We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { __(X1, X2) -> n____(X1, X2)
  , __(X, nil()) -> X
  , __(__(X, Y), Z) -> __(X, __(Y, Z))
  , __(nil(), X) -> X
  , nil() -> n__nil()
  , U11(tt()) -> tt()
  , U21(tt(), V2) -> U22(isList(activate(V2)))
  , U22(tt()) -> tt()
  , isList(V) -> U11(isNeList(activate(V)))
  , isList(n__nil()) -> tt()
  , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__nil()) -> nil()
  , activate(n____(X1, X2)) -> __(activate(X1), activate(X2))
  , activate(n__a()) -> a()
  , activate(n__e()) -> e()
  , activate(n__i()) -> i()
  , activate(n__o()) -> o()
  , activate(n__u()) -> u()
  , U31(tt()) -> tt()
  , U41(tt(), V2) -> U42(isNeList(activate(V2)))
  , U42(tt()) -> tt()
  , isNeList(V) -> U31(isQid(activate(V)))
  , isNeList(n____(V1, V2)) ->
    U41(isList(activate(V1)), activate(V2))
  , isNeList(n____(V1, V2)) ->
    U51(isNeList(activate(V1)), activate(V2))
  , U51(tt(), V2) -> U52(isList(activate(V2)))
  , U52(tt()) -> tt()
  , U61(tt()) -> tt()
  , U71(tt(), P) -> U72(isPal(activate(P)))
  , U72(tt()) -> tt()
  , isPal(V) -> U81(isNePal(activate(V)))
  , isPal(n__nil()) -> tt()
  , U81(tt()) -> tt()
  , isQid(n__a()) -> tt()
  , isQid(n__e()) -> tt()
  , isQid(n__i()) -> tt()
  , isQid(n__o()) -> tt()
  , isQid(n__u()) -> tt()
  , isNePal(V) -> U61(isQid(activate(V)))
  , isNePal(n____(I, n____(P, I))) ->
    U71(isQid(activate(I)), activate(P))
  , a() -> n__a()
  , e() -> n__e()
  , i() -> n__i()
  , o() -> n__o()
  , u() -> n__u() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

Arguments of following rules are not normal-forms:

{ __(X, nil()) -> X
, __(__(X, Y), Z) -> __(X, __(Y, Z))
, __(nil(), X) -> X }

All above mentioned rules can be savely removed.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { __(X1, X2) -> n____(X1, X2)
  , nil() -> n__nil()
  , U11(tt()) -> tt()
  , U21(tt(), V2) -> U22(isList(activate(V2)))
  , U22(tt()) -> tt()
  , isList(V) -> U11(isNeList(activate(V)))
  , isList(n__nil()) -> tt()
  , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__nil()) -> nil()
  , activate(n____(X1, X2)) -> __(activate(X1), activate(X2))
  , activate(n__a()) -> a()
  , activate(n__e()) -> e()
  , activate(n__i()) -> i()
  , activate(n__o()) -> o()
  , activate(n__u()) -> u()
  , U31(tt()) -> tt()
  , U41(tt(), V2) -> U42(isNeList(activate(V2)))
  , U42(tt()) -> tt()
  , isNeList(V) -> U31(isQid(activate(V)))
  , isNeList(n____(V1, V2)) ->
    U41(isList(activate(V1)), activate(V2))
  , isNeList(n____(V1, V2)) ->
    U51(isNeList(activate(V1)), activate(V2))
  , U51(tt(), V2) -> U52(isList(activate(V2)))
  , U52(tt()) -> tt()
  , U61(tt()) -> tt()
  , U71(tt(), P) -> U72(isPal(activate(P)))
  , U72(tt()) -> tt()
  , isPal(V) -> U81(isNePal(activate(V)))
  , isPal(n__nil()) -> tt()
  , U81(tt()) -> tt()
  , isQid(n__a()) -> tt()
  , isQid(n__e()) -> tt()
  , isQid(n__i()) -> tt()
  , isQid(n__o()) -> tt()
  , isQid(n__u()) -> tt()
  , isNePal(V) -> U61(isQid(activate(V)))
  , isNePal(n____(I, n____(P, I))) ->
    U71(isQid(activate(I)), activate(P))
  , a() -> n__a()
  , e() -> n__e()
  , i() -> n__i()
  , o() -> n__o()
  , u() -> n__u() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We add the following dependency tuples:

Strict DPs:
  { __^#(X1, X2) -> c_1()
  , nil^#() -> c_2()
  , U11^#(tt()) -> c_3()
  , U21^#(tt(), V2) ->
    c_4(U22^#(isList(activate(V2))),
        isList^#(activate(V2)),
        activate^#(V2))
  , U22^#(tt()) -> c_5()
  , isList^#(V) ->
    c_6(U11^#(isNeList(activate(V))),
        isNeList^#(activate(V)),
        activate^#(V))
  , isList^#(n__nil()) -> c_7()
  , isList^#(n____(V1, V2)) ->
    c_8(U21^#(isList(activate(V1)), activate(V2)),
        isList^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , activate^#(X) -> c_9()
  , activate^#(n__nil()) -> c_10(nil^#())
  , activate^#(n____(X1, X2)) ->
    c_11(__^#(activate(X1), activate(X2)),
         activate^#(X1),
         activate^#(X2))
  , activate^#(n__a()) -> c_12(a^#())
  , activate^#(n__e()) -> c_13(e^#())
  , activate^#(n__i()) -> c_14(i^#())
  , activate^#(n__o()) -> c_15(o^#())
  , activate^#(n__u()) -> c_16(u^#())
  , isNeList^#(V) ->
    c_20(U31^#(isQid(activate(V))),
         isQid^#(activate(V)),
         activate^#(V))
  , isNeList^#(n____(V1, V2)) ->
    c_21(U41^#(isList(activate(V1)), activate(V2)),
         isList^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
  , isNeList^#(n____(V1, V2)) ->
    c_22(U51^#(isNeList(activate(V1)), activate(V2)),
         isNeList^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
  , a^#() -> c_38()
  , e^#() -> c_39()
  , i^#() -> c_40()
  , o^#() -> c_41()
  , u^#() -> c_42()
  , U31^#(tt()) -> c_17()
  , U41^#(tt(), V2) ->
    c_18(U42^#(isNeList(activate(V2))),
         isNeList^#(activate(V2)),
         activate^#(V2))
  , U42^#(tt()) -> c_19()
  , isQid^#(n__a()) -> c_31()
  , isQid^#(n__e()) -> c_32()
  , isQid^#(n__i()) -> c_33()
  , isQid^#(n__o()) -> c_34()
  , isQid^#(n__u()) -> c_35()
  , U51^#(tt(), V2) ->
    c_23(U52^#(isList(activate(V2))),
         isList^#(activate(V2)),
         activate^#(V2))
  , U52^#(tt()) -> c_24()
  , U61^#(tt()) -> c_25()
  , U71^#(tt(), P) ->
    c_26(U72^#(isPal(activate(P))),
         isPal^#(activate(P)),
         activate^#(P))
  , U72^#(tt()) -> c_27()
  , isPal^#(V) ->
    c_28(U81^#(isNePal(activate(V))),
         isNePal^#(activate(V)),
         activate^#(V))
  , isPal^#(n__nil()) -> c_29()
  , U81^#(tt()) -> c_30()
  , isNePal^#(V) ->
    c_36(U61^#(isQid(activate(V))),
         isQid^#(activate(V)),
         activate^#(V))
  , isNePal^#(n____(I, n____(P, I))) ->
    c_37(U71^#(isQid(activate(I)), activate(P)),
         isQid^#(activate(I)),
         activate^#(I),
         activate^#(P)) }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { __^#(X1, X2) -> c_1()
  , nil^#() -> c_2()
  , U11^#(tt()) -> c_3()
  , U21^#(tt(), V2) ->
    c_4(U22^#(isList(activate(V2))),
        isList^#(activate(V2)),
        activate^#(V2))
  , U22^#(tt()) -> c_5()
  , isList^#(V) ->
    c_6(U11^#(isNeList(activate(V))),
        isNeList^#(activate(V)),
        activate^#(V))
  , isList^#(n__nil()) -> c_7()
  , isList^#(n____(V1, V2)) ->
    c_8(U21^#(isList(activate(V1)), activate(V2)),
        isList^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , activate^#(X) -> c_9()
  , activate^#(n__nil()) -> c_10(nil^#())
  , activate^#(n____(X1, X2)) ->
    c_11(__^#(activate(X1), activate(X2)),
         activate^#(X1),
         activate^#(X2))
  , activate^#(n__a()) -> c_12(a^#())
  , activate^#(n__e()) -> c_13(e^#())
  , activate^#(n__i()) -> c_14(i^#())
  , activate^#(n__o()) -> c_15(o^#())
  , activate^#(n__u()) -> c_16(u^#())
  , isNeList^#(V) ->
    c_20(U31^#(isQid(activate(V))),
         isQid^#(activate(V)),
         activate^#(V))
  , isNeList^#(n____(V1, V2)) ->
    c_21(U41^#(isList(activate(V1)), activate(V2)),
         isList^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
  , isNeList^#(n____(V1, V2)) ->
    c_22(U51^#(isNeList(activate(V1)), activate(V2)),
         isNeList^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
  , a^#() -> c_38()
  , e^#() -> c_39()
  , i^#() -> c_40()
  , o^#() -> c_41()
  , u^#() -> c_42()
  , U31^#(tt()) -> c_17()
  , U41^#(tt(), V2) ->
    c_18(U42^#(isNeList(activate(V2))),
         isNeList^#(activate(V2)),
         activate^#(V2))
  , U42^#(tt()) -> c_19()
  , isQid^#(n__a()) -> c_31()
  , isQid^#(n__e()) -> c_32()
  , isQid^#(n__i()) -> c_33()
  , isQid^#(n__o()) -> c_34()
  , isQid^#(n__u()) -> c_35()
  , U51^#(tt(), V2) ->
    c_23(U52^#(isList(activate(V2))),
         isList^#(activate(V2)),
         activate^#(V2))
  , U52^#(tt()) -> c_24()
  , U61^#(tt()) -> c_25()
  , U71^#(tt(), P) ->
    c_26(U72^#(isPal(activate(P))),
         isPal^#(activate(P)),
         activate^#(P))
  , U72^#(tt()) -> c_27()
  , isPal^#(V) ->
    c_28(U81^#(isNePal(activate(V))),
         isNePal^#(activate(V)),
         activate^#(V))
  , isPal^#(n__nil()) -> c_29()
  , U81^#(tt()) -> c_30()
  , isNePal^#(V) ->
    c_36(U61^#(isQid(activate(V))),
         isQid^#(activate(V)),
         activate^#(V))
  , isNePal^#(n____(I, n____(P, I))) ->
    c_37(U71^#(isQid(activate(I)), activate(P)),
         isQid^#(activate(I)),
         activate^#(I),
         activate^#(P)) }
Weak Trs:
  { __(X1, X2) -> n____(X1, X2)
  , nil() -> n__nil()
  , U11(tt()) -> tt()
  , U21(tt(), V2) -> U22(isList(activate(V2)))
  , U22(tt()) -> tt()
  , isList(V) -> U11(isNeList(activate(V)))
  , isList(n__nil()) -> tt()
  , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__nil()) -> nil()
  , activate(n____(X1, X2)) -> __(activate(X1), activate(X2))
  , activate(n__a()) -> a()
  , activate(n__e()) -> e()
  , activate(n__i()) -> i()
  , activate(n__o()) -> o()
  , activate(n__u()) -> u()
  , U31(tt()) -> tt()
  , U41(tt(), V2) -> U42(isNeList(activate(V2)))
  , U42(tt()) -> tt()
  , isNeList(V) -> U31(isQid(activate(V)))
  , isNeList(n____(V1, V2)) ->
    U41(isList(activate(V1)), activate(V2))
  , isNeList(n____(V1, V2)) ->
    U51(isNeList(activate(V1)), activate(V2))
  , U51(tt(), V2) -> U52(isList(activate(V2)))
  , U52(tt()) -> tt()
  , U61(tt()) -> tt()
  , U71(tt(), P) -> U72(isPal(activate(P)))
  , U72(tt()) -> tt()
  , isPal(V) -> U81(isNePal(activate(V)))
  , isPal(n__nil()) -> tt()
  , U81(tt()) -> tt()
  , isQid(n__a()) -> tt()
  , isQid(n__e()) -> tt()
  , isQid(n__i()) -> tt()
  , isQid(n__o()) -> tt()
  , isQid(n__u()) -> tt()
  , isNePal(V) -> U61(isQid(activate(V)))
  , isNePal(n____(I, n____(P, I))) ->
    U71(isQid(activate(I)), activate(P))
  , a() -> n__a()
  , e() -> n__e()
  , i() -> n__i()
  , o() -> n__o()
  , u() -> n__u() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We estimate the number of application of
{1,2,3,5,7,9,20,21,22,23,24,25,27,28,29,30,31,32,34,35,37,39,40} by
applications of
Pre({1,2,3,5,7,9,20,21,22,23,24,25,27,28,29,30,31,32,34,35,37,39,40})
= {4,6,8,10,11,12,13,14,15,16,17,18,19,26,33,36,38,41,42}. Here
rules are labeled as follows:

  DPs:
    { 1: __^#(X1, X2) -> c_1()
    , 2: nil^#() -> c_2()
    , 3: U11^#(tt()) -> c_3()
    , 4: U21^#(tt(), V2) ->
         c_4(U22^#(isList(activate(V2))),
             isList^#(activate(V2)),
             activate^#(V2))
    , 5: U22^#(tt()) -> c_5()
    , 6: isList^#(V) ->
         c_6(U11^#(isNeList(activate(V))),
             isNeList^#(activate(V)),
             activate^#(V))
    , 7: isList^#(n__nil()) -> c_7()
    , 8: isList^#(n____(V1, V2)) ->
         c_8(U21^#(isList(activate(V1)), activate(V2)),
             isList^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
    , 9: activate^#(X) -> c_9()
    , 10: activate^#(n__nil()) -> c_10(nil^#())
    , 11: activate^#(n____(X1, X2)) ->
          c_11(__^#(activate(X1), activate(X2)),
               activate^#(X1),
               activate^#(X2))
    , 12: activate^#(n__a()) -> c_12(a^#())
    , 13: activate^#(n__e()) -> c_13(e^#())
    , 14: activate^#(n__i()) -> c_14(i^#())
    , 15: activate^#(n__o()) -> c_15(o^#())
    , 16: activate^#(n__u()) -> c_16(u^#())
    , 17: isNeList^#(V) ->
          c_20(U31^#(isQid(activate(V))),
               isQid^#(activate(V)),
               activate^#(V))
    , 18: isNeList^#(n____(V1, V2)) ->
          c_21(U41^#(isList(activate(V1)), activate(V2)),
               isList^#(activate(V1)),
               activate^#(V1),
               activate^#(V2))
    , 19: isNeList^#(n____(V1, V2)) ->
          c_22(U51^#(isNeList(activate(V1)), activate(V2)),
               isNeList^#(activate(V1)),
               activate^#(V1),
               activate^#(V2))
    , 20: a^#() -> c_38()
    , 21: e^#() -> c_39()
    , 22: i^#() -> c_40()
    , 23: o^#() -> c_41()
    , 24: u^#() -> c_42()
    , 25: U31^#(tt()) -> c_17()
    , 26: U41^#(tt(), V2) ->
          c_18(U42^#(isNeList(activate(V2))),
               isNeList^#(activate(V2)),
               activate^#(V2))
    , 27: U42^#(tt()) -> c_19()
    , 28: isQid^#(n__a()) -> c_31()
    , 29: isQid^#(n__e()) -> c_32()
    , 30: isQid^#(n__i()) -> c_33()
    , 31: isQid^#(n__o()) -> c_34()
    , 32: isQid^#(n__u()) -> c_35()
    , 33: U51^#(tt(), V2) ->
          c_23(U52^#(isList(activate(V2))),
               isList^#(activate(V2)),
               activate^#(V2))
    , 34: U52^#(tt()) -> c_24()
    , 35: U61^#(tt()) -> c_25()
    , 36: U71^#(tt(), P) ->
          c_26(U72^#(isPal(activate(P))),
               isPal^#(activate(P)),
               activate^#(P))
    , 37: U72^#(tt()) -> c_27()
    , 38: isPal^#(V) ->
          c_28(U81^#(isNePal(activate(V))),
               isNePal^#(activate(V)),
               activate^#(V))
    , 39: isPal^#(n__nil()) -> c_29()
    , 40: U81^#(tt()) -> c_30()
    , 41: isNePal^#(V) ->
          c_36(U61^#(isQid(activate(V))),
               isQid^#(activate(V)),
               activate^#(V))
    , 42: isNePal^#(n____(I, n____(P, I))) ->
          c_37(U71^#(isQid(activate(I)), activate(P)),
               isQid^#(activate(I)),
               activate^#(I),
               activate^#(P)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { U21^#(tt(), V2) ->
    c_4(U22^#(isList(activate(V2))),
        isList^#(activate(V2)),
        activate^#(V2))
  , isList^#(V) ->
    c_6(U11^#(isNeList(activate(V))),
        isNeList^#(activate(V)),
        activate^#(V))
  , isList^#(n____(V1, V2)) ->
    c_8(U21^#(isList(activate(V1)), activate(V2)),
        isList^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , activate^#(n__nil()) -> c_10(nil^#())
  , activate^#(n____(X1, X2)) ->
    c_11(__^#(activate(X1), activate(X2)),
         activate^#(X1),
         activate^#(X2))
  , activate^#(n__a()) -> c_12(a^#())
  , activate^#(n__e()) -> c_13(e^#())
  , activate^#(n__i()) -> c_14(i^#())
  , activate^#(n__o()) -> c_15(o^#())
  , activate^#(n__u()) -> c_16(u^#())
  , isNeList^#(V) ->
    c_20(U31^#(isQid(activate(V))),
         isQid^#(activate(V)),
         activate^#(V))
  , isNeList^#(n____(V1, V2)) ->
    c_21(U41^#(isList(activate(V1)), activate(V2)),
         isList^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
  , isNeList^#(n____(V1, V2)) ->
    c_22(U51^#(isNeList(activate(V1)), activate(V2)),
         isNeList^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
  , U41^#(tt(), V2) ->
    c_18(U42^#(isNeList(activate(V2))),
         isNeList^#(activate(V2)),
         activate^#(V2))
  , U51^#(tt(), V2) ->
    c_23(U52^#(isList(activate(V2))),
         isList^#(activate(V2)),
         activate^#(V2))
  , U71^#(tt(), P) ->
    c_26(U72^#(isPal(activate(P))),
         isPal^#(activate(P)),
         activate^#(P))
  , isPal^#(V) ->
    c_28(U81^#(isNePal(activate(V))),
         isNePal^#(activate(V)),
         activate^#(V))
  , isNePal^#(V) ->
    c_36(U61^#(isQid(activate(V))),
         isQid^#(activate(V)),
         activate^#(V))
  , isNePal^#(n____(I, n____(P, I))) ->
    c_37(U71^#(isQid(activate(I)), activate(P)),
         isQid^#(activate(I)),
         activate^#(I),
         activate^#(P)) }
Weak DPs:
  { __^#(X1, X2) -> c_1()
  , nil^#() -> c_2()
  , U11^#(tt()) -> c_3()
  , U22^#(tt()) -> c_5()
  , isList^#(n__nil()) -> c_7()
  , activate^#(X) -> c_9()
  , a^#() -> c_38()
  , e^#() -> c_39()
  , i^#() -> c_40()
  , o^#() -> c_41()
  , u^#() -> c_42()
  , U31^#(tt()) -> c_17()
  , U42^#(tt()) -> c_19()
  , isQid^#(n__a()) -> c_31()
  , isQid^#(n__e()) -> c_32()
  , isQid^#(n__i()) -> c_33()
  , isQid^#(n__o()) -> c_34()
  , isQid^#(n__u()) -> c_35()
  , U52^#(tt()) -> c_24()
  , U61^#(tt()) -> c_25()
  , U72^#(tt()) -> c_27()
  , isPal^#(n__nil()) -> c_29()
  , U81^#(tt()) -> c_30() }
Weak Trs:
  { __(X1, X2) -> n____(X1, X2)
  , nil() -> n__nil()
  , U11(tt()) -> tt()
  , U21(tt(), V2) -> U22(isList(activate(V2)))
  , U22(tt()) -> tt()
  , isList(V) -> U11(isNeList(activate(V)))
  , isList(n__nil()) -> tt()
  , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__nil()) -> nil()
  , activate(n____(X1, X2)) -> __(activate(X1), activate(X2))
  , activate(n__a()) -> a()
  , activate(n__e()) -> e()
  , activate(n__i()) -> i()
  , activate(n__o()) -> o()
  , activate(n__u()) -> u()
  , U31(tt()) -> tt()
  , U41(tt(), V2) -> U42(isNeList(activate(V2)))
  , U42(tt()) -> tt()
  , isNeList(V) -> U31(isQid(activate(V)))
  , isNeList(n____(V1, V2)) ->
    U41(isList(activate(V1)), activate(V2))
  , isNeList(n____(V1, V2)) ->
    U51(isNeList(activate(V1)), activate(V2))
  , U51(tt(), V2) -> U52(isList(activate(V2)))
  , U52(tt()) -> tt()
  , U61(tt()) -> tt()
  , U71(tt(), P) -> U72(isPal(activate(P)))
  , U72(tt()) -> tt()
  , isPal(V) -> U81(isNePal(activate(V)))
  , isPal(n__nil()) -> tt()
  , U81(tt()) -> tt()
  , isQid(n__a()) -> tt()
  , isQid(n__e()) -> tt()
  , isQid(n__i()) -> tt()
  , isQid(n__o()) -> tt()
  , isQid(n__u()) -> tt()
  , isNePal(V) -> U61(isQid(activate(V)))
  , isNePal(n____(I, n____(P, I))) ->
    U71(isQid(activate(I)), activate(P))
  , a() -> n__a()
  , e() -> n__e()
  , i() -> n__i()
  , o() -> n__o()
  , u() -> n__u() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We estimate the number of application of {4,6,7,8,9,10} by
applications of Pre({4,6,7,8,9,10}) =
{1,2,3,5,11,12,13,14,15,16,17,18,19}. Here rules are labeled as
follows:

  DPs:
    { 1: U21^#(tt(), V2) ->
         c_4(U22^#(isList(activate(V2))),
             isList^#(activate(V2)),
             activate^#(V2))
    , 2: isList^#(V) ->
         c_6(U11^#(isNeList(activate(V))),
             isNeList^#(activate(V)),
             activate^#(V))
    , 3: isList^#(n____(V1, V2)) ->
         c_8(U21^#(isList(activate(V1)), activate(V2)),
             isList^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
    , 4: activate^#(n__nil()) -> c_10(nil^#())
    , 5: activate^#(n____(X1, X2)) ->
         c_11(__^#(activate(X1), activate(X2)),
              activate^#(X1),
              activate^#(X2))
    , 6: activate^#(n__a()) -> c_12(a^#())
    , 7: activate^#(n__e()) -> c_13(e^#())
    , 8: activate^#(n__i()) -> c_14(i^#())
    , 9: activate^#(n__o()) -> c_15(o^#())
    , 10: activate^#(n__u()) -> c_16(u^#())
    , 11: isNeList^#(V) ->
          c_20(U31^#(isQid(activate(V))),
               isQid^#(activate(V)),
               activate^#(V))
    , 12: isNeList^#(n____(V1, V2)) ->
          c_21(U41^#(isList(activate(V1)), activate(V2)),
               isList^#(activate(V1)),
               activate^#(V1),
               activate^#(V2))
    , 13: isNeList^#(n____(V1, V2)) ->
          c_22(U51^#(isNeList(activate(V1)), activate(V2)),
               isNeList^#(activate(V1)),
               activate^#(V1),
               activate^#(V2))
    , 14: U41^#(tt(), V2) ->
          c_18(U42^#(isNeList(activate(V2))),
               isNeList^#(activate(V2)),
               activate^#(V2))
    , 15: U51^#(tt(), V2) ->
          c_23(U52^#(isList(activate(V2))),
               isList^#(activate(V2)),
               activate^#(V2))
    , 16: U71^#(tt(), P) ->
          c_26(U72^#(isPal(activate(P))),
               isPal^#(activate(P)),
               activate^#(P))
    , 17: isPal^#(V) ->
          c_28(U81^#(isNePal(activate(V))),
               isNePal^#(activate(V)),
               activate^#(V))
    , 18: isNePal^#(V) ->
          c_36(U61^#(isQid(activate(V))),
               isQid^#(activate(V)),
               activate^#(V))
    , 19: isNePal^#(n____(I, n____(P, I))) ->
          c_37(U71^#(isQid(activate(I)), activate(P)),
               isQid^#(activate(I)),
               activate^#(I),
               activate^#(P))
    , 20: __^#(X1, X2) -> c_1()
    , 21: nil^#() -> c_2()
    , 22: U11^#(tt()) -> c_3()
    , 23: U22^#(tt()) -> c_5()
    , 24: isList^#(n__nil()) -> c_7()
    , 25: activate^#(X) -> c_9()
    , 26: a^#() -> c_38()
    , 27: e^#() -> c_39()
    , 28: i^#() -> c_40()
    , 29: o^#() -> c_41()
    , 30: u^#() -> c_42()
    , 31: U31^#(tt()) -> c_17()
    , 32: U42^#(tt()) -> c_19()
    , 33: isQid^#(n__a()) -> c_31()
    , 34: isQid^#(n__e()) -> c_32()
    , 35: isQid^#(n__i()) -> c_33()
    , 36: isQid^#(n__o()) -> c_34()
    , 37: isQid^#(n__u()) -> c_35()
    , 38: U52^#(tt()) -> c_24()
    , 39: U61^#(tt()) -> c_25()
    , 40: U72^#(tt()) -> c_27()
    , 41: isPal^#(n__nil()) -> c_29()
    , 42: U81^#(tt()) -> c_30() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { U21^#(tt(), V2) ->
    c_4(U22^#(isList(activate(V2))),
        isList^#(activate(V2)),
        activate^#(V2))
  , isList^#(V) ->
    c_6(U11^#(isNeList(activate(V))),
        isNeList^#(activate(V)),
        activate^#(V))
  , isList^#(n____(V1, V2)) ->
    c_8(U21^#(isList(activate(V1)), activate(V2)),
        isList^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , activate^#(n____(X1, X2)) ->
    c_11(__^#(activate(X1), activate(X2)),
         activate^#(X1),
         activate^#(X2))
  , isNeList^#(V) ->
    c_20(U31^#(isQid(activate(V))),
         isQid^#(activate(V)),
         activate^#(V))
  , isNeList^#(n____(V1, V2)) ->
    c_21(U41^#(isList(activate(V1)), activate(V2)),
         isList^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
  , isNeList^#(n____(V1, V2)) ->
    c_22(U51^#(isNeList(activate(V1)), activate(V2)),
         isNeList^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
  , U41^#(tt(), V2) ->
    c_18(U42^#(isNeList(activate(V2))),
         isNeList^#(activate(V2)),
         activate^#(V2))
  , U51^#(tt(), V2) ->
    c_23(U52^#(isList(activate(V2))),
         isList^#(activate(V2)),
         activate^#(V2))
  , U71^#(tt(), P) ->
    c_26(U72^#(isPal(activate(P))),
         isPal^#(activate(P)),
         activate^#(P))
  , isPal^#(V) ->
    c_28(U81^#(isNePal(activate(V))),
         isNePal^#(activate(V)),
         activate^#(V))
  , isNePal^#(V) ->
    c_36(U61^#(isQid(activate(V))),
         isQid^#(activate(V)),
         activate^#(V))
  , isNePal^#(n____(I, n____(P, I))) ->
    c_37(U71^#(isQid(activate(I)), activate(P)),
         isQid^#(activate(I)),
         activate^#(I),
         activate^#(P)) }
Weak DPs:
  { __^#(X1, X2) -> c_1()
  , nil^#() -> c_2()
  , U11^#(tt()) -> c_3()
  , U22^#(tt()) -> c_5()
  , isList^#(n__nil()) -> c_7()
  , activate^#(X) -> c_9()
  , activate^#(n__nil()) -> c_10(nil^#())
  , activate^#(n__a()) -> c_12(a^#())
  , activate^#(n__e()) -> c_13(e^#())
  , activate^#(n__i()) -> c_14(i^#())
  , activate^#(n__o()) -> c_15(o^#())
  , activate^#(n__u()) -> c_16(u^#())
  , a^#() -> c_38()
  , e^#() -> c_39()
  , i^#() -> c_40()
  , o^#() -> c_41()
  , u^#() -> c_42()
  , U31^#(tt()) -> c_17()
  , U42^#(tt()) -> c_19()
  , isQid^#(n__a()) -> c_31()
  , isQid^#(n__e()) -> c_32()
  , isQid^#(n__i()) -> c_33()
  , isQid^#(n__o()) -> c_34()
  , isQid^#(n__u()) -> c_35()
  , U52^#(tt()) -> c_24()
  , U61^#(tt()) -> c_25()
  , U72^#(tt()) -> c_27()
  , isPal^#(n__nil()) -> c_29()
  , U81^#(tt()) -> c_30() }
Weak Trs:
  { __(X1, X2) -> n____(X1, X2)
  , nil() -> n__nil()
  , U11(tt()) -> tt()
  , U21(tt(), V2) -> U22(isList(activate(V2)))
  , U22(tt()) -> tt()
  , isList(V) -> U11(isNeList(activate(V)))
  , isList(n__nil()) -> tt()
  , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__nil()) -> nil()
  , activate(n____(X1, X2)) -> __(activate(X1), activate(X2))
  , activate(n__a()) -> a()
  , activate(n__e()) -> e()
  , activate(n__i()) -> i()
  , activate(n__o()) -> o()
  , activate(n__u()) -> u()
  , U31(tt()) -> tt()
  , U41(tt(), V2) -> U42(isNeList(activate(V2)))
  , U42(tt()) -> tt()
  , isNeList(V) -> U31(isQid(activate(V)))
  , isNeList(n____(V1, V2)) ->
    U41(isList(activate(V1)), activate(V2))
  , isNeList(n____(V1, V2)) ->
    U51(isNeList(activate(V1)), activate(V2))
  , U51(tt(), V2) -> U52(isList(activate(V2)))
  , U52(tt()) -> tt()
  , U61(tt()) -> tt()
  , U71(tt(), P) -> U72(isPal(activate(P)))
  , U72(tt()) -> tt()
  , isPal(V) -> U81(isNePal(activate(V)))
  , isPal(n__nil()) -> tt()
  , U81(tt()) -> tt()
  , isQid(n__a()) -> tt()
  , isQid(n__e()) -> tt()
  , isQid(n__i()) -> tt()
  , isQid(n__o()) -> tt()
  , isQid(n__u()) -> tt()
  , isNePal(V) -> U61(isQid(activate(V)))
  , isNePal(n____(I, n____(P, I))) ->
    U71(isQid(activate(I)), activate(P))
  , a() -> n__a()
  , e() -> n__e()
  , i() -> n__i()
  , o() -> n__o()
  , u() -> n__u() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ __^#(X1, X2) -> c_1()
, nil^#() -> c_2()
, U11^#(tt()) -> c_3()
, U22^#(tt()) -> c_5()
, isList^#(n__nil()) -> c_7()
, activate^#(X) -> c_9()
, activate^#(n__nil()) -> c_10(nil^#())
, activate^#(n__a()) -> c_12(a^#())
, activate^#(n__e()) -> c_13(e^#())
, activate^#(n__i()) -> c_14(i^#())
, activate^#(n__o()) -> c_15(o^#())
, activate^#(n__u()) -> c_16(u^#())
, a^#() -> c_38()
, e^#() -> c_39()
, i^#() -> c_40()
, o^#() -> c_41()
, u^#() -> c_42()
, U31^#(tt()) -> c_17()
, U42^#(tt()) -> c_19()
, isQid^#(n__a()) -> c_31()
, isQid^#(n__e()) -> c_32()
, isQid^#(n__i()) -> c_33()
, isQid^#(n__o()) -> c_34()
, isQid^#(n__u()) -> c_35()
, U52^#(tt()) -> c_24()
, U61^#(tt()) -> c_25()
, U72^#(tt()) -> c_27()
, isPal^#(n__nil()) -> c_29()
, U81^#(tt()) -> c_30() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { U21^#(tt(), V2) ->
    c_4(U22^#(isList(activate(V2))),
        isList^#(activate(V2)),
        activate^#(V2))
  , isList^#(V) ->
    c_6(U11^#(isNeList(activate(V))),
        isNeList^#(activate(V)),
        activate^#(V))
  , isList^#(n____(V1, V2)) ->
    c_8(U21^#(isList(activate(V1)), activate(V2)),
        isList^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , activate^#(n____(X1, X2)) ->
    c_11(__^#(activate(X1), activate(X2)),
         activate^#(X1),
         activate^#(X2))
  , isNeList^#(V) ->
    c_20(U31^#(isQid(activate(V))),
         isQid^#(activate(V)),
         activate^#(V))
  , isNeList^#(n____(V1, V2)) ->
    c_21(U41^#(isList(activate(V1)), activate(V2)),
         isList^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
  , isNeList^#(n____(V1, V2)) ->
    c_22(U51^#(isNeList(activate(V1)), activate(V2)),
         isNeList^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
  , U41^#(tt(), V2) ->
    c_18(U42^#(isNeList(activate(V2))),
         isNeList^#(activate(V2)),
         activate^#(V2))
  , U51^#(tt(), V2) ->
    c_23(U52^#(isList(activate(V2))),
         isList^#(activate(V2)),
         activate^#(V2))
  , U71^#(tt(), P) ->
    c_26(U72^#(isPal(activate(P))),
         isPal^#(activate(P)),
         activate^#(P))
  , isPal^#(V) ->
    c_28(U81^#(isNePal(activate(V))),
         isNePal^#(activate(V)),
         activate^#(V))
  , isNePal^#(V) ->
    c_36(U61^#(isQid(activate(V))),
         isQid^#(activate(V)),
         activate^#(V))
  , isNePal^#(n____(I, n____(P, I))) ->
    c_37(U71^#(isQid(activate(I)), activate(P)),
         isQid^#(activate(I)),
         activate^#(I),
         activate^#(P)) }
Weak Trs:
  { __(X1, X2) -> n____(X1, X2)
  , nil() -> n__nil()
  , U11(tt()) -> tt()
  , U21(tt(), V2) -> U22(isList(activate(V2)))
  , U22(tt()) -> tt()
  , isList(V) -> U11(isNeList(activate(V)))
  , isList(n__nil()) -> tt()
  , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__nil()) -> nil()
  , activate(n____(X1, X2)) -> __(activate(X1), activate(X2))
  , activate(n__a()) -> a()
  , activate(n__e()) -> e()
  , activate(n__i()) -> i()
  , activate(n__o()) -> o()
  , activate(n__u()) -> u()
  , U31(tt()) -> tt()
  , U41(tt(), V2) -> U42(isNeList(activate(V2)))
  , U42(tt()) -> tt()
  , isNeList(V) -> U31(isQid(activate(V)))
  , isNeList(n____(V1, V2)) ->
    U41(isList(activate(V1)), activate(V2))
  , isNeList(n____(V1, V2)) ->
    U51(isNeList(activate(V1)), activate(V2))
  , U51(tt(), V2) -> U52(isList(activate(V2)))
  , U52(tt()) -> tt()
  , U61(tt()) -> tt()
  , U71(tt(), P) -> U72(isPal(activate(P)))
  , U72(tt()) -> tt()
  , isPal(V) -> U81(isNePal(activate(V)))
  , isPal(n__nil()) -> tt()
  , U81(tt()) -> tt()
  , isQid(n__a()) -> tt()
  , isQid(n__e()) -> tt()
  , isQid(n__i()) -> tt()
  , isQid(n__o()) -> tt()
  , isQid(n__u()) -> tt()
  , isNePal(V) -> U61(isQid(activate(V)))
  , isNePal(n____(I, n____(P, I))) ->
    U71(isQid(activate(I)), activate(P))
  , a() -> n__a()
  , e() -> n__e()
  , i() -> n__i()
  , o() -> n__o()
  , u() -> n__u() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

Due to missing edges in the dependency-graph, the right-hand sides
of following rules could be simplified:

  { U21^#(tt(), V2) ->
    c_4(U22^#(isList(activate(V2))),
        isList^#(activate(V2)),
        activate^#(V2))
  , isList^#(V) ->
    c_6(U11^#(isNeList(activate(V))),
        isNeList^#(activate(V)),
        activate^#(V))
  , activate^#(n____(X1, X2)) ->
    c_11(__^#(activate(X1), activate(X2)),
         activate^#(X1),
         activate^#(X2))
  , isNeList^#(V) ->
    c_20(U31^#(isQid(activate(V))),
         isQid^#(activate(V)),
         activate^#(V))
  , U41^#(tt(), V2) ->
    c_18(U42^#(isNeList(activate(V2))),
         isNeList^#(activate(V2)),
         activate^#(V2))
  , U51^#(tt(), V2) ->
    c_23(U52^#(isList(activate(V2))),
         isList^#(activate(V2)),
         activate^#(V2))
  , U71^#(tt(), P) ->
    c_26(U72^#(isPal(activate(P))),
         isPal^#(activate(P)),
         activate^#(P))
  , isPal^#(V) ->
    c_28(U81^#(isNePal(activate(V))),
         isNePal^#(activate(V)),
         activate^#(V))
  , isNePal^#(V) ->
    c_36(U61^#(isQid(activate(V))),
         isQid^#(activate(V)),
         activate^#(V))
  , isNePal^#(n____(I, n____(P, I))) ->
    c_37(U71^#(isQid(activate(I)), activate(P)),
         isQid^#(activate(I)),
         activate^#(I),
         activate^#(P)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { U21^#(tt(), V2) -> c_1(isList^#(activate(V2)), activate^#(V2))
  , isList^#(V) -> c_2(isNeList^#(activate(V)), activate^#(V))
  , isList^#(n____(V1, V2)) ->
    c_3(U21^#(isList(activate(V1)), activate(V2)),
        isList^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , activate^#(n____(X1, X2)) -> c_4(activate^#(X1), activate^#(X2))
  , isNeList^#(V) -> c_5(activate^#(V))
  , isNeList^#(n____(V1, V2)) ->
    c_6(U41^#(isList(activate(V1)), activate(V2)),
        isList^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNeList^#(n____(V1, V2)) ->
    c_7(U51^#(isNeList(activate(V1)), activate(V2)),
        isNeList^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , U41^#(tt(), V2) -> c_8(isNeList^#(activate(V2)), activate^#(V2))
  , U51^#(tt(), V2) -> c_9(isList^#(activate(V2)), activate^#(V2))
  , U71^#(tt(), P) -> c_10(isPal^#(activate(P)), activate^#(P))
  , isPal^#(V) -> c_11(isNePal^#(activate(V)), activate^#(V))
  , isNePal^#(V) -> c_12(activate^#(V))
  , isNePal^#(n____(I, n____(P, I))) ->
    c_13(U71^#(isQid(activate(I)), activate(P)),
         activate^#(I),
         activate^#(P)) }
Weak Trs:
  { __(X1, X2) -> n____(X1, X2)
  , nil() -> n__nil()
  , U11(tt()) -> tt()
  , U21(tt(), V2) -> U22(isList(activate(V2)))
  , U22(tt()) -> tt()
  , isList(V) -> U11(isNeList(activate(V)))
  , isList(n__nil()) -> tt()
  , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__nil()) -> nil()
  , activate(n____(X1, X2)) -> __(activate(X1), activate(X2))
  , activate(n__a()) -> a()
  , activate(n__e()) -> e()
  , activate(n__i()) -> i()
  , activate(n__o()) -> o()
  , activate(n__u()) -> u()
  , U31(tt()) -> tt()
  , U41(tt(), V2) -> U42(isNeList(activate(V2)))
  , U42(tt()) -> tt()
  , isNeList(V) -> U31(isQid(activate(V)))
  , isNeList(n____(V1, V2)) ->
    U41(isList(activate(V1)), activate(V2))
  , isNeList(n____(V1, V2)) ->
    U51(isNeList(activate(V1)), activate(V2))
  , U51(tt(), V2) -> U52(isList(activate(V2)))
  , U52(tt()) -> tt()
  , U61(tt()) -> tt()
  , U71(tt(), P) -> U72(isPal(activate(P)))
  , U72(tt()) -> tt()
  , isPal(V) -> U81(isNePal(activate(V)))
  , isPal(n__nil()) -> tt()
  , U81(tt()) -> tt()
  , isQid(n__a()) -> tt()
  , isQid(n__e()) -> tt()
  , isQid(n__i()) -> tt()
  , isQid(n__o()) -> tt()
  , isQid(n__u()) -> tt()
  , isNePal(V) -> U61(isQid(activate(V)))
  , isNePal(n____(I, n____(P, I))) ->
    U71(isQid(activate(I)), activate(P))
  , a() -> n__a()
  , e() -> n__e()
  , i() -> n__i()
  , o() -> n__o()
  , u() -> n__u() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We replace rewrite rules by usable rules:

