                                   =  [c_3(isNat^#(activate(V1)))]                  
                                                                                    
               [U41^#(tt(), M, N)] =  [7] N + [4] M + [5]                           
                                   >  [2] N + [3]                                   
                                   =  [c_4(isNat^#(activate(N)))]                   
                                                                                    
   
   We return to the main proof. Consider the set of all dependency
   pairs
   
   :
     { 1: U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , 2: isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)))
     , 3: isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , 4: U41^#(tt(), M, N) -> c_4(isNat^#(activate(N))) }
   
   Processor 'matrix interpretation of dimension 1' induces the
   complexity certificate YES(?,O(n^1)) on application of dependency
   pairs {2,4}. These cover all (indirect) predecessors of dependency
   pairs {1,2,4}, their number of application is equally bounded. The
   dependency pairs are shifted into the weak component.
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(n^1)).
   
   Strict DPs: { isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1))) }
   Weak DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , U41^#(tt(), M, N) -> c_4(isNat^#(activate(N))) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
     , activate(n__s(X)) -> s(activate(X))
     , U21(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0() }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(n^1))
   
   We use the processor 'matrix interpretation of dimension 1' to
   orient following rules strictly.
   
   DPs:
     { 1: isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , 3: isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1))) }
   
   Sub-proof:
   ----------
     The following argument positions are usable:
       Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1},
       Uargs(c_4) = {1}
     
     TcT has computed the following constructor-based matrix
     interpretation satisfying not(EDA).
     
             [U11](x1, x2) = [4]                  
                                                  
                      [tt] = [4]                  
                                                  
                 [U12](x1) = [4]                  
                                                  
               [isNat](x1) = [4]                  
                                                  
            [activate](x1) = [1] x1 + [0]         
                                                  
                 [U21](x1) = [4]                  
                                                  
                   [s](x1) = [1] x1 + [2]         
                                                  
            [plus](x1, x2) = [1] x1 + [1] x2 + [2]
                                                  
                    [n__0] = [1]                  
                                                  
         [n__plus](x1, x2) = [1] x1 + [1] x2 + [2]
                                                  
                [n__s](x1) = [1] x1 + [2]         
                                                  
                       [0] = [1]                  
                                                  
           [U11^#](x1, x2) = [2] x1 + [7] x2 + [0]
                                                  
             [isNat^#](x1) = [7] x1 + [1]         
                                                  
       [U41^#](x1, x2, x3) = [4] x2 + [7] x3 + [1]
                                                  
                 [c_1](x1) = [1] x1 + [7]         
                                                  
             [c_2](x1, x2) = [1] x1 + [1] x2 + [1]
                                                  
                 [c_3](x1) = [1] x1 + [4]         
                                                  
                 [c_4](x1) = [1] x1 + [0]         
     
     The order satisfies the following ordering constraints:
     
                   [U11(tt(), V2)] =  [4]                                           
                                   >= [4]                                           
                                   =  [U12(isNat(activate(V2)))]                    
                                                                                    
                       [U12(tt())] =  [4]                                           
                                   >= [4]                                           
                                   =  [tt()]                                        
                                                                                    
                   [isNat(n__0())] =  [4]                                           
                                   >= [4]                                           
                                   =  [tt()]                                        
                                                                                    
          [isNat(n__plus(V1, V2))] =  [4]                                           
                                   >= [4]                                           
                                   =  [U11(isNat(activate(V1)), activate(V2))]      
                                                                                    
                 [isNat(n__s(V1))] =  [4]                                           
                                   >= [4]                                           
                                   =  [U21(isNat(activate(V1)))]                    
                                                                                    
                     [activate(X)] =  [1] X + [0]                                   
                                   >= [1] X + [0]                                   
                                   =  [X]                                           
                                                                                    
                [activate(n__0())] =  [1]                                           
                                   >= [1]                                           
                                   =  [0()]                                         
                                                                                    
       [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [2]                         
                                   >= [1] X1 + [1] X2 + [2]                         
                                   =  [plus(activate(X1), activate(X2))]            
                                                                                    
               [activate(n__s(X))] =  [1] X + [2]                                   
                                   >= [1] X + [2]                                   
                                   =  [s(activate(X))]                              
                                                                                    
                       [U21(tt())] =  [4]                                           
                                   >= [4]                                           
                                   =  [tt()]                                        
                                                                                    
                            [s(X)] =  [1] X + [2]                                   
                                   >= [1] X + [2]                                   
                                   =  [n__s(X)]                                     
                                                                                    
                    [plus(X1, X2)] =  [1] X1 + [1] X2 + [2]                         
                                   >= [1] X1 + [1] X2 + [2]                         
                                   =  [n__plus(X1, X2)]                             
                                                                                    
                             [0()] =  [1]                                           
                                   >= [1]                                           
                                   =  [n__0()]                                      
                                                                                    
                 [U11^#(tt(), V2)] =  [7] V2 + [8]                                  
                                   >= [7] V2 + [8]                                  
                                   =  [c_1(isNat^#(activate(V2)))]                  
                                                                                    
        [isNat^#(n__plus(V1, V2))] =  [7] V2 + [7] V1 + [15]                        
                                   >  [7] V2 + [7] V1 + [10]                        
                                   =  [c_2(U11^#(isNat(activate(V1)), activate(V2)),
                                           isNat^#(activate(V1)))]                  
                                                                                    
               [isNat^#(n__s(V1))] =  [7] V1 + [15]                                 
                                   >  [7] V1 + [5]                                  
                                   =  [c_3(isNat^#(activate(V1)))]                  
                                                                                    
               [U41^#(tt(), M, N)] =  [7] N + [4] M + [1]                           
                                   >= [7] N + [1]                                   
                                   =  [c_4(isNat^#(activate(N)))]                   
                                                                                    
   
   We return to the main proof. Consider the set of all dependency
   pairs
   
   :
     { 1: isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , 2: U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , 3: isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)))
     , 4: U41^#(tt(), M, N) -> c_4(isNat^#(activate(N))) }
   
   Processor 'matrix interpretation of dimension 1' induces the
   complexity certificate YES(?,O(n^1)) on application of dependency
   pairs {1,3}. These cover all (indirect) predecessors of dependency
   pairs {1,2,3,4}, their number of application is equally bounded.
   The dependency pairs are shifted into the weak component.
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Weak DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , U41^#(tt(), M, N) -> c_4(isNat^#(activate(N))) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
     , activate(n__s(X)) -> s(activate(X))
     , U21(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0() }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   The following weak DPs constitute a sub-graph of the DG that is
   closed under successors. The DPs are removed.
   
   { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
   , isNat^#(n__plus(V1, V2)) ->
     c_2(U11^#(isNat(activate(V1)), activate(V2)),
         isNat^#(activate(V1)))
   , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
   , U41^#(tt(), M, N) -> c_4(isNat^#(activate(N))) }
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
     , activate(n__s(X)) -> s(activate(X))
     , U21(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0() }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   No rule is usable, rules are removed from the input problem.
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Rules: Empty
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   Empty rules are trivially bounded


Hurray, we answered YES(O(1),O(n^2))