*** 1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V2) -> U32(isNatKind(activate(V2)))
        U32(tt()) -> tt()
        U41(tt()) -> tt()
        U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
        U52(tt(),N) -> activate(N)
        U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
        U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
        U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
        U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
        plus(N,0()) -> U51(isNat(N),N)
        plus(N,s(M)) -> U61(isNat(M),M,N)
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U13,U14,U15,U16,U21,U22,U23,U31,U32,U41,U51,U52,U61,U62,U63,U64,activate,isNat,isNatKind,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      InnermostRuleRemoval
    Proof:
      Arguments of following rules are not normal-forms.
        plus(N,0()) -> U51(isNat(N),N)
        plus(N,s(M)) -> U61(isNat(M),M,N)
      All above mentioned rules can be savely removed.
*** 1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V2) -> U32(isNatKind(activate(V2)))
        U32(tt()) -> tt()
        U41(tt()) -> tt()
        U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
        U52(tt(),N) -> activate(N)
        U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
        U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
        U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
        U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U13,U14,U15,U16,U21,U22,U23,U31,U32,U41,U51,U52,U61,U62,U63,U64,activate,isNat,isNatKind,plus,s}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        0#() -> c_1()
        U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U16#(tt()) -> c_7()
        U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U23#(tt()) -> c_10()
        U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U32#(tt()) -> c_12()
        U41#(tt()) -> c_13()
        U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U52#(tt(),N) -> c_15(activate#(N))
        U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        activate#(X) -> c_20()
        activate#(n__0()) -> c_21(0#())
        activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
        activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X))
        isNat#(n__0()) -> c_24()
        isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNatKind#(n__0()) -> c_27()
        isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        plus#(X1,X2) -> c_30()
        s#(X) -> c_31()
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        0#() -> c_1()
        U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U16#(tt()) -> c_7()
        U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U23#(tt()) -> c_10()
        U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U32#(tt()) -> c_12()
        U41#(tt()) -> c_13()
        U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U52#(tt(),N) -> c_15(activate#(N))
        U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        activate#(X) -> c_20()
        activate#(n__0()) -> c_21(0#())
        activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
        activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X))
        isNat#(n__0()) -> c_24()
        isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNatKind#(n__0()) -> c_27()
        isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        plus#(X1,X2) -> c_30()
        s#(X) -> c_31()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V2) -> U32(isNatKind(activate(V2)))
        U32(tt()) -> tt()
        U41(tt()) -> tt()
        U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
        U52(tt(),N) -> activate(N)
        U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
        U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
        U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
        U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/3,c_7/0,c_8/4,c_9/3,c_10/0,c_11/3,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/4,c_20/0,c_21/1,c_22/3,c_23/2,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/3,c_30/0,c_31/0}
      Obligation:
        Innermost
        basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V2) -> U32(isNatKind(activate(V2)))
        U32(tt()) -> tt()
        U41(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        0#() -> c_1()
        U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U16#(tt()) -> c_7()
        U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U23#(tt()) -> c_10()
        U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U32#(tt()) -> c_12()
        U41#(tt()) -> c_13()
        U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U52#(tt(),N) -> c_15(activate#(N))
        U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        activate#(X) -> c_20()
        activate#(n__0()) -> c_21(0#())
        activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
        activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X))
        isNat#(n__0()) -> c_24()
        isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNatKind#(n__0()) -> c_27()
        isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        plus#(X1,X2) -> c_30()
        s#(X) -> c_31()
*** 1.1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        0#() -> c_1()
        U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U16#(tt()) -> c_7()
        U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U23#(tt()) -> c_10()
        U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U32#(tt()) -> c_12()
        U41#(tt()) -> c_13()
        U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U52#(tt(),N) -> c_15(activate#(N))
        U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        activate#(X) -> c_20()
        activate#(n__0()) -> c_21(0#())
        activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
        activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X))
        isNat#(n__0()) -> c_24()
        isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNatKind#(n__0()) -> c_27()
        isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        plus#(X1,X2) -> c_30()
        s#(X) -> c_31()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V2) -> U32(isNatKind(activate(V2)))
        U32(tt()) -> tt()
        U41(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/3,c_7/0,c_8/4,c_9/3,c_10/0,c_11/3,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/4,c_20/0,c_21/1,c_22/3,c_23/2,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/3,c_30/0,c_31/0}
      Obligation:
        Innermost
        basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,7,10,12,13,20,24,27,30,31}
      by application of
        Pre({1,7,10,12,13,20,24,27,30,31}) = {2,3,4,5,6,8,9,11,14,15,16,17,18,19,21,22,23,25,26,28,29}.
      Here rules are labelled as follows:
        1:  0#() -> c_1()                        
        2:  U11#(tt(),V1,V2) ->                  
              c_2(U12#(isNatKind(activate(V1))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V1))       
                 ,activate#(V1)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        3:  U12#(tt(),V1,V2) ->                  
              c_3(U13#(isNatKind(activate(V2))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V2))       
                 ,activate#(V2)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        4:  U13#(tt(),V1,V2) ->                  
              c_4(U14#(isNatKind(activate(V2))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V2))       
                 ,activate#(V2)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        5:  U14#(tt(),V1,V2) ->                  
              c_5(U15#(isNat(activate(V1))       
                      ,activate(V2))             
                 ,isNat#(activate(V1))           
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        6:  U15#(tt(),V2) ->                     
              c_6(U16#(isNat(activate(V2)))      
                 ,isNat#(activate(V2))           
                 ,activate#(V2))                 
        7:  U16#(tt()) -> c_7()                  
        8:  U21#(tt(),V1) ->                     
              c_8(U22#(isNatKind(activate(V1))   
                      ,activate(V1))             
                 ,isNatKind#(activate(V1))       
                 ,activate#(V1)                  
                 ,activate#(V1))                 
        9:  U22#(tt(),V1) ->                     
              c_9(U23#(isNat(activate(V1)))      
                 ,isNat#(activate(V1))           
                 ,activate#(V1))                 
        10: U23#(tt()) -> c_10()                 
        11: U31#(tt(),V2) ->                     
              c_11(U32#(isNatKind(activate(V2))) 
                  ,isNatKind#(activate(V2))      
                  ,activate#(V2))                
        12: U32#(tt()) -> c_12()                 
        13: U41#(tt()) -> c_13()                 
        14: U51#(tt(),N) ->                      
              c_14(U52#(isNatKind(activate(N))   
                       ,activate(N))             
                  ,isNatKind#(activate(N))       
                  ,activate#(N)                  
                  ,activate#(N))                 
        15: U52#(tt(),N) ->                      
              c_15(activate#(N))                 
        16: U61#(tt(),M,N) ->                    
              c_16(U62#(isNatKind(activate(M))   
                       ,activate(M)              
                       ,activate(N))             
                  ,isNatKind#(activate(M))       
                  ,activate#(M)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        17: U62#(tt(),M,N) ->                    
              c_17(U63#(isNat(activate(N))       
                       ,activate(M)              
                       ,activate(N))             
                  ,isNat#(activate(N))           
                  ,activate#(N)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        18: U63#(tt(),M,N) ->                    
              c_18(U64#(isNatKind(activate(N))   
                       ,activate(M)              
                       ,activate(N))             
                  ,isNatKind#(activate(N))       
                  ,activate#(N)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        19: U64#(tt(),M,N) ->                    
              c_19(s#(plus(activate(N)           
                          ,activate(M)))         
                  ,plus#(activate(N),activate(M))
                  ,activate#(N)                  
                  ,activate#(M))                 
        20: activate#(X) -> c_20()               
        21: activate#(n__0()) -> c_21(0#())      
        22: activate#(n__plus(X1,X2)) ->         
              c_22(plus#(activate(X1)            
                        ,activate(X2))           
                  ,activate#(X1)                 
                  ,activate#(X2))                
        23: activate#(n__s(X)) ->                
              c_23(s#(activate(X))               
                  ,activate#(X))                 
        24: isNat#(n__0()) -> c_24()             
        25: isNat#(n__plus(V1,V2)) ->            
              c_25(U11#(isNatKind(activate(V1))  
                       ,activate(V1)             
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1)                 
                  ,activate#(V2))                
        26: isNat#(n__s(V1)) ->                  
              c_26(U21#(isNatKind(activate(V1))  
                       ,activate(V1))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1))                
        27: isNatKind#(n__0()) -> c_27()         
        28: isNatKind#(n__plus(V1,V2)) ->        
              c_28(U31#(isNatKind(activate(V1))  
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V2))                
        29: isNatKind#(n__s(V1)) ->              
              c_29(U41#(isNatKind(activate(V1))) 
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1))                
        30: plus#(X1,X2) -> c_30()               
        31: s#(X) -> c_31()                      
*** 1.1.1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U52#(tt(),N) -> c_15(activate#(N))
        U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        activate#(n__0()) -> c_21(0#())
        activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
        activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X))
        isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
      Strict TRS Rules:
        
      Weak DP Rules:
        0#() -> c_1()
        U16#(tt()) -> c_7()
        U23#(tt()) -> c_10()
        U32#(tt()) -> c_12()
        U41#(tt()) -> c_13()
        activate#(X) -> c_20()
        isNat#(n__0()) -> c_24()
        isNatKind#(n__0()) -> c_27()
        plus#(X1,X2) -> c_30()
        s#(X) -> c_31()
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V2) -> U32(isNatKind(activate(V2)))
        U32(tt()) -> tt()
        U41(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/3,c_7/0,c_8/4,c_9/3,c_10/0,c_11/3,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/4,c_20/0,c_21/1,c_22/3,c_23/2,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/3,c_30/0,c_31/0}
      Obligation:
        Innermost
        basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {15}
      by application of
        Pre({15}) = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21}.
      Here rules are labelled as follows:
        1:  U11#(tt(),V1,V2) ->                  
              c_2(U12#(isNatKind(activate(V1))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V1))       
                 ,activate#(V1)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        2:  U12#(tt(),V1,V2) ->                  
              c_3(U13#(isNatKind(activate(V2))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V2))       
                 ,activate#(V2)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        3:  U13#(tt(),V1,V2) ->                  
              c_4(U14#(isNatKind(activate(V2))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V2))       
                 ,activate#(V2)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        4:  U14#(tt(),V1,V2) ->                  
              c_5(U15#(isNat(activate(V1))       
                      ,activate(V2))             
                 ,isNat#(activate(V1))           
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        5:  U15#(tt(),V2) ->                     
              c_6(U16#(isNat(activate(V2)))      
                 ,isNat#(activate(V2))           
                 ,activate#(V2))                 
        6:  U21#(tt(),V1) ->                     
              c_8(U22#(isNatKind(activate(V1))   
                      ,activate(V1))             
                 ,isNatKind#(activate(V1))       
                 ,activate#(V1)                  
                 ,activate#(V1))                 
        7:  U22#(tt(),V1) ->                     
              c_9(U23#(isNat(activate(V1)))      
                 ,isNat#(activate(V1))           
                 ,activate#(V1))                 
        8:  U31#(tt(),V2) ->                     
              c_11(U32#(isNatKind(activate(V2))) 
                  ,isNatKind#(activate(V2))      
                  ,activate#(V2))                
        9:  U51#(tt(),N) ->                      
              c_14(U52#(isNatKind(activate(N))   
                       ,activate(N))             
                  ,isNatKind#(activate(N))       
                  ,activate#(N)                  
                  ,activate#(N))                 
        10: U52#(tt(),N) ->                      
              c_15(activate#(N))                 
        11: U61#(tt(),M,N) ->                    
              c_16(U62#(isNatKind(activate(M))   
                       ,activate(M)              
                       ,activate(N))             
                  ,isNatKind#(activate(M))       
                  ,activate#(M)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        12: U62#(tt(),M,N) ->                    
              c_17(U63#(isNat(activate(N))       
                       ,activate(M)              
                       ,activate(N))             
                  ,isNat#(activate(N))           
                  ,activate#(N)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        13: U63#(tt(),M,N) ->                    
              c_18(U64#(isNatKind(activate(N))   
                       ,activate(M)              
                       ,activate(N))             
                  ,isNatKind#(activate(N))       
                  ,activate#(N)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        14: U64#(tt(),M,N) ->                    
              c_19(s#(plus(activate(N)           
                          ,activate(M)))         
                  ,plus#(activate(N),activate(M))
                  ,activate#(N)                  
                  ,activate#(M))                 
        15: activate#(n__0()) -> c_21(0#())      
        16: activate#(n__plus(X1,X2)) ->         
              c_22(plus#(activate(X1)            
                        ,activate(X2))           
                  ,activate#(X1)                 
                  ,activate#(X2))                
        17: activate#(n__s(X)) ->                
              c_23(s#(activate(X))               
                  ,activate#(X))                 
        18: isNat#(n__plus(V1,V2)) ->            
              c_25(U11#(isNatKind(activate(V1))  
                       ,activate(V1)             
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1)                 
                  ,activate#(V2))                
        19: isNat#(n__s(V1)) ->                  
              c_26(U21#(isNatKind(activate(V1))  
                       ,activate(V1))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1))                
        20: isNatKind#(n__plus(V1,V2)) ->        
              c_28(U31#(isNatKind(activate(V1))  
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V2))                
        21: isNatKind#(n__s(V1)) ->              
              c_29(U41#(isNatKind(activate(V1))) 
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1))                
        22: 0#() -> c_1()                        
        23: U16#(tt()) -> c_7()                  
        24: U23#(tt()) -> c_10()                 
        25: U32#(tt()) -> c_12()                 
        26: U41#(tt()) -> c_13()                 
        27: activate#(X) -> c_20()               
        28: isNat#(n__0()) -> c_24()             
        29: isNatKind#(n__0()) -> c_27()         
        30: plus#(X1,X2) -> c_30()               
        31: s#(X) -> c_31()                      
*** 1.1.1.1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U52#(tt(),N) -> c_15(activate#(N))
        U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
        activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X))
        isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
      Strict TRS Rules:
        
      Weak DP Rules:
        0#() -> c_1()
        U16#(tt()) -> c_7()
        U23#(tt()) -> c_10()
        U32#(tt()) -> c_12()
        U41#(tt()) -> c_13()
        activate#(X) -> c_20()
        activate#(n__0()) -> c_21(0#())
        isNat#(n__0()) -> c_24()
        isNatKind#(n__0()) -> c_27()
        plus#(X1,X2) -> c_30()
        s#(X) -> c_31()
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V2) -> U32(isNatKind(activate(V2)))
        U32(tt()) -> tt()
        U41(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/3,c_7/0,c_8/4,c_9/3,c_10/0,c_11/3,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/4,c_20/0,c_21/1,c_22/3,c_23/2,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/3,c_30/0,c_31/0}
      Obligation:
        Innermost
        basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
           -->_5 activate#(n__0()) -> c_21(0#()):27
           -->_4 activate#(n__0()) -> c_21(0#()):27
           -->_3 activate#(n__0()) -> c_21(0#()):27
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):2
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_5 activate#(X) -> c_20():26
           -->_4 activate#(X) -> c_20():26
           -->_3 activate#(X) -> c_20():26
        
        2:S:U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
           -->_5 activate#(n__0()) -> c_21(0#()):27
           -->_4 activate#(n__0()) -> c_21(0#()):27
           -->_3 activate#(n__0()) -> c_21(0#()):27
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):3
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_5 activate#(X) -> c_20():26
           -->_4 activate#(X) -> c_20():26
           -->_3 activate#(X) -> c_20():26
        
        3:S:U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
           -->_5 activate#(n__0()) -> c_21(0#()):27
           -->_4 activate#(n__0()) -> c_21(0#()):27
           -->_3 activate#(n__0()) -> c_21(0#()):27
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):4
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_5 activate#(X) -> c_20():26
           -->_4 activate#(X) -> c_20():26
           -->_3 activate#(X) -> c_20():26
        
        4:S:U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
           -->_4 activate#(n__0()) -> c_21(0#()):27
           -->_3 activate#(n__0()) -> c_21(0#()):27
           -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):18
           -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):17
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):5
           -->_2 isNat#(n__0()) -> c_24():28
           -->_4 activate#(X) -> c_20():26
           -->_3 activate#(X) -> c_20():26
        
        5:S:U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
           -->_3 activate#(n__0()) -> c_21(0#()):27
           -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):18
           -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):17
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_2 isNat#(n__0()) -> c_24():28
           -->_3 activate#(X) -> c_20():26
           -->_1 U16#(tt()) -> c_7():22
        
        6:S:U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
           -->_4 activate#(n__0()) -> c_21(0#()):27
           -->_3 activate#(n__0()) -> c_21(0#()):27
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):7
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_4 activate#(X) -> c_20():26
           -->_3 activate#(X) -> c_20():26
        
        7:S:U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
           -->_3 activate#(n__0()) -> c_21(0#()):27
           -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):18
           -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):17
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_2 isNat#(n__0()) -> c_24():28
           -->_3 activate#(X) -> c_20():26
           -->_1 U23#(tt()) -> c_10():23
        
