*** 1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        __(nil(),X) -> X
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isList(X)) -> isList(X)
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__isPal(X)) -> isPal(X)
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        and(tt(),X) -> activate(X)
        e() -> n__e()
        i() -> n__i()
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isNePal(V) -> isQid(activate(V))
        isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P)))
        isPal(V) -> isNePal(activate(V))
        isPal(X) -> n__isPal(X)
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Innermost
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      InnermostRuleRemoval
    Proof:
      Arguments of following rules are not normal-forms.
        __(X,nil()) -> X
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        __(nil(),X) -> X
        isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P)))
      All above mentioned rules can be savely removed.
*** 1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(X1,X2) -> n____(X1,X2)
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isList(X)) -> isList(X)
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__isPal(X)) -> isPal(X)
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        and(tt(),X) -> activate(X)
        e() -> n__e()
        i() -> n__i()
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isNePal(V) -> isQid(activate(V))
        isPal(V) -> isNePal(activate(V))
        isPal(X) -> n__isPal(X)
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Innermost
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isQid) = {1},
          uargs(n__isList) = {1},
          uargs(n__isNeList) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                   p(__) = [1] x1 + [1] x2 + [0]
                    p(a) = [0]                  
             p(activate) = [1] x1 + [0]         
                  p(and) = [1] x1 + [1] x2 + [7]
                    p(e) = [0]                  
                    p(i) = [0]                  
               p(isList) = [1] x1 + [3]         
             p(isNeList) = [1] x1 + [1]         
              p(isNePal) = [1] x1 + [0]         
                p(isPal) = [1] x1 + [0]         
                p(isQid) = [1] x1 + [5]         
                p(n____) = [1] x1 + [1] x2 + [5]
                 p(n__a) = [0]                  
                 p(n__e) = [0]                  
                 p(n__i) = [0]                  
            p(n__isList) = [1] x1 + [0]         
          p(n__isNeList) = [1] x1 + [3]         
             p(n__isPal) = [1] x1 + [3]         
               p(n__nil) = [0]                  
                 p(n__o) = [5]                  
                 p(n__u) = [0]                  
                  p(nil) = [0]                  
                    p(o) = [0]                  
                   p(tt) = [0]                  
                    p(u) = [1]                  
        
        Following rules are strictly oriented:
          activate(n____(X1,X2)) = [1] X1 + [1] X2 + [5]
                                 > [1] X1 + [1] X2 + [0]
                                 = __(X1,X2)            
        
        activate(n__isNeList(X)) = [1] X + [3]          
                                 > [1] X + [1]          
                                 = isNeList(X)          
        
           activate(n__isPal(X)) = [1] X + [3]          
                                 > [1] X + [0]          
                                 = isPal(X)             
        
                activate(n__o()) = [5]                  
                                 > [0]                  
                                 = o()                  
        
                     and(tt(),X) = [1] X + [7]          
                                 > [1] X + [0]          
                                 = activate(X)          
        
                       isList(V) = [1] V + [3]          
                                 > [1] V + [1]          
                                 = isNeList(activate(V))
        
                       isList(X) = [1] X + [3]          
                                 > [1] X + [0]          
                                 = n__isList(X)         
        
                isList(n__nil()) = [3]                  
                                 > [0]                  
                                 = tt()                 
        
                   isQid(n__a()) = [5]                  
                                 > [0]                  
                                 = tt()                 
        
                   isQid(n__e()) = [5]                  
                                 > [0]                  
                                 = tt()                 
        
                   isQid(n__i()) = [5]                  
                                 > [0]                  
                                 = tt()                 
        
                   isQid(n__o()) = [10]                 
                                 > [0]                  
                                 = tt()                 
        
                   isQid(n__u()) = [5]                  
                                 > [0]                  
                                 = tt()                 
        
                             u() = [1]                  
                                 > [0]                  
                                 = n__u()               
        
        
        Following rules are (at-least) weakly oriented:
                     __(X1,X2) =  [1] X1 + [1] X2 + [0]         
                               >= [1] X1 + [1] X2 + [5]         
                               =  n____(X1,X2)                  
        
                           a() =  [0]                           
                               >= [0]                           
                               =  n__a()                        
        
                   activate(X) =  [1] X + [0]                   
                               >= [1] X + [0]                   
                               =  X                             
        
              activate(n__a()) =  [0]                           
                               >= [0]                           
                               =  a()                           
        
              activate(n__e()) =  [0]                           
                               >= [0]                           
                               =  e()                           
        
              activate(n__i()) =  [0]                           
                               >= [0]                           
                               =  i()                           
        
        activate(n__isList(X)) =  [1] X + [0]                   
                               >= [1] X + [3]                   
                               =  isList(X)                     
        
            activate(n__nil()) =  [0]                           
                               >= [0]                           
                               =  nil()                         
        
              activate(n__u()) =  [0]                           
                               >= [1]                           
                               =  u()                           
        
                           e() =  [0]                           
                               >= [0]                           
                               =  n__e()                        
        
                           i() =  [0]                           
                               >= [0]                           
                               =  n__i()                        
        
          isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [8]         
                               >= [1] V1 + [1] V2 + [10]        
                               =  and(isList(activate(V1))      
                                     ,n__isList(activate(V2)))  
        
                   isNeList(V) =  [1] V + [1]                   
                               >= [1] V + [5]                   
                               =  isQid(activate(V))            
        
                   isNeList(X) =  [1] X + [1]                   
                               >= [1] X + [3]                   
                               =  n__isNeList(X)                
        
        isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [6]         
                               >= [1] V1 + [1] V2 + [13]        
                               =  and(isList(activate(V1))      
                                     ,n__isNeList(activate(V2)))
        
        isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [6]         
                               >= [1] V1 + [1] V2 + [8]         
                               =  and(isNeList(activate(V1))    
                                     ,n__isList(activate(V2)))  
        
                    isNePal(V) =  [1] V + [0]                   
                               >= [1] V + [5]                   
                               =  isQid(activate(V))            
        
                      isPal(V) =  [1] V + [0]                   
                               >= [1] V + [0]                   
                               =  isNePal(activate(V))          
        
                      isPal(X) =  [1] X + [0]                   
                               >= [1] X + [3]                   
                               =  n__isPal(X)                   
        
               isPal(n__nil()) =  [0]                           
                               >= [0]                           
                               =  tt()                          
        
