*** 1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V2) -> U32(isNatKind(activate(V2)))
        U32(tt()) -> tt()
        U41(tt()) -> tt()
        U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
        U52(tt(),N) -> activate(N)
        U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
        U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
        U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
        U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
        plus(N,0()) -> U51(isNat(N),N)
        plus(N,s(M)) -> U61(isNat(M),M,N)
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U13,U14,U15,U16,U21,U22,U23,U31,U32,U41,U51,U52,U61,U62,U63,U64,activate,isNat,isNatKind,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      InnermostRuleRemoval
    Proof:
      Arguments of following rules are not normal-forms.
        plus(N,0()) -> U51(isNat(N),N)
        plus(N,s(M)) -> U61(isNat(M),M,N)
      All above mentioned rules can be savely removed.
*** 1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V2) -> U32(isNatKind(activate(V2)))
        U32(tt()) -> tt()
        U41(tt()) -> tt()
        U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
        U52(tt(),N) -> activate(N)
        U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
        U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
        U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
        U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U13,U14,U15,U16,U21,U22,U23,U31,U32,U41,U51,U52,U61,U62,U63,U64,activate,isNat,isNatKind,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        0#() -> c_1()
        U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U16#(tt()) -> c_7()
        U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U23#(tt()) -> c_10()
        U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U32#(tt()) -> c_12()
        U41#(tt()) -> c_13()
        U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U52#(tt(),N) -> c_15(activate#(N))
        U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        activate#(X) -> c_20()
        activate#(n__0()) -> c_21(0#())
        activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2))
        activate#(n__s(X)) -> c_23(s#(X))
        isNat#(n__0()) -> c_24()
        isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNatKind#(n__0()) -> c_27()
        isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        plus#(X1,X2) -> c_30()
        s#(X) -> c_31()
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        0#() -> c_1()
        U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U16#(tt()) -> c_7()
        U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U23#(tt()) -> c_10()
        U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U32#(tt()) -> c_12()
        U41#(tt()) -> c_13()
        U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U52#(tt(),N) -> c_15(activate#(N))
        U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        activate#(X) -> c_20()
        activate#(n__0()) -> c_21(0#())
        activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2))
        activate#(n__s(X)) -> c_23(s#(X))
        isNat#(n__0()) -> c_24()
        isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNatKind#(n__0()) -> c_27()
        isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        plus#(X1,X2) -> c_30()
        s#(X) -> c_31()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V2) -> U32(isNatKind(activate(V2)))
        U32(tt()) -> tt()
        U41(tt()) -> tt()
        U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
        U52(tt(),N) -> activate(N)
        U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
        U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
        U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
        U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/3,c_7/0,c_8/4,c_9/3,c_10/0,c_11/3,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/3,c_30/0,c_31/0}
      Obligation:
        Innermost
        basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V2) -> U32(isNatKind(activate(V2)))
        U32(tt()) -> tt()
        U41(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        0#() -> c_1()
        U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U16#(tt()) -> c_7()
        U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U23#(tt()) -> c_10()
        U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U32#(tt()) -> c_12()
        U41#(tt()) -> c_13()
        U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U52#(tt(),N) -> c_15(activate#(N))
        U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        activate#(X) -> c_20()
        activate#(n__0()) -> c_21(0#())
        activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2))
        activate#(n__s(X)) -> c_23(s#(X))
        isNat#(n__0()) -> c_24()
        isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNatKind#(n__0()) -> c_27()
        isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        plus#(X1,X2) -> c_30()
        s#(X) -> c_31()
*** 1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        0#() -> c_1()
        U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U16#(tt()) -> c_7()
        U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U23#(tt()) -> c_10()
        U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U32#(tt()) -> c_12()
        U41#(tt()) -> c_13()
        U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U52#(tt(),N) -> c_15(activate#(N))
        U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        activate#(X) -> c_20()
        activate#(n__0()) -> c_21(0#())
        activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2))
        activate#(n__s(X)) -> c_23(s#(X))
        isNat#(n__0()) -> c_24()
        isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNatKind#(n__0()) -> c_27()
        isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        plus#(X1,X2) -> c_30()
        s#(X) -> c_31()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V2) -> U32(isNatKind(activate(V2)))
        U32(tt()) -> tt()
        U41(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/3,c_7/0,c_8/4,c_9/3,c_10/0,c_11/3,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/3,c_30/0,c_31/0}
      Obligation:
        Innermost
        basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,7,10,12,13,20,24,27,30,31}
      by application of
        Pre({1,7,10,12,13,20,24,27,30,31}) = {2,3,4,5,6,8,9,11,14,15,16,17,18,19,21,22,23,25,26,28,29}.
      Here rules are labelled as follows:
        1:  0#() -> c_1()                        
        2:  U11#(tt(),V1,V2) ->                  
              c_2(U12#(isNatKind(activate(V1))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V1))       
                 ,activate#(V1)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        3:  U12#(tt(),V1,V2) ->                  
              c_3(U13#(isNatKind(activate(V2))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V2))       
                 ,activate#(V2)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        4:  U13#(tt(),V1,V2) ->                  
              c_4(U14#(isNatKind(activate(V2))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V2))       
                 ,activate#(V2)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        5:  U14#(tt(),V1,V2) ->                  
              c_5(U15#(isNat(activate(V1))       
                      ,activate(V2))             
                 ,isNat#(activate(V1))           
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        6:  U15#(tt(),V2) ->                     
              c_6(U16#(isNat(activate(V2)))      
                 ,isNat#(activate(V2))           
                 ,activate#(V2))                 
        7:  U16#(tt()) -> c_7()                  
        8:  U21#(tt(),V1) ->                     
              c_8(U22#(isNatKind(activate(V1))   
                      ,activate(V1))             
                 ,isNatKind#(activate(V1))       
                 ,activate#(V1)                  
                 ,activate#(V1))                 
        9:  U22#(tt(),V1) ->                     
              c_9(U23#(isNat(activate(V1)))      
                 ,isNat#(activate(V1))           
                 ,activate#(V1))                 
        10: U23#(tt()) -> c_10()                 
        11: U31#(tt(),V2) ->                     
              c_11(U32#(isNatKind(activate(V2))) 
                  ,isNatKind#(activate(V2))      
                  ,activate#(V2))                
        12: U32#(tt()) -> c_12()                 
        13: U41#(tt()) -> c_13()                 
        14: U51#(tt(),N) ->                      
              c_14(U52#(isNatKind(activate(N))   
                       ,activate(N))             
                  ,isNatKind#(activate(N))       
                  ,activate#(N)                  
                  ,activate#(N))                 
        15: U52#(tt(),N) ->                      
              c_15(activate#(N))                 
        16: U61#(tt(),M,N) ->                    
              c_16(U62#(isNatKind(activate(M))   
                       ,activate(M)              
                       ,activate(N))             
                  ,isNatKind#(activate(M))       
                  ,activate#(M)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        17: U62#(tt(),M,N) ->                    
              c_17(U63#(isNat(activate(N))       
                       ,activate(M)              
                       ,activate(N))             
                  ,isNat#(activate(N))           
                  ,activate#(N)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        18: U63#(tt(),M,N) ->                    
              c_18(U64#(isNatKind(activate(N))   
                       ,activate(M)              
                       ,activate(N))             
                  ,isNatKind#(activate(N))       
                  ,activate#(N)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        19: U64#(tt(),M,N) ->                    
              c_19(s#(plus(activate(N)           
                          ,activate(M)))         
                  ,plus#(activate(N),activate(M))
                  ,activate#(N)                  
                  ,activate#(M))                 
        20: activate#(X) -> c_20()               
        21: activate#(n__0()) -> c_21(0#())      
        22: activate#(n__plus(X1,X2)) ->         
              c_22(plus#(X1,X2))                 
        23: activate#(n__s(X)) ->                
              c_23(s#(X))                        
        24: isNat#(n__0()) -> c_24()             
        25: isNat#(n__plus(V1,V2)) ->            
              c_25(U11#(isNatKind(activate(V1))  
                       ,activate(V1)             
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1)                 
                  ,activate#(V2))                
        26: isNat#(n__s(V1)) ->                  
              c_26(U21#(isNatKind(activate(V1))  
                       ,activate(V1))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1))                
        27: isNatKind#(n__0()) -> c_27()         
        28: isNatKind#(n__plus(V1,V2)) ->        
              c_28(U31#(isNatKind(activate(V1))  
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V2))                
        29: isNatKind#(n__s(V1)) ->              
              c_29(U41#(isNatKind(activate(V1))) 
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1))                
        30: plus#(X1,X2) -> c_30()               
        31: s#(X) -> c_31()                      
*** 1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U52#(tt(),N) -> c_15(activate#(N))
        U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        activate#(n__0()) -> c_21(0#())
        activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2))
        activate#(n__s(X)) -> c_23(s#(X))
        isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
      Strict TRS Rules:
        