  Weak Usable Rules:
    { __(X1, X2) -> n____(X1, X2)
    , nil() -> n__nil()
    , U11(tt()) -> tt()
    , U21(tt(), V2) -> U22(isList(activate(V2)))
    , U22(tt()) -> tt()
    , isList(V) -> U11(isNeList(activate(V)))
    , isList(n__nil()) -> tt()
    , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
    , activate(X) -> X
    , activate(n__nil()) -> nil()
    , activate(n____(X1, X2)) -> __(activate(X1), activate(X2))
    , activate(n__a()) -> a()
    , activate(n__e()) -> e()
    , activate(n__i()) -> i()
    , activate(n__o()) -> o()
    , activate(n__u()) -> u()
    , U31(tt()) -> tt()
    , U41(tt(), V2) -> U42(isNeList(activate(V2)))
    , U42(tt()) -> tt()
    , isNeList(V) -> U31(isQid(activate(V)))
    , isNeList(n____(V1, V2)) ->
      U41(isList(activate(V1)), activate(V2))
    , isNeList(n____(V1, V2)) ->
      U51(isNeList(activate(V1)), activate(V2))
    , U51(tt(), V2) -> U52(isList(activate(V2)))
    , U52(tt()) -> tt()
    , isQid(n__a()) -> tt()
    , isQid(n__e()) -> tt()
    , isQid(n__i()) -> tt()
    , isQid(n__o()) -> tt()
    , isQid(n__u()) -> tt()
    , a() -> n__a()
    , e() -> n__e()
    , i() -> n__i()
    , o() -> n__o()
    , u() -> n__u() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { U21^#(tt(), V2) -> c_1(isList^#(activate(V2)), activate^#(V2))
  , isList^#(V) -> c_2(isNeList^#(activate(V)), activate^#(V))
  , isList^#(n____(V1, V2)) ->
    c_3(U21^#(isList(activate(V1)), activate(V2)),
        isList^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , activate^#(n____(X1, X2)) -> c_4(activate^#(X1), activate^#(X2))
  , isNeList^#(V) -> c_5(activate^#(V))
  , isNeList^#(n____(V1, V2)) ->
    c_6(U41^#(isList(activate(V1)), activate(V2)),
        isList^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNeList^#(n____(V1, V2)) ->
    c_7(U51^#(isNeList(activate(V1)), activate(V2)),
        isNeList^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , U41^#(tt(), V2) -> c_8(isNeList^#(activate(V2)), activate^#(V2))
  , U51^#(tt(), V2) -> c_9(isList^#(activate(V2)), activate^#(V2))
  , U71^#(tt(), P) -> c_10(isPal^#(activate(P)), activate^#(P))
  , isPal^#(V) -> c_11(isNePal^#(activate(V)), activate^#(V))
  , isNePal^#(V) -> c_12(activate^#(V))
  , isNePal^#(n____(I, n____(P, I))) ->
    c_13(U71^#(isQid(activate(I)), activate(P)),
         activate^#(I),
         activate^#(P)) }
Weak Trs:
  { __(X1, X2) -> n____(X1, X2)
  , nil() -> n__nil()
  , U11(tt()) -> tt()
  , U21(tt(), V2) -> U22(isList(activate(V2)))
  , U22(tt()) -> tt()
  , isList(V) -> U11(isNeList(activate(V)))
  , isList(n__nil()) -> tt()
  , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__nil()) -> nil()
  , activate(n____(X1, X2)) -> __(activate(X1), activate(X2))
  , activate(n__a()) -> a()
  , activate(n__e()) -> e()
  , activate(n__i()) -> i()
  , activate(n__o()) -> o()
  , activate(n__u()) -> u()
  , U31(tt()) -> tt()
  , U41(tt(), V2) -> U42(isNeList(activate(V2)))
  , U42(tt()) -> tt()
  , isNeList(V) -> U31(isQid(activate(V)))
  , isNeList(n____(V1, V2)) ->
    U41(isList(activate(V1)), activate(V2))
  , isNeList(n____(V1, V2)) ->
    U51(isNeList(activate(V1)), activate(V2))
  , U51(tt(), V2) -> U52(isList(activate(V2)))
  , U52(tt()) -> tt()
  , isQid(n__a()) -> tt()
  , isQid(n__e()) -> tt()
  , isQid(n__i()) -> tt()
  , isQid(n__o()) -> tt()
  , isQid(n__u()) -> tt()
  , a() -> n__a()
  , e() -> n__e()
  , i() -> n__i()
  , o() -> n__o()
  , u() -> n__u() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We decompose the input problem according to the dependency graph
into the upper component

  { U21^#(tt(), V2) -> c_1(isList^#(activate(V2)), activate^#(V2))
  , isList^#(V) -> c_2(isNeList^#(activate(V)), activate^#(V))
  , isList^#(n____(V1, V2)) ->
    c_3(U21^#(isList(activate(V1)), activate(V2)),
        isList^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNeList^#(n____(V1, V2)) ->
    c_6(U41^#(isList(activate(V1)), activate(V2)),
        isList^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNeList^#(n____(V1, V2)) ->
    c_7(U51^#(isNeList(activate(V1)), activate(V2)),
        isNeList^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , U41^#(tt(), V2) -> c_8(isNeList^#(activate(V2)), activate^#(V2))
  , U51^#(tt(), V2) -> c_9(isList^#(activate(V2)), activate^#(V2))
  , U71^#(tt(), P) -> c_10(isPal^#(activate(P)), activate^#(P))
  , isPal^#(V) -> c_11(isNePal^#(activate(V)), activate^#(V))
  , isNePal^#(n____(I, n____(P, I))) ->
    c_13(U71^#(isQid(activate(I)), activate(P)),
         activate^#(I),
         activate^#(P)) }

and lower component

  { activate^#(n____(X1, X2)) -> c_4(activate^#(X1), activate^#(X2))
  , isNeList^#(V) -> c_5(activate^#(V))
  , isNePal^#(V) -> c_12(activate^#(V)) }

Further, following extension rules are added to the lower
component.

{ U21^#(tt(), V2) -> isList^#(activate(V2))
, U21^#(tt(), V2) -> activate^#(V2)
, isList^#(V) -> activate^#(V)
, isList^#(V) -> isNeList^#(activate(V))
, isList^#(n____(V1, V2)) ->
  U21^#(isList(activate(V1)), activate(V2))
, isList^#(n____(V1, V2)) -> isList^#(activate(V1))
, isList^#(n____(V1, V2)) -> activate^#(V1)
, isList^#(n____(V1, V2)) -> activate^#(V2)
, isNeList^#(n____(V1, V2)) -> isList^#(activate(V1))
, isNeList^#(n____(V1, V2)) -> activate^#(V1)
, isNeList^#(n____(V1, V2)) -> activate^#(V2)
, isNeList^#(n____(V1, V2)) -> isNeList^#(activate(V1))
, isNeList^#(n____(V1, V2)) ->
  U41^#(isList(activate(V1)), activate(V2))
, isNeList^#(n____(V1, V2)) ->
  U51^#(isNeList(activate(V1)), activate(V2))
, U41^#(tt(), V2) -> activate^#(V2)
, U41^#(tt(), V2) -> isNeList^#(activate(V2))
, U51^#(tt(), V2) -> isList^#(activate(V2))
, U51^#(tt(), V2) -> activate^#(V2)
, U71^#(tt(), P) -> activate^#(P)
, U71^#(tt(), P) -> isPal^#(activate(P))
, isPal^#(V) -> activate^#(V)
, isPal^#(V) -> isNePal^#(activate(V))
, isNePal^#(n____(I, n____(P, I))) -> activate^#(I)
, isNePal^#(n____(I, n____(P, I))) -> activate^#(P)
, isNePal^#(n____(I, n____(P, I))) ->
  U71^#(isQid(activate(I)), activate(P)) }

TcT solves the upper component with certificate YES(O(1),O(n^1)).

Sub-proof:
----------
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(n^1)).
  
  Strict DPs:
    { U21^#(tt(), V2) -> c_1(isList^#(activate(V2)), activate^#(V2))
    , isList^#(V) -> c_2(isNeList^#(activate(V)), activate^#(V))
    , isList^#(n____(V1, V2)) ->
      c_3(U21^#(isList(activate(V1)), activate(V2)),
          isList^#(activate(V1)),
          activate^#(V1),
          activate^#(V2))
    , isNeList^#(n____(V1, V2)) ->
      c_6(U41^#(isList(activate(V1)), activate(V2)),
          isList^#(activate(V1)),
          activate^#(V1),
          activate^#(V2))
    , isNeList^#(n____(V1, V2)) ->
      c_7(U51^#(isNeList(activate(V1)), activate(V2)),
          isNeList^#(activate(V1)),
          activate^#(V1),
          activate^#(V2))
    , U41^#(tt(), V2) -> c_8(isNeList^#(activate(V2)), activate^#(V2))
    , U51^#(tt(), V2) -> c_9(isList^#(activate(V2)), activate^#(V2))
    , U71^#(tt(), P) -> c_10(isPal^#(activate(P)), activate^#(P))
    , isPal^#(V) -> c_11(isNePal^#(activate(V)), activate^#(V))
    , isNePal^#(n____(I, n____(P, I))) ->
      c_13(U71^#(isQid(activate(I)), activate(P)),
           activate^#(I),
           activate^#(P)) }
  Weak Trs:
    { __(X1, X2) -> n____(X1, X2)
    , nil() -> n__nil()
    , U11(tt()) -> tt()
    , U21(tt(), V2) -> U22(isList(activate(V2)))
    , U22(tt()) -> tt()
    , isList(V) -> U11(isNeList(activate(V)))
    , isList(n__nil()) -> tt()
    , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
    , activate(X) -> X
    , activate(n__nil()) -> nil()
    , activate(n____(X1, X2)) -> __(activate(X1), activate(X2))
    , activate(n__a()) -> a()
    , activate(n__e()) -> e()
    , activate(n__i()) -> i()
    , activate(n__o()) -> o()
    , activate(n__u()) -> u()
    , U31(tt()) -> tt()
    , U41(tt(), V2) -> U42(isNeList(activate(V2)))
    , U42(tt()) -> tt()
    , isNeList(V) -> U31(isQid(activate(V)))
    , isNeList(n____(V1, V2)) ->
      U41(isList(activate(V1)), activate(V2))
    , isNeList(n____(V1, V2)) ->
      U51(isNeList(activate(V1)), activate(V2))
    , U51(tt(), V2) -> U52(isList(activate(V2)))
    , U52(tt()) -> tt()
    , isQid(n__a()) -> tt()
    , isQid(n__e()) -> tt()
    , isQid(n__i()) -> tt()
    , isQid(n__o()) -> tt()
    , isQid(n__u()) -> tt()
    , a() -> n__a()
    , e() -> n__e()
    , i() -> n__i()
    , o() -> n__o()
    , u() -> n__u() }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(n^1))
  
  We use the processor 'matrix interpretation of dimension 1' to
  orient following rules strictly.
  
  DPs:
    { 3: isList^#(n____(V1, V2)) ->
         c_3(U21^#(isList(activate(V1)), activate(V2)),
             isList^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
    , 4: isNeList^#(n____(V1, V2)) ->
         c_6(U41^#(isList(activate(V1)), activate(V2)),
             isList^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
    , 5: isNeList^#(n____(V1, V2)) ->
         c_7(U51^#(isNeList(activate(V1)), activate(V2)),
             isNeList^#(activate(V1)),
             activate^#(V1),
             activate^#(V2)) }
  Trs:
    { isNeList(V) -> U31(isQid(activate(V)))
    , isNeList(n____(V1, V2)) ->
      U41(isList(activate(V1)), activate(V2))
    , isNeList(n____(V1, V2)) ->
      U51(isNeList(activate(V1)), activate(V2)) }
  
  Sub-proof:
  ----------
    The following argument positions are usable:
      Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_3) = {1, 2},
      Uargs(c_6) = {1, 2}, Uargs(c_7) = {1, 2}, Uargs(c_8) = {1},
      Uargs(c_9) = {1}, Uargs(c_10) = {1}, Uargs(c_11) = {1},
      Uargs(c_13) = {1}
    
    TcT has computed the following constructor-based matrix
    interpretation satisfying not(EDA).
    