        8:S:U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
           -->_3 activate#(n__0()) -> c_21(0#()):27
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_3 activate#(X) -> c_20():26
           -->_1 U32#(tt()) -> c_12():24
        
        9:S:U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
           -->_4 activate#(n__0()) -> c_21(0#()):27
           -->_3 activate#(n__0()) -> c_21(0#()):27
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U52#(tt(),N) -> c_15(activate#(N)):10
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_4 activate#(X) -> c_20():26
           -->_3 activate#(X) -> c_20():26
        
        10:S:U52#(tt(),N) -> c_15(activate#(N))
           -->_1 activate#(n__0()) -> c_21(0#()):27
           -->_1 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_1 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 activate#(X) -> c_20():26
        
        11:S:U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
           -->_5 activate#(n__0()) -> c_21(0#()):27
           -->_4 activate#(n__0()) -> c_21(0#()):27
           -->_3 activate#(n__0()) -> c_21(0#()):27
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)):12
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_5 activate#(X) -> c_20():26
           -->_4 activate#(X) -> c_20():26
           -->_3 activate#(X) -> c_20():26
        
        12:S:U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
           -->_5 activate#(n__0()) -> c_21(0#()):27
           -->_4 activate#(n__0()) -> c_21(0#()):27
           -->_3 activate#(n__0()) -> c_21(0#()):27
           -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):18
           -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):17
           -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N)):13
           -->_2 isNat#(n__0()) -> c_24():28
           -->_5 activate#(X) -> c_20():26
           -->_4 activate#(X) -> c_20():26
           -->_3 activate#(X) -> c_20():26
        
        13:S:U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
           -->_5 activate#(n__0()) -> c_21(0#()):27
           -->_4 activate#(n__0()) -> c_21(0#()):27
           -->_3 activate#(n__0()) -> c_21(0#()):27
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M)):14
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_5 activate#(X) -> c_20():26
           -->_4 activate#(X) -> c_20():26
           -->_3 activate#(X) -> c_20():26
        
        14:S:U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
           -->_4 activate#(n__0()) -> c_21(0#()):27
           -->_3 activate#(n__0()) -> c_21(0#()):27
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 s#(X) -> c_31():31
           -->_2 plus#(X1,X2) -> c_30():30
           -->_4 activate#(X) -> c_20():26
           -->_3 activate#(X) -> c_20():26
        
        15:S:activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
           -->_3 activate#(n__0()) -> c_21(0#()):27
           -->_2 activate#(n__0()) -> c_21(0#()):27
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_2 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_1 plus#(X1,X2) -> c_30():30
           -->_3 activate#(X) -> c_20():26
           -->_2 activate#(X) -> c_20():26
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_2 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
        
        16:S:activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X))
           -->_2 activate#(n__0()) -> c_21(0#()):27
           -->_1 s#(X) -> c_31():31
           -->_2 activate#(X) -> c_20():26
           -->_2 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_2 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
        
        17:S:isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
           -->_5 activate#(n__0()) -> c_21(0#()):27
           -->_4 activate#(n__0()) -> c_21(0#()):27
           -->_3 activate#(n__0()) -> c_21(0#()):27
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_5 activate#(X) -> c_20():26
           -->_4 activate#(X) -> c_20():26
           -->_3 activate#(X) -> c_20():26
           -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):1
        
        18:S:isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
           -->_4 activate#(n__0()) -> c_21(0#()):27
           -->_3 activate#(n__0()) -> c_21(0#()):27
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_4 activate#(X) -> c_20():26
           -->_3 activate#(X) -> c_20():26
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):6
        
        19:S:isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
           -->_4 activate#(n__0()) -> c_21(0#()):27
           -->_3 activate#(n__0()) -> c_21(0#()):27
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_4 activate#(X) -> c_20():26
           -->_3 activate#(X) -> c_20():26
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2)):8
        
        20:S:isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
           -->_3 activate#(n__0()) -> c_21(0#()):27
           -->_2 isNatKind#(n__0()) -> c_27():29
           -->_3 activate#(X) -> c_20():26
           -->_1 U41#(tt()) -> c_13():25
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
        
        21:W:0#() -> c_1()
           
        
        22:W:U16#(tt()) -> c_7()
           
        
        23:W:U23#(tt()) -> c_10()
           
        
        24:W:U32#(tt()) -> c_12()
           
        
        25:W:U41#(tt()) -> c_13()
           
        
        26:W:activate#(X) -> c_20()
           
        
        27:W:activate#(n__0()) -> c_21(0#())
           -->_1 0#() -> c_1():21
        
        28:W:isNat#(n__0()) -> c_24()
           
        
        29:W:isNatKind#(n__0()) -> c_27()
           
        
        30:W:plus#(X1,X2) -> c_30()
           
        
        31:W:s#(X) -> c_31()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        22: U16#(tt()) -> c_7()            
        23: U23#(tt()) -> c_10()           
        28: isNat#(n__0()) -> c_24()       
        24: U32#(tt()) -> c_12()           
        30: plus#(X1,X2) -> c_30()         
        31: s#(X) -> c_31()                
        25: U41#(tt()) -> c_13()           
        26: activate#(X) -> c_20()         
        29: isNatKind#(n__0()) -> c_27()   
        27: activate#(n__0()) -> c_21(0#())
        21: 0#() -> c_1()                  
*** 1.1.1.1.1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U52#(tt(),N) -> c_15(activate#(N))
        U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
        activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X))
        isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V2) -> U32(isNatKind(activate(V2)))
        U32(tt()) -> tt()
        U41(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/3,c_7/0,c_8/4,c_9/3,c_10/0,c_11/3,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/4,c_20/0,c_21/1,c_22/3,c_23/2,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/3,c_30/0,c_31/0}
      Obligation:
        Innermost
        basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      SimplifyRHS
    Proof:
      Consider the dependency graph
        1:S:U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):2
        
        2:S:U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):3
        
        3:S:U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):4
        
        4:S:U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
           -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):18
           -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):17
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):5
        
        5:S:U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
           -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):18
           -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):17
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
        
        6:S:U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):7
        
        7:S:U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
           -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):18
           -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):17
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
        
        8:S:U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
        
        9:S:U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U52#(tt(),N) -> c_15(activate#(N)):10
        
        10:S:U52#(tt(),N) -> c_15(activate#(N))
           -->_1 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_1 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
        
        11:S:U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)):12
        
        12:S:U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
           -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):18
           -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):17
           -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N)):13
        
        13:S:U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M)):14
        
        14:S:U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
        
        15:S:activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_2 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_2 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
        
        16:S:activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X))
           -->_2 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_2 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
        
        17:S:isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):1
        
        18:S:isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):6
        
        19:S:isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
           -->_1 U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2)):8
        
        20:S:isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
           -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
           -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
           -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
        
      Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
        U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
        U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
        U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
        U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
        activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
        activate#(n__s(X)) -> c_23(activate#(X))
        isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
*** 1.1.1.1.1.1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
        U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
        U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
        U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U52#(tt(),N) -> c_15(activate#(N))
        U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
        activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
        activate#(n__s(X)) -> c_23(activate#(X))
        isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V2) -> U32(isNatKind(activate(V2)))
        U32(tt()) -> tt()
        U41(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Signature:
        {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
      Obligation:
        Innermost
        basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
    Applied Processor:
      Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    Proof:
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
      
      Problem (R)
        Strict DP Rules:
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
          U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
          U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
          U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
          activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_23(activate#(X))
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
          isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
        Strict TRS Rules:
          
        Weak DP Rules:
          U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
          U52#(tt(),N) -> c_15(activate#(N))
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
          U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
          U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
          U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V2) -> U32(isNatKind(activate(V2)))
          U32(tt()) -> tt()
          U41(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
          activate(n__s(X)) -> s(activate(X))
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
        Signature:
          {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
      
      Problem (S)
        Strict DP Rules:
          U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
          U52#(tt(),N) -> c_15(activate#(N))
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
          U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
          U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
          U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
        Strict TRS Rules:
          
        Weak DP Rules:
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
          U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
          U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
          U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
          activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_23(activate#(X))
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
          isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V2) -> U32(isNatKind(activate(V2)))
          U32(tt()) -> tt()
          U41(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
          activate(n__s(X)) -> s(activate(X))
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
        Signature:
          {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
  *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^3))]  ***
      Considered Problem:
        Strict DP Rules:
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
          U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
          U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
          U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
          activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_23(activate#(X))
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
          isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
        Strict TRS Rules:
          
        Weak DP Rules:
          U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
          U52#(tt(),N) -> c_15(activate#(N))
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
          U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
          U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
          U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V2) -> U32(isNatKind(activate(V2)))
          U32(tt()) -> tt()
          U41(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
          activate(n__s(X)) -> s(activate(X))
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
        Signature:
          {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
      Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
      Proof:
        We decompose the input problem according to the dependency graph into the upper component
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
          U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
          U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
          U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
          U52#(tt(),N) -> c_15(activate#(N))
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
          U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
          U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
          U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        and a lower component
          U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
          activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_23(activate#(X))
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
          isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
        Further, following extension rules are added to the lower component.
          U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
          U11#(tt(),V1,V2) -> activate#(V1)
          U11#(tt(),V1,V2) -> activate#(V2)
          U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
          U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
          U12#(tt(),V1,V2) -> activate#(V1)
          U12#(tt(),V1,V2) -> activate#(V2)
          U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
          U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13#(tt(),V1,V2) -> activate#(V1)
          U13#(tt(),V1,V2) -> activate#(V2)
          U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
          U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
          U14#(tt(),V1,V2) -> activate#(V1)
          U14#(tt(),V1,V2) -> activate#(V2)
          U14#(tt(),V1,V2) -> isNat#(activate(V1))
          U15#(tt(),V2) -> activate#(V2)
          U15#(tt(),V2) -> isNat#(activate(V2))
          U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
          U21#(tt(),V1) -> activate#(V1)
          U21#(tt(),V1) -> isNatKind#(activate(V1))
          U22#(tt(),V1) -> activate#(V1)
          U22#(tt(),V1) -> isNat#(activate(V1))
          U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
          U51#(tt(),N) -> activate#(N)
          U51#(tt(),N) -> isNatKind#(activate(N))
          U52#(tt(),N) -> activate#(N)
          U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
          U61#(tt(),M,N) -> activate#(M)
          U61#(tt(),M,N) -> activate#(N)
          U61#(tt(),M,N) -> isNatKind#(activate(M))
          U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
          U62#(tt(),M,N) -> activate#(M)
          U62#(tt(),M,N) -> activate#(N)
          U62#(tt(),M,N) -> isNat#(activate(N))
          U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
          U63#(tt(),M,N) -> activate#(M)
          U63#(tt(),M,N) -> activate#(N)
          U63#(tt(),M,N) -> isNatKind#(activate(N))
          U64#(tt(),M,N) -> activate#(M)
          U64#(tt(),M,N) -> activate#(N)
          isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat#(n__plus(V1,V2)) -> activate#(V1)
          isNat#(n__plus(V1,V2)) -> activate#(V2)
          isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
          isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
          isNat#(n__s(V1)) -> activate#(V1)
          isNat#(n__s(V1)) -> isNatKind#(activate(V1))
    *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
            U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
            U52#(tt(),N) -> c_15(activate#(N))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
            U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
            U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
          Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
          Obligation:
            Innermost
            basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
        Applied Processor:
          PredecessorEstimation {onSelection = all simple predecessor estimation selector}
        Proof:
          We estimate the number of application of
            {9,13}
          by application of
            Pre({9,13}) = {8,12}.
          Here rules are labelled as follows:
            1:  U11#(tt(),V1,V2) ->                
                  c_2(U12#(isNatKind(activate(V1)) 
                          ,activate(V1)            
                          ,activate(V2))           
                     ,isNatKind#(activate(V1))     
                     ,activate#(V1)                
                     ,activate#(V1)                
                     ,activate#(V2))               
            2:  U12#(tt(),V1,V2) ->                
                  c_3(U13#(isNatKind(activate(V2)) 
                          ,activate(V1)            
                          ,activate(V2))           
                     ,isNatKind#(activate(V2))     
                     ,activate#(V2)                
                     ,activate#(V1)                
                     ,activate#(V2))               
            3:  U13#(tt(),V1,V2) ->                
                  c_4(U14#(isNatKind(activate(V2)) 
                          ,activate(V1)            
                          ,activate(V2))           
                     ,isNatKind#(activate(V2))     
                     ,activate#(V2)                
                     ,activate#(V1)                
                     ,activate#(V2))               
            4:  U14#(tt(),V1,V2) ->                
                  c_5(U15#(isNat(activate(V1))     
                          ,activate(V2))           
                     ,isNat#(activate(V1))         
                     ,activate#(V1)                
                     ,activate#(V2))               
            5:  U15#(tt(),V2) ->                   
                  c_6(isNat#(activate(V2))         
                     ,activate#(V2))               
            6:  U21#(tt(),V1) ->                   
                  c_8(U22#(isNatKind(activate(V1)) 
                          ,activate(V1))           
                     ,isNatKind#(activate(V1))     
                     ,activate#(V1)                
                     ,activate#(V1))               
            7:  U22#(tt(),V1) ->                   
                  c_9(isNat#(activate(V1))         
                     ,activate#(V1))               
            8:  U51#(tt(),N) ->                    
                  c_14(U52#(isNatKind(activate(N)) 
                           ,activate(N))           
                      ,isNatKind#(activate(N))     
                      ,activate#(N)                
                      ,activate#(N))               
            9:  U52#(tt(),N) ->                    
                  c_15(activate#(N))               
            10: U61#(tt(),M,N) ->                  
                  c_16(U62#(isNatKind(activate(M)) 
                           ,activate(M)            
                           ,activate(N))           
                      ,isNatKind#(activate(M))     
                      ,activate#(M)                
                      ,activate#(M)                
                      ,activate#(N))               
            11: U62#(tt(),M,N) ->                  
                  c_17(U63#(isNat(activate(N))     
                           ,activate(M)            
                           ,activate(N))           
                      ,isNat#(activate(N))         
                      ,activate#(N)                
                      ,activate#(M)                
                      ,activate#(N))               
            12: U63#(tt(),M,N) ->                  
                  c_18(U64#(isNatKind(activate(N)) 
                           ,activate(M)            
                           ,activate(N))           
                      ,isNatKind#(activate(N))     
                      ,activate#(N)                
                      ,activate#(M)                
                      ,activate#(N))               
            13: U64#(tt(),M,N) ->                  
                  c_19(activate#(N),activate#(M))  
            14: isNat#(n__plus(V1,V2)) ->          
                  c_25(U11#(isNatKind(activate(V1))
                           ,activate(V1)           
                           ,activate(V2))          
                      ,isNatKind#(activate(V1))    
                      ,activate#(V1)               
                      ,activate#(V1)               
                      ,activate#(V2))              
            15: isNat#(n__s(V1)) ->                
                  c_26(U21#(isNatKind(activate(V1))
                           ,activate(V1))          
                      ,isNatKind#(activate(V1))    
                      ,activate#(V1)               
                      ,activate#(V1))              
    *** 1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
            U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
            U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
          Strict TRS Rules:
            
          Weak DP Rules:
            U52#(tt(),N) -> c_15(activate#(N))
            U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
          Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
          Obligation:
            Innermost
            basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
        Applied Processor:
          PredecessorEstimation {onSelection = all simple predecessor estimation selector}
        Proof:
          We estimate the number of application of
            {8,11}
          by application of
            Pre({8,11}) = {10}.
          Here rules are labelled as follows:
            1:  U11#(tt(),V1,V2) ->                
                  c_2(U12#(isNatKind(activate(V1)) 
                          ,activate(V1)            
                          ,activate(V2))           
                     ,isNatKind#(activate(V1))     
                     ,activate#(V1)                
                     ,activate#(V1)                
                     ,activate#(V2))               
            2:  U12#(tt(),V1,V2) ->                
                  c_3(U13#(isNatKind(activate(V2)) 
                          ,activate(V1)            
                          ,activate(V2))           
                     ,isNatKind#(activate(V2))     
                     ,activate#(V2)                
                     ,activate#(V1)                
                     ,activate#(V2))               
            3:  U13#(tt(),V1,V2) ->                
                  c_4(U14#(isNatKind(activate(V2)) 
                          ,activate(V1)            
                          ,activate(V2))           
                     ,isNatKind#(activate(V2))     
                     ,activate#(V2)                
                     ,activate#(V1)                
                     ,activate#(V2))               
            4:  U14#(tt(),V1,V2) ->                
                  c_5(U15#(isNat(activate(V1))     
                          ,activate(V2))           
                     ,isNat#(activate(V1))         
                     ,activate#(V1)                
                     ,activate#(V2))               
            5:  U15#(tt(),V2) ->                   
                  c_6(isNat#(activate(V2))         
                     ,activate#(V2))               
            6:  U21#(tt(),V1) ->                   
                  c_8(U22#(isNatKind(activate(V1)) 
                          ,activate(V1))           
                     ,isNatKind#(activate(V1))     
                     ,activate#(V1)                
                     ,activate#(V1))               
            7:  U22#(tt(),V1) ->                   
                  c_9(isNat#(activate(V1))         
                     ,activate#(V1))               
            8:  U51#(tt(),N) ->                    
                  c_14(U52#(isNatKind(activate(N)) 
                           ,activate(N))           
                      ,isNatKind#(activate(N))     
                      ,activate#(N)                
                      ,activate#(N))               
            9:  U61#(tt(),M,N) ->                  
                  c_16(U62#(isNatKind(activate(M)) 
                           ,activate(M)            
                           ,activate(N))           
                      ,isNatKind#(activate(M))     
                      ,activate#(M)                
                      ,activate#(M)                
                      ,activate#(N))               
            10: U62#(tt(),M,N) ->                  
                  c_17(U63#(isNat(activate(N))     
                           ,activate(M)            
                           ,activate(N))           
                      ,isNat#(activate(N))         
                      ,activate#(N)                
                      ,activate#(M)                
                      ,activate#(N))               
            11: U63#(tt(),M,N) ->                  
                  c_18(U64#(isNatKind(activate(N)) 
                           ,activate(M)            
                           ,activate(N))           
                      ,isNatKind#(activate(N))     
                      ,activate#(N)                
                      ,activate#(M)                
                      ,activate#(N))               
            12: isNat#(n__plus(V1,V2)) ->          
                  c_25(U11#(isNatKind(activate(V1))
                           ,activate(V1)           
                           ,activate(V2))          
                      ,isNatKind#(activate(V1))    
                      ,activate#(V1)               
                      ,activate#(V1)               
                      ,activate#(V2))              
            13: isNat#(n__s(V1)) ->                
                  c_26(U21#(isNatKind(activate(V1))
                           ,activate(V1))          
                      ,isNatKind#(activate(V1))    
                      ,activate#(V1)               
                      ,activate#(V1))              
            14: U52#(tt(),N) ->                    
                  c_15(activate#(N))               
            15: U64#(tt(),M,N) ->                  
                  c_19(activate#(N),activate#(M))  
    *** 1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
          Strict TRS Rules:
            