      Weak DP Rules:
        0#() -> c_1()
        U16#(tt()) -> c_7()
        U23#(tt()) -> c_10()
        U32#(tt()) -> c_12()
        U41#(tt()) -> c_13()
        activate#(X) -> c_20()
        isNat#(n__0()) -> c_24()
        isNatKind#(n__0()) -> c_27()
        plus#(X1,X2) -> c_30()
        s#(X) -> c_31()
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V2) -> U32(isNatKind(activate(V2)))
        U32(tt()) -> tt()
        U41(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/3,c_7/0,c_8/4,c_9/3,c_10/0,c_11/3,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/3,c_30/0,c_31/0}
      Obligation:
        Innermost
        basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {15,16,17}
      by application of
        Pre({15,16,17}) = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,18,19,20,21}.
      Here rules are labelled as follows:
        1:  U11#(tt(),V1,V2) ->                  
              c_2(U12#(isNatKind(activate(V1))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V1))       
                 ,activate#(V1)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        2:  U12#(tt(),V1,V2) ->                  
              c_3(U13#(isNatKind(activate(V2))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V2))       
                 ,activate#(V2)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        3:  U13#(tt(),V1,V2) ->                  
              c_4(U14#(isNatKind(activate(V2))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V2))       
                 ,activate#(V2)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        4:  U14#(tt(),V1,V2) ->                  
              c_5(U15#(isNat(activate(V1))       
                      ,activate(V2))             
                 ,isNat#(activate(V1))           
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        5:  U15#(tt(),V2) ->                     
              c_6(U16#(isNat(activate(V2)))      
                 ,isNat#(activate(V2))           
                 ,activate#(V2))                 
        6:  U21#(tt(),V1) ->                     
              c_8(U22#(isNatKind(activate(V1))   
                      ,activate(V1))             
                 ,isNatKind#(activate(V1))       
                 ,activate#(V1)                  
                 ,activate#(V1))                 
        7:  U22#(tt(),V1) ->                     
              c_9(U23#(isNat(activate(V1)))      
                 ,isNat#(activate(V1))           
                 ,activate#(V1))                 
        8:  U31#(tt(),V2) ->                     
              c_11(U32#(isNatKind(activate(V2))) 
                  ,isNatKind#(activate(V2))      
                  ,activate#(V2))                
        9:  U51#(tt(),N) ->                      
              c_14(U52#(isNatKind(activate(N))   
                       ,activate(N))             
                  ,isNatKind#(activate(N))       
                  ,activate#(N)                  
                  ,activate#(N))                 
        10: U52#(tt(),N) ->                      
              c_15(activate#(N))                 
        11: U61#(tt(),M,N) ->                    
              c_16(U62#(isNatKind(activate(M))   
                       ,activate(M)              
                       ,activate(N))             
                  ,isNatKind#(activate(M))       
                  ,activate#(M)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        12: U62#(tt(),M,N) ->                    
              c_17(U63#(isNat(activate(N))       
                       ,activate(M)              
                       ,activate(N))             
                  ,isNat#(activate(N))           
                  ,activate#(N)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        13: U63#(tt(),M,N) ->                    
              c_18(U64#(isNatKind(activate(N))   
                       ,activate(M)              
                       ,activate(N))             
                  ,isNatKind#(activate(N))       
                  ,activate#(N)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        14: U64#(tt(),M,N) ->                    
              c_19(s#(plus(activate(N)           
                          ,activate(M)))         
                  ,plus#(activate(N),activate(M))
                  ,activate#(N)                  
                  ,activate#(M))                 
        15: activate#(n__0()) -> c_21(0#())      
        16: activate#(n__plus(X1,X2)) ->         
              c_22(plus#(X1,X2))                 
        17: activate#(n__s(X)) ->                
              c_23(s#(X))                        
        18: isNat#(n__plus(V1,V2)) ->            
              c_25(U11#(isNatKind(activate(V1))  
                       ,activate(V1)             
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1)                 
                  ,activate#(V2))                
        19: isNat#(n__s(V1)) ->                  
              c_26(U21#(isNatKind(activate(V1))  
                       ,activate(V1))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1))                
        20: isNatKind#(n__plus(V1,V2)) ->        
              c_28(U31#(isNatKind(activate(V1))  
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V2))                
        21: isNatKind#(n__s(V1)) ->              
              c_29(U41#(isNatKind(activate(V1))) 
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1))                
        22: 0#() -> c_1()                        
        23: U16#(tt()) -> c_7()                  
        24: U23#(tt()) -> c_10()                 
        25: U32#(tt()) -> c_12()                 
        26: U41#(tt()) -> c_13()                 
        27: activate#(X) -> c_20()               
        28: isNat#(n__0()) -> c_24()             
        29: isNatKind#(n__0()) -> c_27()         
        30: plus#(X1,X2) -> c_30()               
        31: s#(X) -> c_31()                      
*** 1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U52#(tt(),N) -> c_15(activate#(N))
        U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
      Strict TRS Rules:
        
      Weak DP Rules:
        0#() -> c_1()
        U16#(tt()) -> c_7()
        U23#(tt()) -> c_10()
        U32#(tt()) -> c_12()
        U41#(tt()) -> c_13()
        activate#(X) -> c_20()
        activate#(n__0()) -> c_21(0#())
        activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2))
        activate#(n__s(X)) -> c_23(s#(X))
        isNat#(n__0()) -> c_24()
        isNatKind#(n__0()) -> c_27()
        plus#(X1,X2) -> c_30()
        s#(X) -> c_31()
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V2) -> U32(isNatKind(activate(V2)))
        U32(tt()) -> tt()
        U41(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/3,c_7/0,c_8/4,c_9/3,c_10/0,c_11/3,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/3,c_30/0,c_31/0}
      Obligation:
        Innermost
        basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {10,14}
      by application of
        Pre({10,14}) = {9,13}.
      Here rules are labelled as follows:
        1:  U11#(tt(),V1,V2) ->                  
              c_2(U12#(isNatKind(activate(V1))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V1))       
                 ,activate#(V1)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        2:  U12#(tt(),V1,V2) ->                  
              c_3(U13#(isNatKind(activate(V2))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V2))       
                 ,activate#(V2)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        3:  U13#(tt(),V1,V2) ->                  
              c_4(U14#(isNatKind(activate(V2))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V2))       
                 ,activate#(V2)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        4:  U14#(tt(),V1,V2) ->                  
              c_5(U15#(isNat(activate(V1))       
                      ,activate(V2))             
                 ,isNat#(activate(V1))           
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        5:  U15#(tt(),V2) ->                     
              c_6(U16#(isNat(activate(V2)))      
                 ,isNat#(activate(V2))           
                 ,activate#(V2))                 
        6:  U21#(tt(),V1) ->                     
              c_8(U22#(isNatKind(activate(V1))   
                      ,activate(V1))             
                 ,isNatKind#(activate(V1))       
                 ,activate#(V1)                  
                 ,activate#(V1))                 
        7:  U22#(tt(),V1) ->                     
              c_9(U23#(isNat(activate(V1)))      
                 ,isNat#(activate(V1))           
                 ,activate#(V1))                 
        8:  U31#(tt(),V2) ->                     
              c_11(U32#(isNatKind(activate(V2))) 
                  ,isNatKind#(activate(V2))      
                  ,activate#(V2))                
        9:  U51#(tt(),N) ->                      
              c_14(U52#(isNatKind(activate(N))   
                       ,activate(N))             
                  ,isNatKind#(activate(N))       
                  ,activate#(N)                  
                  ,activate#(N))                 
        10: U52#(tt(),N) ->                      
              c_15(activate#(N))                 
        11: U61#(tt(),M,N) ->                    
              c_16(U62#(isNatKind(activate(M))   
                       ,activate(M)              
                       ,activate(N))             
                  ,isNatKind#(activate(M))       
                  ,activate#(M)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        12: U62#(tt(),M,N) ->                    
              c_17(U63#(isNat(activate(N))       
                       ,activate(M)              
                       ,activate(N))             
                  ,isNat#(activate(N))           
                  ,activate#(N)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        13: U63#(tt(),M,N) ->                    
              c_18(U64#(isNatKind(activate(N))   
                       ,activate(M)              
                       ,activate(N))             
                  ,isNatKind#(activate(N))       
                  ,activate#(N)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        14: U64#(tt(),M,N) ->                    
              c_19(s#(plus(activate(N)           
                          ,activate(M)))         
                  ,plus#(activate(N),activate(M))
                  ,activate#(N)                  
                  ,activate#(M))                 
        15: isNat#(n__plus(V1,V2)) ->            
              c_25(U11#(isNatKind(activate(V1))  
                       ,activate(V1)             
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1)                 
                  ,activate#(V2))                
        16: isNat#(n__s(V1)) ->                  
              c_26(U21#(isNatKind(activate(V1))  
                       ,activate(V1))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1))                
        17: isNatKind#(n__plus(V1,V2)) ->        
              c_28(U31#(isNatKind(activate(V1))  
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V2))                
        18: isNatKind#(n__s(V1)) ->              
              c_29(U41#(isNatKind(activate(V1))) 
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1))                
        19: 0#() -> c_1()                        
        20: U16#(tt()) -> c_7()                  
        21: U23#(tt()) -> c_10()                 
        22: U32#(tt()) -> c_12()                 
        23: U41#(tt()) -> c_13()                 
        24: activate#(X) -> c_20()               
        25: activate#(n__0()) -> c_21(0#())      
        26: activate#(n__plus(X1,X2)) ->         
              c_22(plus#(X1,X2))                 
        27: activate#(n__s(X)) ->                
              c_23(s#(X))                        
        28: isNat#(n__0()) -> c_24()             
        29: isNatKind#(n__0()) -> c_27()         
        30: plus#(X1,X2) -> c_30()               
        31: s#(X) -> c_31()                      
*** 1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
      Strict TRS Rules:
        
