*** 1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() __(X,nil()) -> X __(X1,X2) -> n____(X1,X2) __(__(X,Y),Z) -> __(X,__(Y,Z)) __(nil(),X) -> X a() -> n__a() activate(X) -> X activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__nil()) -> nil() activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() o() -> n__o() u() -> n__u() Weak DP Rules: Weak TRS Rules: Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0} Obligation: Innermost basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt} Applied Processor: InnermostRuleRemoval Proof: Arguments of following rules are not normal-forms. __(X,nil()) -> X __(__(X,Y),Z) -> __(X,__(Y,Z)) __(nil(),X) -> X All above mentioned rules can be savely removed. *** 1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() __(X1,X2) -> n____(X1,X2) a() -> n__a() activate(X) -> X activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__nil()) -> nil() activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() o() -> n__o() u() -> n__u() Weak DP Rules: Weak TRS Rules: Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0} Obligation: Innermost basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1}, uargs(U21) = {1,2}, uargs(U22) = {1}, uargs(U31) = {1}, uargs(U41) = {1,2}, uargs(U42) = {1}, uargs(U51) = {1,2}, uargs(U52) = {1}, uargs(U61) = {1}, uargs(U71) = {1,2}, uargs(U72) = {1}, uargs(U81) = {1}, uargs(__) = {1,2}, uargs(isList) = {1}, uargs(isNeList) = {1}, uargs(isNePal) = {1}, uargs(isPal) = {1}, uargs(isQid) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(U11) = [1] x1 + [5] p(U21) = [1] x1 + [1] x2 + [0] p(U22) = [1] x1 + [0] p(U31) = [1] x1 + [0] p(U41) = [1] x1 + [1] x2 + [0] p(U42) = [1] x1 + [0] p(U51) = [1] x1 + [1] x2 + [0] p(U52) = [1] x1 + [0] p(U61) = [1] x1 + [0] p(U71) = [1] x1 + [1] x2 + [0] p(U72) = [1] x1 + [0] p(U81) = [1] x1 + [0] p(__) = [1] x1 + [1] x2 + [0] p(a) = [0] p(activate) = [1] x1 + [0] p(e) = [0] p(i) = [0] p(isList) = [1] x1 + [0] p(isNeList) = [1] x1 + [0] p(isNePal) = [1] x1 + [0] p(isPal) = [1] x1 + [0] p(isQid) = [1] x1 + [0] p(n____) = [1] x1 + [1] x2 + [0] p(n__a) = [0] p(n__e) = [0] p(n__i) = [3] p(n__nil) = [0] p(n__o) = [0] p(n__u) = [0] p(nil) = [0] p(o) = [0] p(tt) = [0] p(u) = [1] Following rules are strictly oriented: U11(tt()) = [5] > [0] = tt() activate(n__i()) = [3] > [0] = i() isQid(n__i()) = [3] > [0] = tt() u() = [1] > [0] = n__u() Following rules are (at-least) weakly oriented: U21(tt(),V2) = [1] V2 + [0] >= [1] V2 + [0] = U22(isList(activate(V2))) U22(tt()) = [0] >= [0] = tt() U31(tt()) = [0] >= [0] = tt() U41(tt(),V2) = [1] V2 + [0] >= [1] V2 + [0] = U42(isNeList(activate(V2))) U42(tt()) = [0] >= [0] = tt() U51(tt(),V2) = [1] V2 + [0] >= [1] V2 + [0] = U52(isList(activate(V2))) U52(tt()) = [0] >= [0] = tt() U61(tt()) = [0] >= [0] = tt() U71(tt(),P) = [1] P + [0] >= [1] P + [0] = U72(isPal(activate(P))) U72(tt()) = [0] >= [0] = tt() U81(tt()) = [0] >= [0] = tt() __(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = n____(X1,X2) a() = [0] >= [0] = n__a() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n____(X1,X2)) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = __(activate(X1),activate(X2)) activate(n__a()) = [0] >= [0] = a() activate(n__e()) = [0] >= [0] = e() activate(n__nil()) = [0] >= [0] = nil() activate(n__o()) = [0] >= [0] = o() activate(n__u()) = [0] >= [1] = u() e() = [0] >= [0] = n__e() i() = [0] >= [3] = n__i() isList(V) = [1] V + [0] >= [1] V + [5] = U11(isNeList(activate(V))) isList(n____(V1,V2)) = [1] V1 + [1] V2 + [0] >= [1] V1 + [1] V2 + [0] = U21(isList(activate(V1)) ,activate(V2)) isList(n__nil()) = [0] >= [0] = tt() isNeList(V) = [1] V + [0] >= [1] V + [0] = U31(isQid(activate(V))) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [0] >= [1] V1 + [1] V2 + [0] = U41(isList(activate(V1)) ,activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [0] >= [1] V1 + [1] V2 + [0] = U51(isNeList(activate(V1)) ,activate(V2)) isNePal(V) = [1] V + [0] >= [1] V + [0] = U61(isQid(activate(V))) isNePal(n____(I,n____(P,I))) = [2] I + [1] P + [0] >= [1] I + [1] P + [0] = U71(isQid(activate(I)) ,activate(P)) isPal(V) = [1] V + [0] >= [1] V + [0] = U81(isNePal(activate(V))) isPal(n__nil()) = [0] >= [0] = tt() isQid(n__a()) = [0] >= [0] = tt() isQid(n__e()) = [0] >= [0] = tt() isQid(n__o()) = [0] >= [0] = tt() isQid(n__u()) = [0] >= [0] = tt() nil() = [0] >= [0] = n__nil() o() = [0] >= [0] = n__o() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() __(X1,X2) -> n____(X1,X2) a() -> n__a() activate(X) -> X activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__nil()) -> nil() activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() o() -> n__o() Weak DP Rules: Weak TRS Rules: U11(tt()) -> tt() activate(n__i()) -> i() isQid(n__i()) -> tt() u() -> n__u() Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0} Obligation: Innermost basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1}, uargs(U21) = {1,2}, uargs(U22) = {1}, uargs(U31) = {1}, uargs(U41) = {1,2}, uargs(U42) = {1}, uargs(U51) = {1,2}, uargs(U52) = {1}, uargs(U61) = {1}, uargs(U71) = {1,2}, uargs(U72) = {1}, uargs(U81) = {1}, uargs(__) = {1,2}, uargs(isList) = {1}, uargs(isNeList) = {1}, uargs(isNePal) = {1}, uargs(isPal) = {1}, uargs(isQid) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(U11) = [1] x1 + [0] p(U21) = [1] x1 + [1] x2 + [0] p(U22) = [1] x1 + [0] p(U31) = [1] x1 + [0] p(U41) = [1] x1 + [1] x2 + [0] p(U42) = [1] x1 + [0] p(U51) = [1] x1 + [1] x2 + [0] p(U52) = [1] x1 + [0] p(U61) = [1] x1 + [0] p(U71) = [1] x1 + [1] x2 + [0] p(U72) = [1] x1 + [0] p(U81) = [1] x1 + [0] p(__) = [1] x1 + [1] x2 + [0] p(a) = [0] p(activate) = [1] x1 + [0] p(e) = [0] p(i) = [0] p(isList) = [1] x1 + [0] p(isNeList) = [1] x1 + [0] p(isNePal) = [1] x1 + [0] p(isPal) = [1] x1 + [0] p(isQid) = [1] x1 + [0] p(n____) = [1] x1 + [1] x2 + [0] p(n__a) = [0] p(n__e) = [0] p(n__i) = [0] p(n__nil) = [0] p(n__o) = [1] p(n__u) = [0] p(nil) = [0] p(o) = [3] p(tt) = [0] p(u) = [0] Following rules are strictly oriented: isQid(n__o()) = [1] > [0] = tt() o() = [3] > [1] = n__o() Following rules are (at-least) weakly oriented: U11(tt()) = [0] >= [0] = tt() U21(tt(),V2) = [1] V2 + [0] >= [1] V2 + [0] = U22(isList(activate(V2))) U22(tt()) = [0] >= [0] = tt() U31(tt()) = [0] >= [0] = tt() U41(tt(),V2) = [1] V2 + [0] >= [1] V2 + [0] = U42(isNeList(activate(V2))) U42(tt()) = [0] >= [0] = tt() U51(tt(),V2) = [1] V2 + [0] >= [1] V2 + [0] = U52(isList(activate(V2))) U52(tt()) = [0] >= [0] = tt() U61(tt()) = [0] >= [0] = tt() U71(tt(),P) = [1] P + [0] >= [1] P + [0] = U72(isPal(activate(P))) U72(tt()) = [0] >= [0] = tt() U81(tt()) = [0] >= [0] = tt() __(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = n____(X1,X2) a() = [0] >= [0] = n__a() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n____(X1,X2)) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = __(activate(X1),activate(X2)) activate(n__a()) = [0] >= [0] = a() activate(n__e()) = [0] >= [0] = e() activate(n__i()) = [0] >= [0] = i() activate(n__nil()) = [0] >= [0] = nil() activate(n__o()) = [1] >= [3] = o() activate(n__u()) = [0] >= [0] = u() e() = [0] >= [0] = n__e() i() = [0] >= [0] = n__i() isList(V) = [1] V + [0] >= [1] V + [0] = U11(isNeList(activate(V))) isList(n____(V1,V2)) = [1] V1 + [1] V2 + [0] >= [1] V1 + [1] V2 + [0] = U21(isList(activate(V1)) ,activate(V2)) isList(n__nil()) = [0] >= [0] = tt() isNeList(V) = [1] V + [0] >= [1] V + [0] = U31(isQid(activate(V))) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [0] >= [1] V1 + [1] V2 + [0] = U41(isList(activate(V1)) ,activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [0] >= [1] V1 + [1] V2 + [0] = U51(isNeList(activate(V1)) ,activate(V2)) isNePal(V) = [1] V + [0] >= [1] V + [0] = U61(isQid(activate(V))) isNePal(n____(I,n____(P,I))) = [2] I + [1] P + [0] >= [1] I + [1] P + [0] = U71(isQid(activate(I)) ,activate(P)) isPal(V) = [1] V + [0] >= [1] V + [0] = U81(isNePal(activate(V))) isPal(n__nil()) = [0] >= [0] = tt() isQid(n__a()) = [0] >= [0] = tt() isQid(n__e()) = [0] >= [0] = tt() isQid(n__i()) = [0] >= [0] = tt() isQid(n__u()) = [0] >= [0] = tt() nil() = [0] >= [0] = n__nil() u() = [0] >= [0] = n__u() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() __(X1,X2) -> n____(X1,X2) a() -> n__a() activate(X) -> X activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__nil()) -> nil() activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() Weak DP Rules: Weak TRS Rules: U11(tt()) -> tt() activate(n__i()) -> i() isQid(n__i()) -> tt() isQid(n__o()) -> tt() o() -> n__o() u() -> n__u() Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0} Obligation: Innermost basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1}, uargs(U21) = {1,2}, uargs(U22) = {1}, uargs(U31) = {1}, uargs(U41) = {1,2}, uargs(U42) = {1}, uargs(U51) = {1,2}, uargs(U52) = {1}, uargs(U61) = {1}, uargs(U71) = {1,2}, uargs(U72) = {1}, uargs(U81) = {1}, uargs(__) = {1,2}, uargs(isList) = {1}, uargs(isNeList) = {1}, uargs(isNePal) = {1}, uargs(isPal) = {1}, uargs(isQid) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(U11) = [1] x1 + [0] p(U21) = [1] x1 + [1] x2 + [0] p(U22) = [1] x1 + [0] p(U31) = [1] x1 + [0] p(U41) = [1] x1 + [1] x2 + [0] p(U42) = [1] x1 + [0] p(U51) = [1] x1 + [1] x2 + [0] p(U52) = [1] x1 + [0] p(U61) = [1] x1 + [0] p(U71) = [1] x1 + [1] x2 + [3] p(U72) = [1] x1 + [0] p(U81) = [1] x1 + [3] p(__) = [1] x1 + [1] x2 + [0] p(a) = [0] p(activate) = [1] x1 + [0] p(e) = [0] p(i) = [0] p(isList) = [1] x1 + [0] p(isNeList) = [1] x1 + [0] p(isNePal) = [1] x1 + [0] p(isPal) = [1] x1 + [3] p(isQid) = [1] x1 + [0] p(n____) = [1] x1 + [1] x2 + [0] p(n__a) = [0] p(n__e) = [0] p(n__i) = [0] p(n__nil) = [0] p(n__o) = [0] p(n__u) = [0] p(nil) = [1] p(o) = [0] p(tt) = [0] p(u) = [0] Following rules are strictly oriented: U81(tt()) = [3] > [0] = tt() isPal(n__nil()) = [3] > [0] = tt() nil() = [1] > [0] = n__nil() Following rules are (at-least) weakly oriented: U11(tt()) = [0] >= [0] = tt() U21(tt(),V2) = [1] V2 + [0] >= [1] V2 + [0] = U22(isList(activate(V2))) U22(tt()) = [0] >= [0] = tt() U31(tt()) = [0] >= [0] = tt() U41(tt(),V2) = [1] V2 + [0] >= [1] V2 + [0] = U42(isNeList(activate(V2))) U42(tt()) = [0] >= [0] = tt() U51(tt(),V2) = [1] V2 + [0] >= [1] V2 + [0] = U52(isList(activate(V2))) U52(tt()) = [0] >= [0] = tt() U61(tt()) = [0] >= [0] = tt() U71(tt(),P) = [1] P + [3] >= [1] P + [3] = U72(isPal(activate(P))) U72(tt()) = [0] >= [0] = tt() __(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = n____(X1,X2) a() = [0] >= [0] = n__a() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n____(X1,X2)) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = __(activate(X1),activate(X2)) activate(n__a()) = [0] >= [0] = a() activate(n__e()) = [0] >= [0] = e() activate(n__i()) = [0] >= [0] = i() activate(n__nil()) = [0] >= [1] = nil() activate(n__o()) = [0] >= [0] = o() activate(n__u()) = [0] >= [0] = u() e() = [0] >= [0] = n__e() i() = [0] >= [0] = n__i() isList(V) = [1] V + [0] >= [1] V + [0] = U11(isNeList(activate(V))) isList(n____(V1,V2)) = [1] V1 + [1] V2 + [0] >= [1] V1 + [1] V2 + [0] = U21(isList(activate(V1)) ,activate(V2)) isList(n__nil()) = [0] >= [0] = tt() isNeList(V) = [1] V + [0] >= [1] V + [0] = U31(isQid(activate(V))) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [0] >= [1] V1 + [1] V2 + [0] = U41(isList(activate(V1)) ,activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [0] >= [1] V1 + [1] V2 + [0] = U51(isNeList(activate(V1)) ,activate(V2)) isNePal(V) = [1] V + [0] >= [1] V + [0] = U61(isQid(activate(V))) isNePal(n____(I,n____(P,I))) = [2] I + [1] P + [0] >= [1] I + [1] P + [3] = U71(isQid(activate(I)) ,activate(P)) isPal(V) = [1] V + [3] >= [1] V + [3] = U81(isNePal(activate(V))) isQid(n__a()) = [0] >= [0] = tt() isQid(n__e()) = [0] >= [0] = tt() isQid(n__i()) = [0] >= [0] = tt() isQid(n__o()) = [0] >= [0] = tt() isQid(n__u()) = [0] >= [0] = tt() o() = [0] >= [0] = n__o() u() = [0] >= [0] = n__u() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() __(X1,X2) -> n____(X1,X2) a() -> n__a() activate(X) -> X activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__nil()) -> nil() activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) isPal(V) -> U81(isNePal(activate(V))) isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__u()) -> tt() Weak DP Rules: Weak TRS Rules: U11(tt()) -> tt() U81(tt()) -> tt() activate(n__i()) -> i() isPal(n__nil()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() nil() -> n__nil() o() -> n__o() u() -> n__u() Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0} Obligation: Innermost basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1}, uargs(U21) = {1,2}, uargs(U22) = {1}, uargs(U31) = {1}, uargs(U41) = {1,2}, uargs(U42) = {1}, uargs(U51) = {1,2}, uargs(U52) = {1}, uargs(U61) = {1}, uargs(U71) = {1,2}, uargs(U72) = {1}, uargs(U81) = {1}, uargs(__) = {1,2}, uargs(isList) = {1}, uargs(isNeList) = {1}, uargs(isNePal) = {1}, uargs(isPal) = {1}, uargs(isQid) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(U11) = [1] x1 + [0] p(U21) = [1] x1 + [1] x2 + [0] p(U22) = [1] x1 + [0] p(U31) = [1] x1 + [0] p(U41) = [1] x1 + [1] x2 + [0] p(U42) = [1] x1 + [5] p(U51) = [1] x1 + [1] x2 + [0] p(U52) = [1] x1 + [0] p(U61) = [1] x1 + [0] p(U71) = [1] x1 + [1] x2 + [0] p(U72) = [1] x1 + [0] p(U81) = [1] x1 + [0] p(__) = [1] x1 + [1] x2 + [1] p(a) = [0] p(activate) = [1] x1 + [0] p(e) = [0] p(i) = [4] p(isList) = [1] x1 + [0] p(isNeList) = [1] x1 + [3] p(isNePal) = [1] x1 + [0] p(isPal) = [1] x1 + [1] p(isQid) = [1] x1 + [4] p(n____) = [1] x1 + [1] x2 + [1] p(n__a) = [6] p(n__e) = [0] p(n__i) = [4] p(n__nil) = [1] p(n__o) = [4] p(n__u) = [0] p(nil) = [1] p(o) = [4] p(tt) = [2] p(u) = [4] Following rules are strictly oriented: U21(tt(),V2) = [1] V2 + [2] > [1] V2 + [0] = U22(isList(activate(V2))) U42(tt()) = [7] > [2] = tt() U51(tt(),V2) = [1] V2 + [2] > [1] V2 + [0] = U52(isList(activate(V2))) U71(tt(),P) = [1] P + [2] > [1] P + [1] = U72(isPal(activate(P))) activate(n__a()) = [6] > [0] = a() isList(n____(V1,V2)) = [1] V1 + [1] V2 + [1] > [1] V1 + [1] V2 + [0] = U21(isList(activate(V1)) ,activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [4] > [1] V1 + [1] V2 + [0] = U41(isList(activate(V1)) ,activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [4] > [1] V1 + [1] V2 + [3] = U51(isNeList(activate(V1)) ,activate(V2)) isPal(V) = [1] V + [1] > [1] V + [0] = U81(isNePal(activate(V))) isQid(n__a()) = [10] > [2] = tt() isQid(n__e()) = [4] > [2] = tt() isQid(n__u()) = [4] > [2] = tt() Following rules are (at-least) weakly oriented: U11(tt()) = [2] >= [2] = tt() U22(tt()) = [2] >= [2] = tt() U31(tt()) = [2] >= [2] = tt() U41(tt(),V2) = [1] V2 + [2] >= [1] V2 + [8] = U42(isNeList(activate(V2))) U52(tt()) = [2] >= [2] = tt() U61(tt()) = [2] >= [2] = tt() U72(tt()) = [2] >= [2] = tt() U81(tt()) = [2] >= [2] = tt() __(X1,X2) = [1] X1 + [1] X2 + [1] >= [1] X1 + [1] X2 + [1] = n____(X1,X2) a() = [0] >= [6] = n__a() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n____(X1,X2)) = [1] X1 + [1] X2 + [1] >= [1] X1 + [1] X2 + [1] = __(activate(X1),activate(X2)) activate(n__e()) = [0] >= [0] = e() activate(n__i()) = [4] >= [4] = i() activate(n__nil()) = [1] >= [1] = nil() activate(n__o()) = [4] >= [4] = o() activate(n__u()) = [0] >= [4] = u() e() = [0] >= [0] = n__e() i() = [4] >= [4] = n__i() isList(V) = [1] V + [0] >= [1] V + [3] = U11(isNeList(activate(V))) isList(n__nil()) = [1] >= [2] = tt() isNeList(V) = [1] V + [3] >= [1] V + [4] = U31(isQid(activate(V))) isNePal(V) = [1] V + [0] >= [1] V + [4] = U61(isQid(activate(V))) isNePal(n____(I,n____(P,I))) = [2] I + [1] P + [2] >= [1] I + [1] P + [4] = U71(isQid(activate(I)) ,activate(P)) isPal(n__nil()) = [2] >= [2] = tt() isQid(n__i()) = [8] >= [2] = tt() isQid(n__o()) = [8] >= [2] = tt() nil() = [1] >= [1] = n__nil() o() = [4] >= [4] = n__o() u() = [4] >= [0] = n__u() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U72(tt()) -> tt() __(X1,X2) -> n____(X1,X2) a() -> n__a() activate(X) -> X activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) activate(n__e()) -> e() activate(n__nil()) -> nil() activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() isList(V) -> U11(isNeList(activate(V))) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNePal(V) -> U61(isQid(activate(V))) isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) Weak DP Rules: Weak TRS Rules: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U71(tt(),P) -> U72(isPal(activate(P))) U81(tt()) -> tt() activate(n__a()) -> a() activate(n__i()) -> i() isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() o() -> n__o() u() -> n__u() Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0} Obligation: Innermost basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1}, uargs(U21) = {1,2}, uargs(U22) = {1}, uargs(U31) = {1}, uargs(U41) = {1,2}, uargs(U42) = {1}, uargs(U51) = {1,2}, uargs(U52) = {1}, uargs(U61) = {1}, uargs(U71) = {1,2}, uargs(U72) = {1}, uargs(U81) = {1}, uargs(__) = {1,2}, uargs(isList) = {1}, uargs(isNeList) = {1}, uargs(isNePal) = {1}, uargs(isPal) = {1}, uargs(isQid) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(U11) = [1] x1 + [0] p(U21) = [1] x1 + [1] x2 + [0] p(U22) = [1] x1 + [2] p(U31) = [1] x1 + [0] p(U41) = [1] x1 + [1] x2 + [0] p(U42) = [1] x1 + [0] p(U51) = [1] x1 + [1] x2 + [0] p(U52) = [1] x1 + [2] p(U61) = [1] x1 + [0] p(U71) = [1] x1 + [1] x2 + [1] p(U72) = [1] x1 + [1] p(U81) = [1] x1 + [0] p(__) = [1] x1 + [1] x2 + [4] p(a) = [0] p(activate) = [1] x1 + [0] p(e) = [0] p(i) = [1] p(isList) = [1] x1 + [0] p(isNeList) = [1] x1 + [0] p(isNePal) = [1] x1 + [2] p(isPal) = [1] x1 + [2] p(isQid) = [1] x1 + [2] p(n____) = [1] x1 + [1] x2 + [0] p(n__a) = [0] p(n__e) = [0] p(n__i) = [1] p(n__nil) = [0] p(n__o) = [0] p(n__u) = [0] p(nil) = [0] p(o) = [0] p(tt) = [2] p(u) = [0] Following rules are strictly oriented: U22(tt()) = [4] > [2] = tt() U41(tt(),V2) = [1] V2 + [2] > [1] V2 + [0] = U42(isNeList(activate(V2))) U52(tt()) = [4] > [2] = tt() U72(tt()) = [3] > [2] = tt() __(X1,X2) = [1] X1 + [1] X2 + [4] > [1] X1 + [1] X2 + [0] = n____(X1,X2) Following rules are (at-least) weakly oriented: U11(tt()) = [2] >= [2] = tt() U21(tt(),V2) = [1] V2 + [2] >= [1] V2 + [2] = U22(isList(activate(V2))) U31(tt()) = [2] >= [2] = tt() U42(tt()) = [2] >= [2] = tt() U51(tt(),V2) = [1] V2 + [2] >= [1] V2 + [2] = U52(isList(activate(V2))) U61(tt()) = [2] >= [2] = tt() U71(tt(),P) = [1] P + [3] >= [1] P + [3] = U72(isPal(activate(P))) U81(tt()) = [2] >= [2] = tt() a() = [0] >= [0] = n__a() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n____(X1,X2)) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [4] = __(activate(X1),activate(X2)) activate(n__a()) = [0] >= [0] = a() activate(n__e()) = [0] >= [0] = e() activate(n__i()) = [1] >= [1] = i() activate(n__nil()) = [0] >= [0] = nil() activate(n__o()) = [0] >= [0] = o() activate(n__u()) = [0] >= [0] = u() e() = [0] >= [0] = n__e() i() = [1] >= [1] = n__i() isList(V) = [1] V + [0] >= [1] V + [0] = U11(isNeList(activate(V))) isList(n____(V1,V2)) = [1] V1 + [1] V2 + [0] >= [1] V1 + [1] V2 + [0] = U21(isList(activate(V1)) ,activate(V2)) isList(n__nil()) = [0] >= [2] = tt() isNeList(V) = [1] V + [0] >= [1] V + [2] = U31(isQid(activate(V))) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [0] >= [1] V1 + [1] V2 + [0] = U41(isList(activate(V1)) ,activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [0] >= [1] V1 + [1] V2 + [0] = U51(isNeList(activate(V1)) ,activate(V2)) isNePal(V) = [1] V + [2] >= [1] V + [2] = U61(isQid(activate(V))) isNePal(n____(I,n____(P,I))) = [2] I + [1] P + [2] >= [1] I + [1] P + [3] = U71(isQid(activate(I)) ,activate(P)) isPal(V) = [1] V + [2] >= [1] V + [2] = U81(isNePal(activate(V))) isPal(n__nil()) = [2] >= [2] = tt() isQid(n__a()) = [2] >= [2] = tt() isQid(n__e()) = [2] >= [2] = tt() isQid(n__i()) = [3] >= [2] = tt() isQid(n__o()) = [2] >= [2] = tt() isQid(n__u()) = [2] >= [2] = tt() nil() = [0] >= [0] = n__nil() o() = [0] >= [0] = n__o() u() = [0] >= [0] = n__u() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: U31(tt()) -> tt() U61(tt()) -> tt() a() -> n__a() activate(X) -> X activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) activate(n__e()) -> e() activate(n__nil()) -> nil() activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() isList(V) -> U11(isNeList(activate(V))) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNePal(V) -> U61(isQid(activate(V))) isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) Weak DP Rules: Weak TRS