                         nil() =  [0]                           
                               >= [0]                           
                               =  n__nil()                      
        
                           o() =  [0]                           
                               >= [5]                           
                               =  n__o()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(X1,X2) -> n____(X1,X2)
        a() -> n__a()
        activate(X) -> X
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isList(X)) -> isList(X)
        activate(n__nil()) -> nil()
        activate(n__u()) -> u()
        e() -> n__e()
        i() -> n__i()
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isNePal(V) -> isQid(activate(V))
        isPal(V) -> isNePal(activate(V))
        isPal(X) -> n__isPal(X)
        isPal(n__nil()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__isPal(X)) -> isPal(X)
        activate(n__o()) -> o()
        and(tt(),X) -> activate(X)
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        u() -> n__u()
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Innermost
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isQid) = {1},
          uargs(n__isList) = {1},
          uargs(n__isNeList) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                   p(__) = [1] x1 + [1] x2 + [1]
                    p(a) = [0]                  
             p(activate) = [1] x1 + [0]         
                  p(and) = [1] x1 + [1] x2 + [0]
                    p(e) = [0]                  
                    p(i) = [0]                  
               p(isList) = [1] x1 + [0]         
             p(isNeList) = [1] x1 + [0]         
              p(isNePal) = [1] x1 + [0]         
                p(isPal) = [1] x1 + [0]         
                p(isQid) = [1] x1 + [0]         
                p(n____) = [1] x1 + [1] x2 + [1]
                 p(n__a) = [5]                  
                 p(n__e) = [4]                  
                 p(n__i) = [1]                  
            p(n__isList) = [1] x1 + [0]         
          p(n__isNeList) = [1] x1 + [0]         
             p(n__isPal) = [1] x1 + [0]         
               p(n__nil) = [0]                  
                 p(n__o) = [1]                  
                 p(n__u) = [1]                  
                  p(nil) = [1]                  
                    p(o) = [1]                  
                   p(tt) = [0]                  
                    p(u) = [1]                  
        
        Following rules are strictly oriented:
              activate(n__a()) = [5]                           
                               > [0]                           
                               = a()                           
        
              activate(n__e()) = [4]                           
                               > [0]                           
                               = e()                           
        
              activate(n__i()) = [1]                           
                               > [0]                           
                               = i()                           
        
          isList(n____(V1,V2)) = [1] V1 + [1] V2 + [1]         
                               > [1] V1 + [1] V2 + [0]         
                               = and(isList(activate(V1))      
                                    ,n__isList(activate(V2)))  
        
        isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [1]         
                               > [1] V1 + [1] V2 + [0]         
                               = and(isList(activate(V1))      
                                    ,n__isNeList(activate(V2)))
        
        isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [1]         
                               > [1] V1 + [1] V2 + [0]         
                               = and(isNeList(activate(V1))    
                                    ,n__isList(activate(V2)))  
        
                         nil() = [1]                           
                               > [0]                           
                               = n__nil()                      
        
        
        Following rules are (at-least) weakly oriented:
                       __(X1,X2) =  [1] X1 + [1] X2 + [1]
                                 >= [1] X1 + [1] X2 + [1]
                                 =  n____(X1,X2)         
        
                             a() =  [0]                  
                                 >= [5]                  
                                 =  n__a()               
        
                     activate(X) =  [1] X + [0]          
                                 >= [1] X + [0]          
                                 =  X                    
        
          activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [1]
                                 >= [1] X1 + [1] X2 + [1]
                                 =  __(X1,X2)            
        
          activate(n__isList(X)) =  [1] X + [0]          
                                 >= [1] X + [0]          
                                 =  isList(X)            
        
        activate(n__isNeList(X)) =  [1] X + [0]          
                                 >= [1] X + [0]          
                                 =  isNeList(X)          
        
           activate(n__isPal(X)) =  [1] X + [0]          
                                 >= [1] X + [0]          
                                 =  isPal(X)             
        
              activate(n__nil()) =  [0]                  
                                 >= [1]                  
                                 =  nil()                
        
                activate(n__o()) =  [1]                  
                                 >= [1]                  
                                 =  o()                  
        
                activate(n__u()) =  [1]                  
                                 >= [1]                  
                                 =  u()                  
        
                     and(tt(),X) =  [1] X + [0]          
                                 >= [1] X + [0]          
                                 =  activate(X)          
        
                             e() =  [0]                  
                                 >= [4]                  
                                 =  n__e()               
        
                             i() =  [0]                  
                                 >= [1]                  
                                 =  n__i()               
        
                       isList(V) =  [1] V + [0]          
                                 >= [1] V + [0]          
                                 =  isNeList(activate(V))
        
                       isList(X) =  [1] X + [0]          
                                 >= [1] X + [0]          
                                 =  n__isList(X)         
        
                isList(n__nil()) =  [0]                  
                                 >= [0]                  
                                 =  tt()                 
        
                     isNeList(V) =  [1] V + [0]          
                                 >= [1] V + [0]          
                                 =  isQid(activate(V))   
        
                     isNeList(X) =  [1] X + [0]          
                                 >= [1] X + [0]          
                                 =  n__isNeList(X)       
        
                      isNePal(V) =  [1] V + [0]          
                                 >= [1] V + [0]          
                                 =  isQid(activate(V))   
        
                        isPal(V) =  [1] V + [0]          
                                 >= [1] V + [0]          
                                 =  isNePal(activate(V)) 
        
                        isPal(X) =  [1] X + [0]          
                                 >= [1] X + [0]          
                                 =  n__isPal(X)          
        
                 isPal(n__nil()) =  [0]                  
                                 >= [0]                  
                                 =  tt()                 
        
                   isQid(n__a()) =  [5]                  
                                 >= [0]                  
                                 =  tt()                 
        
                   isQid(n__e()) =  [4]                  
                                 >= [0]                  
                                 =  tt()                 
        
                   isQid(n__i()) =  [1]                  
                                 >= [0]                  
                                 =  tt()                 
        
                   isQid(n__o()) =  [1]                  
                                 >= [0]                  
                                 =  tt()                 
        
                   isQid(n__u()) =  [1]                  
                                 >= [0]                  
                                 =  tt()                 
        