      Weak DP Rules:
        0#() -> c_1()
        U16#(tt()) -> c_7()
        U23#(tt()) -> c_10()
        U32#(tt()) -> c_12()
        U41#(tt()) -> c_13()
        U52#(tt(),N) -> c_15(activate#(N))
        U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        activate#(X) -> c_20()
        activate#(n__0()) -> c_21(0#())
        activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2))
        activate#(n__s(X)) -> c_23(s#(X))
        isNat#(n__0()) -> c_24()
        isNatKind#(n__0()) -> c_27()
        plus#(X1,X2) -> c_30()
        s#(X) -> c_31()
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V2) -> U32(isNatKind(activate(V2)))
        U32(tt()) -> tt()
        U41(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/3,c_7/0,c_8/4,c_9/3,c_10/0,c_11/3,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/3,c_30/0,c_31/0}
      Obligation:
        Innermost
        basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
           -->_5 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_5 activate#(n__0()) -> c_21(0#()):25
           -->_4 activate#(n__0()) -> c_21(0#()):25
           -->_3 activate#(n__0()) -> c_21(0#()):25
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
           -->_1 U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):2
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_5 activate#(X) -> c_20():24
           -->_4 activate#(X) -> c_20():24
           -->_3 activate#(X) -> c_20():24
        
        2:S:U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
           -->_5 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_5 activate#(n__0()) -> c_21(0#()):25
           -->_4 activate#(n__0()) -> c_21(0#()):25
           -->_3 activate#(n__0()) -> c_21(0#()):25
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
           -->_1 U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):3
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_5 activate#(X) -> c_20():24
           -->_4 activate#(X) -> c_20():24
           -->_3 activate#(X) -> c_20():24
        
        3:S:U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
           -->_5 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_5 activate#(n__0()) -> c_21(0#()):25
           -->_4 activate#(n__0()) -> c_21(0#()):25
           -->_3 activate#(n__0()) -> c_21(0#()):25
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
           -->_1 U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):4
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_5 activate#(X) -> c_20():24
           -->_4 activate#(X) -> c_20():24
           -->_3 activate#(X) -> c_20():24
        
        4:S:U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
           -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_4 activate#(n__0()) -> c_21(0#()):25
           -->_3 activate#(n__0()) -> c_21(0#()):25
           -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):14
           -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):13
           -->_1 U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):5
           -->_2 isNat#(n__0()) -> c_24():28
           -->_4 activate#(X) -> c_20():24
           -->_3 activate#(X) -> c_20():24
        
        5:S:U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
           -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_3 activate#(n__0()) -> c_21(0#()):25
           -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):14
           -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):13
           -->_2 isNat#(n__0()) -> c_24():28
           -->_3 activate#(X) -> c_20():24
           -->_1 U16#(tt()) -> c_7():18
        
        6:S:U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
           -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_4 activate#(n__0()) -> c_21(0#()):25
           -->_3 activate#(n__0()) -> c_21(0#()):25
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
           -->_1 U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):7
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_4 activate#(X) -> c_20():24
           -->_3 activate#(X) -> c_20():24
        
        7:S:U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
           -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_3 activate#(n__0()) -> c_21(0#()):25
           -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):14
           -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):13
           -->_2 isNat#(n__0()) -> c_24():28
           -->_3 activate#(X) -> c_20():24
           -->_1 U23#(tt()) -> c_10():19
        
        8:S:U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
           -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_3 activate#(n__0()) -> c_21(0#()):25
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_3 activate#(X) -> c_20():24
           -->_1 U32#(tt()) -> c_12():20
        
        9:S:U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
           -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_4 activate#(n__0()) -> c_21(0#()):25
           -->_3 activate#(n__0()) -> c_21(0#()):25
           -->_1 U52#(tt(),N) -> c_15(activate#(N)):22
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_4 activate#(X) -> c_20():24
           -->_3 activate#(X) -> c_20():24
        
        10:S:U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
           -->_5 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_5 activate#(n__0()) -> c_21(0#()):25
           -->_4 activate#(n__0()) -> c_21(0#()):25
           -->_3 activate#(n__0()) -> c_21(0#()):25
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
           -->_1 U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)):11
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_5 activate#(X) -> c_20():24
           -->_4 activate#(X) -> c_20():24
           -->_3 activate#(X) -> c_20():24
        
        11:S:U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
           -->_5 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_5 activate#(n__0()) -> c_21(0#()):25
           -->_4 activate#(n__0()) -> c_21(0#()):25
           -->_3 activate#(n__0()) -> c_21(0#()):25
           -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):14
           -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):13
           -->_1 U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N)):12
           -->_2 isNat#(n__0()) -> c_24():28
           -->_5 activate#(X) -> c_20():24
           -->_4 activate#(X) -> c_20():24
           -->_3 activate#(X) -> c_20():24
        
        12:S:U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
           -->_5 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_5 activate#(n__0()) -> c_21(0#()):25
           -->_4 activate#(n__0()) -> c_21(0#()):25
           -->_3 activate#(n__0()) -> c_21(0#()):25
           -->_1 U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M)):23
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_5 activate#(X) -> c_20():24
           -->_4 activate#(X) -> c_20():24
           -->_3 activate#(X) -> c_20():24
        
        13:S:isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
           -->_5 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_5 activate#(n__0()) -> c_21(0#()):25
           -->_4 activate#(n__0()) -> c_21(0#()):25
           -->_3 activate#(n__0()) -> c_21(0#()):25
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_5 activate#(X) -> c_20():24
           -->_4 activate#(X) -> c_20():24
           -->_3 activate#(X) -> c_20():24
           -->_1 U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):1
        
        14:S:isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
           -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_4 activate#(n__0()) -> c_21(0#()):25
           -->_3 activate#(n__0()) -> c_21(0#()):25
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_4 activate#(X) -> c_20():24
           -->_3 activate#(X) -> c_20():24
           -->_1 U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):6
        
        15:S:isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
           -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_4 activate#(n__0()) -> c_21(0#()):25
           -->_3 activate#(n__0()) -> c_21(0#()):25
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_4 activate#(X) -> c_20():24
           -->_3 activate#(X) -> c_20():24
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
           -->_1 U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2)):8
        
        16:S:isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
           -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_3 activate#(n__0()) -> c_21(0#()):25
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_3 activate#(X) -> c_20():24
           -->_1 U41#(tt()) -> c_13():21
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
        
        17:W:0#() -> c_1()
           
        
        18:W:U16#(tt()) -> c_7()
           
        
        19:W:U23#(tt()) -> c_10()
           
        
        20:W:U32#(tt()) -> c_12()
           
        
        21:W:U41#(tt()) -> c_13()
           
        
        22:W:U52#(tt(),N) -> c_15(activate#(N))
           -->_1 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_1 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_1 activate#(n__0()) -> c_21(0#()):25
           -->_1 activate#(X) -> c_20():24
        
        23:W:U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
           -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
           -->_4 activate#(n__0()) -> c_21(0#()):25
           -->_3 activate#(n__0()) -> c_21(0#()):25
           -->_1 s#(X) -> c_31():31
           -->_2 plus#(X1,X2) -> c_30():30
           -->_4 activate#(X) -> c_20():24
           -->_3 activate#(X) -> c_20():24
        
        24:W:activate#(X) -> c_20()
           
        
        25:W:activate#(n__0()) -> c_21(0#())
           -->_1 0#() -> c_1():17
        
        26:W:activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2))
           -->_1 plus#(X1,X2) -> c_30():30
        
        27:W:activate#(n__s(X)) -> c_23(s#(X))
           -->_1 s#(X) -> c_31():31
        
        28:W:isNat#(n__0()) -> c_24()
           
        
        29:W:isNatKind#(n__0()) -> c_27()
           
        
        30:W:plus#(X1,X2) -> c_30()
           
        
        31:W:s#(X) -> c_31()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        23: U64#(tt(),M,N) ->                    
              c_19(s#(plus(activate(N)           
                          ,activate(M)))         
                  ,plus#(activate(N),activate(M))
                  ,activate#(N)                  
                  ,activate#(M))                 
        22: U52#(tt(),N) ->                      
              c_15(activate#(N))                 
        18: U16#(tt()) -> c_7()                  
        19: U23#(tt()) -> c_10()                 
        28: isNat#(n__0()) -> c_24()             
        20: U32#(tt()) -> c_12()                 
        21: U41#(tt()) -> c_13()                 
        24: activate#(X) -> c_20()               
        29: isNatKind#(n__0()) -> c_27()         
        25: activate#(n__0()) -> c_21(0#())      
        17: 0#() -> c_1()                        
        26: activate#(n__plus(X1,X2)) ->         
              c_22(plus#(X1,X2))                 
        30: plus#(X1,X2) -> c_30()               
        27: activate#(n__s(X)) ->                
              c_23(s#(X))                        
        31: s#(X) -> c_31()                      
*** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V2) -> U32(isNatKind(activate(V2)))
        U32(tt()) -> tt()
        U41(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/3,c_7/0,c_8/4,c_9/3,c_10/0,c_11/3,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/3,c_30/0,c_31/0}
      Obligation:
        Innermost
        basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      SimplifyRHS
    Proof:
      Consider the dependency graph
        1:S:U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
           -->_1 U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):2
        