          Weak DP Rules:
            U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
            U52#(tt(),N) -> c_15(activate#(N))
            U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
            U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
          Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
          Obligation:
            Innermost
            basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:S:U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
               -->_1 U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):2
            
            2:S:U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
               -->_1 U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):3
            
            3:S:U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
               -->_1 U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):4
            
            4:S:U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
               -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):11
               -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):10
               -->_1 U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2)):5
            
            5:S:U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
               -->_1 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):11
               -->_1 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):10
            
            6:S:U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
               -->_1 U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1)):7
            
            7:S:U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
               -->_1 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):11
               -->_1 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):10
            
            8:S:U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
               -->_1 U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)):9
            
            9:S:U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
               -->_1 U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N)):14
               -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):11
               -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):10
            
            10:S:isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
               -->_1 U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):1
            
            11:S:isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
               -->_1 U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):6
            
            12:W:U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
               -->_1 U52#(tt(),N) -> c_15(activate#(N)):13
            
            13:W:U52#(tt(),N) -> c_15(activate#(N))
               
            
            14:W:U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
               -->_1 U64#(tt(),M,N) -> c_19(activate#(N),activate#(M)):15
            
            15:W:U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
               
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            12: U51#(tt(),N) ->                   
                  c_14(U52#(isNatKind(activate(N))
                           ,activate(N))          
                      ,isNatKind#(activate(N))    
                      ,activate#(N)               
                      ,activate#(N))              
            13: U52#(tt(),N) ->                   
                  c_15(activate#(N))              
            14: U63#(tt(),M,N) ->                 
                  c_18(U64#(isNatKind(activate(N))
                           ,activate(M)           
                           ,activate(N))          
                      ,isNatKind#(activate(N))    
                      ,activate#(N)               
                      ,activate#(M)               
                      ,activate#(N))              
            15: U64#(tt(),M,N) ->                 
                  c_19(activate#(N),activate#(M)) 
    *** 1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
          Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
          Obligation:
            Innermost
            basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
        Applied Processor:
          SimplifyRHS
        Proof:
          Consider the dependency graph
            1:S:U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
               -->_1 U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):2
            
            2:S:U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
               -->_1 U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):3
            
            3:S:U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
               -->_1 U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):4
            
            4:S:U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
               -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):11
               -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):10
               -->_1 U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2)):5
            
            5:S:U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
               -->_1 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):11
               -->_1 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):10
            
            6:S:U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
               -->_1 U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1)):7
            
            7:S:U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
               -->_1 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):11
               -->_1 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):10
            
            8:S:U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
               -->_1 U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)):9
            
            9:S:U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
               -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):11
               -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):10
            
            10:S:isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
               -->_1 U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):1
            
            11:S:isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
               -->_1 U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):6
            
          Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
            U62#(tt(),M,N) -> c_17(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)))
    *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
            U62#(tt(),M,N) -> c_17(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
          Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/0,c_8/1,c_9/1,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/1,c_17/1,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/1,c_26/1,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
          Obligation:
            Innermost
            basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            5:  U15#(tt(),V2) ->                   
                  c_6(isNat#(activate(V2)))        
            6:  U21#(tt(),V1) ->                   
                  c_8(U22#(isNatKind(activate(V1)) 
                          ,activate(V1)))          
            7:  U22#(tt(),V1) ->                   
                  c_9(isNat#(activate(V1)))        
            11: isNat#(n__s(V1)) ->                
                  c_26(U21#(isNatKind(activate(V1))
                           ,activate(V1)))         
            
          Consider the set of all dependency pairs
            1:  U11#(tt(),V1,V2) ->                
                  c_2(U12#(isNatKind(activate(V1)) 
                          ,activate(V1)            
                          ,activate(V2)))          
            2:  U12#(tt(),V1,V2) ->                
                  c_3(U13#(isNatKind(activate(V2)) 
                          ,activate(V1)            
                          ,activate(V2)))          
            3:  U13#(tt(),V1,V2) ->                
                  c_4(U14#(isNatKind(activate(V2)) 
                          ,activate(V1)            
                          ,activate(V2)))          
            4:  U14#(tt(),V1,V2) ->                
                  c_5(U15#(isNat(activate(V1))     
                          ,activate(V2))           
                     ,isNat#(activate(V1)))        
            5:  U15#(tt(),V2) ->                   
                  c_6(isNat#(activate(V2)))        
            6:  U21#(tt(),V1) ->                   
                  c_8(U22#(isNatKind(activate(V1)) 
                          ,activate(V1)))          
            7:  U22#(tt(),V1) ->                   
                  c_9(isNat#(activate(V1)))        
            8:  U61#(tt(),M,N) ->                  
                  c_16(U62#(isNatKind(activate(M)) 
                           ,activate(M)            
                           ,activate(N)))          
            9:  U62#(tt(),M,N) ->                  
                  c_17(isNat#(activate(N)))        
            10: isNat#(n__plus(V1,V2)) ->          
                  c_25(U11#(isNatKind(activate(V1))
                           ,activate(V1)           
                           ,activate(V2)))         
            11: isNat#(n__s(V1)) ->                
                  c_26(U21#(isNatKind(activate(V1))
                           ,activate(V1)))         
          Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
          SPACE(?,?)on application of the dependency pairs
            {5,6,7,11}
          These cover all (indirect) predecessors of dependency pairs
            {5,6,7,8,9,11}
          their number of applications is equally bounded.
          The dependency pairs are shifted into the weak component.
      *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
              U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)))
              U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
              U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
              U62#(tt(),M,N) -> c_17(isNat#(activate(N)))
              isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)))
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V2) -> U32(isNatKind(activate(V2)))
              U32(tt()) -> tt()
              U41(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
              activate(n__s(X)) -> s(activate(X))
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
            Signature:
              {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/0,c_8/1,c_9/1,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/1,c_17/1,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/1,c_26/1,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
            Obligation:
              Innermost
              basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
          Applied Processor:
            NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation:
            The following argument positions are considered usable:
              uargs(c_2) = {1},
              uargs(c_3) = {1},
              uargs(c_4) = {1},
              uargs(c_5) = {1,2},
              uargs(c_6) = {1},
              uargs(c_8) = {1},
              uargs(c_9) = {1},
              uargs(c_16) = {1},
              uargs(c_17) = {1},
              uargs(c_25) = {1},
              uargs(c_26) = {1}
            
            Following symbols are considered usable:
              {0,activate,plus,s,0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}
            TcT has computed the following interpretation:
                       p(0) = [0]                           
                     p(U11) = [0]                           
                     p(U12) = [2] x3 + [2]                  
                     p(U13) = [4] x2 + [2] x3 + [0]         
                     p(U14) = [1] x3 + [1]                  
                     p(U15) = [2] x1 + [7] x2 + [2]         
                     p(U16) = [0]                           
                     p(U21) = [1] x1 + [1] x2 + [1]         
                     p(U22) = [1]                           
                     p(U23) = [2] x1 + [2]                  
                     p(U31) = [0]                           
                     p(U32) = [2]                           
                     p(U41) = [1]                           
                     p(U51) = [4] x2 + [1]                  
                     p(U52) = [2] x1 + [1] x2 + [2]         
                     p(U61) = [4] x1 + [1] x2 + [1] x3 + [1]
                     p(U62) = [1] x2 + [1] x3 + [1]         
                     p(U63) = [0]                           
                     p(U64) = [1] x2 + [1]                  
                p(activate) = [1] x1 + [0]                  
                   p(isNat) = [0]                           
               p(isNatKind) = [0]                           
                    p(n__0) = [0]                           
                 p(n__plus) = [1] x1 + [1] x2 + [3]         
                    p(n__s) = [1] x1 + [7]                  
                    p(plus) = [1] x1 + [1] x2 + [3]         
                       p(s) = [1] x1 + [7]                  
                      p(tt) = [0]                           
                      p(0#) = [0]                           
                    p(U11#) = [1] x2 + [1] x3 + [4]         
                    p(U12#) = [1] x2 + [1] x3 + [4]         
                    p(U13#) = [1] x2 + [1] x3 + [4]         
                    p(U14#) = [1] x2 + [1] x3 + [4]         
                    p(U15#) = [1] x2 + [2]                  
                    p(U16#) = [0]                           
                    p(U21#) = [1] x2 + [7]                  
                    p(U22#) = [1] x2 + [4]                  
                    p(U23#) = [1]                           
                    p(U31#) = [1]                           
                    p(U32#) = [1]                           
                    p(U41#) = [1] x1 + [1]                  
                    p(U51#) = [1]                           
                    p(U52#) = [4] x2 + [4]                  
                    p(U61#) = [1] x1 + [4] x2 + [4] x3 + [4]
                    p(U62#) = [4] x3 + [2]                  
                    p(U63#) = [1] x1 + [1] x3 + [1]         
                    p(U64#) = [4] x2 + [1]                  
               p(activate#) = [2]                           
                  p(isNat#) = [1] x1 + [1]                  
              p(isNatKind#) = [2] x1 + [2]                  
                   p(plus#) = [1] x1 + [0]                  
                      p(s#) = [2]                           
                     p(c_1) = [0]                           
                     p(c_2) = [1] x1 + [0]                  
                     p(c_3) = [1] x1 + [0]                  
                     p(c_4) = [1] x1 + [0]                  
                     p(c_5) = [1] x1 + [1] x2 + [1]         
                     p(c_6) = [1] x1 + [0]                  
                     p(c_7) = [4]                           
                     p(c_8) = [1] x1 + [0]                  
                     p(c_9) = [1] x1 + [0]                  
                    p(c_10) = [1]                           
                    p(c_11) = [2] x2 + [1]                  
                    p(c_12) = [4]                           
                    p(c_13) = [1]                           
                    p(c_14) = [1] x2 + [1]                  
                    p(c_15) = [4]                           
                    p(c_16) = [1] x1 + [2]                  
                    p(c_17) = [1] x1 + [1]                  
                    p(c_18) = [1] x2 + [1]                  
                    p(c_19) = [2] x1 + [1] x2 + [0]         
                    p(c_20) = [0]                           
                    p(c_21) = [1] x1 + [2]                  
                    p(c_22) = [1] x1 + [2]                  
                    p(c_23) = [0]                           
                    p(c_24) = [0]                           
                    p(c_25) = [1] x1 + [0]                  
                    p(c_26) = [1] x1 + [0]                  
                    p(c_27) = [0]                           
                    p(c_28) = [4] x1 + [1] x2 + [1] x3 + [0]
                    p(c_29) = [0]                           
                    p(c_30) = [1]                           
                    p(c_31) = [0]                           
            
            Following rules are strictly oriented:
               U15#(tt(),V2) = [1] V2 + [2]                     
                             > [1] V2 + [1]                     
                             = c_6(isNat#(activate(V2)))        
            
               U21#(tt(),V1) = [1] V1 + [7]                     
                             > [1] V1 + [4]                     
                             = c_8(U22#(isNatKind(activate(V1)) 
                                       ,activate(V1)))          
            
               U22#(tt(),V1) = [1] V1 + [4]                     
                             > [1] V1 + [1]                     
                             = c_9(isNat#(activate(V1)))        
            
            isNat#(n__s(V1)) = [1] V1 + [8]                     
                             > [1] V1 + [7]                     
                             = c_26(U21#(isNatKind(activate(V1))
                                        ,activate(V1)))         
            
            
            Following rules are (at-least) weakly oriented:
                    U11#(tt(),V1,V2) =  [1] V1 + [1] V2 + [4]            
                                     >= [1] V1 + [1] V2 + [4]            
                                     =  c_2(U12#(isNatKind(activate(V1)) 
                                                ,activate(V1)            
                                                ,activate(V2)))          
            
                    U12#(tt(),V1,V2) =  [1] V1 + [1] V2 + [4]            
                                     >= [1] V1 + [1] V2 + [4]            
                                     =  c_3(U13#(isNatKind(activate(V2)) 
                                                ,activate(V1)            
                                                ,activate(V2)))          
            
                    U13#(tt(),V1,V2) =  [1] V1 + [1] V2 + [4]            
                                     >= [1] V1 + [1] V2 + [4]            
                                     =  c_4(U14#(isNatKind(activate(V2)) 
                                                ,activate(V1)            
                                                ,activate(V2)))          
            
                    U14#(tt(),V1,V2) =  [1] V1 + [1] V2 + [4]            
                                     >= [1] V1 + [1] V2 + [4]            
                                     =  c_5(U15#(isNat(activate(V1))     
                                                ,activate(V2))           
                                           ,isNat#(activate(V1)))        
            
                      U61#(tt(),M,N) =  [4] M + [4] N + [4]              
                                     >= [4] N + [4]                      
                                     =  c_16(U62#(isNatKind(activate(M)) 
                                                 ,activate(M)            
                                                 ,activate(N)))          
            
                      U62#(tt(),M,N) =  [4] N + [2]                      
                                     >= [1] N + [2]                      
                                     =  c_17(isNat#(activate(N)))        
            
              isNat#(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [4]            
                                     >= [1] V1 + [1] V2 + [4]            
                                     =  c_25(U11#(isNatKind(activate(V1))
                                                 ,activate(V1)           
                                                 ,activate(V2)))         
            
                                 0() =  [0]                              
                                     >= [0]                              
                                     =  n__0()                           
            
                         activate(X) =  [1] X + [0]                      
                                     >= [1] X + [0]                      
                                     =  X                                
            
                    activate(n__0()) =  [0]                              
                                     >= [0]                              
                                     =  0()                              
            
            activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [3]            
                                     >= [1] X1 + [1] X2 + [3]            
                                     =  plus(activate(X1),activate(X2))  
            
                   activate(n__s(X)) =  [1] X + [7]                      
                                     >= [1] X + [7]                      
                                     =  s(activate(X))                   
            
                         plus(X1,X2) =  [1] X1 + [1] X2 + [3]            
                                     >= [1] X1 + [1] X2 + [3]            
                                     =  n__plus(X1,X2)                   
            
                                s(X) =  [1] X + [7]                      
                                     >= [1] X + [7]                      
                                     =  n__s(X)                          
            
      *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
              U62#(tt(),M,N) -> c_17(isNat#(activate(N)))
              isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            Strict TRS Rules:
              
            Weak DP Rules:
              U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
              U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)))
              U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
              isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)))
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V2) -> U32(isNatKind(activate(V2)))
              U32(tt()) -> tt()
              U41(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
              activate(n__s(X)) -> s(activate(X))
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
            Signature:
              {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/0,c_8/1,c_9/1,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/1,c_17/1,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/1,c_26/1,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
            Obligation:
              Innermost
              basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            Strict TRS Rules:
              