                             o() =  [1]                  
                                 >= [1]                  
                                 =  n__o()               
        
                             u() =  [1]                  
                                 >= [1]                  
                                 =  n__u()               
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(X1,X2) -> n____(X1,X2)
        a() -> n__a()
        activate(X) -> X
        activate(n__isList(X)) -> isList(X)
        activate(n__nil()) -> nil()
        activate(n__u()) -> u()
        e() -> n__e()
        i() -> n__i()
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isNePal(V) -> isQid(activate(V))
        isPal(V) -> isNePal(activate(V))
        isPal(X) -> n__isPal(X)
        isPal(n__nil()) -> tt()
        o() -> n__o()
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__isPal(X)) -> isPal(X)
        activate(n__o()) -> o()
        and(tt(),X) -> activate(X)
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        u() -> n__u()
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Innermost
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isQid) = {1},
          uargs(n__isList) = {1},
          uargs(n__isNeList) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                   p(__) = [1] x1 + [1] x2 + [4]
                    p(a) = [1]                  
             p(activate) = [1] x1 + [0]         
                  p(and) = [1] x1 + [1] x2 + [4]
                    p(e) = [1]                  
                    p(i) = [1]                  
               p(isList) = [1] x1 + [0]         
             p(isNeList) = [1] x1 + [0]         
              p(isNePal) = [1] x1 + [0]         
                p(isPal) = [1] x1 + [5]         
                p(isQid) = [1] x1 + [2]         
                p(n____) = [1] x1 + [1] x2 + [4]
                 p(n__a) = [1]                  
                 p(n__e) = [1]                  
                 p(n__i) = [1]                  
            p(n__isList) = [1] x1 + [0]         
          p(n__isNeList) = [1] x1 + [0]         
             p(n__isPal) = [1] x1 + [5]         
               p(n__nil) = [1]                  
                 p(n__o) = [3]                  
                 p(n__u) = [7]                  
                  p(nil) = [1]                  
                    p(o) = [0]                  
                   p(tt) = [0]                  
                    p(u) = [7]                  
        
        Following rules are strictly oriented:
               isPal(V) = [1] V + [5]         
                        > [1] V + [0]         
                        = isNePal(activate(V))
        
        isPal(n__nil()) = [6]                 
                        > [0]                 
                        = tt()                
        
        
        Following rules are (at-least) weakly oriented:
                       __(X1,X2) =  [1] X1 + [1] X2 + [4]         
                                 >= [1] X1 + [1] X2 + [4]         
                                 =  n____(X1,X2)                  
        
                             a() =  [1]                           
                                 >= [1]                           
                                 =  n__a()                        
        
                     activate(X) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  X                             
        
          activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [4]         
                                 >= [1] X1 + [1] X2 + [4]         
                                 =  __(X1,X2)                     
        
                activate(n__a()) =  [1]                           
                                 >= [1]                           
                                 =  a()                           
        
                activate(n__e()) =  [1]                           
                                 >= [1]                           
                                 =  e()                           
        
                activate(n__i()) =  [1]                           
                                 >= [1]                           
                                 =  i()                           
        
          activate(n__isList(X)) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  isList(X)                     
        
        activate(n__isNeList(X)) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  isNeList(X)                   
        
           activate(n__isPal(X)) =  [1] X + [5]                   
                                 >= [1] X + [5]                   
                                 =  isPal(X)                      
        
              activate(n__nil()) =  [1]                           
                                 >= [1]                           
                                 =  nil()                         
        
                activate(n__o()) =  [3]                           
                                 >= [0]                           
                                 =  o()                           
        
                activate(n__u()) =  [7]                           
                                 >= [7]                           
                                 =  u()                           
        
                     and(tt(),X) =  [1] X + [4]                   
                                 >= [1] X + [0]                   
                                 =  activate(X)                   
        
                             e() =  [1]                           
                                 >= [1]                           
                                 =  n__e()                        
        
                             i() =  [1]                           
                                 >= [1]                           
                                 =  n__i()                        
        
                       isList(V) =  [1] V + [0]                   
                                 >= [1] V + [0]                   
                                 =  isNeList(activate(V))         
        
                       isList(X) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  n__isList(X)                  
        
            isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [4]         
                                 >= [1] V1 + [1] V2 + [4]         
                                 =  and(isList(activate(V1))      
                                       ,n__isList(activate(V2)))  
        
                isList(n__nil()) =  [1]                           
                                 >= [0]                           
                                 =  tt()                          
        
                     isNeList(V) =  [1] V + [0]                   
                                 >= [1] V + [2]                   
                                 =  isQid(activate(V))            
        
                     isNeList(X) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  n__isNeList(X)                
        
          isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [4]         
                                 >= [1] V1 + [1] V2 + [4]         
                                 =  and(isList(activate(V1))      
                                       ,n__isNeList(activate(V2)))
        
          isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [4]         
                                 >= [1] V1 + [1] V2 + [4]         
                                 =  and(isNeList(activate(V1))    
                                       ,n__isList(activate(V2)))  
        
                      isNePal(V) =  [1] V + [0]                   
                                 >= [1] V + [2]                   
                                 =  isQid(activate(V))            
        
                        isPal(X) =  [1] X + [5]                   
                                 >= [1] X + [5]                   
                                 =  n__isPal(X)                   
        
                   isQid(n__a()) =  [3]                           
                                 >= [0]                           
                                 =  tt()                          
        
                   isQid(n__e()) =  [3]                           
                                 >= [0]                           
                                 =  tt()                          
        
                   isQid(n__i()) =  [3]                           
                                 >= [0]                           
                                 =  tt()                          
        
                   isQid(n__o()) =  [5]                           
                                 >= [0]                           
                                 =  tt()                          
        
                   isQid(n__u()) =  [9]                           
                                 >= [0]                           
                                 =  tt()                          
        