        2:S:U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
           -->_1 U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):3
        
        3:S:U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
           -->_1 U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):4
        
        4:S:U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
           -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):14
           -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):13
           -->_1 U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):5
        
        5:S:U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
           -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):14
           -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):13
        
        6:S:U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
           -->_1 U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):7
        
        7:S:U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
           -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):14
           -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):13
        
        8:S:U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
        
        9:S:U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
        
        10:S:U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
           -->_1 U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)):11
        
        11:S:U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
           -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):14
           -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):13
           -->_1 U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N)):12
        
        12:S:U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
        
        13:S:isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
           -->_1 U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):1
        
        14:S:isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
           -->_1 U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):6
        
        15:S:isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
           -->_1 U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2)):8
        
        16:S:isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):15
        
      Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
        U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
        U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
        U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
        U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
        U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
        U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
        U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
        U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
        U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
        U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
        isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
        isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
*** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
        U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
        U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
        U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
        U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
        U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
        U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
        U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
        U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
        U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
        isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
        isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V2) -> U32(isNatKind(activate(V2)))
        U32(tt()) -> tt()
        U41(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
      Obligation:
        Innermost
        basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    Proof:
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
      
      Problem (R)
        Strict DP Rules:
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
          U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        Strict TRS Rules:
          
        Weak DP Rules:
          U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V2) -> U32(isNatKind(activate(V2)))
          U32(tt()) -> tt()
          U41(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(X1,X2)
          activate(n__s(X)) -> s(X)
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
        Signature:
          {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
      
      Problem (S)
        Strict DP Rules:
          U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
        Strict TRS Rules:
          
        Weak DP Rules:
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
          U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V2) -> U32(isNatKind(activate(V2)))
          U32(tt()) -> tt()
          U41(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(X1,X2)
          activate(n__s(X)) -> s(X)
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
        Signature:
          {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
  *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
          U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        Strict TRS Rules:
          
        Weak DP Rules:
          U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V2) -> U32(isNatKind(activate(V2)))
          U32(tt()) -> tt()
          U41(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(X1,X2)
          activate(n__s(X)) -> s(X)
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
        Signature:
          {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          8:  U31#(tt(),V2) ->                
                c_11(isNatKind#(activate(V2)))
          16: isNatKind#(n__s(V1)) ->         
                c_29(isNatKind#(activate(V1)))
          
        Consider the set of all dependency pairs
          1:  U11#(tt(),V1,V2) ->                
                c_2(U12#(isNatKind(activate(V1)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V1)))    
          2:  U12#(tt(),V1,V2) ->                
                c_3(U13#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2)))    
          3:  U13#(tt(),V1,V2) ->                
                c_4(U14#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2)))    
          4:  U14#(tt(),V1,V2) ->                
                c_5(U15#(isNat(activate(V1))     
                        ,activate(V2))           
                   ,isNat#(activate(V1)))        
          5:  U15#(tt(),V2) ->                   
                c_6(isNat#(activate(V2)))        
          6:  U21#(tt(),V1) ->                   
                c_8(U22#(isNatKind(activate(V1)) 
                        ,activate(V1))           
                   ,isNatKind#(activate(V1)))    
          7:  U22#(tt(),V1) ->                   
                c_9(isNat#(activate(V1)))        
          8:  U31#(tt(),V2) ->                   
                c_11(isNatKind#(activate(V2)))   
          9:  U51#(tt(),N) ->                    
                c_14(isNatKind#(activate(N)))    
          10: U61#(tt(),M,N) ->                  
                c_16(U62#(isNatKind(activate(M)) 
                         ,activate(M)            
                         ,activate(N))           
                    ,isNatKind#(activate(M)))    
          11: U62#(tt(),M,N) ->                  
                c_17(U63#(isNat(activate(N))     
                         ,activate(M)            
                         ,activate(N))           
                    ,isNat#(activate(N)))        
          12: U63#(tt(),M,N) ->                  
                c_18(isNatKind#(activate(N)))    
          13: isNat#(n__plus(V1,V2)) ->          
                c_25(U11#(isNatKind(activate(V1))
                         ,activate(V1)           
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          14: isNat#(n__s(V1)) ->                
                c_26(U21#(isNatKind(activate(V1))
                         ,activate(V1))          
                    ,isNatKind#(activate(V1)))   
          15: isNatKind#(n__plus(V1,V2)) ->      
                c_28(U31#(isNatKind(activate(V1))
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          16: isNatKind#(n__s(V1)) ->            
                c_29(isNatKind#(activate(V1)))   
        Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {8,16}
        These cover all (indirect) predecessors of dependency pairs
          {8,9,10,11,12,16}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
    *** 1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
          Strict TRS Rules:
            
          Weak DP Rules:
            U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
          Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
          Obligation:
            Innermost
            basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
        Applied Processor:
          NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a polynomial interpretation of kind constructor-based(mixed(2)):
          The following argument positions are considered usable:
            uargs(c_2) = {1,2},
            uargs(c_3) = {1,2},
            uargs(c_4) = {1,2},
            uargs(c_5) = {1,2},
            uargs(c_6) = {1},
            uargs(c_8) = {1,2},
            uargs(c_9) = {1},
            uargs(c_11) = {1},
            uargs(c_14) = {1},
            uargs(c_16) = {1,2},
            uargs(c_17) = {1,2},
            uargs(c_18) = {1},
            uargs(c_25) = {1,2},
            uargs(c_26) = {1,2},
            uargs(c_28) = {1,2},
            uargs(c_29) = {1}
          
          Following symbols are considered usable:
            {0,U31,U32,U41,activate,isNatKind,plus,s,0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}
          TcT has computed the following interpretation:
                     p(0) = 1                                                
                   p(U11) = x1*x3 + x3^2                                     
                   p(U12) = 1 + x1 + x1*x3                                   
                   p(U13) = x2 + x2*x3 + x3 + x3^2                           
                   p(U14) = x1*x3 + x2^2                                     
                   p(U15) = x1 + x1^2                                        
                   p(U16) = 1                                                
                   p(U21) = 0                                                
                   p(U22) = x1                                               
                   p(U23) = 0                                                
                   p(U31) = x1 + x2                                          
                   p(U32) = 1 + x1                                           
                   p(U41) = 1 + x1                                           
                   p(U51) = 0                                                
                   p(U52) = 0                                                
                   p(U61) = 0                                                
                   p(U62) = 0                                                
                   p(U63) = 0                                                
                   p(U64) = 0                                                
              p(activate) = x1                                               
                 p(isNat) = 1                                                
             p(isNatKind) = x1                                               
                  p(n__0) = 1                                                
               p(n__plus) = 1 + x1 + x2                                      
                  p(n__s) = 1 + x1                                           
                  p(plus) = 1 + x1 + x2                                      
                     p(s) = 1 + x1                                           
                    p(tt) = 1                                                
                    p(0#) = 0                                                
                  p(U11#) = 1 + x2 + x2*x3 + x2^2 + x3 + x3^2                
                  p(U12#) = 1 + x1*x3 + x2^2 + x3 + x3^2                     
                  p(U13#) = x2^2 + x3 + x3^2                                 
                  p(U14#) = x2^2 + x3^2                                      
                  p(U15#) = x2^2                                             
                  p(U16#) = 0                                                
                  p(U21#) = x2 + x2^2                                        
                  p(U22#) = x2^2                                             
                  p(U23#) = 0                                                
                  p(U31#) = 1 + x2                                           
                  p(U32#) = 0                                                
                  p(U41#) = 0                                                
                  p(U51#) = x1*x2                                            
                  p(U52#) = 0                                                
                  p(U61#) = x1 + x1*x2 + x1^2 + x2 + x2*x3 + x2^2 + x3 + x3^2
                  p(U62#) = 1 + x1^2 + x2*x3 + x3 + x3^2                     
                  p(U63#) = 1 + x3                                           
                  p(U64#) = 0                                                
             p(activate#) = 0                                                
                p(isNat#) = x1^2                                             
            p(isNatKind#) = x1                                               
                 p(plus#) = 0                                                
                    p(s#) = 0                                                
                   p(c_1) = 0                                                
                   p(c_2) = x1 + x2                                          
                   p(c_3) = 1 + x1 + x2                                      
                   p(c_4) = x1 + x2                                          
                   p(c_5) = x1 + x2                                          
                   p(c_6) = x1                                               
                   p(c_7) = 0                                                
                   p(c_8) = x1 + x2                                          
                   p(c_9) = x1                                               
                  p(c_10) = 0                                                
                  p(c_11) = x1                                               
                  p(c_12) = 0                                                
                  p(c_13) = 0                                                
                  p(c_14) = x1                                               
                  p(c_15) = 0                                                
                  p(c_16) = 1 + x1 + x2                                      
                  p(c_17) = x1 + x2                                          
                  p(c_18) = x1                                               
                  p(c_19) = 0                                                
                  p(c_20) = 0                                                
                  p(c_21) = 0                                                
                  p(c_22) = 0                                                
                  p(c_23) = 0                                                
                  p(c_24) = 0                                                
                  p(c_25) = x1 + x2                                          
                  p(c_26) = 1 + x1 + x2                                      
                  p(c_27) = 0                                                
                  p(c_28) = x1 + x2                                          
                  p(c_29) = x1                                               
                  p(c_30) = 0                                                
                  p(c_31) = 0                                                
          