               [__](x1, x2) = [1] x1 + [1] x2 + [2]         
                                                            
                      [nil] = [0]                           
                                                            
                  [U11](x1) = [0]                           
                                                            
                       [tt] = [0]                           
                                                            
              [U21](x1, x2) = [0]                           
                                                            
                  [U22](x1) = [0]                           
                                                            
               [isList](x1) = [0]                           
                                                            
             [activate](x1) = [1] x1 + [0]                  
                                                            
                  [U31](x1) = [0]                           
                                                            
              [U41](x1, x2) = [0]                           
                                                            
                  [U42](x1) = [0]                           
                                                            
             [isNeList](x1) = [4] x1 + [4]                  
                                                            
              [U51](x1, x2) = [0]                           
                                                            
                  [U52](x1) = [0]                           
                                                            
                   [n__nil] = [0]                           
                                                            
            [n____](x1, x2) = [1] x1 + [1] x2 + [2]         
                                                            
                [isQid](x1) = [0]                           
                                                            
                     [n__a] = [0]                           
                                                            
                     [n__e] = [0]                           
                                                            
                     [n__i] = [0]                           
                                                            
                     [n__o] = [0]                           
                                                            
                     [n__u] = [0]                           
                                                            
                        [a] = [0]                           
                                                            
                        [e] = [0]                           
                                                            
                        [i] = [0]                           
                                                            
                        [o] = [0]                           
                                                            
                        [u] = [0]                           
                                                            
            [U21^#](x1, x2) = [4] x2 + [0]                  
                                                            
             [isList^#](x1) = [4] x1 + [0]                  
                                                            
           [activate^#](x1) = [1]                           
                                                            
           [isNeList^#](x1) = [4] x1 + [0]                  
                                                            
            [U41^#](x1, x2) = [4] x2 + [0]                  
                                                            
            [U51^#](x1, x2) = [4] x2 + [0]                  
                                                            
            [U71^#](x1, x2) = [1] x1 + [0]                  
                                                            
              [isPal^#](x1) = [0]                           
                                                            
            [isNePal^#](x1) = [0]                           
                                                            
              [c_1](x1, x2) = [1] x1 + [0]                  
                                                            
              [c_2](x1, x2) = [1] x1 + [0]                  
                                                            
      [c_3](x1, x2, x3, x4) = [1] x1 + [1] x2 + [7] x4 + [0]
                                                            
      [c_6](x1, x2, x3, x4) = [1] x1 + [1] x2 + [0]         
                                                            
      [c_7](x1, x2, x3, x4) = [1] x1 + [1] x2 + [0]         
                                                            
              [c_8](x1, x2) = [1] x1 + [0]                  
                                                            
              [c_9](x1, x2) = [1] x1 + [0]                  
                                                            
             [c_10](x1, x2) = [2] x1 + [0]                  
                                                            
             [c_11](x1, x2) = [5] x1 + [0]                  
                                                            
         [c_13](x1, x2, x3) = [1] x1 + [0]                  
    
    The order satisfies the following ordering constraints:
    
                            [__(X1, X2)] =  [1] X1 + [1] X2 + [2]                            
                                         >= [1] X1 + [1] X2 + [2]                            
                                         =  [n____(X1, X2)]                                  
                                                                                             
                                 [nil()] =  [0]                                              
                                         >= [0]                                              
                                         =  [n__nil()]                                       
                                                                                             
                             [U11(tt())] =  [0]                                              
                                         >= [0]                                              
                                         =  [tt()]                                           
                                                                                             
                         [U21(tt(), V2)] =  [0]                                              
                                         >= [0]                                              
                                         =  [U22(isList(activate(V2)))]                      
                                                                                             
                             [U22(tt())] =  [0]                                              
                                         >= [0]                                              
                                         =  [tt()]                                           
                                                                                             
                             [isList(V)] =  [0]                                              
                                         >= [0]                                              
                                         =  [U11(isNeList(activate(V)))]                     
                                                                                             
                      [isList(n__nil())] =  [0]                                              
                                         >= [0]                                              
                                         =  [tt()]                                           
                                                                                             
                 [isList(n____(V1, V2))] =  [0]                                              
                                         >= [0]                                              
                                         =  [U21(isList(activate(V1)), activate(V2))]        
                                                                                             
                           [activate(X)] =  [1] X + [0]                                      
                                         >= [1] X + [0]                                      
                                         =  [X]                                              
                                                                                             
                    [activate(n__nil())] =  [0]                                              
                                         >= [0]                                              
                                         =  [nil()]                                          
                                                                                             
               [activate(n____(X1, X2))] =  [1] X1 + [1] X2 + [2]                            
                                         >= [1] X1 + [1] X2 + [2]                            
                                         =  [__(activate(X1), activate(X2))]                 
                                                                                             
                      [activate(n__a())] =  [0]                                              
                                         >= [0]                                              
                                         =  [a()]                                            
                                                                                             
                      [activate(n__e())] =  [0]                                              
                                         >= [0]                                              
                                         =  [e()]                                            
                                                                                             
                      [activate(n__i())] =  [0]                                              
                                         >= [0]                                              
                                         =  [i()]                                            
                                                                                             
                      [activate(n__o())] =  [0]                                              
                                         >= [0]                                              
                                         =  [o()]                                            
                                                                                             
                      [activate(n__u())] =  [0]                                              
                                         >= [0]                                              
                                         =  [u()]                                            
                                                                                             
                             [U31(tt())] =  [0]                                              
                                         >= [0]                                              
                                         =  [tt()]                                           
                                                                                             
                         [U41(tt(), V2)] =  [0]                                              
                                         >= [0]                                              
                                         =  [U42(isNeList(activate(V2)))]                    
                                                                                             
                             [U42(tt())] =  [0]                                              
                                         >= [0]                                              
                                         =  [tt()]                                           
                                                                                             
                           [isNeList(V)] =  [4] V + [4]                                      
                                         >  [0]                                              
                                         =  [U31(isQid(activate(V)))]                        
                                                                                             
               [isNeList(n____(V1, V2))] =  [4] V2 + [4] V1 + [12]                           
                                         >  [0]                                              
                                         =  [U41(isList(activate(V1)), activate(V2))]        
                                                                                             
               [isNeList(n____(V1, V2))] =  [4] V2 + [4] V1 + [12]                           
                                         >  [0]                                              
                                         =  [U51(isNeList(activate(V1)), activate(V2))]      
                                                                                             
                         [U51(tt(), V2)] =  [0]                                              
                                         >= [0]                                              
                                         =  [U52(isList(activate(V2)))]                      
                                                                                             
                             [U52(tt())] =  [0]                                              
                                         >= [0]                                              
                                         =  [tt()]                                           
                                                                                             
                         [isQid(n__a())] =  [0]                                              
                                         >= [0]                                              
                                         =  [tt()]                                           
                                                                                             
                         [isQid(n__e())] =  [0]                                              
                                         >= [0]                                              
                                         =  [tt()]                                           
                                                                                             
                         [isQid(n__i())] =  [0]                                              
                                         >= [0]                                              
                                         =  [tt()]                                           
                                                                                             
                         [isQid(n__o())] =  [0]                                              
                                         >= [0]                                              
                                         =  [tt()]                                           
                                                                                             
                         [isQid(n__u())] =  [0]                                              
                                         >= [0]                                              
                                         =  [tt()]                                           
                                                                                             
                                   [a()] =  [0]                                              
                                         >= [0]                                              
                                         =  [n__a()]                                         
                                                                                             
                                   [e()] =  [0]                                              
                                         >= [0]                                              
                                         =  [n__e()]                                         
                                                                                             
                                   [i()] =  [0]                                              
                                         >= [0]                                              
                                         =  [n__i()]                                         
                                                                                             
                                   [o()] =  [0]                                              
                                         >= [0]                                              
                                         =  [n__o()]                                         
                                                                                             
                                   [u()] =  [0]                                              
                                         >= [0]                                              
                                         =  [n__u()]                                         
                                                                                             
                       [U21^#(tt(), V2)] =  [4] V2 + [0]                                     
                                         >= [4] V2 + [0]                                     
                                         =  [c_1(isList^#(activate(V2)), activate^#(V2))]    
                                                                                             
                           [isList^#(V)] =  [4] V + [0]                                      
                                         >= [4] V + [0]                                      
                                         =  [c_2(isNeList^#(activate(V)), activate^#(V))]    
                                                                                             
               [isList^#(n____(V1, V2))] =  [4] V2 + [4] V1 + [8]                            
                                         >  [4] V2 + [4] V1 + [7]                            
                                         =  [c_3(U21^#(isList(activate(V1)), activate(V2)),  
                                                 isList^#(activate(V1)),                     
                                                 activate^#(V1),                             
                                                 activate^#(V2))]                            
                                                                                             
             [isNeList^#(n____(V1, V2))] =  [4] V2 + [4] V1 + [8]                            
                                         >  [4] V2 + [4] V1 + [0]                            
                                         =  [c_6(U41^#(isList(activate(V1)), activate(V2)),  
                                                 isList^#(activate(V1)),                     
                                                 activate^#(V1),                             
                                                 activate^#(V2))]                            
                                                                                             
             [isNeList^#(n____(V1, V2))] =  [4] V2 + [4] V1 + [8]                            
                                         >  [4] V2 + [4] V1 + [0]                            
                                         =  [c_7(U51^#(isNeList(activate(V1)), activate(V2)),
                                                 isNeList^#(activate(V1)),                   
                                                 activate^#(V1),                             
                                                 activate^#(V2))]                            
                                                                                             
                       [U41^#(tt(), V2)] =  [4] V2 + [0]                                     
                                         >= [4] V2 + [0]                                     
                                         =  [c_8(isNeList^#(activate(V2)), activate^#(V2))]  
                                                                                             
                       [U51^#(tt(), V2)] =  [4] V2 + [0]                                     
                                         >= [4] V2 + [0]                                     
                                         =  [c_9(isList^#(activate(V2)), activate^#(V2))]    
                                                                                             
                        [U71^#(tt(), P)] =  [0]                                              
                                         >= [0]                                              
                                         =  [c_10(isPal^#(activate(P)), activate^#(P))]      
                                                                                             
                            [isPal^#(V)] =  [0]                                              
                                         >= [0]                                              
                                         =  [c_11(isNePal^#(activate(V)), activate^#(V))]    
                                                                                             
      [isNePal^#(n____(I, n____(P, I)))] =  [0]                                              
                                         >= [0]                                              
                                         =  [c_13(U71^#(isQid(activate(I)), activate(P)),    
                                                  activate^#(I),                             
                                                  activate^#(P))]                            
                                                                                             
  
  We return to the main proof. Consider the set of all dependency
  pairs
  
  :
    { 1: U21^#(tt(), V2) -> c_1(isList^#(activate(V2)), activate^#(V2))
    , 2: isList^#(V) -> c_2(isNeList^#(activate(V)), activate^#(V))
    , 3: isList^#(n____(V1, V2)) ->
         c_3(U21^#(isList(activate(V1)), activate(V2)),
             isList^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
    , 4: isNeList^#(n____(V1, V2)) ->
         c_6(U41^#(isList(activate(V1)), activate(V2)),
             isList^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
    , 5: isNeList^#(n____(V1, V2)) ->
         c_7(U51^#(isNeList(activate(V1)), activate(V2)),
             isNeList^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
    , 6: U41^#(tt(), V2) ->
         c_8(isNeList^#(activate(V2)), activate^#(V2))
    , 7: U51^#(tt(), V2) -> c_9(isList^#(activate(V2)), activate^#(V2))
    , 8: U71^#(tt(), P) -> c_10(isPal^#(activate(P)), activate^#(P))
    , 9: isPal^#(V) -> c_11(isNePal^#(activate(V)), activate^#(V))
    , 10: isNePal^#(n____(I, n____(P, I))) ->
          c_13(U71^#(isQid(activate(I)), activate(P)),
               activate^#(I),
               activate^#(P)) }
  
  Processor 'matrix interpretation of dimension 1' induces the
  complexity certificate YES(?,O(n^1)) on application of dependency
  pairs {3,4,5}. These cover all (indirect) predecessors of
  dependency pairs {1,2,3,4,5,6,7}, their number of application is
  equally bounded. The dependency pairs are shifted into the weak
  component.
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(n^1)).
  
  Strict DPs:
    { U71^#(tt(), P) -> c_10(isPal^#(activate(P)), activate^#(P))
    , isPal^#(V) -> c_11(isNePal^#(activate(V)), activate^#(V))
    , isNePal^#(n____(I, n____(P, I))) ->
      c_13(U71^#(isQid(activate(I)), activate(P)),
           activate^#(I),
           activate^#(P)) }
  Weak DPs:
    { U21^#(tt(), V2) -> c_1(isList^#(activate(V2)), activate^#(V2))
    , isList^#(V) -> c_2(isNeList^#(activate(V)), activate^#(V))
    , isList^#(n____(V1, V2)) ->
      c_3(U21^#(isList(activate(V1)), activate(V2)),
          isList^#(activate(V1)),
          activate^#(V1),
          activate^#(V2))
    , isNeList^#(n____(V1, V2)) ->
      c_6(U41^#(isList(activate(V1)), activate(V2)),
          isList^#(activate(V1)),
          activate^#(V1),
          activate^#(V2))
    , isNeList^#(n____(V1, V2)) ->
      c_7(U51^#(isNeList(activate(V1)), activate(V2)),
          isNeList^#(activate(V1)),
          activate^#(V1),
          activate^#(V2))
    , U41^#(tt(), V2) -> c_8(isNeList^#(activate(V2)), activate^#(V2))
    , U51^#(tt(), V2) -> c_9(isList^#(activate(V2)), activate^#(V2)) }
  Weak Trs:
    { __(X1, X2) -> n____(X1, X2)
    , nil() -> n__nil()
    , U11(tt()) -> tt()
    , U21(tt(), V2) -> U22(isList(activate(V2)))
    , U22(tt()) -> tt()
    , isList(V) -> U11(isNeList(activate(V)))
    , isList(n__nil()) -> tt()
    , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
    , activate(X) -> X
    , activate(n__nil()) -> nil()
    , activate(n____(X1, X2)) -> __(activate(X1), activate(X2))
    , activate(n__a()) -> a()
    , activate(n__e()) -> e()
    , activate(n__i()) -> i()
    , activate(n__o()) -> o()
    , activate(n__u()) -> u()
    , U31(tt()) -> tt()
    , U41(tt(), V2) -> U42(isNeList(activate(V2)))
    , U42(tt()) -> tt()
    , isNeList(V) -> U31(isQid(activate(V)))
    , isNeList(n____(V1, V2)) ->
      U41(isList(activate(V1)), activate(V2))
    , isNeList(n____(V1, V2)) ->
      U51(isNeList(activate(V1)), activate(V2))
    , U51(tt(), V2) -> U52(isList(activate(V2)))
    , U52(tt()) -> tt()
    , isQid(n__a()) -> tt()
    , isQid(n__e()) -> tt()
    , isQid(n__i()) -> tt()
    , isQid(n__o()) -> tt()
    , isQid(n__u()) -> tt()
    , a() -> n__a()
    , e() -> n__e()
    , i() -> n__i()
    , o() -> n__o()
    , u() -> n__u() }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(n^1))
  
  The following weak DPs constitute a sub-graph of the DG that is
  closed under successors. The DPs are removed.
  