                           nil() =  [1]                           
                                 >= [1]                           
                                 =  n__nil()                      
        
                             o() =  [0]                           
                                 >= [3]                           
                                 =  n__o()                        
        
                             u() =  [7]                           
                                 >= [7]                           
                                 =  n__u()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(X1,X2) -> n____(X1,X2)
        a() -> n__a()
        activate(X) -> X
        activate(n__isList(X)) -> isList(X)
        activate(n__nil()) -> nil()
        activate(n__u()) -> u()
        e() -> n__e()
        i() -> n__i()
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isNePal(V) -> isQid(activate(V))
        isPal(X) -> n__isPal(X)
        o() -> n__o()
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__isPal(X)) -> isPal(X)
        activate(n__o()) -> o()
        and(tt(),X) -> activate(X)
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isPal(V) -> isNePal(activate(V))
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        u() -> n__u()
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Innermost
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isQid) = {1},
          uargs(n__isList) = {1},
          uargs(n__isNeList) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                   p(__) = [1] x1 + [1] x2 + [0]
                    p(a) = [2]                  
             p(activate) = [1] x1 + [0]         
                  p(and) = [1] x1 + [1] x2 + [0]
                    p(e) = [0]                  
                    p(i) = [0]                  
               p(isList) = [1] x1 + [0]         
             p(isNeList) = [1] x1 + [0]         
              p(isNePal) = [1] x1 + [6]         
                p(isPal) = [1] x1 + [6]         
                p(isQid) = [1] x1 + [0]         
                p(n____) = [1] x1 + [1] x2 + [0]
                 p(n__a) = [3]                  
                 p(n__e) = [6]                  
                 p(n__i) = [0]                  
            p(n__isList) = [1] x1 + [0]         
          p(n__isNeList) = [1] x1 + [0]         
             p(n__isPal) = [1] x1 + [6]         
               p(n__nil) = [0]                  
                 p(n__o) = [2]                  
                 p(n__u) = [3]                  
                  p(nil) = [1]                  
                    p(o) = [0]                  
                   p(tt) = [0]                  
                    p(u) = [3]                  
        
        Following rules are strictly oriented:
        isNePal(V) = [1] V + [6]       
                   > [1] V + [0]       
                   = isQid(activate(V))
        
        
        Following rules are (at-least) weakly oriented:
                       __(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                 >= [1] X1 + [1] X2 + [0]         
                                 =  n____(X1,X2)                  
        
                             a() =  [2]                           
                                 >= [3]                           
                                 =  n__a()                        
        
                     activate(X) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  X                             
        
          activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [0]         
                                 >= [1] X1 + [1] X2 + [0]         
                                 =  __(X1,X2)                     
        
                activate(n__a()) =  [3]                           
                                 >= [2]                           
                                 =  a()                           
        
                activate(n__e()) =  [6]                           
                                 >= [0]                           
                                 =  e()                           
        
                activate(n__i()) =  [0]                           
                                 >= [0]                           
                                 =  i()                           
        
          activate(n__isList(X)) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  isList(X)                     
        
        activate(n__isNeList(X)) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  isNeList(X)                   
        
           activate(n__isPal(X)) =  [1] X + [6]                   
                                 >= [1] X + [6]                   
                                 =  isPal(X)                      
        
              activate(n__nil()) =  [0]                           
                                 >= [1]                           
                                 =  nil()                         
        
                activate(n__o()) =  [2]                           
                                 >= [0]                           
                                 =  o()                           
        
                activate(n__u()) =  [3]                           
                                 >= [3]                           
                                 =  u()                           
        
                     and(tt(),X) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  activate(X)                   
        
                             e() =  [0]                           
                                 >= [6]                           
                                 =  n__e()                        
        
                             i() =  [0]                           
                                 >= [0]                           
                                 =  n__i()                        
        
                       isList(V) =  [1] V + [0]                   
                                 >= [1] V + [0]                   
                                 =  isNeList(activate(V))         
        
                       isList(X) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  n__isList(X)                  
        
            isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]         
                                 >= [1] V1 + [1] V2 + [0]         
                                 =  and(isList(activate(V1))      
                                       ,n__isList(activate(V2)))  
        
                isList(n__nil()) =  [0]                           
                                 >= [0]                           
                                 =  tt()                          
        
                     isNeList(V) =  [1] V + [0]                   
                                 >= [1] V + [0]                   
                                 =  isQid(activate(V))            
        
                     isNeList(X) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  n__isNeList(X)                
        
          isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]         
                                 >= [1] V1 + [1] V2 + [0]         
                                 =  and(isList(activate(V1))      
                                       ,n__isNeList(activate(V2)))
        
          isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]         
                                 >= [1] V1 + [1] V2 + [0]         
                                 =  and(isNeList(activate(V1))    
                                       ,n__isList(activate(V2)))  
        
                        isPal(V) =  [1] V + [6]                   
                                 >= [1] V + [6]                   
                                 =  isNePal(activate(V))          
        
                        isPal(X) =  [1] X + [6]                   
                                 >= [1] X + [6]                   
                                 =  n__isPal(X)                   
        
                 isPal(n__nil()) =  [6]                           
                                 >= [0]                           
                                 =  tt()                          
        
                   isQid(n__a()) =  [3]                           
                                 >= [0]                           
                                 =  tt()                          
        
                   isQid(n__e()) =  [6]                           
                                 >= [0]                           
                                 =  tt()                          
        
                   isQid(n__i()) =  [0]                           
                                 >= [0]                           
                                 =  tt()                          
        
                   isQid(n__o()) =  [2]                           
                                 >= [0]                           
                                 =  tt()                          
        
                   isQid(n__u()) =  [3]                           
                                 >= [0]                           
                                 =  tt()                          
        
                           nil() =  [1]                           
                                 >= [0]                           
                                 =  n__nil()                      
        
                             o() =  [0]                           
                                 >= [2]                           
                                 =  n__o()                        
        