            Weak DP Rules:
              U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
              U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)))
              U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
              U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
              U62#(tt(),M,N) -> c_17(isNat#(activate(N)))
              isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)))
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V2) -> U32(isNatKind(activate(V2)))
              U32(tt()) -> tt()
              U41(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
              activate(n__s(X)) -> s(activate(X))
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
            Signature:
              {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/0,c_8/1,c_9/1,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/1,c_17/1,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/1,c_26/1,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
            Obligation:
              Innermost
              basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              2: U12#(tt(),V1,V2) ->                
                   c_3(U13#(isNatKind(activate(V2)) 
                           ,activate(V1)            
                           ,activate(V2)))          
              4: U14#(tt(),V1,V2) ->                
                   c_5(U15#(isNat(activate(V1))     
                           ,activate(V2))           
                      ,isNat#(activate(V1)))        
              5: isNat#(n__plus(V1,V2)) ->          
                   c_25(U11#(isNatKind(activate(V1))
                            ,activate(V1)           
                            ,activate(V2)))         
              
            Consider the set of all dependency pairs
              1:  U11#(tt(),V1,V2) ->                
                    c_2(U12#(isNatKind(activate(V1)) 
                            ,activate(V1)            
                            ,activate(V2)))          
              2:  U12#(tt(),V1,V2) ->                
                    c_3(U13#(isNatKind(activate(V2)) 
                            ,activate(V1)            
                            ,activate(V2)))          
              3:  U13#(tt(),V1,V2) ->                
                    c_4(U14#(isNatKind(activate(V2)) 
                            ,activate(V1)            
                            ,activate(V2)))          
              4:  U14#(tt(),V1,V2) ->                
                    c_5(U15#(isNat(activate(V1))     
                            ,activate(V2))           
                       ,isNat#(activate(V1)))        
              5:  isNat#(n__plus(V1,V2)) ->          
                    c_25(U11#(isNatKind(activate(V1))
                             ,activate(V1)           
                             ,activate(V2)))         
              6:  U15#(tt(),V2) ->                   
                    c_6(isNat#(activate(V2)))        
              7:  U21#(tt(),V1) ->                   
                    c_8(U22#(isNatKind(activate(V1)) 
                            ,activate(V1)))          
              8:  U22#(tt(),V1) ->                   
                    c_9(isNat#(activate(V1)))        
              9:  U61#(tt(),M,N) ->                  
                    c_16(U62#(isNatKind(activate(M)) 
                             ,activate(M)            
                             ,activate(N)))          
              10: U62#(tt(),M,N) ->                  
                    c_17(isNat#(activate(N)))        
              11: isNat#(n__s(V1)) ->                
                    c_26(U21#(isNatKind(activate(V1))
                             ,activate(V1)))         
            Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
            SPACE(?,?)on application of the dependency pairs
              {2,4,5}
            These cover all (indirect) predecessors of dependency pairs
              {1,2,3,4,5,6,9,10}
            their number of applications is equally bounded.
            The dependency pairs are shifted into the weak component.
        *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
                U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              Strict TRS Rules:
                
              Weak DP Rules:
                U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
                U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)))
                U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
                U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
                U62#(tt(),M,N) -> c_17(isNat#(activate(N)))
                isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)))
              Weak TRS Rules:
                0() -> n__0()
                U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
                U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
                U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
                U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
                U15(tt(),V2) -> U16(isNat(activate(V2)))
                U16(tt()) -> tt()
                U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
                U22(tt(),V1) -> U23(isNat(activate(V1)))
                U23(tt()) -> tt()
                U31(tt(),V2) -> U32(isNatKind(activate(V2)))
                U32(tt()) -> tt()
                U41(tt()) -> tt()
                activate(X) -> X
                activate(n__0()) -> 0()
                activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
                activate(n__s(X)) -> s(activate(X))
                isNat(n__0()) -> tt()
                isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
                isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
                isNatKind(n__0()) -> tt()
                isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
                isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
                plus(X1,X2) -> n__plus(X1,X2)
                s(X) -> n__s(X)
              Signature:
                {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/0,c_8/1,c_9/1,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/1,c_17/1,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/1,c_26/1,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
              Obligation:
                Innermost
                basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
            Applied Processor:
              NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a matrix interpretation of kind constructor based matrix interpretation:
              The following argument positions are considered usable:
                uargs(c_2) = {1},
                uargs(c_3) = {1},
                uargs(c_4) = {1},
                uargs(c_5) = {1,2},
                uargs(c_6) = {1},
                uargs(c_8) = {1},
                uargs(c_9) = {1},
                uargs(c_16) = {1},
                uargs(c_17) = {1},
                uargs(c_25) = {1},
                uargs(c_26) = {1}
              
              Following symbols are considered usable:
                {0,activate,plus,s,0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}
              TcT has computed the following interpretation:
                         p(0) = [1]                           
                       p(U11) = [4] x2 + [2] x3 + [0]         
                       p(U12) = [2]                           
                       p(U13) = [1] x2 + [0]                  
                       p(U14) = [6] x1 + [1] x2 + [0]         
                       p(U15) = [1] x1 + [1]                  
                       p(U16) = [2]                           
                       p(U21) = [5] x2 + [0]                  
                       p(U22) = [2]                           
                       p(U23) = [1]                           
                       p(U31) = [0]                           
                       p(U32) = [0]                           
                       p(U41) = [0]                           
                       p(U51) = [1] x1 + [1] x2 + [2]         
                       p(U52) = [2]                           
                       p(U61) = [1] x2 + [1]                  
                       p(U62) = [4] x1 + [1] x2 + [0]         
                       p(U63) = [4] x1 + [2] x2 + [1] x3 + [0]
                       p(U64) = [1]                           
                  p(activate) = [1] x1 + [0]                  
                     p(isNat) = [5] x1 + [2]                  
                 p(isNatKind) = [1]                           
                      p(n__0) = [1]                           
                   p(n__plus) = [1] x1 + [1] x2 + [2]         
                      p(n__s) = [1] x1 + [2]                  
                      p(plus) = [1] x1 + [1] x2 + [2]         
                         p(s) = [1] x1 + [2]                  
                        p(tt) = [0]                           
                        p(0#) = [0]                           
                      p(U11#) = [4] x2 + [4] x3 + [7]         
                      p(U12#) = [4] x2 + [4] x3 + [6]         
                      p(U13#) = [4] x2 + [4] x3 + [5]         
                      p(U14#) = [4] x2 + [4] x3 + [5]         
                      p(U15#) = [4] x2 + [4]                  
                      p(U16#) = [1] x1 + [0]                  
                      p(U21#) = [4] x2 + [6]                  
                      p(U22#) = [4] x2 + [1]                  
                      p(U23#) = [1]                           
                      p(U31#) = [1] x1 + [1]                  
                      p(U32#) = [4]                           
                      p(U41#) = [1] x1 + [0]                  
                      p(U51#) = [1] x1 + [1]                  
                      p(U52#) = [2] x2 + [1]                  
                      p(U61#) = [4] x2 + [4] x3 + [6]         
                      p(U62#) = [4] x3 + [4]                  
                      p(U63#) = [1] x2 + [2] x3 + [2]         
                      p(U64#) = [1]                           
                 p(activate#) = [1]                           
                    p(isNat#) = [4] x1 + [0]                  
                p(isNatKind#) = [1]                           
                     p(plus#) = [1] x2 + [0]                  
                        p(s#) = [1] x1 + [1]                  
                       p(c_1) = [0]                           
                       p(c_2) = [1] x1 + [1]                  
                       p(c_3) = [1] x1 + [0]                  
                       p(c_4) = [1] x1 + [0]                  
                       p(c_5) = [1] x1 + [1] x2 + [0]         
                       p(c_6) = [1] x1 + [0]                  
                       p(c_7) = [0]                           
                       p(c_8) = [1] x1 + [3]                  
                       p(c_9) = [1] x1 + [1]                  
                      p(c_10) = [0]                           
                      p(c_11) = [1] x2 + [0]                  
                      p(c_12) = [1]                           
                      p(c_13) = [1]                           
                      p(c_14) = [4] x2 + [4] x3 + [1] x4 + [0]
                      p(c_15) = [1] x1 + [0]                  
                      p(c_16) = [1] x1 + [2]                  
                      p(c_17) = [1] x1 + [4]                  
                      p(c_18) = [0]                           
                      p(c_19) = [2] x1 + [0]                  
                      p(c_20) = [2]                           
                      p(c_21) = [1] x1 + [0]                  
                      p(c_22) = [4] x1 + [1] x2 + [1]         
                      p(c_23) = [1]                           
                      p(c_24) = [2]                           
                      p(c_25) = [1] x1 + [0]                  
                      p(c_26) = [1] x1 + [0]                  
                      p(c_27) = [0]                           
                      p(c_28) = [1] x1 + [1] x2 + [0]         
                      p(c_29) = [1] x1 + [1]                  
                      p(c_30) = [0]                           
                      p(c_31) = [1]                           
              
              Following rules are strictly oriented:
                    U12#(tt(),V1,V2) = [4] V1 + [4] V2 + [6]            
                                     > [4] V1 + [4] V2 + [5]            
                                     = c_3(U13#(isNatKind(activate(V2)) 
                                               ,activate(V1)            
                                               ,activate(V2)))          
              
                    U14#(tt(),V1,V2) = [4] V1 + [4] V2 + [5]            
                                     > [4] V1 + [4] V2 + [4]            
                                     = c_5(U15#(isNat(activate(V1))     
                                               ,activate(V2))           
                                          ,isNat#(activate(V1)))        
              
              isNat#(n__plus(V1,V2)) = [4] V1 + [4] V2 + [8]            
                                     > [4] V1 + [4] V2 + [7]            
                                     = c_25(U11#(isNatKind(activate(V1))
                                                ,activate(V1)           
                                                ,activate(V2)))         
              
              
              Following rules are (at-least) weakly oriented:
                      U11#(tt(),V1,V2) =  [4] V1 + [4] V2 + [7]            
                                       >= [4] V1 + [4] V2 + [7]            
                                       =  c_2(U12#(isNatKind(activate(V1)) 
                                                  ,activate(V1)            
                                                  ,activate(V2)))          
              
                      U13#(tt(),V1,V2) =  [4] V1 + [4] V2 + [5]            
                                       >= [4] V1 + [4] V2 + [5]            
                                       =  c_4(U14#(isNatKind(activate(V2)) 
                                                  ,activate(V1)            
                                                  ,activate(V2)))          
              
                         U15#(tt(),V2) =  [4] V2 + [4]                     
                                       >= [4] V2 + [0]                     
                                       =  c_6(isNat#(activate(V2)))        
              
                         U21#(tt(),V1) =  [4] V1 + [6]                     
                                       >= [4] V1 + [4]                     
                                       =  c_8(U22#(isNatKind(activate(V1)) 
                                                  ,activate(V1)))          
              
                         U22#(tt(),V1) =  [4] V1 + [1]                     
                                       >= [4] V1 + [1]                     
                                       =  c_9(isNat#(activate(V1)))        
              
                        U61#(tt(),M,N) =  [4] M + [4] N + [6]              
                                       >= [4] N + [6]                      
                                       =  c_16(U62#(isNatKind(activate(M)) 
                                                   ,activate(M)            
                                                   ,activate(N)))          
              
                        U62#(tt(),M,N) =  [4] N + [4]                      
                                       >= [4] N + [4]                      
                                       =  c_17(isNat#(activate(N)))        
              
                      isNat#(n__s(V1)) =  [4] V1 + [8]                     
                                       >= [4] V1 + [6]                     
                                       =  c_26(U21#(isNatKind(activate(V1))
                                                   ,activate(V1)))         
              
                                   0() =  [1]                              
                                       >= [1]                              
                                       =  n__0()                           
              
                           activate(X) =  [1] X + [0]                      
                                       >= [1] X + [0]                      
                                       =  X                                
              
                      activate(n__0()) =  [1]                              
                                       >= [1]                              
                                       =  0()                              
              
              activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [2]            
                                       >= [1] X1 + [1] X2 + [2]            
                                       =  plus(activate(X1),activate(X2))  
              
                     activate(n__s(X)) =  [1] X + [2]                      
                                       >= [1] X + [2]                      
                                       =  s(activate(X))                   
              
                           plus(X1,X2) =  [1] X1 + [1] X2 + [2]            
                                       >= [1] X1 + [1] X2 + [2]            
                                       =  n__plus(X1,X2)                   
              
                                  s(X) =  [1] X + [2]                      
                                       >= [1] X + [2]                      
                                       =  n__s(X)                          
              
        *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
                U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              Strict TRS Rules:
                
              Weak DP Rules:
                U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
                U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)))
                U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
                U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
                U62#(tt(),M,N) -> c_17(isNat#(activate(N)))
                isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
                isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)))
              Weak TRS Rules:
                0() -> n__0()
                U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
                U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
                U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
                U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
                U15(tt(),V2) -> U16(isNat(activate(V2)))
                U16(tt()) -> tt()
                U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
                U22(tt(),V1) -> U23(isNat(activate(V1)))
                U23(tt()) -> tt()
                U31(tt(),V2) -> U32(isNatKind(activate(V2)))
                U32(tt()) -> tt()
                U41(tt()) -> tt()
                activate(X) -> X
                activate(n__0()) -> 0()
                activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
                activate(n__s(X)) -> s(activate(X))
                isNat(n__0()) -> tt()
                isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
                isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
                isNatKind(n__0()) -> tt()
                isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
                isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
                plus(X1,X2) -> n__plus(X1,X2)
                s(X) -> n__s(X)
              Signature:
                {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/0,c_8/1,c_9/1,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/1,c_17/1,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/1,c_26/1,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
              Obligation:
                Innermost
                basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
                U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
                U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)))
                U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
                U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
                U62#(tt(),M,N) -> c_17(isNat#(activate(N)))
                isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
                isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)))
              Weak TRS Rules:
                0() -> n__0()
                U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
                U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
                U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
                U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
                U15(tt(),V2) -> U16(isNat(activate(V2)))
                U16(tt()) -> tt()
                U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
                U22(tt(),V1) -> U23(isNat(activate(V1)))
                U23(tt()) -> tt()
                U31(tt(),V2) -> U32(isNatKind(activate(V2)))
                U32(tt()) -> tt()
                U41(tt()) -> tt()
                activate(X) -> X
                activate(n__0()) -> 0()
                activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
                activate(n__s(X)) -> s(activate(X))
                isNat(n__0()) -> tt()
                isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
                isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
                isNatKind(n__0()) -> tt()
                isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
                isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
                plus(X1,X2) -> n__plus(X1,X2)
                s(X) -> n__s(X)
              Signature:
                {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/0,c_8/1,c_9/1,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/1,c_17/1,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/1,c_26/1,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
              Obligation:
                Innermost
                basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
            Applied Processor:
              RemoveWeakSuffixes
            Proof:
              Consider the dependency graph
                1:W:U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
                   -->_1 U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))):2
                
                2:W:U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                   -->_1 U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))):3
                
                3:W:U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                   -->_1 U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):4
                
                4:W:U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                   -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))):11
                   -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):10
                   -->_1 U15#(tt(),V2) -> c_6(isNat#(activate(V2))):5
                
                5:W:U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
                   -->_1 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))):11
                   -->_1 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):10
                
                6:W:U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)))
                   -->_1 U22#(tt(),V1) -> c_9(isNat#(activate(V1))):7
                
                7:W:U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
                   -->_1 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))):11
                   -->_1 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):10
                
                8:W:U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
                   -->_1 U62#(tt(),M,N) -> c_17(isNat#(activate(N))):9
                
                9:W:U62#(tt(),M,N) -> c_17(isNat#(activate(N)))
                   -->_1 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))):11
                   -->_1 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):10
                
                10:W:isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
                   -->_1 U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))):1
                
                11:W:isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)))
                   -->_1 U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))):6
                
              The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                8:  U61#(tt(),M,N) ->                  
                      c_16(U62#(isNatKind(activate(M)) 
                               ,activate(M)            
                               ,activate(N)))          
                9:  U62#(tt(),M,N) ->                  
                      c_17(isNat#(activate(N)))        
                1:  U11#(tt(),V1,V2) ->                
                      c_2(U12#(isNatKind(activate(V1)) 
                              ,activate(V1)            
                              ,activate(V2)))          
                10: isNat#(n__plus(V1,V2)) ->          
                      c_25(U11#(isNatKind(activate(V1))
                               ,activate(V1)           
                               ,activate(V2)))         
                7:  U22#(tt(),V1) ->                   
                      c_9(isNat#(activate(V1)))        
                6:  U21#(tt(),V1) ->                   
                      c_8(U22#(isNatKind(activate(V1)) 
                              ,activate(V1)))          
                11: isNat#(n__s(V1)) ->                
                      c_26(U21#(isNatKind(activate(V1))
                               ,activate(V1)))         
                5:  U15#(tt(),V2) ->                   
                      c_6(isNat#(activate(V2)))        
                4:  U14#(tt(),V1,V2) ->                
                      c_5(U15#(isNat(activate(V1))     
                              ,activate(V2))           
                         ,isNat#(activate(V1)))        
                3:  U13#(tt(),V1,V2) ->                
                      c_4(U14#(isNatKind(activate(V2)) 
                              ,activate(V1)            
                              ,activate(V2)))          
                2:  U12#(tt(),V1,V2) ->                
                      c_3(U13#(isNatKind(activate(V2)) 
                              ,activate(V1)            
                              ,activate(V2)))          
        *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.1 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                0() -> n__0()
                U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
                U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
                U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
                U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
                U15(tt(),V2) -> U16(isNat(activate(V2)))
                U16(tt()) -> tt()
                U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
                U22(tt(),V1) -> U23(isNat(activate(V1)))
                U23(tt()) -> tt()
                U31(tt(),V2) -> U32(isNatKind(activate(V2)))
                U32(tt()) -> tt()
                U41(tt()) -> tt()
                activate(X) -> X
                activate(n__0()) -> 0()
                activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
                activate(n__s(X)) -> s(activate(X))
                isNat(n__0()) -> tt()
                isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
                isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
                isNatKind(n__0()) -> tt()
                isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
                isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
                plus(X1,X2) -> n__plus(X1,X2)
                s(X) -> n__s(X)
              Signature:
                {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/0,c_8/1,c_9/1,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/1,c_17/1,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/1,c_26/1,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
              Obligation:
                Innermost
                basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
            Applied Processor:
              EmptyProcessor
            Proof:
              The problem is already closed. The intended complexity is O(1).
        