          Following rules are strictly oriented:
                 U31#(tt(),V2) = 1 + V2                        
                               > V2                            
                               = c_11(isNatKind#(activate(V2)))
          
          isNatKind#(n__s(V1)) = 1 + V1                        
                               > V1                            
                               = c_29(isNatKind#(activate(V1)))
          
          
          Following rules are (at-least) weakly oriented:
                    U11#(tt(),V1,V2) =  1 + V1 + V1*V2 + V1^2 + V2 + V2^2      
                                     >= 1 + V1 + V1*V2 + V1^2 + V2 + V2^2      
                                     =  c_2(U12#(isNatKind(activate(V1))       
                                                ,activate(V1)                  
                                                ,activate(V2))                 
                                           ,isNatKind#(activate(V1)))          
          
                    U12#(tt(),V1,V2) =  1 + V1^2 + 2*V2 + V2^2                 
                                     >= 1 + V1^2 + 2*V2 + V2^2                 
                                     =  c_3(U13#(isNatKind(activate(V2))       
                                                ,activate(V1)                  
                                                ,activate(V2))                 
                                           ,isNatKind#(activate(V2)))          
          
                    U13#(tt(),V1,V2) =  V1^2 + V2 + V2^2                       
                                     >= V1^2 + V2 + V2^2                       
                                     =  c_4(U14#(isNatKind(activate(V2))       
                                                ,activate(V1)                  
                                                ,activate(V2))                 
                                           ,isNatKind#(activate(V2)))          
          
                    U14#(tt(),V1,V2) =  V1^2 + V2^2                            
                                     >= V1^2 + V2^2                            
                                     =  c_5(U15#(isNat(activate(V1))           
                                                ,activate(V2))                 
                                           ,isNat#(activate(V1)))              
          
                       U15#(tt(),V2) =  V2^2                                   
                                     >= V2^2                                   
                                     =  c_6(isNat#(activate(V2)))              
          
                       U21#(tt(),V1) =  V1 + V1^2                              
                                     >= V1 + V1^2                              
                                     =  c_8(U22#(isNatKind(activate(V1))       
                                                ,activate(V1))                 
                                           ,isNatKind#(activate(V1)))          
          
                       U22#(tt(),V1) =  V1^2                                   
                                     >= V1^2                                   
                                     =  c_9(isNat#(activate(V1)))              
          
                        U51#(tt(),N) =  N                                      
                                     >= N                                      
                                     =  c_14(isNatKind#(activate(N)))          
          
                      U61#(tt(),M,N) =  2 + 2*M + M*N + M^2 + N + N^2          
                                     >= 2 + M + M*N + M^2 + N + N^2            
                                     =  c_16(U62#(isNatKind(activate(M))       
                                                 ,activate(M)                  
                                                 ,activate(N))                 
                                            ,isNatKind#(activate(M)))          
          
                      U62#(tt(),M,N) =  2 + M*N + N + N^2                      
                                     >= 1 + N + N^2                            
                                     =  c_17(U63#(isNat(activate(N))           
                                                 ,activate(M)                  
                                                 ,activate(N))                 
                                            ,isNat#(activate(N)))              
          
                      U63#(tt(),M,N) =  1 + N                                  
                                     >= N                                      
                                     =  c_18(isNatKind#(activate(N)))          
          
              isNat#(n__plus(V1,V2)) =  1 + 2*V1 + 2*V1*V2 + V1^2 + 2*V2 + V2^2
                                     >= 1 + 2*V1 + V1*V2 + V1^2 + V2 + V2^2    
                                     =  c_25(U11#(isNatKind(activate(V1))      
                                                 ,activate(V1)                 
                                                 ,activate(V2))                
                                            ,isNatKind#(activate(V1)))         
          
                    isNat#(n__s(V1)) =  1 + 2*V1 + V1^2                        
                                     >= 1 + 2*V1 + V1^2                        
                                     =  c_26(U21#(isNatKind(activate(V1))      
                                                 ,activate(V1))                
                                            ,isNatKind#(activate(V1)))         
          
          isNatKind#(n__plus(V1,V2)) =  1 + V1 + V2                            
                                     >= 1 + V1 + V2                            
                                     =  c_28(U31#(isNatKind(activate(V1))      
                                                 ,activate(V2))                
                                            ,isNatKind#(activate(V1)))         
          
                                 0() =  1                                      
                                     >= 1                                      
                                     =  n__0()                                 
          
                        U31(tt(),V2) =  1 + V2                                 
                                     >= 1 + V2                                 
                                     =  U32(isNatKind(activate(V2)))           
          
                           U32(tt()) =  2                                      
                                     >= 1                                      
                                     =  tt()                                   
          
                           U41(tt()) =  2                                      
                                     >= 1                                      
                                     =  tt()                                   
          
                         activate(X) =  X                                      
                                     >= X                                      
                                     =  X                                      
          
                    activate(n__0()) =  1                                      
                                     >= 1                                      
                                     =  0()                                    
          
            activate(n__plus(X1,X2)) =  1 + X1 + X2                            
                                     >= 1 + X1 + X2                            
                                     =  plus(X1,X2)                            
          
                   activate(n__s(X)) =  1 + X                                  
                                     >= 1 + X                                  
                                     =  s(X)                                   
          
                   isNatKind(n__0()) =  1                                      
                                     >= 1                                      
                                     =  tt()                                   
          
           isNatKind(n__plus(V1,V2)) =  1 + V1 + V2                            
                                     >= V1 + V2                                
                                     =  U31(isNatKind(activate(V1))            
                                           ,activate(V2))                      
          
                 isNatKind(n__s(V1)) =  1 + V1                                 
                                     >= 1 + V1                                 
                                     =  U41(isNatKind(activate(V1)))           
          
                         plus(X1,X2) =  1 + X1 + X2                            
                                     >= 1 + X1 + X2                            
                                     =  n__plus(X1,X2)                         
          
                                s(X) =  1 + X                                  
                                     >= 1 + X                                  
                                     =  n__s(X)                                
          
    *** 1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          Strict TRS Rules:
            
          Weak DP Rules:
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
            U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
          Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
          Obligation:
            Innermost
            basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.1.1.1.1.2 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          Strict TRS Rules:
            
          Weak DP Rules:
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
            U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
          Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
          Obligation:
            Innermost
            basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            8:  isNat#(n__plus(V1,V2)) ->          
                  c_25(U11#(isNatKind(activate(V1))
                           ,activate(V1)           
                           ,activate(V2))          
                      ,isNatKind#(activate(V1)))   
            9:  isNat#(n__s(V1)) ->                
                  c_26(U21#(isNatKind(activate(V1))
                           ,activate(V1))          
                      ,isNatKind#(activate(V1)))   
            10: isNatKind#(n__plus(V1,V2)) ->      
                  c_28(U31#(isNatKind(activate(V1))
                           ,activate(V2))          
                      ,isNatKind#(activate(V1)))   
            
          Consider the set of all dependency pairs
            1:  U11#(tt(),V1,V2) ->                
                  c_2(U12#(isNatKind(activate(V1)) 
                          ,activate(V1)            
                          ,activate(V2))           
                     ,isNatKind#(activate(V1)))    
            2:  U12#(tt(),V1,V2) ->                
                  c_3(U13#(isNatKind(activate(V2)) 
                          ,activate(V1)            
                          ,activate(V2))           
                     ,isNatKind#(activate(V2)))    
            3:  U13#(tt(),V1,V2) ->                
                  c_4(U14#(isNatKind(activate(V2)) 
                          ,activate(V1)            
                          ,activate(V2))           
                     ,isNatKind#(activate(V2)))    
            4:  U14#(tt(),V1,V2) ->                
                  c_5(U15#(isNat(activate(V1))     
                          ,activate(V2))           
                     ,isNat#(activate(V1)))        
            5:  U15#(tt(),V2) ->                   
                  c_6(isNat#(activate(V2)))        
            6:  U21#(tt(),V1) ->                   
                  c_8(U22#(isNatKind(activate(V1)) 
                          ,activate(V1))           
                     ,isNatKind#(activate(V1)))    
            7:  U22#(tt(),V1) ->                   
                  c_9(isNat#(activate(V1)))        
            8:  isNat#(n__plus(V1,V2)) ->          
                  c_25(U11#(isNatKind(activate(V1))
                           ,activate(V1)           
                           ,activate(V2))          
                      ,isNatKind#(activate(V1)))   
            9:  isNat#(n__s(V1)) ->                
                  c_26(U21#(isNatKind(activate(V1))
                           ,activate(V1))          
                      ,isNatKind#(activate(V1)))   
            10: isNatKind#(n__plus(V1,V2)) ->      
                  c_28(U31#(isNatKind(activate(V1))
                           ,activate(V2))          
                      ,isNatKind#(activate(V1)))   
            11: U31#(tt(),V2) ->                   
                  c_11(isNatKind#(activate(V2)))   
            12: U51#(tt(),N) ->                    
                  c_14(isNatKind#(activate(N)))    
            13: U61#(tt(),M,N) ->                  
                  c_16(U62#(isNatKind(activate(M)) 
                           ,activate(M)            
                           ,activate(N))           
                      ,isNatKind#(activate(M)))    
            14: U62#(tt(),M,N) ->                  
                  c_17(U63#(isNat(activate(N))     
                           ,activate(M)            
                           ,activate(N))           
                      ,isNat#(activate(N)))        
            15: U63#(tt(),M,N) ->                  
                  c_18(isNatKind#(activate(N)))    
            16: isNatKind#(n__s(V1)) ->            
                  c_29(isNatKind#(activate(V1)))   
          Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2))
          SPACE(?,?)on application of the dependency pairs
            {8,9,10}
          These cover all (indirect) predecessors of dependency pairs
            {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}
          their number of applications is equally bounded.
          The dependency pairs are shifted into the weak component.
      *** 1.1.1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
              U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
              U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
              isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
              isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            Strict TRS Rules:
              