                             u() =  [3]                           
                                 >= [3]                           
                                 =  n__u()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(X1,X2) -> n____(X1,X2)
        a() -> n__a()
        activate(X) -> X
        activate(n__isList(X)) -> isList(X)
        activate(n__nil()) -> nil()
        activate(n__u()) -> u()
        e() -> n__e()
        i() -> n__i()
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isPal(X) -> n__isPal(X)
        o() -> n__o()
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__isPal(X)) -> isPal(X)
        activate(n__o()) -> o()
        and(tt(),X) -> activate(X)
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isNePal(V) -> isQid(activate(V))
        isPal(V) -> isNePal(activate(V))
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        u() -> n__u()
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Innermost
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isQid) = {1},
          uargs(n__isList) = {1},
          uargs(n__isNeList) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                   p(__) = [1] x1 + [1] x2 + [7]
                    p(a) = [0]                  
             p(activate) = [1] x1 + [0]         
                  p(and) = [1] x1 + [1] x2 + [0]
                    p(e) = [0]                  
                    p(i) = [0]                  
               p(isList) = [1] x1 + [2]         
             p(isNeList) = [1] x1 + [2]         
              p(isNePal) = [1] x1 + [0]         
                p(isPal) = [1] x1 + [0]         
                p(isQid) = [1] x1 + [0]         
                p(n____) = [1] x1 + [1] x2 + [7]
                 p(n__a) = [0]                  
                 p(n__e) = [0]                  
                 p(n__i) = [0]                  
            p(n__isList) = [1] x1 + [2]         
          p(n__isNeList) = [1] x1 + [2]         
             p(n__isPal) = [1] x1 + [0]         
               p(n__nil) = [0]                  
                 p(n__o) = [0]                  
                 p(n__u) = [0]                  
                  p(nil) = [0]                  
                    p(o) = [0]                  
                   p(tt) = [0]                  
                    p(u) = [0]                  
        
        Following rules are strictly oriented:
        isNeList(V) = [1] V + [2]       
                    > [1] V + [0]       
                    = isQid(activate(V))
        
        
        Following rules are (at-least) weakly oriented:
                       __(X1,X2) =  [1] X1 + [1] X2 + [7]         
                                 >= [1] X1 + [1] X2 + [7]         
                                 =  n____(X1,X2)                  
        
                             a() =  [0]                           
                                 >= [0]                           
                                 =  n__a()                        
        
                     activate(X) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  X                             
        
          activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [7]         
                                 >= [1] X1 + [1] X2 + [7]         
                                 =  __(X1,X2)                     
        
                activate(n__a()) =  [0]                           
                                 >= [0]                           
                                 =  a()                           
        
                activate(n__e()) =  [0]                           
                                 >= [0]                           
                                 =  e()                           
        
                activate(n__i()) =  [0]                           
                                 >= [0]                           
                                 =  i()                           
        
          activate(n__isList(X)) =  [1] X + [2]                   
                                 >= [1] X + [2]                   
                                 =  isList(X)                     
        
        activate(n__isNeList(X)) =  [1] X + [2]                   
                                 >= [1] X + [2]                   
                                 =  isNeList(X)                   
        
           activate(n__isPal(X)) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  isPal(X)                      
        
              activate(n__nil()) =  [0]                           
                                 >= [0]                           
                                 =  nil()                         
        
                activate(n__o()) =  [0]                           
                                 >= [0]                           
                                 =  o()                           
        
                activate(n__u()) =  [0]                           
                                 >= [0]                           
                                 =  u()                           
        
                     and(tt(),X) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  activate(X)                   
        
                             e() =  [0]                           
                                 >= [0]                           
                                 =  n__e()                        
        
                             i() =  [0]                           
                                 >= [0]                           
                                 =  n__i()                        
        
                       isList(V) =  [1] V + [2]                   
                                 >= [1] V + [2]                   
                                 =  isNeList(activate(V))         
        
                       isList(X) =  [1] X + [2]                   
                                 >= [1] X + [2]                   
                                 =  n__isList(X)                  
        
            isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [9]         
                                 >= [1] V1 + [1] V2 + [4]         
                                 =  and(isList(activate(V1))      
                                       ,n__isList(activate(V2)))  
        
                isList(n__nil()) =  [2]                           
                                 >= [0]                           
                                 =  tt()                          
        
                     isNeList(X) =  [1] X + [2]                   
                                 >= [1] X + [2]                   
                                 =  n__isNeList(X)                
        
          isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [9]         
                                 >= [1] V1 + [1] V2 + [4]         
                                 =  and(isList(activate(V1))      
                                       ,n__isNeList(activate(V2)))
        
          isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [9]         
                                 >= [1] V1 + [1] V2 + [4]         
                                 =  and(isNeList(activate(V1))    
                                       ,n__isList(activate(V2)))  
        
                      isNePal(V) =  [1] V + [0]                   
                                 >= [1] V + [0]                   
                                 =  isQid(activate(V))            
        
                        isPal(V) =  [1] V + [0]                   
                                 >= [1] V + [0]                   
                                 =  isNePal(activate(V))          
        
                        isPal(X) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  n__isPal(X)                   
        
                 isPal(n__nil()) =  [0]                           
                                 >= [0]                           
                                 =  tt()                          
        
                   isQid(n__a()) =  [0]                           
                                 >= [0]                           
                                 =  tt()                          
        
                   isQid(n__e()) =  [0]                           
                                 >= [0]                           
                                 =  tt()                          
        
                   isQid(n__i()) =  [0]                           
                                 >= [0]                           
                                 =  tt()                          
        
                   isQid(n__o()) =  [0]                           
                                 >= [0]                           
                                 =  tt()                          
        
                   isQid(n__u()) =  [0]                           
                                 >= [0]                           
                                 =  tt()                          
        
                           nil() =  [0]                           
                                 >= [0]                           
                                 =  n__nil()                      
        
                             o() =  [0]                           
                                 >= [0]                           
                                 =  n__o()                        
        