    *** 1.1.1.1.1.1.1.1.1.2 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
            activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_23(activate#(X))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
          Strict TRS Rules:
            
          Weak DP Rules:
            U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
            U11#(tt(),V1,V2) -> activate#(V1)
            U11#(tt(),V1,V2) -> activate#(V2)
            U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
            U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U12#(tt(),V1,V2) -> activate#(V1)
            U12#(tt(),V1,V2) -> activate#(V2)
            U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13#(tt(),V1,V2) -> activate#(V1)
            U13#(tt(),V1,V2) -> activate#(V2)
            U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
            U14#(tt(),V1,V2) -> activate#(V1)
            U14#(tt(),V1,V2) -> activate#(V2)
            U14#(tt(),V1,V2) -> isNat#(activate(V1))
            U15#(tt(),V2) -> activate#(V2)
            U15#(tt(),V2) -> isNat#(activate(V2))
            U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
            U21#(tt(),V1) -> activate#(V1)
            U21#(tt(),V1) -> isNatKind#(activate(V1))
            U22#(tt(),V1) -> activate#(V1)
            U22#(tt(),V1) -> isNat#(activate(V1))
            U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
            U51#(tt(),N) -> activate#(N)
            U51#(tt(),N) -> isNatKind#(activate(N))
            U52#(tt(),N) -> activate#(N)
            U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
            U61#(tt(),M,N) -> activate#(M)
            U61#(tt(),M,N) -> activate#(N)
            U61#(tt(),M,N) -> isNatKind#(activate(M))
            U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
            U62#(tt(),M,N) -> activate#(M)
            U62#(tt(),M,N) -> activate#(N)
            U62#(tt(),M,N) -> isNat#(activate(N))
            U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
            U63#(tt(),M,N) -> activate#(M)
            U63#(tt(),M,N) -> activate#(N)
            U63#(tt(),M,N) -> isNatKind#(activate(N))
            U64#(tt(),M,N) -> activate#(M)
            U64#(tt(),M,N) -> activate#(N)
            isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
            isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
            isNat#(n__s(V1)) -> activate#(V1)
            isNat#(n__s(V1)) -> isNatKind#(activate(V1))
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
          Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
          Obligation:
            Innermost
            basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            2: activate#(n__plus(X1,X2)) ->       
                 c_22(activate#(X1)               
                     ,activate#(X2))              
            3: activate#(n__s(X)) ->              
                 c_23(activate#(X))               
            4: isNatKind#(n__plus(V1,V2)) ->      
                 c_28(U31#(isNatKind(activate(V1))
                          ,activate(V2))          
                     ,isNatKind#(activate(V1))    
                     ,activate#(V1)               
                     ,activate#(V2))              
            5: isNatKind#(n__s(V1)) ->            
                 c_29(isNatKind#(activate(V1))    
                     ,activate#(V1))              
            
          Consider the set of all dependency pairs
            1:  U31#(tt(),V2) ->                   
                  c_11(isNatKind#(activate(V2))    
                      ,activate#(V2))              
            2:  activate#(n__plus(X1,X2)) ->       
                  c_22(activate#(X1)               
                      ,activate#(X2))              
            3:  activate#(n__s(X)) ->              
                  c_23(activate#(X))               
            4:  isNatKind#(n__plus(V1,V2)) ->      
                  c_28(U31#(isNatKind(activate(V1))
                           ,activate(V2))          
                      ,isNatKind#(activate(V1))    
                      ,activate#(V1)               
                      ,activate#(V2))              
            5:  isNatKind#(n__s(V1)) ->            
                  c_29(isNatKind#(activate(V1))    
                      ,activate#(V1))              
            6:  U11#(tt(),V1,V2) ->                
                  U12#(isNatKind(activate(V1))     
                      ,activate(V1)                
                      ,activate(V2))               
            7:  U11#(tt(),V1,V2) ->                
                  activate#(V1)                    
            8:  U11#(tt(),V1,V2) ->                
                  activate#(V2)                    
            9:  U11#(tt(),V1,V2) ->                
                  isNatKind#(activate(V1))         
            10: U12#(tt(),V1,V2) ->                
                  U13#(isNatKind(activate(V2))     
                      ,activate(V1)                
                      ,activate(V2))               
            11: U12#(tt(),V1,V2) ->                
                  activate#(V1)                    
            12: U12#(tt(),V1,V2) ->                
                  activate#(V2)                    
            13: U12#(tt(),V1,V2) ->                
                  isNatKind#(activate(V2))         
            14: U13#(tt(),V1,V2) ->                
                  U14#(isNatKind(activate(V2))     
                      ,activate(V1)                
                      ,activate(V2))               
            15: U13#(tt(),V1,V2) ->                
                  activate#(V1)                    
            16: U13#(tt(),V1,V2) ->                
                  activate#(V2)                    
            17: U13#(tt(),V1,V2) ->                
                  isNatKind#(activate(V2))         
            18: U14#(tt(),V1,V2) ->                
                  U15#(isNat(activate(V1))         
                      ,activate(V2))               
            19: U14#(tt(),V1,V2) ->                
                  activate#(V1)                    
            20: U14#(tt(),V1,V2) ->                
                  activate#(V2)                    
            21: U14#(tt(),V1,V2) ->                
                  isNat#(activate(V1))             
            22: U15#(tt(),V2) -> activate#(V2)     
            23: U15#(tt(),V2) ->                   
                  isNat#(activate(V2))             
            24: U21#(tt(),V1) ->                   
                  U22#(isNatKind(activate(V1))     
                      ,activate(V1))               
            25: U21#(tt(),V1) -> activate#(V1)     
            26: U21#(tt(),V1) ->                   
                  isNatKind#(activate(V1))         
            27: U22#(tt(),V1) -> activate#(V1)     
            28: U22#(tt(),V1) ->                   
                  isNat#(activate(V1))             
            29: U51#(tt(),N) ->                    
                  U52#(isNatKind(activate(N))      
                      ,activate(N))                
            30: U51#(tt(),N) -> activate#(N)       
            31: U51#(tt(),N) ->                    
                  isNatKind#(activate(N))          
            32: U52#(tt(),N) -> activate#(N)       
            33: U61#(tt(),M,N) ->                  
                  U62#(isNatKind(activate(M))      
                      ,activate(M)                 
                      ,activate(N))                
            34: U61#(tt(),M,N) -> activate#(M)     
            35: U61#(tt(),M,N) -> activate#(N)     
            36: U61#(tt(),M,N) ->                  
                  isNatKind#(activate(M))          
            37: U62#(tt(),M,N) ->                  
                  U63#(isNat(activate(N))          
                      ,activate(M)                 
                      ,activate(N))                
            38: U62#(tt(),M,N) -> activate#(M)     
            39: U62#(tt(),M,N) -> activate#(N)     
            40: U62#(tt(),M,N) ->                  
                  isNat#(activate(N))              
            41: U63#(tt(),M,N) ->                  
                  U64#(isNatKind(activate(N))      
                      ,activate(M)                 
                      ,activate(N))                
            42: U63#(tt(),M,N) -> activate#(M)     
            43: U63#(tt(),M,N) -> activate#(N)     
            44: U63#(tt(),M,N) ->                  
                  isNatKind#(activate(N))          
            45: U64#(tt(),M,N) -> activate#(M)     
            46: U64#(tt(),M,N) -> activate#(N)     
            47: isNat#(n__plus(V1,V2)) ->          
                  U11#(isNatKind(activate(V1))     
                      ,activate(V1)                
                      ,activate(V2))               
            48: isNat#(n__plus(V1,V2)) ->          
                  activate#(V1)                    
            49: isNat#(n__plus(V1,V2)) ->          
                  activate#(V2)                    
            50: isNat#(n__plus(V1,V2)) ->          
                  isNatKind#(activate(V1))         
            51: isNat#(n__s(V1)) ->                
                  U21#(isNatKind(activate(V1))     
                      ,activate(V1))               
            52: isNat#(n__s(V1)) ->                
                  activate#(V1)                    
            53: isNat#(n__s(V1)) ->                
                  isNatKind#(activate(V1))         
          Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2))
          SPACE(?,?)on application of the dependency pairs
            {2,3,4,5}
          These cover all (indirect) predecessors of dependency pairs
            {1,2,3,4,5,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46}
          their number of applications is equally bounded.
          The dependency pairs are shifted into the weak component.
      *** 1.1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
              activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
              activate#(n__s(X)) -> c_23(activate#(X))
              isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
              isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
            Strict TRS Rules:
              
            Weak DP Rules:
              U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
              U11#(tt(),V1,V2) -> activate#(V1)
              U11#(tt(),V1,V2) -> activate#(V2)
              U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
              U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
              U12#(tt(),V1,V2) -> activate#(V1)
              U12#(tt(),V1,V2) -> activate#(V2)
              U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
              U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13#(tt(),V1,V2) -> activate#(V1)
              U13#(tt(),V1,V2) -> activate#(V2)
              U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
              U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
              U14#(tt(),V1,V2) -> activate#(V1)
              U14#(tt(),V1,V2) -> activate#(V2)
              U14#(tt(),V1,V2) -> isNat#(activate(V1))
              U15#(tt(),V2) -> activate#(V2)
              U15#(tt(),V2) -> isNat#(activate(V2))
              U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
              U21#(tt(),V1) -> activate#(V1)
              U21#(tt(),V1) -> isNatKind#(activate(V1))
              U22#(tt(),V1) -> activate#(V1)
              U22#(tt(),V1) -> isNat#(activate(V1))
              U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
              U51#(tt(),N) -> activate#(N)
              U51#(tt(),N) -> isNatKind#(activate(N))
              U52#(tt(),N) -> activate#(N)
              U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
              U61#(tt(),M,N) -> activate#(M)
              U61#(tt(),M,N) -> activate#(N)
              U61#(tt(),M,N) -> isNatKind#(activate(M))
              U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
              U62#(tt(),M,N) -> activate#(M)
              U62#(tt(),M,N) -> activate#(N)
              U62#(tt(),M,N) -> isNat#(activate(N))
              U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
              U63#(tt(),M,N) -> activate#(M)
              U63#(tt(),M,N) -> activate#(N)
              U63#(tt(),M,N) -> isNatKind#(activate(N))
              U64#(tt(),M,N) -> activate#(M)
              U64#(tt(),M,N) -> activate#(N)
              isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat#(n__plus(V1,V2)) -> activate#(V1)
              isNat#(n__plus(V1,V2)) -> activate#(V2)
              isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
              isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
              isNat#(n__s(V1)) -> activate#(V1)
              isNat#(n__s(V1)) -> isNatKind#(activate(V1))
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V2) -> U32(isNatKind(activate(V2)))
              U32(tt()) -> tt()
              U41(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
              activate(n__s(X)) -> s(activate(X))
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
            Signature:
              {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
            Obligation:
              Innermost
              basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
          Applied Processor:
            NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a polynomial interpretation of kind constructor-based(mixed(2)):
            The following argument positions are considered usable:
              uargs(c_11) = {1,2},
              uargs(c_22) = {1,2},
              uargs(c_23) = {1},
              uargs(c_28) = {1,2,3,4},
              uargs(c_29) = {1,2}
            
            Following symbols are considered usable:
              {0,activate,plus,s,0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}
            TcT has computed the following interpretation:
                       p(0) = 0                            
                     p(U11) = 0                            
                     p(U12) = 0                            
                     p(U13) = x2^2 + x3^2                  
                     p(U14) = x3                           
                     p(U15) = 0                            
                     p(U16) = 0                            
                     p(U21) = 0                            
                     p(U22) = 0                            
                     p(U23) = 0                            
                     p(U31) = 0                            
                     p(U32) = 1                            
                     p(U41) = 0                            
                     p(U51) = 0                            
                     p(U52) = 0                            
                     p(U61) = 0                            
                     p(U62) = 0                            
                     p(U63) = 0                            
                     p(U64) = 0                            
                p(activate) = x1                           
                   p(isNat) = 0                            
               p(isNatKind) = 0                            
                    p(n__0) = 0                            
                 p(n__plus) = 1 + x1 + x2                  
                    p(n__s) = 1 + x1                       
                    p(plus) = 1 + x1 + x2                  
                       p(s) = 1 + x1                       
                      p(tt) = 0                            
                      p(0#) = 0                            
                    p(U11#) = x2 + x2*x3 + x2^2 + x3 + x3^2
                    p(U12#) = x2 + x2*x3 + x2^2 + x3 + x3^2
                    p(U13#) = x2 + x2^2 + x3 + x3^2        
                    p(U14#) = x2 + x2^2 + x3 + x3^2        
                    p(U15#) = x2 + x2^2                    
                    p(U16#) = 0                            
                    p(U21#) = x2 + x2^2                    
                    p(U22#) = x2 + x2^2                    
                    p(U23#) = 0                            
                    p(U31#) = x2 + x2^2                    
                    p(U32#) = 0                            
                    p(U41#) = 0                            
                    p(U51#) = x2 + x2^2                    
                    p(U52#) = x2 + x2^2                    
                    p(U61#) = 1 + x2 + x2^2 + x3 + x3^2    
                    p(U62#) = 1 + x2 + x3 + x3^2           
                    p(U63#) = x2 + x3 + x3^2               
                    p(U64#) = x2 + x3 + x3^2               
               p(activate#) = x1                           
                  p(isNat#) = x1^2                         
              p(isNatKind#) = x1^2                         
                   p(plus#) = 0                            
                      p(s#) = 0                            
                     p(c_1) = 0                            
                     p(c_2) = 0                            
                     p(c_3) = 0                            
                     p(c_4) = 0                            
                     p(c_5) = 0                            
                     p(c_6) = 0                            
                     p(c_7) = 0                            
                     p(c_8) = 0                            
                     p(c_9) = 0                            
                    p(c_10) = 0                            
                    p(c_11) = x1 + x2                      
                    p(c_12) = 0                            
                    p(c_13) = 0                            
                    p(c_14) = 0                            
                    p(c_15) = 0                            
                    p(c_16) = 0                            
                    p(c_17) = 0                            
                    p(c_18) = 0                            
                    p(c_19) = 0                            
                    p(c_20) = 0                            
                    p(c_21) = 0                            
                    p(c_22) = x1 + x2                      
                    p(c_23) = x1                           
                    p(c_24) = 0                            
                    p(c_25) = 0                            
                    p(c_26) = 0                            
                    p(c_27) = 0                            
                    p(c_28) = x1 + x2 + x3 + x4            
                    p(c_29) = x1 + x2                      
                    p(c_30) = 0                            
                    p(c_31) = 0                            
            
            Following rules are strictly oriented:
             activate#(n__plus(X1,X2)) = 1 + X1 + X2                            
                                       > X1 + X2                                
                                       = c_22(activate#(X1)                     
                                             ,activate#(X2))                    
            
                    activate#(n__s(X)) = 1 + X                                  
                                       > X                                      
                                       = c_23(activate#(X))                     
            
            isNatKind#(n__plus(V1,V2)) = 1 + 2*V1 + 2*V1*V2 + V1^2 + 2*V2 + V2^2
                                       > V1 + V1^2 + 2*V2 + V2^2                
                                       = c_28(U31#(isNatKind(activate(V1))      
                                                  ,activate(V2))                
                                             ,isNatKind#(activate(V1))          
                                             ,activate#(V1)                     
                                             ,activate#(V2))                    
            
                  isNatKind#(n__s(V1)) = 1 + 2*V1 + V1^2                        
                                       > V1 + V1^2                              
                                       = c_29(isNatKind#(activate(V1))          
                                             ,activate#(V1))                    
            
            
            Following rules are (at-least) weakly oriented:
                    U11#(tt(),V1,V2) =  V1 + V1*V2 + V1^2 + V2 + V2^2          
                                     >= V1 + V1*V2 + V1^2 + V2 + V2^2          
                                     =  U12#(isNatKind(activate(V1))           
                                            ,activate(V1)                      
                                            ,activate(V2))                     
            
                    U11#(tt(),V1,V2) =  V1 + V1*V2 + V1^2 + V2 + V2^2          
                                     >= V1                                     
                                     =  activate#(V1)                          
            