            Weak DP Rules:
              U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
              U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
              U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
              U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
              U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
              isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V2) -> U32(isNatKind(activate(V2)))
              U32(tt()) -> tt()
              U41(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(X1,X2)
              activate(n__s(X)) -> s(X)
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
            Signature:
              {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
            Obligation:
              Innermost
              basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
          Applied Processor:
            NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a polynomial interpretation of kind constructor-based(mixed(2)):
            The following argument positions are considered usable:
              uargs(c_2) = {1,2},
              uargs(c_3) = {1,2},
              uargs(c_4) = {1,2},
              uargs(c_5) = {1,2},
              uargs(c_6) = {1},
              uargs(c_8) = {1,2},
              uargs(c_9) = {1},
              uargs(c_11) = {1},
              uargs(c_14) = {1},
              uargs(c_16) = {1,2},
              uargs(c_17) = {1,2},
              uargs(c_18) = {1},
              uargs(c_25) = {1,2},
              uargs(c_26) = {1,2},
              uargs(c_28) = {1,2},
              uargs(c_29) = {1}
            
            Following symbols are considered usable:
              {0,U31,U32,U41,activate,isNatKind,plus,s,0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}
            TcT has computed the following interpretation:
                       p(0) = 1                                   
                     p(U11) = x1*x3                               
                     p(U12) = x1 + x1*x2 + x2^2                   
                     p(U13) = 1 + x1 + x3                         
                     p(U14) = x1*x2 + x1^2 + x2^2 + x3 + x3^2     
                     p(U15) = 0                                   
                     p(U16) = x1                                  
                     p(U21) = x1 + x1*x2 + x2^2                   
                     p(U22) = x1^2                                
                     p(U23) = x1^2                                
                     p(U31) = x1                                  
                     p(U32) = 1                                   
                     p(U41) = 1                                   
                     p(U51) = 0                                   
                     p(U52) = 0                                   
                     p(U61) = 0                                   
                     p(U62) = 0                                   
                     p(U63) = 0                                   
                     p(U64) = 0                                   
                p(activate) = x1                                  
                   p(isNat) = 0                                   
               p(isNatKind) = x1                                  
                    p(n__0) = 1                                   
                 p(n__plus) = 1 + x1 + x2                         
                    p(n__s) = 1 + x1                              
                    p(plus) = 1 + x1 + x2                         
                       p(s) = 1 + x1                              
                      p(tt) = 1                                   
                      p(0#) = 0                                   
                    p(U11#) = x1*x3 + x2 + x2*x3 + x2^2 + x3^2    
                    p(U12#) = x1*x3 + x2^2 + x3 + x3^2            
                    p(U13#) = x2^2 + x3 + x3^2                    
                    p(U14#) = x2^2 + x3^2                         
                    p(U15#) = x2^2                                
                    p(U16#) = 0                                   
                    p(U21#) = x2 + x2^2                           
                    p(U22#) = x2^2                                
                    p(U23#) = 0                                   
                    p(U31#) = x2                                  
                    p(U32#) = 0                                   
                    p(U41#) = 0                                   
                    p(U51#) = x1 + x2                             
                    p(U52#) = 0                                   
                    p(U61#) = 1 + x1 + x1*x2 + x1^2 + x2*x3 + x3^2
                    p(U62#) = 1 + x1*x3 + x3^2                    
                    p(U63#) = x3                                  
                    p(U64#) = 0                                   
               p(activate#) = 0                                   
                  p(isNat#) = x1^2                                
              p(isNatKind#) = x1                                  
                   p(plus#) = 0                                   
                      p(s#) = 0                                   
                     p(c_1) = 0                                   
                     p(c_2) = x1 + x2                             
                     p(c_3) = x1 + x2                             
                     p(c_4) = x1 + x2                             
                     p(c_5) = x1 + x2                             
                     p(c_6) = x1                                  
                     p(c_7) = 0                                   
                     p(c_8) = x1 + x2                             
                     p(c_9) = x1                                  
                    p(c_10) = 0                                   
                    p(c_11) = x1                                  
                    p(c_12) = 0                                   
                    p(c_13) = 0                                   
                    p(c_14) = x1                                  
                    p(c_15) = 0                                   
                    p(c_16) = 1 + x1 + x2                         
                    p(c_17) = x1 + x2                             
                    p(c_18) = x1                                  
                    p(c_19) = 0                                   
                    p(c_20) = 0                                   
                    p(c_21) = 0                                   
                    p(c_22) = 0                                   
                    p(c_23) = 0                                   
                    p(c_24) = 0                                   
                    p(c_25) = x1 + x2                             
                    p(c_26) = x1 + x2                             
                    p(c_27) = 0                                   
                    p(c_28) = x1 + x2                             
                    p(c_29) = 1 + x1                              
                    p(c_30) = 0                                   
                    p(c_31) = 0                                   
            
            Following rules are strictly oriented:
                isNat#(n__plus(V1,V2)) = 1 + 2*V1 + 2*V1*V2 + V1^2 + 2*V2 + V2^2
                                       > 2*V1 + 2*V1*V2 + V1^2 + V2^2           
                                       = c_25(U11#(isNatKind(activate(V1))      
                                                  ,activate(V1)                 
                                                  ,activate(V2))                
                                             ,isNatKind#(activate(V1)))         
            
                      isNat#(n__s(V1)) = 1 + 2*V1 + V1^2                        
                                       > 2*V1 + V1^2                            
                                       = c_26(U21#(isNatKind(activate(V1))      
                                                  ,activate(V1))                
                                             ,isNatKind#(activate(V1)))         
            
            isNatKind#(n__plus(V1,V2)) = 1 + V1 + V2                            
                                       > V1 + V2                                
                                       = c_28(U31#(isNatKind(activate(V1))      
                                                  ,activate(V2))                
                                             ,isNatKind#(activate(V1)))         
            
            
            Following rules are (at-least) weakly oriented:
                     U11#(tt(),V1,V2) =  V1 + V1*V2 + V1^2 + V2 + V2^2   
                                      >= V1 + V1*V2 + V1^2 + V2 + V2^2   
                                      =  c_2(U12#(isNatKind(activate(V1))
                                                 ,activate(V1)           
                                                 ,activate(V2))          
                                            ,isNatKind#(activate(V1)))   
            
                     U12#(tt(),V1,V2) =  V1^2 + 2*V2 + V2^2              
                                      >= V1^2 + 2*V2 + V2^2              
                                      =  c_3(U13#(isNatKind(activate(V2))
                                                 ,activate(V1)           
                                                 ,activate(V2))          
                                            ,isNatKind#(activate(V2)))   
            
                     U13#(tt(),V1,V2) =  V1^2 + V2 + V2^2                
                                      >= V1^2 + V2 + V2^2                
                                      =  c_4(U14#(isNatKind(activate(V2))
                                                 ,activate(V1)           
                                                 ,activate(V2))          
                                            ,isNatKind#(activate(V2)))   
            
                     U14#(tt(),V1,V2) =  V1^2 + V2^2                     
                                      >= V1^2 + V2^2                     
                                      =  c_5(U15#(isNat(activate(V1))    
                                                 ,activate(V2))          
                                            ,isNat#(activate(V1)))       
            
                        U15#(tt(),V2) =  V2^2                            
                                      >= V2^2                            
                                      =  c_6(isNat#(activate(V2)))       
            
                        U21#(tt(),V1) =  V1 + V1^2                       
                                      >= V1 + V1^2                       
                                      =  c_8(U22#(isNatKind(activate(V1))
                                                 ,activate(V1))          
                                            ,isNatKind#(activate(V1)))   
            
                        U22#(tt(),V1) =  V1^2                            
                                      >= V1^2                            
                                      =  c_9(isNat#(activate(V1)))       
            
                        U31#(tt(),V2) =  V2                              
                                      >= V2                              
                                      =  c_11(isNatKind#(activate(V2)))  
            
                         U51#(tt(),N) =  1 + N                           
                                      >= N                               
                                      =  c_14(isNatKind#(activate(N)))   
            
                       U61#(tt(),M,N) =  3 + M + M*N + N^2               
                                      >= 2 + M + M*N + N^2               
                                      =  c_16(U62#(isNatKind(activate(M))
                                                  ,activate(M)           
                                                  ,activate(N))          
                                             ,isNatKind#(activate(M)))   
            
                       U62#(tt(),M,N) =  1 + N + N^2                     
                                      >= N + N^2                         
                                      =  c_17(U63#(isNat(activate(N))    
                                                  ,activate(M)           
                                                  ,activate(N))          
                                             ,isNat#(activate(N)))       
            