  { U21^#(tt(), V2) -> c_1(isList^#(activate(V2)), activate^#(V2))
  , isList^#(V) -> c_2(isNeList^#(activate(V)), activate^#(V))
  , isList^#(n____(V1, V2)) ->
    c_3(U21^#(isList(activate(V1)), activate(V2)),
        isList^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNeList^#(n____(V1, V2)) ->
    c_6(U41^#(isList(activate(V1)), activate(V2)),
        isList^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNeList^#(n____(V1, V2)) ->
    c_7(U51^#(isNeList(activate(V1)), activate(V2)),
        isNeList^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , U41^#(tt(), V2) -> c_8(isNeList^#(activate(V2)), activate^#(V2))
  , U51^#(tt(), V2) -> c_9(isList^#(activate(V2)), activate^#(V2)) }
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(n^1)).
  
  Strict DPs:
    { U71^#(tt(), P) -> c_10(isPal^#(activate(P)), activate^#(P))
    , isPal^#(V) -> c_11(isNePal^#(activate(V)), activate^#(V))
    , isNePal^#(n____(I, n____(P, I))) ->
      c_13(U71^#(isQid(activate(I)), activate(P)),
           activate^#(I),
           activate^#(P)) }
  Weak Trs:
    { __(X1, X2) -> n____(X1, X2)
    , nil() -> n__nil()
    , U11(tt()) -> tt()
    , U21(tt(), V2) -> U22(isList(activate(V2)))
    , U22(tt()) -> tt()
    , isList(V) -> U11(isNeList(activate(V)))
    , isList(n__nil()) -> tt()
    , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
    , activate(X) -> X
    , activate(n__nil()) -> nil()
    , activate(n____(X1, X2)) -> __(activate(X1), activate(X2))
    , activate(n__a()) -> a()
    , activate(n__e()) -> e()
    , activate(n__i()) -> i()
    , activate(n__o()) -> o()
    , activate(n__u()) -> u()
    , U31(tt()) -> tt()
    , U41(tt(), V2) -> U42(isNeList(activate(V2)))
    , U42(tt()) -> tt()
    , isNeList(V) -> U31(isQid(activate(V)))
    , isNeList(n____(V1, V2)) ->
      U41(isList(activate(V1)), activate(V2))
    , isNeList(n____(V1, V2)) ->
      U51(isNeList(activate(V1)), activate(V2))
    , U51(tt(), V2) -> U52(isList(activate(V2)))
    , U52(tt()) -> tt()
    , isQid(n__a()) -> tt()
    , isQid(n__e()) -> tt()
    , isQid(n__i()) -> tt()
    , isQid(n__o()) -> tt()
    , isQid(n__u()) -> tt()
    , a() -> n__a()
    , e() -> n__e()
    , i() -> n__i()
    , o() -> n__o()
    , u() -> n__u() }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(n^1))
  
  Due to missing edges in the dependency-graph, the right-hand sides
  of following rules could be simplified:
  
    { U71^#(tt(), P) -> c_10(isPal^#(activate(P)), activate^#(P))
    , isPal^#(V) -> c_11(isNePal^#(activate(V)), activate^#(V))
    , isNePal^#(n____(I, n____(P, I))) ->
      c_13(U71^#(isQid(activate(I)), activate(P)),
           activate^#(I),
           activate^#(P)) }
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(n^1)).
  
  Strict DPs:
    { U71^#(tt(), P) -> c_1(isPal^#(activate(P)))
    , isPal^#(V) -> c_2(isNePal^#(activate(V)))
    , isNePal^#(n____(I, n____(P, I))) ->
      c_3(U71^#(isQid(activate(I)), activate(P))) }
  Weak Trs:
    { __(X1, X2) -> n____(X1, X2)
    , nil() -> n__nil()
    , U11(tt()) -> tt()
    , U21(tt(), V2) -> U22(isList(activate(V2)))
    , U22(tt()) -> tt()
    , isList(V) -> U11(isNeList(activate(V)))
    , isList(n__nil()) -> tt()
    , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
    , activate(X) -> X
    , activate(n__nil()) -> nil()
    , activate(n____(X1, X2)) -> __(activate(X1), activate(X2))
    , activate(n__a()) -> a()
    , activate(n__e()) -> e()
    , activate(n__i()) -> i()
    , activate(n__o()) -> o()
    , activate(n__u()) -> u()
    , U31(tt()) -> tt()
    , U41(tt(), V2) -> U42(isNeList(activate(V2)))
    , U42(tt()) -> tt()
    , isNeList(V) -> U31(isQid(activate(V)))
    , isNeList(n____(V1, V2)) ->
      U41(isList(activate(V1)), activate(V2))
    , isNeList(n____(V1, V2)) ->
      U51(isNeList(activate(V1)), activate(V2))
    , U51(tt(), V2) -> U52(isList(activate(V2)))
    , U52(tt()) -> tt()
    , isQid(n__a()) -> tt()
    , isQid(n__e()) -> tt()
    , isQid(n__i()) -> tt()
    , isQid(n__o()) -> tt()
    , isQid(n__u()) -> tt()
    , a() -> n__a()
    , e() -> n__e()
    , i() -> n__i()
    , o() -> n__o()
    , u() -> n__u() }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(n^1))
  
  We replace rewrite rules by usable rules:
  
    Weak Usable Rules:
      { __(X1, X2) -> n____(X1, X2)
      , nil() -> n__nil()
      , activate(X) -> X
      , activate(n__nil()) -> nil()
      , activate(n____(X1, X2)) -> __(activate(X1), activate(X2))
      , activate(n__a()) -> a()
      , activate(n__e()) -> e()
      , activate(n__i()) -> i()
      , activate(n__o()) -> o()
      , activate(n__u()) -> u()
      , isQid(n__a()) -> tt()
      , isQid(n__e()) -> tt()
      , isQid(n__i()) -> tt()
      , isQid(n__o()) -> tt()
      , isQid(n__u()) -> tt()
      , a() -> n__a()
      , e() -> n__e()
      , i() -> n__i()
      , o() -> n__o()
      , u() -> n__u() }
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(n^1)).
  
  Strict DPs:
    { U71^#(tt(), P) -> c_1(isPal^#(activate(P)))
    , isPal^#(V) -> c_2(isNePal^#(activate(V)))
    , isNePal^#(n____(I, n____(P, I))) ->
      c_3(U71^#(isQid(activate(I)), activate(P))) }
  Weak Trs:
    { __(X1, X2) -> n____(X1, X2)
    , nil() -> n__nil()
    , activate(X) -> X
    , activate(n__nil()) -> nil()
    , activate(n____(X1, X2)) -> __(activate(X1), activate(X2))
    , activate(n__a()) -> a()
    , activate(n__e()) -> e()
    , activate(n__i()) -> i()
    , activate(n__o()) -> o()
    , activate(n__u()) -> u()
    , isQid(n__a()) -> tt()
    , isQid(n__e()) -> tt()
    , isQid(n__i()) -> tt()
    , isQid(n__o()) -> tt()
    , isQid(n__u()) -> tt()
    , a() -> n__a()
    , e() -> n__e()
    , i() -> n__i()
    , o() -> n__o()
    , u() -> n__u() }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(n^1))
  
  We use the processor 'matrix interpretation of dimension 1' to
  orient following rules strictly.
  
  DPs:
    { 1: U71^#(tt(), P) -> c_1(isPal^#(activate(P)))
    , 3: isNePal^#(n____(I, n____(P, I))) ->
         c_3(U71^#(isQid(activate(I)), activate(P))) }
  
  Sub-proof:
  ----------
    The following argument positions are usable:
      Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_3) = {1}
    
    TcT has computed the following constructor-based matrix
    interpretation satisfying not(EDA).
    
               [__](x1, x2) = [1] x1 + [1] x2 + [2]
                                                   
                      [nil] = [0]                  
                                                   
                  [U11](x1) = [0]                  
                                                   
                       [tt] = [0]                  
                                                   
              [U21](x1, x2) = [0]                  
                                                   
                  [U22](x1) = [0]                  
                                                   
               [isList](x1) = [0]                  
                                                   
             [activate](x1) = [1] x1 + [0]         
                                                   
                  [U31](x1) = [0]                  
                                                   
              [U41](x1, x2) = [0]                  
                                                   
                  [U42](x1) = [0]                  
                                                   
             [isNeList](x1) = [0]                  
                                                   
              [U51](x1, x2) = [0]                  
                                                   
                  [U52](x1) = [0]                  
                                                   
                   [n__nil] = [0]                  
                                                   
            [n____](x1, x2) = [1] x1 + [1] x2 + [2]
                                                   
                [isQid](x1) = [0]                  
                                                   
                     [n__a] = [0]                  
                                                   
                     [n__e] = [1]                  
                                                   
                     [n__i] = [0]                  
                                                   
                     [n__o] = [1]                  
                                                   
                     [n__u] = [0]                  
                                                   
                        [a] = [0]                  
                                                   
                        [e] = [1]                  
                                                   
                        [i] = [0]                  
                                                   
                        [o] = [1]                  
                                                   
                        [u] = [0]                  
                                                   
            [U21^#](x1, x2) = [0]                  
                                                   
             [isList^#](x1) = [0]                  
                                                   
           [activate^#](x1) = [0]                  
                                                   
           [isNeList^#](x1) = [0]                  
                                                   
            [U41^#](x1, x2) = [0]                  
                                                   
            [U51^#](x1, x2) = [0]                  
                                                   
            [U71^#](x1, x2) = [3] x1 + [1] x2 + [6]
                                                   
              [isPal^#](x1) = [1] x1 + [3]         
                                                   
            [isNePal^#](x1) = [1] x1 + [3]         
                                                   
              [c_1](x1, x2) = [0]                  
                                                   
              [c_2](x1, x2) = [0]                  
                                                   
      [c_3](x1, x2, x3, x4) = [0]                  
                                                   
      [c_6](x1, x2, x3, x4) = [0]                  
                                                   
      [c_7](x1, x2, x3, x4) = [0]                  
                                                   
              [c_8](x1, x2) = [0]                  
                                                   
              [c_9](x1, x2) = [0]                  
                                                   
             [c_10](x1, x2) = [0]                  
                                                   
             [c_11](x1, x2) = [0]                  
                                                   
         [c_13](x1, x2, x3) = [0]                  
                                                   
                        [c] = [0]                  
                                                   
                  [c_1](x1) = [1] x1 + [1]         
                                                   
                  [c_2](x1) = [1] x1 + [0]         
                                                   
                  [c_3](x1) = [1] x1 + [0]         
    
    The order satisfies the following ordering constraints:
    
                            [__(X1, X2)] =  [1] X1 + [1] X2 + [2]                        
                                         >= [1] X1 + [1] X2 + [2]                        
                                         =  [n____(X1, X2)]                              
                                                                                         
                                 [nil()] =  [0]                                          
                                         >= [0]                                          
                                         =  [n__nil()]                                   
                                                                                         
                           [activate(X)] =  [1] X + [0]                                  
                                         >= [1] X + [0]                                  
                                         =  [X]                                          
                                                                                         
                    [activate(n__nil())] =  [0]                                          
                                         >= [0]                                          
                                         =  [nil()]                                      
                                                                                         
               [activate(n____(X1, X2))] =  [1] X1 + [1] X2 + [2]                        
                                         >= [1] X1 + [1] X2 + [2]                        
                                         =  [__(activate(X1), activate(X2))]             
                                                                                         
                      [activate(n__a())] =  [0]                                          
                                         >= [0]                                          
                                         =  [a()]                                        
                                                                                         
                      [activate(n__e())] =  [1]                                          
                                         >= [1]                                          
                                         =  [e()]                                        
                                                                                         
                      [activate(n__i())] =  [0]                                          
                                         >= [0]                                          
                                         =  [i()]                                        
                                                                                         
                      [activate(n__o())] =  [1]                                          
                                         >= [1]                                          
                                         =  [o()]                                        
                                                                                         
                      [activate(n__u())] =  [0]                                          
                                         >= [0]                                          
                                         =  [u()]                                        
                                                                                         
                         [isQid(n__a())] =  [0]                                          
                                         >= [0]                                          
                                         =  [tt()]                                       
                                                                                         
                         [isQid(n__e())] =  [0]                                          
                                         >= [0]                                          
                                         =  [tt()]                                       
                                                                                         
                         [isQid(n__i())] =  [0]                                          
                                         >= [0]                                          
                                         =  [tt()]                                       
                                                                                         
                         [isQid(n__o())] =  [0]                                          
                                         >= [0]                                          
                                         =  [tt()]                                       
                                                                                         
                         [isQid(n__u())] =  [0]                                          
                                         >= [0]                                          
                                         =  [tt()]                                       
                                                                                         
                                   [a()] =  [0]                                          
                                         >= [0]                                          
                                         =  [n__a()]                                     
                                                                                         
                                   [e()] =  [1]                                          
                                         >= [1]                                          
                                         =  [n__e()]                                     
                                                                                         
                                   [i()] =  [0]                                          
                                         >= [0]                                          
                                         =  [n__i()]                                     
                                                                                         
                                   [o()] =  [1]                                          
                                         >= [1]                                          
                                         =  [n__o()]                                     
                                                                                         
                                   [u()] =  [0]                                          
                                         >= [0]                                          
                                         =  [n__u()]                                     
                                                                                         
                        [U71^#(tt(), P)] =  [1] P + [6]                                  
                                         >  [1] P + [4]                                  
                                         =  [c_1(isPal^#(activate(P)))]                  
                                                                                         
                            [isPal^#(V)] =  [1] V + [3]                                  
                                         >= [1] V + [3]                                  
                                         =  [c_2(isNePal^#(activate(V)))]                
                                                                                         
      [isNePal^#(n____(I, n____(P, I)))] =  [1] P + [2] I + [7]                          
                                         >  [1] P + [6]                                  
                                         =  [c_3(U71^#(isQid(activate(I)), activate(P)))]
                                                                                         
  
  We return to the main proof. Consider the set of all dependency
  pairs
  
  :
    { 1: U71^#(tt(), P) -> c_1(isPal^#(activate(P)))
    , 2: isPal^#(V) -> c_2(isNePal^#(activate(V)))
    , 3: isNePal^#(n____(I, n____(P, I))) ->
         c_3(U71^#(isQid(activate(I)), activate(P))) }
  
  Processor 'matrix interpretation of dimension 1' induces the
  complexity certificate YES(?,O(n^1)) on application of dependency
  pairs {1,3}. These cover all (indirect) predecessors of dependency
  pairs {1,2,3}, their number of application is equally bounded. The
  dependency pairs are shifted into the weak component.
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(1)).
  