                    U11#(tt(),V1,V2) =  V1 + V1*V2 + V1^2 + V2 + V2^2          
                                     >= V2                                     
                                     =  activate#(V2)                          
            
                    U11#(tt(),V1,V2) =  V1 + V1*V2 + V1^2 + V2 + V2^2          
                                     >= V1^2                                   
                                     =  isNatKind#(activate(V1))               
            
                    U12#(tt(),V1,V2) =  V1 + V1*V2 + V1^2 + V2 + V2^2          
                                     >= V1 + V1^2 + V2 + V2^2                  
                                     =  U13#(isNatKind(activate(V2))           
                                            ,activate(V1)                      
                                            ,activate(V2))                     
            
                    U12#(tt(),V1,V2) =  V1 + V1*V2 + V1^2 + V2 + V2^2          
                                     >= V1                                     
                                     =  activate#(V1)                          
            
                    U12#(tt(),V1,V2) =  V1 + V1*V2 + V1^2 + V2 + V2^2          
                                     >= V2                                     
                                     =  activate#(V2)                          
            
                    U12#(tt(),V1,V2) =  V1 + V1*V2 + V1^2 + V2 + V2^2          
                                     >= V2^2                                   
                                     =  isNatKind#(activate(V2))               
            
                    U13#(tt(),V1,V2) =  V1 + V1^2 + V2 + V2^2                  
                                     >= V1 + V1^2 + V2 + V2^2                  
                                     =  U14#(isNatKind(activate(V2))           
                                            ,activate(V1)                      
                                            ,activate(V2))                     
            
                    U13#(tt(),V1,V2) =  V1 + V1^2 + V2 + V2^2                  
                                     >= V1                                     
                                     =  activate#(V1)                          
            
                    U13#(tt(),V1,V2) =  V1 + V1^2 + V2 + V2^2                  
                                     >= V2                                     
                                     =  activate#(V2)                          
            
                    U13#(tt(),V1,V2) =  V1 + V1^2 + V2 + V2^2                  
                                     >= V2^2                                   
                                     =  isNatKind#(activate(V2))               
            
                    U14#(tt(),V1,V2) =  V1 + V1^2 + V2 + V2^2                  
                                     >= V2 + V2^2                              
                                     =  U15#(isNat(activate(V1))               
                                            ,activate(V2))                     
            
                    U14#(tt(),V1,V2) =  V1 + V1^2 + V2 + V2^2                  
                                     >= V1                                     
                                     =  activate#(V1)                          
            
                    U14#(tt(),V1,V2) =  V1 + V1^2 + V2 + V2^2                  
                                     >= V2                                     
                                     =  activate#(V2)                          
            
                    U14#(tt(),V1,V2) =  V1 + V1^2 + V2 + V2^2                  
                                     >= V1^2                                   
                                     =  isNat#(activate(V1))                   
            
                       U15#(tt(),V2) =  V2 + V2^2                              
                                     >= V2                                     
                                     =  activate#(V2)                          
            
                       U15#(tt(),V2) =  V2 + V2^2                              
                                     >= V2^2                                   
                                     =  isNat#(activate(V2))                   
            
                       U21#(tt(),V1) =  V1 + V1^2                              
                                     >= V1 + V1^2                              
                                     =  U22#(isNatKind(activate(V1))           
                                            ,activate(V1))                     
            
                       U21#(tt(),V1) =  V1 + V1^2                              
                                     >= V1                                     
                                     =  activate#(V1)                          
            
                       U21#(tt(),V1) =  V1 + V1^2                              
                                     >= V1^2                                   
                                     =  isNatKind#(activate(V1))               
            
                       U22#(tt(),V1) =  V1 + V1^2                              
                                     >= V1                                     
                                     =  activate#(V1)                          
            
                       U22#(tt(),V1) =  V1 + V1^2                              
                                     >= V1^2                                   
                                     =  isNat#(activate(V1))                   
            
                       U31#(tt(),V2) =  V2 + V2^2                              
                                     >= V2 + V2^2                              
                                     =  c_11(isNatKind#(activate(V2))          
                                            ,activate#(V2))                    
            
                        U51#(tt(),N) =  N + N^2                                
                                     >= N + N^2                                
                                     =  U52#(isNatKind(activate(N))            
                                            ,activate(N))                      
            
                        U51#(tt(),N) =  N + N^2                                
                                     >= N                                      
                                     =  activate#(N)                           
            
                        U51#(tt(),N) =  N + N^2                                
                                     >= N^2                                    
                                     =  isNatKind#(activate(N))                
            
                        U52#(tt(),N) =  N + N^2                                
                                     >= N                                      
                                     =  activate#(N)                           
            
                      U61#(tt(),M,N) =  1 + M + M^2 + N + N^2                  
                                     >= 1 + M + N + N^2                        
                                     =  U62#(isNatKind(activate(M))            
                                            ,activate(M)                       
                                            ,activate(N))                      
            
                      U61#(tt(),M,N) =  1 + M + M^2 + N + N^2                  
                                     >= M                                      
                                     =  activate#(M)                           
            
                      U61#(tt(),M,N) =  1 + M + M^2 + N + N^2                  
                                     >= N                                      
                                     =  activate#(N)                           
            
                      U61#(tt(),M,N) =  1 + M + M^2 + N + N^2                  
                                     >= M^2                                    
                                     =  isNatKind#(activate(M))                
            
                      U62#(tt(),M,N) =  1 + M + N + N^2                        
                                     >= M + N + N^2                            
                                     =  U63#(isNat(activate(N))                
                                            ,activate(M)                       
                                            ,activate(N))                      
            
                      U62#(tt(),M,N) =  1 + M + N + N^2                        
                                     >= M                                      
                                     =  activate#(M)                           
            
                      U62#(tt(),M,N) =  1 + M + N + N^2                        
                                     >= N                                      
                                     =  activate#(N)                           
            
                      U62#(tt(),M,N) =  1 + M + N + N^2                        
                                     >= N^2                                    
                                     =  isNat#(activate(N))                    
            
                      U63#(tt(),M,N) =  M + N + N^2                            
                                     >= M + N + N^2                            
                                     =  U64#(isNatKind(activate(N))            
                                            ,activate(M)                       
                                            ,activate(N))                      
            
                      U63#(tt(),M,N) =  M + N + N^2                            
                                     >= M                                      
                                     =  activate#(M)                           
            
                      U63#(tt(),M,N) =  M + N + N^2                            
                                     >= N                                      
                                     =  activate#(N)                           
            
                      U63#(tt(),M,N) =  M + N + N^2                            
                                     >= N^2                                    
                                     =  isNatKind#(activate(N))                
            
                      U64#(tt(),M,N) =  M + N + N^2                            
                                     >= M                                      
                                     =  activate#(M)                           
            
                      U64#(tt(),M,N) =  M + N + N^2                            
                                     >= N                                      
                                     =  activate#(N)                           
            
              isNat#(n__plus(V1,V2)) =  1 + 2*V1 + 2*V1*V2 + V1^2 + 2*V2 + V2^2
                                     >= V1 + V1*V2 + V1^2 + V2 + V2^2          
                                     =  U11#(isNatKind(activate(V1))           
                                            ,activate(V1)                      
                                            ,activate(V2))                     
            
              isNat#(n__plus(V1,V2)) =  1 + 2*V1 + 2*V1*V2 + V1^2 + 2*V2 + V2^2
                                     >= V1                                     
                                     =  activate#(V1)                          
            
              isNat#(n__plus(V1,V2)) =  1 + 2*V1 + 2*V1*V2 + V1^2 + 2*V2 + V2^2
                                     >= V2                                     
                                     =  activate#(V2)                          
            
              isNat#(n__plus(V1,V2)) =  1 + 2*V1 + 2*V1*V2 + V1^2 + 2*V2 + V2^2
                                     >= V1^2                                   
                                     =  isNatKind#(activate(V1))               
            
                    isNat#(n__s(V1)) =  1 + 2*V1 + V1^2                        
                                     >= V1 + V1^2                              
                                     =  U21#(isNatKind(activate(V1))           
                                            ,activate(V1))                     
            
                    isNat#(n__s(V1)) =  1 + 2*V1 + V1^2                        
                                     >= V1                                     
                                     =  activate#(V1)                          
            
                    isNat#(n__s(V1)) =  1 + 2*V1 + V1^2                        
                                     >= V1^2                                   
                                     =  isNatKind#(activate(V1))               
            
                                 0() =  0                                      
                                     >= 0                                      
                                     =  n__0()                                 
            
                         activate(X) =  X                                      
                                     >= X                                      
                                     =  X                                      
            
                    activate(n__0()) =  0                                      
                                     >= 0                                      
                                     =  0()                                    
            
            activate(n__plus(X1,X2)) =  1 + X1 + X2                            
                                     >= 1 + X1 + X2                            
                                     =  plus(activate(X1),activate(X2))        
            
                   activate(n__s(X)) =  1 + X                                  
                                     >= 1 + X                                  
                                     =  s(activate(X))                         
            
                         plus(X1,X2) =  1 + X1 + X2                            
                                     >= 1 + X1 + X2                            
                                     =  n__plus(X1,X2)                         
            
                                s(X) =  1 + X                                  
                                     >= 1 + X                                  
                                     =  n__s(X)                                
            
      *** 1.1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
            Strict TRS Rules:
              
            Weak DP Rules:
              U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
              U11#(tt(),V1,V2) -> activate#(V1)
              U11#(tt(),V1,V2) -> activate#(V2)
              U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
              U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
              U12#(tt(),V1,V2) -> activate#(V1)
              U12#(tt(),V1,V2) -> activate#(V2)
              U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
              U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13#(tt(),V1,V2) -> activate#(V1)
              U13#(tt(),V1,V2) -> activate#(V2)
              U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
              U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
              U14#(tt(),V1,V2) -> activate#(V1)
              U14#(tt(),V1,V2) -> activate#(V2)
              U14#(tt(),V1,V2) -> isNat#(activate(V1))
              U15#(tt(),V2) -> activate#(V2)
              U15#(tt(),V2) -> isNat#(activate(V2))
              U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
              U21#(tt(),V1) -> activate#(V1)
              U21#(tt(),V1) -> isNatKind#(activate(V1))
              U22#(tt(),V1) -> activate#(V1)
              U22#(tt(),V1) -> isNat#(activate(V1))
              U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
              U51#(tt(),N) -> activate#(N)
              U51#(tt(),N) -> isNatKind#(activate(N))
              U52#(tt(),N) -> activate#(N)
              U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
              U61#(tt(),M,N) -> activate#(M)
              U61#(tt(),M,N) -> activate#(N)
              U61#(tt(),M,N) -> isNatKind#(activate(M))
              U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
              U62#(tt(),M,N) -> activate#(M)
              U62#(tt(),M,N) -> activate#(N)
              U62#(tt(),M,N) -> isNat#(activate(N))
              U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
              U63#(tt(),M,N) -> activate#(M)
              U63#(tt(),M,N) -> activate#(N)
              U63#(tt(),M,N) -> isNatKind#(activate(N))
              U64#(tt(),M,N) -> activate#(M)
              U64#(tt(),M,N) -> activate#(N)
              activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
              activate#(n__s(X)) -> c_23(activate#(X))
              isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat#(n__plus(V1,V2)) -> activate#(V1)
              isNat#(n__plus(V1,V2)) -> activate#(V2)
              isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
              isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
              isNat#(n__s(V1)) -> activate#(V1)
              isNat#(n__s(V1)) -> isNatKind#(activate(V1))
              isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
              isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V2) -> U32(isNatKind(activate(V2)))
              U32(tt()) -> tt()
              U41(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
              activate(n__s(X)) -> s(activate(X))
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
            Signature:
              {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
            Obligation:
              Innermost
              basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.1.1.2.2 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
              U11#(tt(),V1,V2) -> activate#(V1)
              U11#(tt(),V1,V2) -> activate#(V2)
              U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
              U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
              U12#(tt(),V1,V2) -> activate#(V1)
              U12#(tt(),V1,V2) -> activate#(V2)
              U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
              U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13#(tt(),V1,V2) -> activate#(V1)
              U13#(tt(),V1,V2) -> activate#(V2)
              U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
              U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
              U14#(tt(),V1,V2) -> activate#(V1)
              U14#(tt(),V1,V2) -> activate#(V2)
              U14#(tt(),V1,V2) -> isNat#(activate(V1))
              U15#(tt(),V2) -> activate#(V2)
              U15#(tt(),V2) -> isNat#(activate(V2))
              U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
              U21#(tt(),V1) -> activate#(V1)
              U21#(tt(),V1) -> isNatKind#(activate(V1))
              U22#(tt(),V1) -> activate#(V1)
              U22#(tt(),V1) -> isNat#(activate(V1))
              U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
              U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
              U51#(tt(),N) -> activate#(N)
              U51#(tt(),N) -> isNatKind#(activate(N))
              U52#(tt(),N) -> activate#(N)
              U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
              U61#(tt(),M,N) -> activate#(M)
              U61#(tt(),M,N) -> activate#(N)
              U61#(tt(),M,N) -> isNatKind#(activate(M))
              U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
              U62#(tt(),M,N) -> activate#(M)
              U62#(tt(),M,N) -> activate#(N)
              U62#(tt(),M,N) -> isNat#(activate(N))
              U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
              U63#(tt(),M,N) -> activate#(M)
              U63#(tt(),M,N) -> activate#(N)
              U63#(tt(),M,N) -> isNatKind#(activate(N))
              U64#(tt(),M,N) -> activate#(M)
              U64#(tt(),M,N) -> activate#(N)
              activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
              activate#(n__s(X)) -> c_23(activate#(X))
              isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat#(n__plus(V1,V2)) -> activate#(V1)
              isNat#(n__plus(V1,V2)) -> activate#(V2)
              isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
              isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
              isNat#(n__s(V1)) -> activate#(V1)
              isNat#(n__s(V1)) -> isNatKind#(activate(V1))
              isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
              isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V2) -> U32(isNatKind(activate(V2)))
              U32(tt()) -> tt()
              U41(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
              activate(n__s(X)) -> s(activate(X))
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
            Signature:
              {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
            Obligation:
              Innermost
              basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:W:U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                 -->_1 U12#(tt(),V1,V2) -> isNatKind#(activate(V2)):8
                 -->_1 U12#(tt(),V1,V2) -> activate#(V2):7
                 -->_1 U12#(tt(),V1,V2) -> activate#(V1):6
                 -->_1 U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2)):5
              
              2:W:U11#(tt(),V1,V2) -> activate#(V1)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              3:W:U11#(tt(),V1,V2) -> activate#(V2)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              4:W:U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
                 -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):53
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):52
              
              5:W:U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                 -->_1 U13#(tt(),V1,V2) -> isNatKind#(activate(V2)):12
                 -->_1 U13#(tt(),V1,V2) -> activate#(V2):11
                 -->_1 U13#(tt(),V1,V2) -> activate#(V1):10
                 -->_1 U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2)):9
              
              6:W:U12#(tt(),V1,V2) -> activate#(V1)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              7:W:U12#(tt(),V1,V2) -> activate#(V2)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              8:W:U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
                 -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):53
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):52
              
              9:W:U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                 -->_1 U14#(tt(),V1,V2) -> isNat#(activate(V1)):16
                 -->_1 U14#(tt(),V1,V2) -> activate#(V2):15
                 -->_1 U14#(tt(),V1,V2) -> activate#(V1):14
                 -->_1 U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2)):13
              
              10:W:U13#(tt(),V1,V2) -> activate#(V1)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              11:W:U13#(tt(),V1,V2) -> activate#(V2)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              12:W:U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
                 -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):53
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):52
              
              13:W:U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
                 -->_1 U15#(tt(),V2) -> isNat#(activate(V2)):18
                 -->_1 U15#(tt(),V2) -> activate#(V2):17
              
              14:W:U14#(tt(),V1,V2) -> activate#(V1)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              15:W:U14#(tt(),V1,V2) -> activate#(V2)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              16:W:U14#(tt(),V1,V2) -> isNat#(activate(V1))
                 -->_1 isNat#(n__s(V1)) -> isNatKind#(activate(V1)):51
                 -->_1 isNat#(n__s(V1)) -> activate#(V1):50
                 -->_1 isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)):49
                 -->_1 isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):48
                 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):47
                 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):46
                 -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)):45
              
              17:W:U15#(tt(),V2) -> activate#(V2)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              18:W:U15#(tt(),V2) -> isNat#(activate(V2))
                 -->_1 isNat#(n__s(V1)) -> isNatKind#(activate(V1)):51
                 -->_1 isNat#(n__s(V1)) -> activate#(V1):50
                 -->_1 isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)):49
                 -->_1 isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):48
                 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):47
                 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):46
                 -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)):45
              
              19:W:U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
                 -->_1 U22#(tt(),V1) -> isNat#(activate(V1)):23
                 -->_1 U22#(tt(),V1) -> activate#(V1):22
              
              20:W:U21#(tt(),V1) -> activate#(V1)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              21:W:U21#(tt(),V1) -> isNatKind#(activate(V1))
                 -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):53
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):52
              