                       U63#(tt(),M,N) =  N                               
                                      >= N                               
                                      =  c_18(isNatKind#(activate(N)))   
            
                 isNatKind#(n__s(V1)) =  1 + V1                          
                                      >= 1 + V1                          
                                      =  c_29(isNatKind#(activate(V1)))  
            
                                  0() =  1                               
                                      >= 1                               
                                      =  n__0()                          
            
                         U31(tt(),V2) =  1                               
                                      >= 1                               
                                      =  U32(isNatKind(activate(V2)))    
            
                            U32(tt()) =  1                               
                                      >= 1                               
                                      =  tt()                            
            
                            U41(tt()) =  1                               
                                      >= 1                               
                                      =  tt()                            
            
                          activate(X) =  X                               
                                      >= X                               
                                      =  X                               
            
                     activate(n__0()) =  1                               
                                      >= 1                               
                                      =  0()                             
            
             activate(n__plus(X1,X2)) =  1 + X1 + X2                     
                                      >= 1 + X1 + X2                     
                                      =  plus(X1,X2)                     
            
                    activate(n__s(X)) =  1 + X                           
                                      >= 1 + X                           
                                      =  s(X)                            
            
                    isNatKind(n__0()) =  1                               
                                      >= 1                               
                                      =  tt()                            
            
            isNatKind(n__plus(V1,V2)) =  1 + V1 + V2                     
                                      >= V1                              
                                      =  U31(isNatKind(activate(V1))     
                                            ,activate(V2))               
            
                  isNatKind(n__s(V1)) =  1 + V1                          
                                      >= 1                               
                                      =  U41(isNatKind(activate(V1)))    
            
                          plus(X1,X2) =  1 + X1 + X2                     
                                      >= 1 + X1 + X2                     
                                      =  n__plus(X1,X2)                  
            
                                 s(X) =  1 + X                           
                                      >= 1 + X                           
                                      =  n__s(X)                         
            
      *** 1.1.1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
              U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
              U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            Strict TRS Rules:
              
            Weak DP Rules:
              U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
              U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
              U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
              U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
              U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
              isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
              isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
              isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V2) -> U32(isNatKind(activate(V2)))
              U32(tt()) -> tt()
              U41(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(X1,X2)
              activate(n__s(X)) -> s(X)
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
            Signature:
              {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
            Obligation:
              Innermost
              basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.1.1.1.2.2 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
              U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
              U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
              U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
              U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
              U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
              U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
              U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
              isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
              isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
              isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V2) -> U32(isNatKind(activate(V2)))
              U32(tt()) -> tt()
              U41(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(X1,X2)
              activate(n__s(X)) -> s(X)
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
            Signature:
              {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
            Obligation:
              Innermost
              basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:W:U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
                 -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
                 -->_1 U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2))):2
              
              2:W:U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
                 -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
                 -->_1 U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2))):3
              
              3:W:U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
                 -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
                 -->_1 U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):4
              
              4:W:U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                 -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):14
                 -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):13
                 -->_1 U15#(tt(),V2) -> c_6(isNat#(activate(V2))):5
              
              5:W:U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
                 -->_1 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):14
                 -->_1 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):13
              
              6:W:U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
                 -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
                 -->_1 U22#(tt(),V1) -> c_9(isNat#(activate(V1))):7
              
              7:W:U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
                 -->_1 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):14
                 -->_1 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):13
              
              8:W:U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
                 -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
              
              9:W:U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
                 -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
              
              10:W:U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
                 -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
                 -->_1 U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N))):11
              
              11:W:U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
                 -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):14
                 -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):13
                 -->_1 U63#(tt(),M,N) -> c_18(isNatKind#(activate(N))):12
              
              12:W:U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
                 -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
              
              13:W:isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
                 -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
                 -->_1 U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):1
              
              14:W:isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
                 -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
                 -->_1 U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):6
              
              15:W:isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
                 -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
                 -->_1 U31#(tt(),V2) -> c_11(isNatKind#(activate(V2))):8
              
              16:W:isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
                 -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              10: U61#(tt(),M,N) ->                  
                    c_16(U62#(isNatKind(activate(M)) 
                             ,activate(M)            
                             ,activate(N))           
                        ,isNatKind#(activate(M)))    
              11: U62#(tt(),M,N) ->                  
                    c_17(U63#(isNat(activate(N))     
                             ,activate(M)            
                             ,activate(N))           
                        ,isNat#(activate(N)))        
              12: U63#(tt(),M,N) ->                  
                    c_18(isNatKind#(activate(N)))    
              9:  U51#(tt(),N) ->                    
                    c_14(isNatKind#(activate(N)))    
              1:  U11#(tt(),V1,V2) ->                
                    c_2(U12#(isNatKind(activate(V1)) 
                            ,activate(V1)            
                            ,activate(V2))           
                       ,isNatKind#(activate(V1)))    
              13: isNat#(n__plus(V1,V2)) ->          
                    c_25(U11#(isNatKind(activate(V1))
                             ,activate(V1)           
                             ,activate(V2))          
                        ,isNatKind#(activate(V1)))   
              7:  U22#(tt(),V1) ->                   
                    c_9(isNat#(activate(V1)))        
              6:  U21#(tt(),V1) ->                   
                    c_8(U22#(isNatKind(activate(V1)) 
                            ,activate(V1))           
                       ,isNatKind#(activate(V1)))    
              14: isNat#(n__s(V1)) ->                
                    c_26(U21#(isNatKind(activate(V1))
                             ,activate(V1))          
                        ,isNatKind#(activate(V1)))   
              5:  U15#(tt(),V2) ->                   
                    c_6(isNat#(activate(V2)))        
              4:  U14#(tt(),V1,V2) ->                
                    c_5(U15#(isNat(activate(V1))     
                            ,activate(V2))           
                       ,isNat#(activate(V1)))        
              3:  U13#(tt(),V1,V2) ->                
                    c_4(U14#(isNatKind(activate(V2)) 
                            ,activate(V1)            
                            ,activate(V2))           
                       ,isNatKind#(activate(V2)))    
              2:  U12#(tt(),V1,V2) ->                
                    c_3(U13#(isNatKind(activate(V2)) 
                            ,activate(V1)            
                            ,activate(V2))           
                       ,isNatKind#(activate(V2)))    
              16: isNatKind#(n__s(V1)) ->            
                    c_29(isNatKind#(activate(V1)))   
              15: isNatKind#(n__plus(V1,V2)) ->      
                    c_28(U31#(isNatKind(activate(V1))
                             ,activate(V2))          
                        ,isNatKind#(activate(V1)))   
              8:  U31#(tt(),V2) ->                   
                    c_11(isNatKind#(activate(V2)))   
      *** 1.1.1.1.1.1.1.1.1.1.2.2.1 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V2) -> U32(isNatKind(activate(V2)))
              U32(tt()) -> tt()
              U41(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(X1,X2)
              activate(n__s(X)) -> s(X)
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
            Signature:
              {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
            Obligation:
              Innermost
              basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
          Applied Processor:
            EmptyProcessor
          Proof:
            The problem is already closed. The intended complexity is O(1).
      
  *** 1.1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
        Strict TRS Rules:
          
        Weak DP Rules:
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
          U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V2) -> U32(isNatKind(activate(V2)))
          U32(tt()) -> tt()
          U41(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(X1,X2)
          activate(n__s(X)) -> s(X)
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
        Signature:
          {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
      Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
      Proof:
        We estimate the number of application of
          {1,4}
        by application of
          Pre({1,4}) = {3}.
        Here rules are labelled as follows:
          1:  U51#(tt(),N) ->                    
                c_14(isNatKind#(activate(N)))    
          2:  U61#(tt(),M,N) ->                  
                c_16(U62#(isNatKind(activate(M)) 
                         ,activate(M)            
                         ,activate(N))           
                    ,isNatKind#(activate(M)))    
          3:  U62#(tt(),M,N) ->                  
                c_17(U63#(isNat(activate(N))     
                         ,activate(M)            
                         ,activate(N))           
                    ,isNat#(activate(N)))        
          4:  U63#(tt(),M,N) ->                  
                c_18(isNatKind#(activate(N)))    
          5:  U11#(tt(),V1,V2) ->                
                c_2(U12#(isNatKind(activate(V1)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V1)))    
          6:  U12#(tt(),V1,V2) ->                
                c_3(U13#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2)))    
          7:  U13#(tt(),V1,V2) ->                
                c_4(U14#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2)))    
          8:  U14#(tt(),V1,V2) ->                
                c_5(U15#(isNat(activate(V1))     
                        ,activate(V2))           
                   ,isNat#(activate(V1)))        
          9:  U15#(tt(),V2) ->                   
                c_6(isNat#(activate(V2)))        
          10: U21#(tt(),V1) ->                   
                c_8(U22#(isNatKind(activate(V1)) 
                        ,activate(V1))           
                   ,isNatKind#(activate(V1)))    
          11: U22#(tt(),V1) ->                   
                c_9(isNat#(activate(V1)))        
          12: U31#(tt(),V2) ->                   
                c_11(isNatKind#(activate(V2)))   
          13: isNat#(n__plus(V1,V2)) ->          
                c_25(U11#(isNatKind(activate(V1))
                         ,activate(V1)           
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          14: isNat#(n__s(V1)) ->                
                c_26(U21#(isNatKind(activate(V1))
                         ,activate(V1))          
                    ,isNatKind#(activate(V1)))   
          15: isNatKind#(n__plus(V1,V2)) ->      
                c_28(U31#(isNatKind(activate(V1))
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          16: isNatKind#(n__s(V1)) ->            
                c_29(isNatKind#(activate(V1)))   
  *** 1.1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
        Strict TRS Rules:
          