  Weak DPs:
    { U71^#(tt(), P) -> c_1(isPal^#(activate(P)))
    , isPal^#(V) -> c_2(isNePal^#(activate(V)))
    , isNePal^#(n____(I, n____(P, I))) ->
      c_3(U71^#(isQid(activate(I)), activate(P))) }
  Weak Trs:
    { __(X1, X2) -> n____(X1, X2)
    , nil() -> n__nil()
    , activate(X) -> X
    , activate(n__nil()) -> nil()
    , activate(n____(X1, X2)) -> __(activate(X1), activate(X2))
    , activate(n__a()) -> a()
    , activate(n__e()) -> e()
    , activate(n__i()) -> i()
    , activate(n__o()) -> o()
    , activate(n__u()) -> u()
    , isQid(n__a()) -> tt()
    , isQid(n__e()) -> tt()
    , isQid(n__i()) -> tt()
    , isQid(n__o()) -> tt()
    , isQid(n__u()) -> tt()
    , a() -> n__a()
    , e() -> n__e()
    , i() -> n__i()
    , o() -> n__o()
    , u() -> n__u() }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(1))
  
  The following weak DPs constitute a sub-graph of the DG that is
  closed under successors. The DPs are removed.
  
  { U71^#(tt(), P) -> c_1(isPal^#(activate(P)))
  , isPal^#(V) -> c_2(isNePal^#(activate(V)))
  , isNePal^#(n____(I, n____(P, I))) ->
    c_3(U71^#(isQid(activate(I)), activate(P))) }
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(1)).
  
  Weak Trs:
    { __(X1, X2) -> n____(X1, X2)
    , nil() -> n__nil()
    , activate(X) -> X
    , activate(n__nil()) -> nil()
    , activate(n____(X1, X2)) -> __(activate(X1), activate(X2))
    , activate(n__a()) -> a()
    , activate(n__e()) -> e()
    , activate(n__i()) -> i()
    , activate(n__o()) -> o()
    , activate(n__u()) -> u()
    , isQid(n__a()) -> tt()
    , isQid(n__e()) -> tt()
    , isQid(n__i()) -> tt()
    , isQid(n__o()) -> tt()
    , isQid(n__u()) -> tt()
    , a() -> n__a()
    , e() -> n__e()
    , i() -> n__i()
    , o() -> n__o()
    , u() -> n__u() }
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(1))
  
  No rule is usable, rules are removed from the input problem.
  
  We are left with following problem, upon which TcT provides the
  certificate YES(O(1),O(1)).
  
  Rules: Empty
  Obligation:
    innermost runtime complexity
  Answer:
    YES(O(1),O(1))
  
  Empty rules are trivially bounded

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { activate^#(n____(X1, X2)) -> c_4(activate^#(X1), activate^#(X2))
  , isNeList^#(V) -> c_5(activate^#(V))
  , isNePal^#(V) -> c_12(activate^#(V)) }
Weak DPs:
  { U21^#(tt(), V2) -> isList^#(activate(V2))
  , U21^#(tt(), V2) -> activate^#(V2)
  , isList^#(V) -> activate^#(V)
  , isList^#(V) -> isNeList^#(activate(V))
  , isList^#(n____(V1, V2)) ->
    U21^#(isList(activate(V1)), activate(V2))
  , isList^#(n____(V1, V2)) -> isList^#(activate(V1))
  , isList^#(n____(V1, V2)) -> activate^#(V1)
  , isList^#(n____(V1, V2)) -> activate^#(V2)
  , isNeList^#(n____(V1, V2)) -> isList^#(activate(V1))
  , isNeList^#(n____(V1, V2)) -> activate^#(V1)
  , isNeList^#(n____(V1, V2)) -> activate^#(V2)
  , isNeList^#(n____(V1, V2)) -> isNeList^#(activate(V1))
  , isNeList^#(n____(V1, V2)) ->
    U41^#(isList(activate(V1)), activate(V2))
  , isNeList^#(n____(V1, V2)) ->
    U51^#(isNeList(activate(V1)), activate(V2))
  , U41^#(tt(), V2) -> activate^#(V2)
  , U41^#(tt(), V2) -> isNeList^#(activate(V2))
  , U51^#(tt(), V2) -> isList^#(activate(V2))
  , U51^#(tt(), V2) -> activate^#(V2)
  , U71^#(tt(), P) -> activate^#(P)
  , U71^#(tt(), P) -> isPal^#(activate(P))
  , isPal^#(V) -> activate^#(V)
  , isPal^#(V) -> isNePal^#(activate(V))
  , isNePal^#(n____(I, n____(P, I))) -> activate^#(I)
  , isNePal^#(n____(I, n____(P, I))) -> activate^#(P)
  , isNePal^#(n____(I, n____(P, I))) ->
    U71^#(isQid(activate(I)), activate(P)) }
Weak Trs:
  { __(X1, X2) -> n____(X1, X2)
  , nil() -> n__nil()
  , U11(tt()) -> tt()
  , U21(tt(), V2) -> U22(isList(activate(V2)))
  , U22(tt()) -> tt()
  , isList(V) -> U11(isNeList(activate(V)))
  , isList(n__nil()) -> tt()
  , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__nil()) -> nil()
  , activate(n____(X1, X2)) -> __(activate(X1), activate(X2))
  , activate(n__a()) -> a()
  , activate(n__e()) -> e()
  , activate(n__i()) -> i()
  , activate(n__o()) -> o()
  , activate(n__u()) -> u()
  , U31(tt()) -> tt()
  , U41(tt(), V2) -> U42(isNeList(activate(V2)))
  , U42(tt()) -> tt()
  , isNeList(V) -> U31(isQid(activate(V)))
  , isNeList(n____(V1, V2)) ->
    U41(isList(activate(V1)), activate(V2))
  , isNeList(n____(V1, V2)) ->
    U51(isNeList(activate(V1)), activate(V2))
  , U51(tt(), V2) -> U52(isList(activate(V2)))
  , U52(tt()) -> tt()
  , isQid(n__a()) -> tt()
  , isQid(n__e()) -> tt()
  , isQid(n__i()) -> tt()
  , isQid(n__o()) -> tt()
  , isQid(n__u()) -> tt()
  , a() -> n__a()
  , e() -> n__e()
  , i() -> n__i()
  , o() -> n__o()
  , u() -> n__u() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 1: activate^#(n____(X1, X2)) ->
       c_4(activate^#(X1), activate^#(X2))
  , 8: isList^#(n____(V1, V2)) ->
       U21^#(isList(activate(V1)), activate(V2))
  , 9: isList^#(n____(V1, V2)) -> isList^#(activate(V1))
  , 10: isList^#(n____(V1, V2)) -> activate^#(V1)
  , 11: isList^#(n____(V1, V2)) -> activate^#(V2)
  , 12: isNeList^#(n____(V1, V2)) -> isList^#(activate(V1))
  , 13: isNeList^#(n____(V1, V2)) -> activate^#(V1)
  , 14: isNeList^#(n____(V1, V2)) -> activate^#(V2)
  , 15: isNeList^#(n____(V1, V2)) -> isNeList^#(activate(V1))
  , 16: isNeList^#(n____(V1, V2)) ->
        U41^#(isList(activate(V1)), activate(V2))
  , 17: isNeList^#(n____(V1, V2)) ->
        U51^#(isNeList(activate(V1)), activate(V2))
  , 18: U41^#(tt(), V2) -> activate^#(V2)
  , 19: U41^#(tt(), V2) -> isNeList^#(activate(V2))
  , 22: U71^#(tt(), P) -> activate^#(P)
  , 24: isPal^#(V) -> activate^#(V)
  , 25: isPal^#(V) -> isNePal^#(activate(V))
  , 26: isNePal^#(n____(I, n____(P, I))) -> activate^#(I)
  , 27: isNePal^#(n____(I, n____(P, I))) -> activate^#(P)
  , 28: isNePal^#(n____(I, n____(P, I))) ->
        U71^#(isQid(activate(I)), activate(P)) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_4) = {1, 2}, Uargs(c_5) = {1}, Uargs(c_12) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
        [__](x1, x2) = [1] x1 + [1] x2 + [1]
                                            
               [nil] = [0]                  
                                            
           [U11](x1) = [0]                  
                                            
                [tt] = [0]                  
                                            
       [U21](x1, x2) = [0]                  
                                            
           [U22](x1) = [0]                  
                                            
        [isList](x1) = [0]                  
                                            
      [activate](x1) = [1] x1 + [0]         
                                            
           [U31](x1) = [0]                  
                                            
       [U41](x1, x2) = [0]                  
                                            
           [U42](x1) = [0]                  
                                            
      [isNeList](x1) = [0]                  
                                            
       [U51](x1, x2) = [0]                  
                                            
           [U52](x1) = [0]                  
                                            
            [n__nil] = [0]                  
                                            
     [n____](x1, x2) = [1] x1 + [1] x2 + [1]
                                            
         [isQid](x1) = [0]                  
                                            
              [n__a] = [0]                  
                                            
              [n__e] = [0]                  
                                            
              [n__i] = [0]                  
                                            
              [n__o] = [0]                  
                                            
              [n__u] = [0]                  
                                            
                 [a] = [0]                  
                                            
                 [e] = [0]                  
                                            
                 [i] = [0]                  
                                            
                 [o] = [0]                  
                                            
                 [u] = [0]                  
                                            
     [U21^#](x1, x2) = [6] x2 + [0]         
                                            
      [isList^#](x1) = [6] x1 + [0]         
                                            
    [activate^#](x1) = [1] x1 + [0]         
                                            
    [isNeList^#](x1) = [6] x1 + [0]         
                                            
     [U41^#](x1, x2) = [6] x2 + [4]         
                                            
     [U51^#](x1, x2) = [6] x2 + [0]         
                                            
     [U71^#](x1, x2) = [6] x2 + [4]         
                                            
       [isPal^#](x1) = [6] x1 + [4]         
                                            
     [isNePal^#](x1) = [6] x1 + [0]         
                                            
       [c_4](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
           [c_5](x1) = [1] x1 + [0]         
                                            
          [c_12](x1) = [1] x1 + [0]         
  
  The order satisfies the following ordering constraints:
  
                          [__(X1, X2)] =  [1] X1 + [1] X2 + [1]                        
                                       >= [1] X1 + [1] X2 + [1]                        
                                       =  [n____(X1, X2)]                              
                                                                                       
                               [nil()] =  [0]                                          
                                       >= [0]                                          
                                       =  [n__nil()]                                   
                                                                                       
                           [U11(tt())] =  [0]                                          
                                       >= [0]                                          
                                       =  [tt()]                                       
                                                                                       
                       [U21(tt(), V2)] =  [0]                                          
                                       >= [0]                                          
                                       =  [U22(isList(activate(V2)))]                  
                                                                                       
                           [U22(tt())] =  [0]                                          
                                       >= [0]                                          
                                       =  [tt()]                                       
                                                                                       
                           [isList(V)] =  [0]                                          
                                       >= [0]                                          
                                       =  [U11(isNeList(activate(V)))]                 
                                                                                       
                    [isList(n__nil())] =  [0]                                          
                                       >= [0]                                          
                                       =  [tt()]                                       
                                                                                       
               [isList(n____(V1, V2))] =  [0]                                          
                                       >= [0]                                          
                                       =  [U21(isList(activate(V1)), activate(V2))]    
                                                                                       
                         [activate(X)] =  [1] X + [0]                                  
                                       >= [1] X + [0]                                  
                                       =  [X]                                          
                                                                                       
                  [activate(n__nil())] =  [0]                                          
                                       >= [0]                                          
                                       =  [nil()]                                      
                                                                                       
             [activate(n____(X1, X2))] =  [1] X1 + [1] X2 + [1]                        
                                       >= [1] X1 + [1] X2 + [1]                        
                                       =  [__(activate(X1), activate(X2))]             
                                                                                       
                    [activate(n__a())] =  [0]                                          
                                       >= [0]                                          
                                       =  [a()]                                        
                                                                                       
                    [activate(n__e())] =  [0]                                          
                                       >= [0]                                          
                                       =  [e()]                                        
                                                                                       
                    [activate(n__i())] =  [0]                                          
                                       >= [0]                                          
                                       =  [i()]                                        
                                                                                       
                    [activate(n__o())] =  [0]                                          
                                       >= [0]                                          
                                       =  [o()]                                        
                                                                                       
                    [activate(n__u())] =  [0]                                          
                                       >= [0]                                          
                                       =  [u()]                                        
                                                                                       