Rules: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() __(X1,X2) -> n____(X1,X2) activate(n__a()) -> a() activate(n__i()) -> i() isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() o() -> n__o() u() -> n__u() Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0} Obligation: Innermost basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1}, uargs(U21) = {1,2}, uargs(U22) = {1}, uargs(U31) = {1}, uargs(U41) = {1,2}, uargs(U42) = {1}, uargs(U51) = {1,2}, uargs(U52) = {1}, uargs(U61) = {1}, uargs(U71) = {1,2}, uargs(U72) = {1}, uargs(U81) = {1}, uargs(__) = {1,2}, uargs(isList) = {1}, uargs(isNeList) = {1}, uargs(isNePal) = {1}, uargs(isPal) = {1}, uargs(isQid) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(U11) = [1] x1 + [4] p(U21) = [1] x1 + [1] x2 + [3] p(U22) = [1] x1 + [1] p(U31) = [1] x1 + [3] p(U41) = [1] x1 + [1] x2 + [7] p(U42) = [1] x1 + [1] p(U51) = [1] x1 + [1] x2 + [5] p(U52) = [1] x1 + [2] p(U61) = [1] x1 + [0] p(U71) = [1] x1 + [1] x2 + [3] p(U72) = [1] x1 + [1] p(U81) = [1] x1 + [0] p(__) = [1] x1 + [1] x2 + [7] p(a) = [0] p(activate) = [1] x1 + [0] p(e) = [0] p(i) = [0] p(isList) = [1] x1 + [1] p(isNeList) = [1] x1 + [6] p(isNePal) = [1] x1 + [0] p(isPal) = [1] x1 + [0] p(isQid) = [1] x1 + [2] p(n____) = [1] x1 + [1] x2 + [5] p(n__a) = [3] p(n__e) = [1] p(n__i) = [1] p(n__nil) = [4] p(n__o) = [2] p(n__u) = [0] p(nil) = [5] p(o) = [2] p(tt) = [0] p(u) = [0] Following rules are strictly oriented: U31(tt()) = [3] > [0] = tt() activate(n__e()) = [1] > [0] = e() isList(n__nil()) = [5] > [0] = tt() isNeList(V) = [1] V + [6] > [1] V + [5] = U31(isQid(activate(V))) isNePal(n____(I,n____(P,I))) = [2] I + [1] P + [10] > [1] I + [1] P + [5] = U71(isQid(activate(I)) ,activate(P)) Following rules are (at-least) weakly oriented: U11(tt()) = [4] >= [0] = tt() U21(tt(),V2) = [1] V2 + [3] >= [1] V2 + [2] = U22(isList(activate(V2))) U22(tt()) = [1] >= [0] = tt() U41(tt(),V2) = [1] V2 + [7] >= [1] V2 + [7] = U42(isNeList(activate(V2))) U42(tt()) = [1] >= [0] = tt() U51(tt(),V2) = [1] V2 + [5] >= [1] V2 + [3] = U52(isList(activate(V2))) U52(tt()) = [2] >= [0] = tt() U61(tt()) = [0] >= [0] = tt() U71(tt(),P) = [1] P + [3] >= [1] P + [1] = U72(isPal(activate(P))) U72(tt()) = [1] >= [0] = tt() U81(tt()) = [0] >= [0] = tt() __(X1,X2) = [1] X1 + [1] X2 + [7] >= [1] X1 + [1] X2 + [5] = n____(X1,X2) a() = [0] >= [3] = n__a() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n____(X1,X2)) = [1] X1 + [1] X2 + [5] >= [1] X1 + [1] X2 + [7] = __(activate(X1),activate(X2)) activate(n__a()) = [3] >= [0] = a() activate(n__i()) = [1] >= [0] = i() activate(n__nil()) = [4] >= [5] = nil() activate(n__o()) = [2] >= [2] = o() activate(n__u()) = [0] >= [0] = u() e() = [0] >= [1] = n__e() i() = [0] >= [1] = n__i() isList(V) = [1] V + [1] >= [1] V + [10] = U11(isNeList(activate(V))) isList(n____(V1,V2)) = [1] V1 + [1] V2 + [6] >= [1] V1 + [1] V2 + [4] = U21(isList(activate(V1)) ,activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [11] >= [1] V1 + [1] V2 + [8] = U41(isList(activate(V1)) ,activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [11] >= [1] V1 + [1] V2 + [11] = U51(isNeList(activate(V1)) ,activate(V2)) isNePal(V) = [1] V + [0] >= [1] V + [2] = U61(isQid(activate(V))) isPal(V) = [1] V + [0] >= [1] V + [0] = U81(isNePal(activate(V))) isPal(n__nil()) = [4] >= [0] = tt() isQid(n__a()) = [5] >= [0] = tt() isQid(n__e()) = [3] >= [0] = tt() isQid(n__i()) = [3] >= [0] = tt() isQid(n__o()) = [4] >= [0] = tt() isQid(n__u()) = [2] >= [0] = tt() nil() = [5] >= [4] = n__nil() o() = [2] >= [2] = n__o() u() = [0] >= [0] = n__u() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: U61(tt()) -> tt() a() -> n__a() activate(X) -> X activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) activate(n__nil()) -> nil() activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() isList(V) -> U11(isNeList(activate(V))) isNePal(V) -> U61(isQid(activate(V))) Weak DP Rules: Weak TRS Rules: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() __(X1,X2) -> n____(X1,X2) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() o() -> n__o() u() -> n__u() Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0} Obligation: Innermost basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1}, uargs(U21) = {1,2}, uargs(U22) = {1}, uargs(U31) = {1}, uargs(U41) = {1,2}, uargs(U42) = {1}, uargs(U51) = {1,2}, uargs(U52) = {1}, uargs(U61) = {1}, uargs(U71) = {1,2}, uargs(U72) = {1}, uargs(U81) = {1}, uargs(__) = {1,2}, uargs(isList) = {1}, uargs(isNeList) = {1}, uargs(isNePal) = {1}, uargs(isPal) = {1}, uargs(isQid) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(U11) = [1] x1 + [0] p(U21) = [1] x1 + [1] x2 + [4] p(U22) = [1] x1 + [0] p(U31) = [1] x1 + [0] p(U41) = [1] x1 + [1] x2 + [1] p(U42) = [1] x1 + [0] p(U51) = [1] x1 + [1] x2 + [4] p(U52) = [1] x1 + [0] p(U61) = [1] x1 + [2] p(U71) = [1] x1 + [1] x2 + [4] p(U72) = [1] x1 + [0] p(U81) = [1] x1 + [0] p(__) = [1] x1 + [1] x2 + [4] p(a) = [5] p(activate) = [1] x1 + [0] p(e) = [4] p(i) = [2] p(isList) = [1] x1 + [4] p(isNeList) = [1] x1 + [1] p(isNePal) = [1] x1 + [3] p(isPal) = [1] x1 + [4] p(isQid) = [1] x1 + [0] p(n____) = [1] x1 + [1] x2 + [4] p(n__a) = [5] p(n__e) = [4] p(n__i) = [2] p(n__nil) = [5] p(n__o) = [2] p(n__u) = [2] p(nil) = [6] p(o) = [5] p(tt) = [0] p(u) = [5] Following rules are strictly oriented: U61(tt()) = [2] > [0] = tt() isList(V) = [1] V + [4] > [1] V + [1] = U11(isNeList(activate(V))) isNePal(V) = [1] V + [3] > [1] V + [2] = U61(isQid(activate(V))) Following rules are (at-least) weakly oriented: U11(tt()) = [0] >= [0] = tt() U21(tt(),V2) = [1] V2 + [4] >= [1] V2 + [4] = U22(isList(activate(V2))) U22(tt()) = [0] >= [0] = tt() U31(tt()) = [0] >= [0] = tt() U41(tt(),V2) = [1] V2 + [1] >= [1] V2 + [1] = U42(isNeList(activate(V2))) U42(tt()) = [0] >= [0] = tt() U51(tt(),V2) = [1] V2 + [4] >= [1] V2 + [4] = U52(isList(activate(V2))) U52(tt()) = [0] >= [0] = tt() U71(tt(),P) = [1] P + [4] >= [1] P + [4] = U72(isPal(activate(P))) U72(tt()) = [0] >= [0] = tt() U81(tt()) = [0] >= [0] = tt() __(X1,X2) = [1] X1 + [1] X2 + [4] >= [1] X1 + [1] X2 + [4] = n____(X1,X2) a() = [5] >= [5] = n__a() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n____(X1,X2)) = [1] X1 + [1] X2 + [4] >= [1] X1 + [1] X2 + [4] = __(activate(X1),activate(X2)) activate(n__a()) = [5] >= [5] = a() activate(n__e()) = [4] >= [4] = e() activate(n__i()) = [2] >= [2] = i() activate(n__nil()) = [5] >= [6] = nil() activate(n__o()) = [2] >= [5] = o() activate(n__u()) = [2] >= [5] = u() e() = [4] >= [4] = n__e() i() = [2] >= [2] = n__i() isList(n____(V1,V2)) = [1] V1 + [1] V2 + [8] >= [1] V1 + [1] V2 + [8] = U21(isList(activate(V1)) ,activate(V2)) isList(n__nil()) = [9] >= [0] = tt() isNeList(V) = [1] V + [1] >= [1] V + [0] = U31(isQid(activate(V))) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [5] >= [1] V1 + [1] V2 + [5] = U41(isList(activate(V1)) ,activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [5] >= [1] V1 + [1] V2 + [5] = U51(isNeList(activate(V1)) ,activate(V2)) isNePal(n____(I,n____(P,I))) = [2] I + [1] P + [11] >= [1] I + [1] P + [4] = U71(isQid(activate(I)) ,activate(P)) isPal(V) = [1] V + [4] >= [1] V + [3] = U81(isNePal(activate(V))) isPal(n__nil()) = [9] >= [0] = tt() isQid(n__a()) = [5] >= [0] = tt() isQid(n__e()) = [4] >= [0] = tt() isQid(n__i()) = [2] >= [0] = tt() isQid(n__o()) = [2] >= [0] = tt() isQid(n__u()) = [2] >= [0] = tt() nil() = [6] >= [5] = n__nil() o() = [5] >= [2] = n__o() u() = [5] >= [2] = n__u() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: a() -> n__a() activate(X) -> X activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) activate(n__nil()) -> nil() activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() Weak DP Rules: Weak TRS Rules: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() __(X1,X2) -> n____(X1,X2) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() o() -> n__o() u() -> n__u() Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0} Obligation: Innermost basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1}, uargs(U21) = {1,2}, uargs(U22) = {1}, uargs(U31) = {1}, uargs(U41) = {1,2}, uargs(U42) = {1}, uargs(U51) = {1,2}, uargs(U52) = {1}, uargs(U61) = {1}, uargs(U71) = {1,2}, uargs(U72) = {1}, uargs(U81) = {1}, uargs(__) = {1,2}, uargs(isList) = {1}, uargs(isNeList) = {1}, uargs(isNePal) = {1}, uargs(isPal) = {1}, uargs(isQid) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(U11) = [1] x1 + [0] p(U21) = [1] x1 + [1] x2 + [0] p(U22) = [1] x1 + [0] p(U31) = [1] x1 + [0] p(U41) = [1] x1 + [1] x2 + [3] p(U42) = [1] x1 + [1] p(U51) = [1] x1 + [1] x2 + [0] p(U52) = [1] x1 + [0] p(U61) = [1] x1 + [0] p(U71) = [1] x1 + [1] x2 + [4] p(U72) = [1] x1 + [2] p(U81) = [1] x1 + [1] p(__) = [1] x1 + [1] x2 + [6] p(a) = [4] p(activate) = [1] x1 + [1] p(e) = [0] p(i) = [0] p(isList) = [1] x1 + [2] p(isNeList) = [1] x1 + [1] p(isNePal) = [1] x1 + [2] p(isPal) = [1] x1 + [4] p(isQid) = [1] x1 + [0] p(n____) = [1] x1 + [1] x2 + [6] p(n__a) = [3] p(n__e) = [6] p(n__i) = [3] p(n__nil) = [1] p(n__o) = [3] p(n__u) = [3] p(nil) = [1] p(o) = [3] p(tt) = [3] p(u) = [3] Following rules are strictly oriented: a() = [4] > [3] = n__a() activate(X) = [1] X + [1] > [1] X + [0] = X activate(n__nil()) = [2] > [1] = nil() activate(n__o()) = [4] > [3] = o() activate(n__u()) = [4] > [3] = u() Following rules are (at-least) weakly oriented: U11(tt()) = [3] >= [3] = tt() U21(tt(),V2) = [1] V2 + [3] >= [1] V2 + [3] = U22(isList(activate(V2))) U22(tt()) = [3] >= [3] = tt() U31(tt()) = [3] >= [3] = tt() U41(tt(),V2) = [1] V2 + [6] >= [1] V2 + [3] = U42(isNeList(activate(V2))) U42(tt()) = [4] >= [3] = tt() U51(tt(),V2) = [1] V2 + [3] >= [1] V2 + [3] = U52(isList(activate(V2))) U52(tt()) = [3] >= [3] = tt() U61(tt()) = [3] >= [3] = tt() U71(tt(),P) = [1] P + [7] >= [1] P + [7] = U72(isPal(activate(P))) U72(tt()) = [5] >= [3] = tt() U81(tt()) = [4] >= [3] = tt() __(X1,X2) = [1] X1 + [1] X2 + [6] >= [1] X1 + [1] X2 + [6] = n____(X1,X2) activate(n____(X1,X2)) = [1] X1 + [1] X2 + [7] >= [1] X1 + [1] X2 + [8] = __(activate(X1),activate(X2)) activate(n__a()) = [4] >= [4] = a() activate(n__e()) = [7] >= [0] = e() activate(n__i()) = [4] >= [0] = i() e() = [0] >= [6] = n__e() i() = [0] >= [3] = n__i() isList(V) = [1] V + [2] >= [1] V + [2] = U11(isNeList(activate(V))) isList(n____(V1,V2)) = [1] V1 + [1] V2 + [8] >= [1] V1 + [1] V2 + [4] = U21(isList(activate(V1)) ,activate(V2)) isList(n__nil()) = [3] >= [3] = tt() isNeList(V) = [1] V + [1] >= [1] V + [1] = U31(isQid(activate(V))) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [7] >= [1] V1 + [1] V2 + [7] = U41(isList(activate(V1)) ,activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [7] >= [1] V1 + [1] V2 + [3] = U51(isNeList(activate(V1)) ,activate(V2)) isNePal(V) = [1] V + [2] >= [1] V + [1] = U61(isQid(activate(V))) isNePal(n____(I,n____(P,I))) = [2] I + [1] P + [14] >= [1] I + [1] P + [6] = U71(isQid(activate(I)) ,activate(P)) isPal(V) = [1] V + [4] >= [1] V + [4] = U81(isNePal(activate(V))) isPal(n__nil()) = [5] >= [3] = tt() isQid(n__a()) = [3] >= [3] = tt() isQid(n__e()) = [6] >= [3] = tt() isQid(n__i()) = [3] >= [3] = tt() isQid(n__o()) = [3] >= [3] = tt() isQid(n__u()) = [3] >= [3] = tt() nil() = [1] >= [1] = n__nil() o() = [3] >= [3] = n__o() u() = [3] >= [3] = n__u() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) e() -> n__e() i() -> n__i() Weak DP Rules: Weak TRS Rules: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() __(X1,X2) -> n____(X1,X2) a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__nil()) -> nil() activate(n__o()) -> o() activate(n__u()) -> u() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() o() -> n__o() u() -> n__u() Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0} Obligation: Innermost basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1}, uargs(U21) = {1,2}, uargs(U22) = {1}, uargs(U31) = {1}, uargs(U41) = {1,2}, uargs(U42) = {1}, uargs(U51) = {1,2}, uargs(U52) = {1}, uargs(U61) = {1}, uargs(U71) = {1,2}, uargs(U72) = {1}, uargs(U81) = {1}, uargs(__) = {1,2}, uargs(isList) = {1}, uargs(isNeList) = {1}, uargs(isNePal) = {1}, uargs(isPal) = {1}, uargs(isQid) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(U11) = [1] x1 + [2] p(U21) = [1] x1 + [1] x2 + [5] p(U22) = [1] x1 + [0] p(U31) = [1] x1 + [0] p(U41) = [1] x1 + [1] x2 + [2] p(U42) = [1] x1 + [0] p(U51) = [1] x1 + [1] x2 + [5] p(U52) = [1] x1 + [0] p(U61) = [1] x1 + [0] p(U71) = [1] x1 + [1] x2 + [5] p(U72) = [1] x1 + [1] p(U81) = [1] x1 + [0] p(__) = [1] x1 + [1] x2 + [7] p(a) = [0] p(activate) = [1] x1 + [1] p(e) = [1] p(i) = [1] p(isList) = [1] x1 + [4] p(isNeList) = [1] x1 + [1] p(isNePal) = [1] x1 + [1] p(isPal) = [1] x1 + [2] p(isQid) = [1] x1 + [0] p(n____) = [1] x1 + [1] x2 + [7] p(n__a) = [0] p(n__e) = [0] p(n__i) = [0] p(n__nil) = [5] p(n__o) = [2] p(n__u) = [3] p(nil) = [5] p(o) = [2] p(tt) = [0] p(u) = [4] Following rules are strictly oriented: e() = [1] > [0] = n__e() i() = [1] > [0] = n__i() Following rules are (at-least) weakly oriented: U11(tt()) = [2] >= [0] = tt() U21(tt(),V2) = [1] V2 + [5] >= [1] V2 + [5] = U22(isList(activate(V2))) U22(tt()) = [0] >= [0] = tt() U31(tt()) = [0] >= [0] = tt() U41(tt(),V2) = [1] V2 + [2] >= [1] V2 + [2] = U42(isNeList(activate(V2))) U42(tt()) = [0] >= [0] = tt() U51(tt(),V2) = [1] V2 + [5] >= [1] V2 + [5] = U52(isList(activate(V2))) U52(tt()) = [0] >= [0] = tt() U61(tt()) = [0] >= [0] = tt() U71(tt(),P) = [1] P + [5] >= [1] P + [4] = U72(isPal(activate(P))) U72(tt()) = [1] >= [0] = tt() U81(tt()) = [0] >= [0] = tt() __(X1,X2) = [1] X1 + [1] X2 + [7] >= [1] X1 + [1] X2 + [7] = n____(X1,X2) a() = [0] >= [0] = n__a() activate(X) = [1] X + [1] >= [1] X + [0] = X activate(n____(X1,X2)) = [1] X1 + [1] X2 + [8] >= [1] X1 + [1] X2 + [9] = __(activate(X1),activate(X2)) activate(n__a()) = [1] >= [0] = a() activate(n__e()) = [1] >= [1] = e() activate(n__i()) = [1] >= [1] = i() activate(n__nil()) = [6] >= [5] = nil() activate(n__o()) = [3] >= [2] = o() activate(n__u()) = [4] >= [4] = u() isList(V) = [1] V + [4] >= [1] V + [4] = U11(isNeList(activate(V))) isList(n____(V1,V2)) = [1] V1 + [1] V2 + [11] >= [1] V1 + [1] V2 + [11] = U21(isList(activate(V1)) ,activate(V2)) isList(n__nil()) = [9] >= [0] = tt() isNeList(V) = [1] V + [1] >= [1] V + [1] = U31(isQid(activate(V))) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [8] >= [1] V1 + [1] V2 + [8] = U41(isList(activate(V1)) ,activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [8] >= [1] V1 + [1] V2 + [8] = U51(isNeList(activate(V1)) ,activate(V2)) isNePal(V) = [1] V + [1] >= [1] V + [1] = U61(isQid(activate(V))) isNePal(n____(I,n____(P,I))) = [2] I + [1] P + [15] >= [1] I + [1] P + [7] = U71(isQid(activate(I)) ,activate(P)) isPal(V) = [1] V + [2] >= [1] V + [2] = U81(isNePal(activate(V))) isPal(n__nil()) = [7] >= [0] = tt() isQid(n__a()) = [0] >= [0] = tt() isQid(n__e()) = [0] >= [0] = tt() isQid(n__i()) = [0] >= [0] = tt() isQid(n__o()) = [2] >= [0] = tt() isQid(n__u()) = [3] >= [0] = tt() nil() = [5] >= [5] = n__nil() o() = [2] >= [2] = n__o() u() = [4] >= [3] = n__u() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) Weak DP Rules: Weak TRS Rules: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() __(X1,X2) -> n____(X1,X2) a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__nil()) -> nil() activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() o() -> n__o() u() -> n__u() Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0} Obligation: Innermost basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt} Applied Processor: NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1}, uargs(U21) = {1,2}, uargs(U22) = {1}, uargs(U31) = {1}, uargs(U41) = {1,2}, uargs(U42) = {1}, uargs(U51) = {1,2}, uargs(U52) = {1}, uargs(U61) = {1}, uargs(U71) = {1,2}, uargs(U72) = {1}, uargs(U81) = {1}, uargs(__) = {1,2}, uargs(isList) = {1}, uargs(isNeList) = {1}, uargs(isNePal) = {1}, uargs(isPal) = {1}, uargs(isQid) = {1} Following symbols are considered usable: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u} TcT has computed the following interpretation: p(U11) = [1 0] x1 + [0] [0 0] [4] p(U21) = [1 1] x1 + [2 7] x2 + [5] [0 0] [0 0] [1] p(U22) = [1 0] x1 + [2] [0 0] [1] p(U31) = [2 0] x1 + [0] [0 0] [0] p(U41) = [1 2] x1 + [2 5] x2 + [0] [0 1] [0 0] [0] p(U42) = [1 0] x1 + [0] [0 0] [0] p(U51) = [1 2] x1 + [2 7] x2 + [0] [0 0] [0 0] [4] p(U52) = [1 0] x1 + [0] [0 0] [0] p(U61) = [1 0] x1 + [0] [0 0] [1] p(U71) = [2 0] x1 + [1 7] x2 + [3] [0 0] [1 4] [7] p(U72) = [1 1] x1 + [0] [0 2] [4] p(U81) = [1 0] x1 + [0] [0 0] [0] p(__) = [1 2] x1 + [1 3] x2 + [3] [0 1] [0 1] [1] p(a) = [0] [0] p(activate) = [1 1] x1 + [0] [0 1] [0] p(e) = [0] [0] p(i) = [0] [0] p(isList) = [2 5] x1 + [0] [0 0] [4] p(isNeList) = [2 3] x1 + [0] [0 0] [4] p(isNePal) = [1 3] x1 + [0] [1 0] [1] p(isPal) = [1 4] x1 + [1] [0 2] [0] p(isQid) = [1 0] x1 + [0] [4 4] [0] p(n____) = [1 2] x1 + [1 3] x2 + [3] [0 1] [0 1] [1] p(n__a) = [0] [0] p(n__e) = [0] [0] p(n__i) = [0] [0] p(n__nil) = [3] [0] p(n__o) = [2] [0] p(n__u) = [0] [0] p(nil) = [3] [0] p(o) = [2] [0] p(tt) = [0] [0] p(u) = [0] [0] Following rules are strictly oriented: activate(n____(X1,X2)) = [1 3] X1 + [1 4] X2 + [4] [0 1] [0 1] [1] > [1 3] X1 + [1 4] X2 + [3] [0 1] [0 1] [1] = __(activate(X1),activate(X2)) Following rules are (at-least) weakly oriented: U11(tt()) = [0] [4] >= [0] [0] = tt() U21(tt(),V2) = [2 7] V2 + [5] [0 0] [1] >= [2 7] V2 + [2] [0 0] [1] = U22(isList(activate(V2))) U22(tt()) = [2] [1] >= [0] [0] = tt() U31(tt()) = [0] [0] >= [0] [0] = tt() U41(tt(),V2) = [2 5] V2 + [0] [0 0] [0] >= [2 5] V2 + [0] [0 0] [0] = U42(isNeList(activate(V2))) U42(tt()) = [0] [0] >= [0] [0] = tt() U51(tt(),V2) = [2 7] V2 + [0] [0 0] [4] >= [2 7] V2 + [0] [0 0] [0] = U52(isList(activate(V2))) U52(tt()) = [0] [0] >= [0] [0] = tt() U61(tt()) = [0] [1] >= [0] [0] = tt() U71(tt(),P) = [1 7] P + [3] [1 4] [7] >= [1 7] P + [1] [0 4] [4] = U72(isPal(activate(P))) U72(tt()) = [0] [4] >= [0] [0] = tt() U81(tt()) = [0] [0] >= [0] [0] = tt() __(X1,X2) = [1 2] X1 + [1 3] X2 + [3] [0 1] [0 1] [1] >= [1 2] X1 + [1 3] X2 + [3] [0 1] [0 1] [1] = n____(X1,X2) a() = [0] [0] >= [0] [0] = n__a() activate(X) = [1 1] X + [0] [0 1] [0] >= [1 0] X + [0] [0 1] [0] = X activate(n__a()) = [0] [0] >= [0] [0] = a() activate(n__e()) = [0] [0] >= [0] [0] = e() activate(n__i()) = [0] [0] >= [0] [0] = i() activate(n__nil()) = [3] [0] >= [3] [0] = nil() activate(n__o()) = [2] [0] >= [2] [0] = o() activate(n__u()) = [0] [0] >= [0] [0] = u() e() = [0] [0] >= [0] [0] = n__e() i() = [0] [0] >= [0] [0] = n__i() isList(V) = [2 5] V + [0] [0 0] [4] >= [2 5] V + [0] [0 0] [4] = U11(isNeList(activate(V))) isList(n____(V1,V2)) = [2 9] V1 + [2 11] V2 + [11] [0 0] [0 0] [4] >= [2 7] V1 + [2 9] V2 + [9] [0 0] [0 0] [1] = U21(isList(activate(V1)) ,activate(V2)) isList(n__nil()) = [6] [4] >= [0] [0] = tt() isNeList(V) = [2 3] V + [0] [0 0] [4] >= [2 2] V + [0] [0 0] [0] = U31(isQid(activate(V))) isNeList(n____(V1,V2)) = [2 7] V1 + [2 9] V2 + [9] [0 0] [0 0] [4] >= [2 7] V1 + [2 7] V2 + [8] [0 0] [0 0] [4] = U41(isList(activate(V1)) ,activate(V2)) isNeList(n____(V1,V2)) = [2 7] V1 + [2 9] V2 + [9] [0 0] [0 0] [4] >= [2 5] V1 + [2 9] V2 + [8] [0 0] [0 0] [4] = U51(isNeList(activate(V1)) ,activate(V2)) isNePal(V) = [1 3] V + [0] [1 0] [1] >= [1 1] V + [0] [0 0] [1] = U61(isQid(activate(V))) isNePal(n____(I,n____(P,I))) = [2 14] I + [1 8] P + [15] [2 8] [1 5] [10] >= [2 2] I + [1 8] P + [3] [0 0] [1 5] [7] = U71(isQid(activate(I)) ,activate(P)) isPal(V) = [1 4] V + [1] [0 2] [0] >= [1 4] V + [0] [0 0] [0] = U81(isNePal(activate(V))) isPal(n__nil()) = [4] [0] >= [0] [0] = tt() isQid(n__a()) = [0] [0] >= [0] [0] = tt() isQid(n__e()) = [0] [0] >= [0] [0] = tt() isQid(n__i()) = [0] [0] >= [0] [0] = tt() isQid(n__o()) = [2] [8] >= [0] [0] = tt() isQid(n__u()) = [0] [0] >= [0] [0] = tt() nil() = [3] [0] >= [3] [0] = n__nil() o() = [2] [0] >= [2] [0] = n__o() u() = [0] [0] >= [0] [0] = n__u() *** 1.1.1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() __(X1,X2) -> n____(X1,X2) a() -> n__a() activate(X) -> X activate(n____(X1,X2)) -> __(activate(X1),activate(X2)) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__nil()) -> nil() activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isNePal(n____(I,n____(P,I))) -> U71(isQid(activate(I)),activate(P)) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() o() -> n__o() u() -> n__u() Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0} Obligation: Innermost basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).