                             u() =  [0]                           
                                 >= [0]                           
                                 =  n__u()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(X1,X2) -> n____(X1,X2)
        a() -> n__a()
        activate(X) -> X
        activate(n__isList(X)) -> isList(X)
        activate(n__nil()) -> nil()
        activate(n__u()) -> u()
        e() -> n__e()
        i() -> n__i()
        isNeList(X) -> n__isNeList(X)
        isPal(X) -> n__isPal(X)
        o() -> n__o()
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__isPal(X)) -> isPal(X)
        activate(n__o()) -> o()
        and(tt(),X) -> activate(X)
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(V) -> isQid(activate(V))
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isNePal(V) -> isQid(activate(V))
        isPal(V) -> isNePal(activate(V))
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        u() -> n__u()
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Innermost
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isQid) = {1},
          uargs(n__isList) = {1},
          uargs(n__isNeList) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                   p(__) = [1] x1 + [1] x2 + [0]
                    p(a) = [1]                  
             p(activate) = [1] x1 + [1]         
                  p(and) = [1] x1 + [1] x2 + [1]
                    p(e) = [4]                  
                    p(i) = [0]                  
               p(isList) = [1] x1 + [2]         
             p(isNeList) = [1] x1 + [1]         
              p(isNePal) = [1] x1 + [2]         
                p(isPal) = [1] x1 + [3]         
                p(isQid) = [1] x1 + [0]         
                p(n____) = [1] x1 + [1] x2 + [4]
                 p(n__a) = [0]                  
                 p(n__e) = [3]                  
                 p(n__i) = [1]                  
            p(n__isList) = [1] x1 + [0]         
          p(n__isNeList) = [1] x1 + [0]         
             p(n__isPal) = [1] x1 + [2]         
               p(n__nil) = [0]                  
                 p(n__o) = [2]                  
                 p(n__u) = [1]                  
                  p(nil) = [2]                  
                    p(o) = [3]                  
                   p(tt) = [0]                  
                    p(u) = [1]                  
        
        Following rules are strictly oriented:
                     a() = [1]           
                         > [0]           
                         = n__a()        
        
             activate(X) = [1] X + [1]   
                         > [1] X + [0]   
                         = X             
        
        activate(n__u()) = [2]           
                         > [1]           
                         = u()           
        
                     e() = [4]           
                         > [3]           
                         = n__e()        
        
             isNeList(X) = [1] X + [1]   
                         > [1] X + [0]   
                         = n__isNeList(X)
        
                isPal(X) = [1] X + [3]   
                         > [1] X + [2]   
                         = n__isPal(X)   
        
                     o() = [3]           
                         > [2]           
                         = n__o()        
        
        
        Following rules are (at-least) weakly oriented:
                       __(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                 >= [1] X1 + [1] X2 + [4]         
                                 =  n____(X1,X2)                  
        
          activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [5]         
                                 >= [1] X1 + [1] X2 + [0]         
                                 =  __(X1,X2)                     
        
                activate(n__a()) =  [1]                           
                                 >= [1]                           
                                 =  a()                           
        
                activate(n__e()) =  [4]                           
                                 >= [4]                           
                                 =  e()                           
        
                activate(n__i()) =  [2]                           
                                 >= [0]                           
                                 =  i()                           
        
          activate(n__isList(X)) =  [1] X + [1]                   
                                 >= [1] X + [2]                   
                                 =  isList(X)                     
        
        activate(n__isNeList(X)) =  [1] X + [1]                   
                                 >= [1] X + [1]                   
                                 =  isNeList(X)                   
        
           activate(n__isPal(X)) =  [1] X + [3]                   
                                 >= [1] X + [3]                   
                                 =  isPal(X)                      
        
              activate(n__nil()) =  [1]                           
                                 >= [2]                           
                                 =  nil()                         
        
                activate(n__o()) =  [3]                           
                                 >= [3]                           
                                 =  o()                           
        
                     and(tt(),X) =  [1] X + [1]                   
                                 >= [1] X + [1]                   
                                 =  activate(X)                   
        
                             i() =  [0]                           
                                 >= [1]                           
                                 =  n__i()                        
        
                       isList(V) =  [1] V + [2]                   
                                 >= [1] V + [2]                   
                                 =  isNeList(activate(V))         
        
                       isList(X) =  [1] X + [2]                   
                                 >= [1] X + [0]                   
                                 =  n__isList(X)                  
        
            isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [6]         
                                 >= [1] V1 + [1] V2 + [5]         
                                 =  and(isList(activate(V1))      
                                       ,n__isList(activate(V2)))  
        
                isList(n__nil()) =  [2]                           
                                 >= [0]                           
                                 =  tt()                          
        
                     isNeList(V) =  [1] V + [1]                   
                                 >= [1] V + [1]                   
                                 =  isQid(activate(V))            
        
          isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [5]         
                                 >= [1] V1 + [1] V2 + [5]         
                                 =  and(isList(activate(V1))      
                                       ,n__isNeList(activate(V2)))
        
          isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [5]         
                                 >= [1] V1 + [1] V2 + [4]         
                                 =  and(isNeList(activate(V1))    
                                       ,n__isList(activate(V2)))  
        
                      isNePal(V) =  [1] V + [2]                   
                                 >= [1] V + [1]                   
                                 =  isQid(activate(V))            
        
                        isPal(V) =  [1] V + [3]                   
                                 >= [1] V + [3]                   
                                 =  isNePal(activate(V))          
        
                 isPal(n__nil()) =  [3]                           
                                 >= [0]                           
                                 =  tt()                          
        
                   isQid(n__a()) =  [0]                           
                                 >= [0]                           
                                 =  tt()                          
        
                   isQid(n__e()) =  [3]                           
                                 >= [0]                           
                                 =  tt()                          
        
                   isQid(n__i()) =  [1]                           
                                 >= [0]                           
                                 =  tt()                          
        
                   isQid(n__o()) =  [2]                           
                                 >= [0]                           
                                 =  tt()                          
        
                   isQid(n__u()) =  [1]                           
                                 >= [0]                           
                                 =  tt()                          
        
                           nil() =  [2]                           
                                 >= [0]                           
                                 =  n__nil()                      
        
                             u() =  [1]                           
                                 >= [1]                           
                                 =  n__u()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(X1,X2) -> n____(X1,X2)
        activate(n__isList(X)) -> isList(X)
        activate(n__nil()) -> nil()
        i() -> n__i()
      Weak DP Rules:
        