        Weak DP Rules:
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
          U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
          U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
          U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V2) -> U32(isNatKind(activate(V2)))
          U32(tt()) -> tt()
          U41(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(X1,X2)
          activate(n__s(X)) -> s(X)
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
        Signature:
          {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
      Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
      Proof:
        We estimate the number of application of
          {2}
        by application of
          Pre({2}) = {1}.
        Here rules are labelled as follows:
          1:  U61#(tt(),M,N) ->                  
                c_16(U62#(isNatKind(activate(M)) 
                         ,activate(M)            
                         ,activate(N))           
                    ,isNatKind#(activate(M)))    
          2:  U62#(tt(),M,N) ->                  
                c_17(U63#(isNat(activate(N))     
                         ,activate(M)            
                         ,activate(N))           
                    ,isNat#(activate(N)))        
          3:  U11#(tt(),V1,V2) ->                
                c_2(U12#(isNatKind(activate(V1)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V1)))    
          4:  U12#(tt(),V1,V2) ->                
                c_3(U13#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2)))    
          5:  U13#(tt(),V1,V2) ->                
                c_4(U14#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2)))    
          6:  U14#(tt(),V1,V2) ->                
                c_5(U15#(isNat(activate(V1))     
                        ,activate(V2))           
                   ,isNat#(activate(V1)))        
          7:  U15#(tt(),V2) ->                   
                c_6(isNat#(activate(V2)))        
          8:  U21#(tt(),V1) ->                   
                c_8(U22#(isNatKind(activate(V1)) 
                        ,activate(V1))           
                   ,isNatKind#(activate(V1)))    
          9:  U22#(tt(),V1) ->                   
                c_9(isNat#(activate(V1)))        
          10: U31#(tt(),V2) ->                   
                c_11(isNatKind#(activate(V2)))   
          11: U51#(tt(),N) ->                    
                c_14(isNatKind#(activate(N)))    
          12: U63#(tt(),M,N) ->                  
                c_18(isNatKind#(activate(N)))    
          13: isNat#(n__plus(V1,V2)) ->          
                c_25(U11#(isNatKind(activate(V1))
                         ,activate(V1)           
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          14: isNat#(n__s(V1)) ->                
                c_26(U21#(isNatKind(activate(V1))
                         ,activate(V1))          
                    ,isNatKind#(activate(V1)))   
          15: isNatKind#(n__plus(V1,V2)) ->      
                c_28(U31#(isNatKind(activate(V1))
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          16: isNatKind#(n__s(V1)) ->            
                c_29(isNatKind#(activate(V1)))   
  *** 1.1.1.1.1.1.1.1.1.2.1.1 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
        Strict TRS Rules:
          
        Weak DP Rules:
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
          U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
          U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
          U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V2) -> U32(isNatKind(activate(V2)))
          U32(tt()) -> tt()
          U41(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(X1,X2)
          activate(n__s(X)) -> s(X)
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
        Signature:
          {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
      Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
      Proof:
        We estimate the number of application of
          {1}
        by application of
          Pre({1}) = {}.
        Here rules are labelled as follows:
          1:  U61#(tt(),M,N) ->                  
                c_16(U62#(isNatKind(activate(M)) 
                         ,activate(M)            
                         ,activate(N))           
                    ,isNatKind#(activate(M)))    
          2:  U11#(tt(),V1,V2) ->                
                c_2(U12#(isNatKind(activate(V1)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V1)))    
          3:  U12#(tt(),V1,V2) ->                
                c_3(U13#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2)))    
          4:  U13#(tt(),V1,V2) ->                
                c_4(U14#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2)))    
          5:  U14#(tt(),V1,V2) ->                
                c_5(U15#(isNat(activate(V1))     
                        ,activate(V2))           
                   ,isNat#(activate(V1)))        
          6:  U15#(tt(),V2) ->                   
                c_6(isNat#(activate(V2)))        
          7:  U21#(tt(),V1) ->                   
                c_8(U22#(isNatKind(activate(V1)) 
                        ,activate(V1))           
                   ,isNatKind#(activate(V1)))    
          8:  U22#(tt(),V1) ->                   
                c_9(isNat#(activate(V1)))        
          9:  U31#(tt(),V2) ->                   
                c_11(isNatKind#(activate(V2)))   
          10: U51#(tt(),N) ->                    
                c_14(isNatKind#(activate(N)))    
          11: U62#(tt(),M,N) ->                  
                c_17(U63#(isNat(activate(N))     
                         ,activate(M)            
                         ,activate(N))           
                    ,isNat#(activate(N)))        
          12: U63#(tt(),M,N) ->                  
                c_18(isNatKind#(activate(N)))    
          13: isNat#(n__plus(V1,V2)) ->          
                c_25(U11#(isNatKind(activate(V1))
                         ,activate(V1)           
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          14: isNat#(n__s(V1)) ->                
                c_26(U21#(isNatKind(activate(V1))
                         ,activate(V1))          
                    ,isNatKind#(activate(V1)))   
          15: isNatKind#(n__plus(V1,V2)) ->      
                c_28(U31#(isNatKind(activate(V1))
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          16: isNatKind#(n__s(V1)) ->            
                c_29(isNatKind#(activate(V1)))   
  *** 1.1.1.1.1.1.1.1.1.2.1.1.1 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          
        Strict TRS Rules:
          
        Weak DP Rules:
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
          U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
          U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V2) -> U32(isNatKind(activate(V2)))
          U32(tt()) -> tt()
          U41(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(X1,X2)
          activate(n__s(X)) -> s(X)
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
        Signature:
          {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:W:U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
             -->_1 U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2))):2
          
          2:W:U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
             -->_1 U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2))):3
          
          3:W:U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
             -->_1 U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):4
          
          4:W:U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):14
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):13
             -->_1 U15#(tt(),V2) -> c_6(isNat#(activate(V2))):5
          
          5:W:U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
             -->_1 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):14
             -->_1 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):13
          
          6:W:U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
             -->_1 U22#(tt(),V1) -> c_9(isNat#(activate(V1))):7
          
          7:W:U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
             -->_1 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):14
             -->_1 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):13
          
          8:W:U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
          
          9:W:U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
          
          10:W:U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
             -->_1 U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N))):11
          
          11:W:U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):14
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):13
             -->_1 U63#(tt(),M,N) -> c_18(isNatKind#(activate(N))):12
          
          12:W:U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
          
          13:W:isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
             -->_1 U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):1
          
          14:W:isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
             -->_1 U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):6
          
          15:W:isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
             -->_1 U31#(tt(),V2) -> c_11(isNatKind#(activate(V2))):8
          
          16:W:isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):15
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          10: U61#(tt(),M,N) ->                  
                c_16(U62#(isNatKind(activate(M)) 
                         ,activate(M)            
                         ,activate(N))           
                    ,isNatKind#(activate(M)))    
          11: U62#(tt(),M,N) ->                  
                c_17(U63#(isNat(activate(N))     
                         ,activate(M)            
                         ,activate(N))           
                    ,isNat#(activate(N)))        
          12: U63#(tt(),M,N) ->                  
                c_18(isNatKind#(activate(N)))    
          9:  U51#(tt(),N) ->                    
                c_14(isNatKind#(activate(N)))    
          1:  U11#(tt(),V1,V2) ->                
                c_2(U12#(isNatKind(activate(V1)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V1)))    
          13: isNat#(n__plus(V1,V2)) ->          
                c_25(U11#(isNatKind(activate(V1))
                         ,activate(V1)           
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          7:  U22#(tt(),V1) ->                   
                c_9(isNat#(activate(V1)))        
          6:  U21#(tt(),V1) ->                   
                c_8(U22#(isNatKind(activate(V1)) 
                        ,activate(V1))           
                   ,isNatKind#(activate(V1)))    
          14: isNat#(n__s(V1)) ->                
                c_26(U21#(isNatKind(activate(V1))
                         ,activate(V1))          
                    ,isNatKind#(activate(V1)))   
          5:  U15#(tt(),V2) ->                   
                c_6(isNat#(activate(V2)))        
          4:  U14#(tt(),V1,V2) ->                
                c_5(U15#(isNat(activate(V1))     
                        ,activate(V2))           
                   ,isNat#(activate(V1)))        
          3:  U13#(tt(),V1,V2) ->                
                c_4(U14#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2)))    
          2:  U12#(tt(),V1,V2) ->                
                c_3(U13#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2)))    
          16: isNatKind#(n__s(V1)) ->            
                c_29(isNatKind#(activate(V1)))   
          15: isNatKind#(n__plus(V1,V2)) ->      
                c_28(U31#(isNatKind(activate(V1))
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          8:  U31#(tt(),V2) ->                   
                c_11(isNatKind#(activate(V2)))   
  *** 1.1.1.1.1.1.1.1.1.2.1.1.1.1 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V2) -> U32(isNatKind(activate(V2)))
          U32(tt()) -> tt()
          U41(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(X1,X2)
          activate(n__s(X)) -> s(X)
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
        Signature:
          {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
      Applied Processor:
        EmptyProcessor
      Proof:
        The problem is already closed. The intended complexity is O(1).