              22:W:U22#(tt(),V1) -> activate#(V1)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              23:W:U22#(tt(),V1) -> isNat#(activate(V1))
                 -->_1 isNat#(n__s(V1)) -> isNatKind#(activate(V1)):51
                 -->_1 isNat#(n__s(V1)) -> activate#(V1):50
                 -->_1 isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)):49
                 -->_1 isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):48
                 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):47
                 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):46
                 -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)):45
              
              24:W:U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
                 -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):53
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):52
                 -->_2 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_2 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              25:W:U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
                 -->_1 U52#(tt(),N) -> activate#(N):28
              
              26:W:U51#(tt(),N) -> activate#(N)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              27:W:U51#(tt(),N) -> isNatKind#(activate(N))
                 -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):53
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):52
              
              28:W:U52#(tt(),N) -> activate#(N)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              29:W:U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
                 -->_1 U62#(tt(),M,N) -> isNat#(activate(N)):36
                 -->_1 U62#(tt(),M,N) -> activate#(N):35
                 -->_1 U62#(tt(),M,N) -> activate#(M):34
                 -->_1 U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N)):33
              
              30:W:U61#(tt(),M,N) -> activate#(M)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              31:W:U61#(tt(),M,N) -> activate#(N)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              32:W:U61#(tt(),M,N) -> isNatKind#(activate(M))
                 -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):53
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):52
              
              33:W:U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
                 -->_1 U63#(tt(),M,N) -> isNatKind#(activate(N)):40
                 -->_1 U63#(tt(),M,N) -> activate#(N):39
                 -->_1 U63#(tt(),M,N) -> activate#(M):38
                 -->_1 U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N)):37
              
              34:W:U62#(tt(),M,N) -> activate#(M)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              35:W:U62#(tt(),M,N) -> activate#(N)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              36:W:U62#(tt(),M,N) -> isNat#(activate(N))
                 -->_1 isNat#(n__s(V1)) -> isNatKind#(activate(V1)):51
                 -->_1 isNat#(n__s(V1)) -> activate#(V1):50
                 -->_1 isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)):49
                 -->_1 isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):48
                 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):47
                 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):46
                 -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)):45
              
              37:W:U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
                 -->_1 U64#(tt(),M,N) -> activate#(N):42
                 -->_1 U64#(tt(),M,N) -> activate#(M):41
              
              38:W:U63#(tt(),M,N) -> activate#(M)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              39:W:U63#(tt(),M,N) -> activate#(N)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              40:W:U63#(tt(),M,N) -> isNatKind#(activate(N))
                 -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):53
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):52
              
              41:W:U64#(tt(),M,N) -> activate#(M)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              42:W:U64#(tt(),M,N) -> activate#(N)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              43:W:activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
                 -->_2 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_2 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              44:W:activate#(n__s(X)) -> c_23(activate#(X))
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              45:W:isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                 -->_1 U11#(tt(),V1,V2) -> isNatKind#(activate(V1)):4
                 -->_1 U11#(tt(),V1,V2) -> activate#(V2):3
                 -->_1 U11#(tt(),V1,V2) -> activate#(V1):2
                 -->_1 U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2)):1
              
              46:W:isNat#(n__plus(V1,V2)) -> activate#(V1)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              47:W:isNat#(n__plus(V1,V2)) -> activate#(V2)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              48:W:isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
                 -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):53
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):52
              
              49:W:isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
                 -->_1 U21#(tt(),V1) -> isNatKind#(activate(V1)):21
                 -->_1 U21#(tt(),V1) -> activate#(V1):20
                 -->_1 U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1)):19
              
              50:W:isNat#(n__s(V1)) -> activate#(V1)
                 -->_1 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
              51:W:isNat#(n__s(V1)) -> isNatKind#(activate(V1))
                 -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):53
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):52
              
              52:W:isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
                 -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):53
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):52
                 -->_4 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_3 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_4 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
                 -->_3 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
                 -->_1 U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2)):24
              
              53:W:isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
                 -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):53
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):52
                 -->_2 activate#(n__s(X)) -> c_23(activate#(X)):44
                 -->_2 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):43
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              32: U61#(tt(),M,N) ->                  
                    isNatKind#(activate(M))          
              31: U61#(tt(),M,N) -> activate#(N)     
              30: U61#(tt(),M,N) -> activate#(M)     
              29: U61#(tt(),M,N) ->                  
                    U62#(isNatKind(activate(M))      
                        ,activate(M)                 
                        ,activate(N))                
              33: U62#(tt(),M,N) ->                  
                    U63#(isNat(activate(N))          
                        ,activate(M)                 
                        ,activate(N))                
              37: U63#(tt(),M,N) ->                  
                    U64#(isNatKind(activate(N))      
                        ,activate(M)                 
                        ,activate(N))                
              41: U64#(tt(),M,N) -> activate#(M)     
              42: U64#(tt(),M,N) -> activate#(N)     
              38: U63#(tt(),M,N) -> activate#(M)     
              39: U63#(tt(),M,N) -> activate#(N)     
              40: U63#(tt(),M,N) ->                  
                    isNatKind#(activate(N))          
              34: U62#(tt(),M,N) -> activate#(M)     
              35: U62#(tt(),M,N) -> activate#(N)     
              36: U62#(tt(),M,N) ->                  
                    isNat#(activate(N))              
              27: U51#(tt(),N) ->                    
                    isNatKind#(activate(N))          
              26: U51#(tt(),N) -> activate#(N)       
              25: U51#(tt(),N) ->                    
                    U52#(isNatKind(activate(N))      
                        ,activate(N))                
              28: U52#(tt(),N) -> activate#(N)       
              1:  U11#(tt(),V1,V2) ->                
                    U12#(isNatKind(activate(V1))     
                        ,activate(V1)                
                        ,activate(V2))               
              45: isNat#(n__plus(V1,V2)) ->          
                    U11#(isNatKind(activate(V1))     
                        ,activate(V1)                
                        ,activate(V2))               
              23: U22#(tt(),V1) ->                   
                    isNat#(activate(V1))             
              19: U21#(tt(),V1) ->                   
                    U22#(isNatKind(activate(V1))     
                        ,activate(V1))               
              49: isNat#(n__s(V1)) ->                
                    U21#(isNatKind(activate(V1))     
                        ,activate(V1))               
              18: U15#(tt(),V2) ->                   
                    isNat#(activate(V2))             
              13: U14#(tt(),V1,V2) ->                
                    U15#(isNat(activate(V1))         
                        ,activate(V2))               
              9:  U13#(tt(),V1,V2) ->                
                    U14#(isNatKind(activate(V2))     
                        ,activate(V1)                
                        ,activate(V2))               
              5:  U12#(tt(),V1,V2) ->                
                    U13#(isNatKind(activate(V2))     
                        ,activate(V1)                
                        ,activate(V2))               
              16: U14#(tt(),V1,V2) ->                
                    isNat#(activate(V1))             
              17: U15#(tt(),V2) -> activate#(V2)     
              14: U14#(tt(),V1,V2) ->                
                    activate#(V1)                    
              15: U14#(tt(),V1,V2) ->                
                    activate#(V2)                    
              22: U22#(tt(),V1) -> activate#(V1)     
              2:  U11#(tt(),V1,V2) ->                
                    activate#(V1)                    
              3:  U11#(tt(),V1,V2) ->                
                    activate#(V2)                    
              4:  U11#(tt(),V1,V2) ->                
                    isNatKind#(activate(V1))         
              46: isNat#(n__plus(V1,V2)) ->          
                    activate#(V1)                    
              47: isNat#(n__plus(V1,V2)) ->          
                    activate#(V2)                    
              48: isNat#(n__plus(V1,V2)) ->          
                    isNatKind#(activate(V1))         
              20: U21#(tt(),V1) -> activate#(V1)     
              21: U21#(tt(),V1) ->                   
                    isNatKind#(activate(V1))         
              50: isNat#(n__s(V1)) ->                
                    activate#(V1)                    
              51: isNat#(n__s(V1)) ->                
                    isNatKind#(activate(V1))         
              10: U13#(tt(),V1,V2) ->                
                    activate#(V1)                    
              11: U13#(tt(),V1,V2) ->                
                    activate#(V2)                    
              12: U13#(tt(),V1,V2) ->                
                    isNatKind#(activate(V2))         
              6:  U12#(tt(),V1,V2) ->                
                    activate#(V1)                    
              7:  U12#(tt(),V1,V2) ->                
                    activate#(V2)                    
              8:  U12#(tt(),V1,V2) ->                
                    isNatKind#(activate(V2))         
              53: isNatKind#(n__s(V1)) ->            
                    c_29(isNatKind#(activate(V1))    
                        ,activate#(V1))              
              52: isNatKind#(n__plus(V1,V2)) ->      
                    c_28(U31#(isNatKind(activate(V1))
                             ,activate(V2))          
                        ,isNatKind#(activate(V1))    
                        ,activate#(V1)               
                        ,activate#(V2))              
              24: U31#(tt(),V2) ->                   
                    c_11(isNatKind#(activate(V2))    
                        ,activate#(V2))              
              44: activate#(n__s(X)) ->              
                    c_23(activate#(X))               
              43: activate#(n__plus(X1,X2)) ->       
                    c_22(activate#(X1)               
                        ,activate#(X2))              
      *** 1.1.1.1.1.1.1.1.1.2.2.1 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V2) -> U32(isNatKind(activate(V2)))
              U32(tt()) -> tt()
              U41(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
              activate(n__s(X)) -> s(activate(X))
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
            Signature:
              {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
            Obligation:
              Innermost
              basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
          Applied Processor:
            EmptyProcessor
          Proof:
            The problem is already closed. The intended complexity is O(1).
      
  *** 1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
          U52#(tt(),N) -> c_15(activate#(N))
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
          U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
          U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
          U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
        Strict TRS Rules:
          
        Weak DP Rules:
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
          U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
          U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
          U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
          activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_23(activate#(X))
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
          isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V2) -> U32(isNatKind(activate(V2)))
          U32(tt()) -> tt()
          U41(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
          activate(n__s(X)) -> s(activate(X))
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
        Signature:
          {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
      Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
      Proof:
        We estimate the number of application of
          {2,6}
        by application of
          Pre({2,6}) = {1,5}.
        Here rules are labelled as follows:
          1:  U51#(tt(),N) ->                    
                c_14(U52#(isNatKind(activate(N)) 
                         ,activate(N))           
                    ,isNatKind#(activate(N))     
                    ,activate#(N)                
                    ,activate#(N))               
          2:  U52#(tt(),N) ->                    
                c_15(activate#(N))               
          3:  U61#(tt(),M,N) ->                  
                c_16(U62#(isNatKind(activate(M)) 
                         ,activate(M)            
                         ,activate(N))           
                    ,isNatKind#(activate(M))     
                    ,activate#(M)                
                    ,activate#(M)                
                    ,activate#(N))               
          4:  U62#(tt(),M,N) ->                  
                c_17(U63#(isNat(activate(N))     
                         ,activate(M)            
                         ,activate(N))           
                    ,isNat#(activate(N))         
                    ,activate#(N)                
                    ,activate#(M)                
                    ,activate#(N))               
          5:  U63#(tt(),M,N) ->                  
                c_18(U64#(isNatKind(activate(N)) 
                         ,activate(M)            
                         ,activate(N))           
                    ,isNatKind#(activate(N))     
                    ,activate#(N)                
                    ,activate#(M)                
                    ,activate#(N))               
          6:  U64#(tt(),M,N) ->                  
                c_19(activate#(N),activate#(M))  
          7:  U11#(tt(),V1,V2) ->                
                c_2(U12#(isNatKind(activate(V1)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V1))     
                   ,activate#(V1)                
                   ,activate#(V1)                
                   ,activate#(V2))               
          8:  U12#(tt(),V1,V2) ->                
                c_3(U13#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2))     
                   ,activate#(V2)                
                   ,activate#(V1)                
                   ,activate#(V2))               
          9:  U13#(tt(),V1,V2) ->                
                c_4(U14#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2))     
                   ,activate#(V2)                
                   ,activate#(V1)                
                   ,activate#(V2))               
          10: U14#(tt(),V1,V2) ->                
                c_5(U15#(isNat(activate(V1))     
                        ,activate(V2))           
                   ,isNat#(activate(V1))         
                   ,activate#(V1)                
                   ,activate#(V2))               
          11: U15#(tt(),V2) ->                   
                c_6(isNat#(activate(V2))         
                   ,activate#(V2))               
          12: U21#(tt(),V1) ->                   
                c_8(U22#(isNatKind(activate(V1)) 
                        ,activate(V1))           
                   ,isNatKind#(activate(V1))     
                   ,activate#(V1)                
                   ,activate#(V1))               
          13: U22#(tt(),V1) ->                   
                c_9(isNat#(activate(V1))         
                   ,activate#(V1))               
          14: U31#(tt(),V2) ->                   
                c_11(isNatKind#(activate(V2))    
                    ,activate#(V2))              
          15: activate#(n__plus(X1,X2)) ->       
                c_22(activate#(X1)               
                    ,activate#(X2))              
          16: activate#(n__s(X)) ->              
                c_23(activate#(X))               
          17: isNat#(n__plus(V1,V2)) ->          
                c_25(U11#(isNatKind(activate(V1))
                         ,activate(V1)           
                         ,activate(V2))          
                    ,isNatKind#(activate(V1))    
                    ,activate#(V1)               
                    ,activate#(V1)               
                    ,activate#(V2))              
          18: isNat#(n__s(V1)) ->                
                c_26(U21#(isNatKind(activate(V1))
                         ,activate(V1))          
                    ,isNatKind#(activate(V1))    
                    ,activate#(V1)               
                    ,activate#(V1))              
          19: isNatKind#(n__plus(V1,V2)) ->      
                c_28(U31#(isNatKind(activate(V1))
                         ,activate(V2))          
                    ,isNatKind#(activate(V1))    
                    ,activate#(V1)               
                    ,activate#(V2))              
          20: isNatKind#(n__s(V1)) ->            
                c_29(isNatKind#(activate(V1))    
                    ,activate#(V1))              
  *** 1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
          U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
          U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        Strict TRS Rules:
          
        Weak DP Rules:
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
          U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
          U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
          U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
          U52#(tt(),N) -> c_15(activate#(N))
          U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
          activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_23(activate#(X))
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
          isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V2) -> U32(isNatKind(activate(V2)))
          U32(tt()) -> tt()
          U41(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
          activate(n__s(X)) -> s(activate(X))
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
        Signature:
          {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
      Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
      Proof:
        We estimate the number of application of
          {1,4}
        by application of
          Pre({1,4}) = {3}.
        Here rules are labelled as follows:
          1:  U51#(tt(),N) ->                    
                c_14(U52#(isNatKind(activate(N)) 
                         ,activate(N))           
                    ,isNatKind#(activate(N))     
                    ,activate#(N)                
                    ,activate#(N))               
          2:  U61#(tt(),M,N) ->                  
                c_16(U62#(isNatKind(activate(M)) 
                         ,activate(M)            
                         ,activate(N))           
                    ,isNatKind#(activate(M))     
                    ,activate#(M)                
                    ,activate#(M)                
                    ,activate#(N))               
          3:  U62#(tt(),M,N) ->                  
                c_17(U63#(isNat(activate(N))     
                         ,activate(M)            
                         ,activate(N))           
                    ,isNat#(activate(N))         
                    ,activate#(N)                
                    ,activate#(M)                
                    ,activate#(N))               
          4:  U63#(tt(),M,N) ->                  
                c_18(U64#(isNatKind(activate(N)) 
                         ,activate(M)            
                         ,activate(N))           
                    ,isNatKind#(activate(N))     
                    ,activate#(N)                
                    ,activate#(M)                
                    ,activate#(N))               
          5:  U11#(tt(),V1,V2) ->                
                c_2(U12#(isNatKind(activate(V1)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V1))     
                   ,activate#(V1)                
                   ,activate#(V1)                
                   ,activate#(V2))               
          6:  U12#(tt(),V1,V2) ->                
                c_3(U13#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2))     
                   ,activate#(V2)                
                   ,activate#(V1)                
                   ,activate#(V2))               
          7:  U13#(tt(),V1,V2) ->                
                c_4(U14#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2))     
                   ,activate#(V2)                
                   ,activate#(V1)                
                   ,activate#(V2))               
          8:  U14#(tt(),V1,V2) ->                
                c_5(U15#(isNat(activate(V1))     
                        ,activate(V2))           
                   ,isNat#(activate(V1))         
                   ,activate#(V1)                
                   ,activate#(V2))               
          9:  U15#(tt(),V2) ->                   
                c_6(isNat#(activate(V2))         
                   ,activate#(V2))               
          10: U21#(tt(),V1) ->                   
                c_8(U22#(isNatKind(activate(V1)) 
                        ,activate(V1))           
                   ,isNatKind#(activate(V1))     
                   ,activate#(V1)                
                   ,activate#(V1))               
          11: U22#(tt(),V1) ->                   
                c_9(isNat#(activate(V1))         
                   ,activate#(V1))               
          12: U31#(tt(),V2) ->                   
                c_11(isNatKind#(activate(V2))    
                    ,activate#(V2))              
          13: U52#(tt(),N) ->                    
                c_15(activate#(N))               
          14: U64#(tt(),M,N) ->                  
                c_19(activate#(N),activate#(M))  
          15: activate#(n__plus(X1,X2)) ->       
                c_22(activate#(X1)               
                    ,activate#(X2))              
          16: activate#(n__s(X)) ->              
                c_23(activate#(X))               
          17: isNat#(n__plus(V1,V2)) ->          
                c_25(U11#(isNatKind(activate(V1))
                         ,activate(V1)           
                         ,activate(V2))          
                    ,isNatKind#(activate(V1))    
                    ,activate#(V1)               
                    ,activate#(V1)               
                    ,activate#(V2))              
          18: isNat#(n__s(V1)) ->                
                c_26(U21#(isNatKind(activate(V1))
                         ,activate(V1))          
                    ,isNatKind#(activate(V1))    
                    ,activate#(V1)               
                    ,activate#(V1))              
          19: isNatKind#(n__plus(V1,V2)) ->      
                c_28(U31#(isNatKind(activate(V1))
                         ,activate(V2))          
                    ,isNatKind#(activate(V1))    
                    ,activate#(V1)               
                    ,activate#(V2))              
          20: isNatKind#(n__s(V1)) ->            
                c_29(isNatKind#(activate(V1))    
                    ,activate#(V1))              
  *** 1.1.1.1.1.1.1.1.2.1.1 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
          U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        Strict TRS Rules:
          