      Weak TRS Rules:
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__isPal(X)) -> isPal(X)
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        and(tt(),X) -> activate(X)
        e() -> n__e()
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isNePal(V) -> isQid(activate(V))
        isPal(V) -> isNePal(activate(V))
        isPal(X) -> n__isPal(X)
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Innermost
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isQid) = {1},
          uargs(n__isList) = {1},
          uargs(n__isNeList) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                   p(__) = [1] x1 + [1] x2 + [0]
                    p(a) = [3]                  
             p(activate) = [1] x1 + [2]         
                  p(and) = [1] x1 + [1] x2 + [0]
                    p(e) = [4]                  
                    p(i) = [5]                  
               p(isList) = [1] x1 + [4]         
             p(isNeList) = [1] x1 + [2]         
              p(isNePal) = [1] x1 + [4]         
                p(isPal) = [1] x1 + [6]         
                p(isQid) = [1] x1 + [0]         
                p(n____) = [1] x1 + [1] x2 + [6]
                 p(n__a) = [2]                  
                 p(n__e) = [4]                  
                 p(n__i) = [4]                  
            p(n__isList) = [1] x1 + [0]         
          p(n__isNeList) = [1] x1 + [0]         
             p(n__isPal) = [1] x1 + [4]         
               p(n__nil) = [0]                  
                 p(n__o) = [2]                  
                 p(n__u) = [4]                  
                  p(nil) = [0]                  
                    p(o) = [2]                  
                   p(tt) = [2]                  
                    p(u) = [5]                  
        
        Following rules are strictly oriented:
        activate(n__nil()) = [2]   
                           > [0]   
                           = nil() 
        
                       i() = [5]   
                           > [4]   
                           = n__i()
        
        
        Following rules are (at-least) weakly oriented:
                       __(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                 >= [1] X1 + [1] X2 + [6]         
                                 =  n____(X1,X2)                  
        
                             a() =  [3]                           
                                 >= [2]                           
                                 =  n__a()                        
        
                     activate(X) =  [1] X + [2]                   
                                 >= [1] X + [0]                   
                                 =  X                             
        
          activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [8]         
                                 >= [1] X1 + [1] X2 + [0]         
                                 =  __(X1,X2)                     
        
                activate(n__a()) =  [4]                           
                                 >= [3]                           
                                 =  a()                           
        
                activate(n__e()) =  [6]                           
                                 >= [4]                           
                                 =  e()                           
        
                activate(n__i()) =  [6]                           
                                 >= [5]                           
                                 =  i()                           
        
          activate(n__isList(X)) =  [1] X + [2]                   
                                 >= [1] X + [4]                   
                                 =  isList(X)                     
        
        activate(n__isNeList(X)) =  [1] X + [2]                   
                                 >= [1] X + [2]                   
                                 =  isNeList(X)                   
        
           activate(n__isPal(X)) =  [1] X + [6]                   
                                 >= [1] X + [6]                   
                                 =  isPal(X)                      
        
                activate(n__o()) =  [4]                           
                                 >= [2]                           
                                 =  o()                           
        
                activate(n__u()) =  [6]                           
                                 >= [5]                           
                                 =  u()                           
        
                     and(tt(),X) =  [1] X + [2]                   
                                 >= [1] X + [2]                   
                                 =  activate(X)                   
        
                             e() =  [4]                           
                                 >= [4]                           
                                 =  n__e()                        
        
                       isList(V) =  [1] V + [4]                   
                                 >= [1] V + [4]                   
                                 =  isNeList(activate(V))         
        
                       isList(X) =  [1] X + [4]                   
                                 >= [1] X + [0]                   
                                 =  n__isList(X)                  
        
            isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [10]        
                                 >= [1] V1 + [1] V2 + [8]         
                                 =  and(isList(activate(V1))      
                                       ,n__isList(activate(V2)))  
        
                isList(n__nil()) =  [4]                           
                                 >= [2]                           
                                 =  tt()                          
        
                     isNeList(V) =  [1] V + [2]                   
                                 >= [1] V + [2]                   
                                 =  isQid(activate(V))            
        
                     isNeList(X) =  [1] X + [2]                   
                                 >= [1] X + [0]                   
                                 =  n__isNeList(X)                
        
          isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [8]         
                                 >= [1] V1 + [1] V2 + [8]         
                                 =  and(isList(activate(V1))      
                                       ,n__isNeList(activate(V2)))
        
          isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [8]         
                                 >= [1] V1 + [1] V2 + [6]         
                                 =  and(isNeList(activate(V1))    
                                       ,n__isList(activate(V2)))  
        
                      isNePal(V) =  [1] V + [4]                   
                                 >= [1] V + [2]                   
                                 =  isQid(activate(V))            
        
                        isPal(V) =  [1] V + [6]                   
                                 >= [1] V + [6]                   
                                 =  isNePal(activate(V))          
        
                        isPal(X) =  [1] X + [6]                   
                                 >= [1] X + [4]                   
                                 =  n__isPal(X)                   
        
                 isPal(n__nil()) =  [6]                           
                                 >= [2]                           
                                 =  tt()                          
        
                   isQid(n__a()) =  [2]                           
                                 >= [2]                           
                                 =  tt()                          
        
                   isQid(n__e()) =  [4]                           
                                 >= [2]                           
                                 =  tt()                          
        
                   isQid(n__i()) =  [4]                           
                                 >= [2]                           
                                 =  tt()                          
        
                   isQid(n__o()) =  [2]                           
                                 >= [2]                           
                                 =  tt()                          
        
                   isQid(n__u()) =  [4]                           
                                 >= [2]                           
                                 =  tt()                          
        
                           nil() =  [0]                           
                                 >= [0]                           
                                 =  n__nil()                      
        
                             o() =  [2]                           
                                 >= [2]                           
                                 =  n__o()                        
        
                             u() =  [5]                           
                                 >= [4]                           
                                 =  n__u()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(X1,X2) -> n____(X1,X2)
        activate(n__isList(X)) -> isList(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__isPal(X)) -> isPal(X)
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        and(tt(),X) -> activate(X)
        e() -> n__e()
        i() -> n__i()
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isNePal(V) -> isQid(activate(V))
        isPal(V) -> isNePal(activate(V))
        isPal(X) -> n__isPal(X)
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Innermost
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isQid) = {1},
          uargs(n__isList) = {1},
          uargs(n__isNeList) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                   p(__) = [1] x1 + [1] x2 + [7]
                    p(a) = [7]                  
             p(activate) = [1] x1 + [1]         
                  p(and) = [1] x1 + [1] x2 + [0]
                    p(e) = [1]                  
                    p(i) = [4]                  
               p(isList) = [1] x1 + [4]         
             p(isNeList) = [1] x1 + [2]         
              p(isNePal) = [1] x1 + [1]         
                p(isPal) = [1] x1 + [2]         
                p(isQid) = [1] x1 + [0]         
                p(n____) = [1] x1 + [1] x2 + [6]
                 p(n__a) = [7]                  
                 p(n__e) = [1]                  
                 p(n__i) = [4]                  
            p(n__isList) = [1] x1 + [4]         
          p(n__isNeList) = [1] x1 + [2]         
             p(n__isPal) = [1] x1 + [2]         
               p(n__nil) = [0]                  
                 p(n__o) = [3]                  
                 p(n__u) = [1]                  
                  p(nil) = [0]                  
                    p(o) = [3]                  
                   p(tt) = [1]                  
                    p(u) = [2]                  
        
        Following rules are strictly oriented:
                     __(X1,X2) = [1] X1 + [1] X2 + [7]
                               > [1] X1 + [1] X2 + [6]
                               = n____(X1,X2)         
        
        activate(n__isList(X)) = [1] X + [5]          
                               > [1] X + [4]          
                               = isList(X)            
        
        
        Following rules are (at-least) weakly oriented:
                             a() =  [7]                           
                                 >= [7]                           
                                 =  n__a()                        
        
                     activate(X) =  [1] X + [1]                   
                                 >= [1] X + [0]                   
                                 =  X                             
        
          activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [7]         
                                 >= [1] X1 + [1] X2 + [7]         
                                 =  __(X1,X2)                     
        
                activate(n__a()) =  [8]                           
                                 >= [7]                           
                                 =  a()                           
        
                activate(n__e()) =  [2]                           
                                 >= [1]                           
                                 =  e()                           
        
                activate(n__i()) =  [5]                           
                                 >= [4]                           
                                 =  i()                           
        
        activate(n__isNeList(X)) =  [1] X + [3]                   
                                 >= [1] X + [2]                   
                                 =  isNeList(X)                   
        
           activate(n__isPal(X)) =  [1] X + [3]                   
                                 >= [1] X + [2]                   
                                 =  isPal(X)                      
        
              activate(n__nil()) =  [1]                           
                                 >= [0]                           
                                 =  nil()                         
        
                activate(n__o()) =  [4]                           
                                 >= [3]                           
                                 =  o()                           
        
                activate(n__u()) =  [2]                           
                                 >= [2]                           
                                 =  u()                           
        
                     and(tt(),X) =  [1] X + [1]                   
                                 >= [1] X + [1]                   
                                 =  activate(X)                   
        
                             e() =  [1]                           
                                 >= [1]                           
                                 =  n__e()                        
        
                             i() =  [4]                           
                                 >= [4]                           
                                 =  n__i()                        
        
                       isList(V) =  [1] V + [4]                   
                                 >= [1] V + [3]                   
                                 =  isNeList(activate(V))         
        
                       isList(X) =  [1] X + [4]                   
                                 >= [1] X + [4]                   
                                 =  n__isList(X)                  
        
            isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [10]        
                                 >= [1] V1 + [1] V2 + [10]        
                                 =  and(isList(activate(V1))      
                                       ,n__isList(activate(V2)))  
        
                isList(n__nil()) =  [4]                           
                                 >= [1]                           
                                 =  tt()                          
        
                     isNeList(V) =  [1] V + [2]                   
                                 >= [1] V + [1]                   
                                 =  isQid(activate(V))            
        
                     isNeList(X) =  [1] X + [2]                   
                                 >= [1] X + [2]                   
                                 =  n__isNeList(X)                
        
          isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [8]         
                                 >= [1] V1 + [1] V2 + [8]         
                                 =  and(isList(activate(V1))      
                                       ,n__isNeList(activate(V2)))
        
          isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [8]         
                                 >= [1] V1 + [1] V2 + [8]         
                                 =  and(isNeList(activate(V1))    
                                       ,n__isList(activate(V2)))  
        
                      isNePal(V) =  [1] V + [1]                   
                                 >= [1] V + [1]                   
                                 =  isQid(activate(V))            
        
                        isPal(V) =  [1] V + [2]                   
                                 >= [1] V + [2]                   
                                 =  isNePal(activate(V))          
        
                        isPal(X) =  [1] X + [2]                   
                                 >= [1] X + [2]                   
                                 =  n__isPal(X)                   
        
                 isPal(n__nil()) =  [2]                           
                                 >= [1]                           
                                 =  tt()                          
        
                   isQid(n__a()) =  [7]                           
                                 >= [1]                           
                                 =  tt()                          
        
                   isQid(n__e()) =  [1]                           
                                 >= [1]                           
                                 =  tt()                          
        
                   isQid(n__i()) =  [4]                           
                                 >= [1]                           
                                 =  tt()                          
        
                   isQid(n__o()) =  [3]                           
                                 >= [1]                           
                                 =  tt()                          
        
                   isQid(n__u()) =  [1]                           
                                 >= [1]                           
                                 =  tt()                          
        
                           nil() =  [0]                           
                                 >= [0]                           
                                 =  n__nil()                      
        
                             o() =  [3]                           
                                 >= [3]                           
                                 =  n__o()                        
        
                             u() =  [2]                           
                                 >= [1]                           
                                 =  n__u()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        __(X1,X2) -> n____(X1,X2)
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isList(X)) -> isList(X)
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__isPal(X)) -> isPal(X)
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        and(tt(),X) -> activate(X)
        e() -> n__e()
        i() -> n__i()
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isNePal(V) -> isQid(activate(V))
        isPal(V) -> isNePal(activate(V))
        isPal(X) -> n__isPal(X)
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Innermost
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).