        Weak DP Rules:
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
          U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
          U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
          U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
          U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
          U52#(tt(),N) -> c_15(activate#(N))
          U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
          U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
          activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_23(activate#(X))
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
          isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V2) -> U32(isNatKind(activate(V2)))
          U32(tt()) -> tt()
          U41(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
          activate(n__s(X)) -> s(activate(X))
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
        Signature:
          {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
      Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
      Proof:
        We estimate the number of application of
          {2}
        by application of
          Pre({2}) = {1}.
        Here rules are labelled as follows:
          1:  U61#(tt(),M,N) ->                  
                c_16(U62#(isNatKind(activate(M)) 
                         ,activate(M)            
                         ,activate(N))           
                    ,isNatKind#(activate(M))     
                    ,activate#(M)                
                    ,activate#(M)                
                    ,activate#(N))               
          2:  U62#(tt(),M,N) ->                  
                c_17(U63#(isNat(activate(N))     
                         ,activate(M)            
                         ,activate(N))           
                    ,isNat#(activate(N))         
                    ,activate#(N)                
                    ,activate#(M)                
                    ,activate#(N))               
          3:  U11#(tt(),V1,V2) ->                
                c_2(U12#(isNatKind(activate(V1)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V1))     
                   ,activate#(V1)                
                   ,activate#(V1)                
                   ,activate#(V2))               
          4:  U12#(tt(),V1,V2) ->                
                c_3(U13#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2))     
                   ,activate#(V2)                
                   ,activate#(V1)                
                   ,activate#(V2))               
          5:  U13#(tt(),V1,V2) ->                
                c_4(U14#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2))     
                   ,activate#(V2)                
                   ,activate#(V1)                
                   ,activate#(V2))               
          6:  U14#(tt(),V1,V2) ->                
                c_5(U15#(isNat(activate(V1))     
                        ,activate(V2))           
                   ,isNat#(activate(V1))         
                   ,activate#(V1)                
                   ,activate#(V2))               
          7:  U15#(tt(),V2) ->                   
                c_6(isNat#(activate(V2))         
                   ,activate#(V2))               
          8:  U21#(tt(),V1) ->                   
                c_8(U22#(isNatKind(activate(V1)) 
                        ,activate(V1))           
                   ,isNatKind#(activate(V1))     
                   ,activate#(V1)                
                   ,activate#(V1))               
          9:  U22#(tt(),V1) ->                   
                c_9(isNat#(activate(V1))         
                   ,activate#(V1))               
          10: U31#(tt(),V2) ->                   
                c_11(isNatKind#(activate(V2))    
                    ,activate#(V2))              
          11: U51#(tt(),N) ->                    
                c_14(U52#(isNatKind(activate(N)) 
                         ,activate(N))           
                    ,isNatKind#(activate(N))     
                    ,activate#(N)                
                    ,activate#(N))               
          12: U52#(tt(),N) ->                    
                c_15(activate#(N))               
          13: U63#(tt(),M,N) ->                  
                c_18(U64#(isNatKind(activate(N)) 
                         ,activate(M)            
                         ,activate(N))           
                    ,isNatKind#(activate(N))     
                    ,activate#(N)                
                    ,activate#(M)                
                    ,activate#(N))               
          14: U64#(tt(),M,N) ->                  
                c_19(activate#(N),activate#(M))  
          15: activate#(n__plus(X1,X2)) ->       
                c_22(activate#(X1)               
                    ,activate#(X2))              
          16: activate#(n__s(X)) ->              
                c_23(activate#(X))               
          17: isNat#(n__plus(V1,V2)) ->          
                c_25(U11#(isNatKind(activate(V1))
                         ,activate(V1)           
                         ,activate(V2))          
                    ,isNatKind#(activate(V1))    
                    ,activate#(V1)               
                    ,activate#(V1)               
                    ,activate#(V2))              
          18: isNat#(n__s(V1)) ->                
                c_26(U21#(isNatKind(activate(V1))
                         ,activate(V1))          
                    ,isNatKind#(activate(V1))    
                    ,activate#(V1)               
                    ,activate#(V1))              
          19: isNatKind#(n__plus(V1,V2)) ->      
                c_28(U31#(isNatKind(activate(V1))
                         ,activate(V2))          
                    ,isNatKind#(activate(V1))    
                    ,activate#(V1)               
                    ,activate#(V2))              
          20: isNatKind#(n__s(V1)) ->            
                c_29(isNatKind#(activate(V1))    
                    ,activate#(V1))              
  *** 1.1.1.1.1.1.1.1.2.1.1.1 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        Strict TRS Rules:
          
        Weak DP Rules:
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
          U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
          U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
          U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
          U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
          U52#(tt(),N) -> c_15(activate#(N))
          U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
          U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
          U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
          activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_23(activate#(X))
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
          isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V2) -> U32(isNatKind(activate(V2)))
          U32(tt()) -> tt()
          U41(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
          activate(n__s(X)) -> s(activate(X))
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
        Signature:
          {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
      Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
      Proof:
        We estimate the number of application of
          {1}
        by application of
          Pre({1}) = {}.
        Here rules are labelled as follows:
          1:  U61#(tt(),M,N) ->                  
                c_16(U62#(isNatKind(activate(M)) 
                         ,activate(M)            
                         ,activate(N))           
                    ,isNatKind#(activate(M))     
                    ,activate#(M)                
                    ,activate#(M)                
                    ,activate#(N))               
          2:  U11#(tt(),V1,V2) ->                
                c_2(U12#(isNatKind(activate(V1)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V1))     
                   ,activate#(V1)                
                   ,activate#(V1)                
                   ,activate#(V2))               
          3:  U12#(tt(),V1,V2) ->                
                c_3(U13#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2))     
                   ,activate#(V2)                
                   ,activate#(V1)                
                   ,activate#(V2))               
          4:  U13#(tt(),V1,V2) ->                
                c_4(U14#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2))     
                   ,activate#(V2)                
                   ,activate#(V1)                
                   ,activate#(V2))               
          5:  U14#(tt(),V1,V2) ->                
                c_5(U15#(isNat(activate(V1))     
                        ,activate(V2))           
                   ,isNat#(activate(V1))         
                   ,activate#(V1)                
                   ,activate#(V2))               
          6:  U15#(tt(),V2) ->                   
                c_6(isNat#(activate(V2))         
                   ,activate#(V2))               
          7:  U21#(tt(),V1) ->                   
                c_8(U22#(isNatKind(activate(V1)) 
                        ,activate(V1))           
                   ,isNatKind#(activate(V1))     
                   ,activate#(V1)                
                   ,activate#(V1))               
          8:  U22#(tt(),V1) ->                   
                c_9(isNat#(activate(V1))         
                   ,activate#(V1))               
          9:  U31#(tt(),V2) ->                   
                c_11(isNatKind#(activate(V2))    
                    ,activate#(V2))              
          10: U51#(tt(),N) ->                    
                c_14(U52#(isNatKind(activate(N)) 
                         ,activate(N))           
                    ,isNatKind#(activate(N))     
                    ,activate#(N)                
                    ,activate#(N))               
          11: U52#(tt(),N) ->                    
                c_15(activate#(N))               
          12: U62#(tt(),M,N) ->                  
                c_17(U63#(isNat(activate(N))     
                         ,activate(M)            
                         ,activate(N))           
                    ,isNat#(activate(N))         
                    ,activate#(N)                
                    ,activate#(M)                
                    ,activate#(N))               
          13: U63#(tt(),M,N) ->                  
                c_18(U64#(isNatKind(activate(N)) 
                         ,activate(M)            
                         ,activate(N))           
                    ,isNatKind#(activate(N))     
                    ,activate#(N)                
                    ,activate#(M)                
                    ,activate#(N))               
          14: U64#(tt(),M,N) ->                  
                c_19(activate#(N),activate#(M))  
          15: activate#(n__plus(X1,X2)) ->       
                c_22(activate#(X1)               
                    ,activate#(X2))              
          16: activate#(n__s(X)) ->              
                c_23(activate#(X))               
          17: isNat#(n__plus(V1,V2)) ->          
                c_25(U11#(isNatKind(activate(V1))
                         ,activate(V1)           
                         ,activate(V2))          
                    ,isNatKind#(activate(V1))    
                    ,activate#(V1)               
                    ,activate#(V1)               
                    ,activate#(V2))              
          18: isNat#(n__s(V1)) ->                
                c_26(U21#(isNatKind(activate(V1))
                         ,activate(V1))          
                    ,isNatKind#(activate(V1))    
                    ,activate#(V1)               
                    ,activate#(V1))              
          19: isNatKind#(n__plus(V1,V2)) ->      
                c_28(U31#(isNatKind(activate(V1))
                         ,activate(V2))          
                    ,isNatKind#(activate(V1))    
                    ,activate#(V1)               
                    ,activate#(V2))              
          20: isNatKind#(n__s(V1)) ->            
                c_29(isNatKind#(activate(V1))    
                    ,activate#(V1))              
  *** 1.1.1.1.1.1.1.1.2.1.1.1.1 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          
        Strict TRS Rules:
          
        Weak DP Rules:
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
          U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
          U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
          U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
          U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
          U52#(tt(),N) -> c_15(activate#(N))
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
          U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
          U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
          U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
          activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_23(activate#(X))
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
          isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V2) -> U32(isNatKind(activate(V2)))
          U32(tt()) -> tt()
          U41(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
          activate(n__s(X)) -> s(activate(X))
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
        Signature:
          {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:W:U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
             -->_5 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_4 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_5 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_4 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_1 U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):2
          
          2:W:U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
             -->_5 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_4 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_5 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_4 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_1 U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):3
          
          3:W:U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
             -->_5 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_4 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_5 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_4 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_1 U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):4
          
          4:W:U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):18
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):17
             -->_4 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_4 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_1 U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2)):5
          
          5:W:U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
             -->_1 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):18
             -->_1 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):17
             -->_2 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_2 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
          
          6:W:U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
             -->_4 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_4 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_1 U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1)):7
          
          7:W:U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
             -->_1 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):18
             -->_1 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):17
             -->_2 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_2 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
          
          8:W:U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):20
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
             -->_2 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_2 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
          
          9:W:U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
             -->_4 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_4 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_1 U52#(tt(),N) -> c_15(activate#(N)):10
          
          10:W:U52#(tt(),N) -> c_15(activate#(N))
             -->_1 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
          
          11:W:U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
             -->_5 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_4 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_5 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_4 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_1 U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)):12
          
          12:W:U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):18
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):17
             -->_5 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_4 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_5 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_4 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_1 U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N)):13
          
          13:W:U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
             -->_5 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_4 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_5 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_4 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_1 U64#(tt(),M,N) -> c_19(activate#(N),activate#(M)):14
          
          14:W:U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
             -->_2 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_1 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_2 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
          
          15:W:activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
             -->_2 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_1 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_2 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
          
          16:W:activate#(n__s(X)) -> c_23(activate#(X))
             -->_1 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
          
          17:W:isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
             -->_5 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_4 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_5 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_4 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_1 U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):1
          
          18:W:isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
             -->_4 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_4 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_1 U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):6
          
          19:W:isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
             -->_4 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_4 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
             -->_1 U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2)):8
          
          20:W:isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):20
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):19
             -->_2 activate#(n__s(X)) -> c_23(activate#(X)):16
             -->_2 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):15
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          11: U61#(tt(),M,N) ->                  
                c_16(U62#(isNatKind(activate(M)) 
                         ,activate(M)            
                         ,activate(N))           
                    ,isNatKind#(activate(M))     
                    ,activate#(M)                
                    ,activate#(M)                
                    ,activate#(N))               
          12: U62#(tt(),M,N) ->                  
                c_17(U63#(isNat(activate(N))     
                         ,activate(M)            
                         ,activate(N))           
                    ,isNat#(activate(N))         
                    ,activate#(N)                
                    ,activate#(M)                
                    ,activate#(N))               
          13: U63#(tt(),M,N) ->                  
                c_18(U64#(isNatKind(activate(N)) 
                         ,activate(M)            
                         ,activate(N))           
                    ,isNatKind#(activate(N))     
                    ,activate#(N)                
                    ,activate#(M)                
                    ,activate#(N))               
          14: U64#(tt(),M,N) ->                  
                c_19(activate#(N),activate#(M))  
          9:  U51#(tt(),N) ->                    
                c_14(U52#(isNatKind(activate(N)) 
                         ,activate(N))           
                    ,isNatKind#(activate(N))     
                    ,activate#(N)                
                    ,activate#(N))               
          10: U52#(tt(),N) ->                    
                c_15(activate#(N))               
          1:  U11#(tt(),V1,V2) ->                
                c_2(U12#(isNatKind(activate(V1)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V1))     
                   ,activate#(V1)                
                   ,activate#(V1)                
                   ,activate#(V2))               
          17: isNat#(n__plus(V1,V2)) ->          
                c_25(U11#(isNatKind(activate(V1))
                         ,activate(V1)           
                         ,activate(V2))          
                    ,isNatKind#(activate(V1))    
                    ,activate#(V1)               
                    ,activate#(V1)               
                    ,activate#(V2))              
          7:  U22#(tt(),V1) ->                   
                c_9(isNat#(activate(V1))         
                   ,activate#(V1))               
          6:  U21#(tt(),V1) ->                   
                c_8(U22#(isNatKind(activate(V1)) 
                        ,activate(V1))           
                   ,isNatKind#(activate(V1))     
                   ,activate#(V1)                
                   ,activate#(V1))               
          18: isNat#(n__s(V1)) ->                
                c_26(U21#(isNatKind(activate(V1))
                         ,activate(V1))          
                    ,isNatKind#(activate(V1))    
                    ,activate#(V1)               
                    ,activate#(V1))              
          5:  U15#(tt(),V2) ->                   
                c_6(isNat#(activate(V2))         
                   ,activate#(V2))               
          4:  U14#(tt(),V1,V2) ->                
                c_5(U15#(isNat(activate(V1))     
                        ,activate(V2))           
                   ,isNat#(activate(V1))         
                   ,activate#(V1)                
                   ,activate#(V2))               
          3:  U13#(tt(),V1,V2) ->                
                c_4(U14#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2))     
                   ,activate#(V2)                
                   ,activate#(V1)                
                   ,activate#(V2))               
          2:  U12#(tt(),V1,V2) ->                
                c_3(U13#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2))     
                   ,activate#(V2)                
                   ,activate#(V1)                
                   ,activate#(V2))               
          20: isNatKind#(n__s(V1)) ->            
                c_29(isNatKind#(activate(V1))    
                    ,activate#(V1))              
          19: isNatKind#(n__plus(V1,V2)) ->      
                c_28(U31#(isNatKind(activate(V1))
                         ,activate(V2))          
                    ,isNatKind#(activate(V1))    
                    ,activate#(V1)               
                    ,activate#(V2))              
          8:  U31#(tt(),V2) ->                   
                c_11(isNatKind#(activate(V2))    
                    ,activate#(V2))              
          16: activate#(n__s(X)) ->              
                c_23(activate#(X))               
          15: activate#(n__plus(X1,X2)) ->       
                c_22(activate#(X1)               
                    ,activate#(X2))              
  *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V2) -> U32(isNatKind(activate(V2)))
          U32(tt()) -> tt()
          U41(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
          activate(n__s(X)) -> s(activate(X))
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
        Signature:
          {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/0,c_31/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}/{n__0,n__plus,n__s,tt}
      Applied Processor:
        EmptyProcessor
      Proof:
        The problem is already closed. The intended complexity is O(1).