                           [U31(tt())] =  [0]                                          
                                       >= [0]                                          
                                       =  [tt()]                                       
                                                                                       
                       [U41(tt(), V2)] =  [0]                                          
                                       >= [0]                                          
                                       =  [U42(isNeList(activate(V2)))]                
                                                                                       
                           [U42(tt())] =  [0]                                          
                                       >= [0]                                          
                                       =  [tt()]                                       
                                                                                       
                         [isNeList(V)] =  [0]                                          
                                       >= [0]                                          
                                       =  [U31(isQid(activate(V)))]                    
                                                                                       
             [isNeList(n____(V1, V2))] =  [0]                                          
                                       >= [0]                                          
                                       =  [U41(isList(activate(V1)), activate(V2))]    
                                                                                       
             [isNeList(n____(V1, V2))] =  [0]                                          
                                       >= [0]                                          
                                       =  [U51(isNeList(activate(V1)), activate(V2))]  
                                                                                       
                       [U51(tt(), V2)] =  [0]                                          
                                       >= [0]                                          
                                       =  [U52(isList(activate(V2)))]                  
                                                                                       
                           [U52(tt())] =  [0]                                          
                                       >= [0]                                          
                                       =  [tt()]                                       
                                                                                       
                       [isQid(n__a())] =  [0]                                          
                                       >= [0]                                          
                                       =  [tt()]                                       
                                                                                       
                       [isQid(n__e())] =  [0]                                          
                                       >= [0]                                          
                                       =  [tt()]                                       
                                                                                       
                       [isQid(n__i())] =  [0]                                          
                                       >= [0]                                          
                                       =  [tt()]                                       
                                                                                       
                       [isQid(n__o())] =  [0]                                          
                                       >= [0]                                          
                                       =  [tt()]                                       
                                                                                       
                       [isQid(n__u())] =  [0]                                          
                                       >= [0]                                          
                                       =  [tt()]                                       
                                                                                       
                                 [a()] =  [0]                                          
                                       >= [0]                                          
                                       =  [n__a()]                                     
                                                                                       
                                 [e()] =  [0]                                          
                                       >= [0]                                          
                                       =  [n__e()]                                     
                                                                                       
                                 [i()] =  [0]                                          
                                       >= [0]                                          
                                       =  [n__i()]                                     
                                                                                       
                                 [o()] =  [0]                                          
                                       >= [0]                                          
                                       =  [n__o()]                                     
                                                                                       
                                 [u()] =  [0]                                          
                                       >= [0]                                          
                                       =  [n__u()]                                     
                                                                                       
                     [U21^#(tt(), V2)] =  [6] V2 + [0]                                 
                                       >= [6] V2 + [0]                                 
                                       =  [isList^#(activate(V2))]                     
                                                                                       
                     [U21^#(tt(), V2)] =  [6] V2 + [0]                                 
                                       >= [1] V2 + [0]                                 
                                       =  [activate^#(V2)]                             
                                                                                       
                         [isList^#(V)] =  [6] V + [0]                                  
                                       >= [1] V + [0]                                  
                                       =  [activate^#(V)]                              
                                                                                       
                         [isList^#(V)] =  [6] V + [0]                                  
                                       >= [6] V + [0]                                  
                                       =  [isNeList^#(activate(V))]                    
                                                                                       
             [isList^#(n____(V1, V2))] =  [6] V2 + [6] V1 + [6]                        
                                       >  [6] V2 + [0]                                 
                                       =  [U21^#(isList(activate(V1)), activate(V2))]  
                                                                                       
             [isList^#(n____(V1, V2))] =  [6] V2 + [6] V1 + [6]                        
                                       >  [6] V1 + [0]                                 
                                       =  [isList^#(activate(V1))]                     
                                                                                       
             [isList^#(n____(V1, V2))] =  [6] V2 + [6] V1 + [6]                        
                                       >  [1] V1 + [0]                                 
                                       =  [activate^#(V1)]                             
                                                                                       
             [isList^#(n____(V1, V2))] =  [6] V2 + [6] V1 + [6]                        
                                       >  [1] V2 + [0]                                 
                                       =  [activate^#(V2)]                             
                                                                                       
           [activate^#(n____(X1, X2))] =  [1] X1 + [1] X2 + [1]                        
                                       >  [1] X1 + [1] X2 + [0]                        
                                       =  [c_4(activate^#(X1), activate^#(X2))]        
                                                                                       
                       [isNeList^#(V)] =  [6] V + [0]                                  
                                       >= [1] V + [0]                                  
                                       =  [c_5(activate^#(V))]                         
                                                                                       
           [isNeList^#(n____(V1, V2))] =  [6] V2 + [6] V1 + [6]                        
                                       >  [6] V1 + [0]                                 
                                       =  [isList^#(activate(V1))]                     
                                                                                       
           [isNeList^#(n____(V1, V2))] =  [6] V2 + [6] V1 + [6]                        
                                       >  [1] V1 + [0]                                 
                                       =  [activate^#(V1)]                             
                                                                                       
           [isNeList^#(n____(V1, V2))] =  [6] V2 + [6] V1 + [6]                        
                                       >  [1] V2 + [0]                                 
                                       =  [activate^#(V2)]                             
                                                                                       
           [isNeList^#(n____(V1, V2))] =  [6] V2 + [6] V1 + [6]                        
                                       >  [6] V1 + [0]                                 
                                       =  [isNeList^#(activate(V1))]                   
                                                                                       
           [isNeList^#(n____(V1, V2))] =  [6] V2 + [6] V1 + [6]                        
                                       >  [6] V2 + [4]                                 
                                       =  [U41^#(isList(activate(V1)), activate(V2))]  
                                                                                       
           [isNeList^#(n____(V1, V2))] =  [6] V2 + [6] V1 + [6]                        
                                       >  [6] V2 + [0]                                 
                                       =  [U51^#(isNeList(activate(V1)), activate(V2))]
                                                                                       
                     [U41^#(tt(), V2)] =  [6] V2 + [4]                                 
                                       >  [1] V2 + [0]                                 
                                       =  [activate^#(V2)]                             
                                                                                       
                     [U41^#(tt(), V2)] =  [6] V2 + [4]                                 
                                       >  [6] V2 + [0]                                 
                                       =  [isNeList^#(activate(V2))]                   
                                                                                       
                     [U51^#(tt(), V2)] =  [6] V2 + [0]                                 
                                       >= [6] V2 + [0]                                 
                                       =  [isList^#(activate(V2))]                     
                                                                                       
                     [U51^#(tt(), V2)] =  [6] V2 + [0]                                 
                                       >= [1] V2 + [0]                                 
                                       =  [activate^#(V2)]                             
                                                                                       
                      [U71^#(tt(), P)] =  [6] P + [4]                                  
                                       >  [1] P + [0]                                  
                                       =  [activate^#(P)]                              
                                                                                       
                      [U71^#(tt(), P)] =  [6] P + [4]                                  
                                       >= [6] P + [4]                                  
                                       =  [isPal^#(activate(P))]                       
                                                                                       
                          [isPal^#(V)] =  [6] V + [4]                                  
                                       >  [1] V + [0]                                  
                                       =  [activate^#(V)]                              
                                                                                       
                          [isPal^#(V)] =  [6] V + [4]                                  
                                       >  [6] V + [0]                                  
                                       =  [isNePal^#(activate(V))]                     
                                                                                       
                        [isNePal^#(V)] =  [6] V + [0]                                  
                                       >= [1] V + [0]                                  
                                       =  [c_12(activate^#(V))]                        
                                                                                       
    [isNePal^#(n____(I, n____(P, I)))] =  [6] P + [12] I + [12]                        
                                       >  [1] I + [0]                                  
                                       =  [activate^#(I)]                              
                                                                                       
    [isNePal^#(n____(I, n____(P, I)))] =  [6] P + [12] I + [12]                        
                                       >  [1] P + [0]                                  
                                       =  [activate^#(P)]                              
                                                                                       
    [isNePal^#(n____(I, n____(P, I)))] =  [6] P + [12] I + [12]                        
                                       >  [6] P + [4]                                  
                                       =  [U71^#(isQid(activate(I)), activate(P))]     
                                                                                       

We return to the main proof. Consider the set of all dependency
pairs

:
  { 1: activate^#(n____(X1, X2)) ->
       c_4(activate^#(X1), activate^#(X2))
  , 2: isNeList^#(V) -> c_5(activate^#(V))
  , 3: isNePal^#(V) -> c_12(activate^#(V))
  , 4: U21^#(tt(), V2) -> isList^#(activate(V2))
  , 5: U21^#(tt(), V2) -> activate^#(V2)
  , 6: isList^#(V) -> activate^#(V)
  , 7: isList^#(V) -> isNeList^#(activate(V))
  , 8: isList^#(n____(V1, V2)) ->
       U21^#(isList(activate(V1)), activate(V2))
  , 9: isList^#(n____(V1, V2)) -> isList^#(activate(V1))
  , 10: isList^#(n____(V1, V2)) -> activate^#(V1)
  , 11: isList^#(n____(V1, V2)) -> activate^#(V2)
  , 12: isNeList^#(n____(V1, V2)) -> isList^#(activate(V1))
  , 13: isNeList^#(n____(V1, V2)) -> activate^#(V1)
  , 14: isNeList^#(n____(V1, V2)) -> activate^#(V2)
  , 15: isNeList^#(n____(V1, V2)) -> isNeList^#(activate(V1))
  , 16: isNeList^#(n____(V1, V2)) ->
        U41^#(isList(activate(V1)), activate(V2))
  , 17: isNeList^#(n____(V1, V2)) ->
        U51^#(isNeList(activate(V1)), activate(V2))
  , 18: U41^#(tt(), V2) -> activate^#(V2)
  , 19: U41^#(tt(), V2) -> isNeList^#(activate(V2))
  , 20: U51^#(tt(), V2) -> isList^#(activate(V2))
  , 21: U51^#(tt(), V2) -> activate^#(V2)
  , 22: U71^#(tt(), P) -> activate^#(P)
  , 23: U71^#(tt(), P) -> isPal^#(activate(P))
  , 24: isPal^#(V) -> activate^#(V)
  , 25: isPal^#(V) -> isNePal^#(activate(V))
  , 26: isNePal^#(n____(I, n____(P, I))) -> activate^#(I)
  , 27: isNePal^#(n____(I, n____(P, I))) -> activate^#(P)
  , 28: isNePal^#(n____(I, n____(P, I))) ->
        U71^#(isQid(activate(I)), activate(P)) }

Processor 'matrix interpretation of dimension 1' induces the
complexity certificate YES(?,O(n^1)) on application of dependency
pairs {1,8,9,10,11,12,13,14,15,16,17,18,19,22,24,25,26,27,28}.
These cover all (indirect) predecessors of dependency pairs
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28},
their number of application is equally bounded. The dependency
pairs are shifted into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak DPs:
  { U21^#(tt(), V2) -> isList^#(activate(V2))
  , U21^#(tt(), V2) -> activate^#(V2)
  , isList^#(V) -> activate^#(V)
  , isList^#(V) -> isNeList^#(activate(V))
  , isList^#(n____(V1, V2)) ->
    U21^#(isList(activate(V1)), activate(V2))
  , isList^#(n____(V1, V2)) -> isList^#(activate(V1))
  , isList^#(n____(V1, V2)) -> activate^#(V1)
  , isList^#(n____(V1, V2)) -> activate^#(V2)
  , activate^#(n____(X1, X2)) -> c_4(activate^#(X1), activate^#(X2))
  , isNeList^#(V) -> c_5(activate^#(V))
  , isNeList^#(n____(V1, V2)) -> isList^#(activate(V1))
  , isNeList^#(n____(V1, V2)) -> activate^#(V1)
  , isNeList^#(n____(V1, V2)) -> activate^#(V2)
  , isNeList^#(n____(V1, V2)) -> isNeList^#(activate(V1))
  , isNeList^#(n____(V1, V2)) ->
    U41^#(isList(activate(V1)), activate(V2))
  , isNeList^#(n____(V1, V2)) ->
    U51^#(isNeList(activate(V1)), activate(V2))
  , U41^#(tt(), V2) -> activate^#(V2)
  , U41^#(tt(), V2) -> isNeList^#(activate(V2))
  , U51^#(tt(), V2) -> isList^#(activate(V2))
  , U51^#(tt(), V2) -> activate^#(V2)
  , U71^#(tt(), P) -> activate^#(P)
  , U71^#(tt(), P) -> isPal^#(activate(P))
  , isPal^#(V) -> activate^#(V)
  , isPal^#(V) -> isNePal^#(activate(V))
  , isNePal^#(V) -> c_12(activate^#(V))
  , isNePal^#(n____(I, n____(P, I))) -> activate^#(I)
  , isNePal^#(n____(I, n____(P, I))) -> activate^#(P)
  , isNePal^#(n____(I, n____(P, I))) ->
    U71^#(isQid(activate(I)), activate(P)) }
Weak Trs:
  { __(X1, X2) -> n____(X1, X2)
  , nil() -> n__nil()
  , U11(tt()) -> tt()
  , U21(tt(), V2) -> U22(isList(activate(V2)))
  , U22(tt()) -> tt()
  , isList(V) -> U11(isNeList(activate(V)))
  , isList(n__nil()) -> tt()
  , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__nil()) -> nil()
  , activate(n____(X1, X2)) -> __(activate(X1), activate(X2))
  , activate(n__a()) -> a()
  , activate(n__e()) -> e()
  , activate(n__i()) -> i()
  , activate(n__o()) -> o()
  , activate(n__u()) -> u()
  , U31(tt()) -> tt()
  , U41(tt(), V2) -> U42(isNeList(activate(V2)))
  , U42(tt()) -> tt()
  , isNeList(V) -> U31(isQid(activate(V)))
  , isNeList(n____(V1, V2)) ->
    U41(isList(activate(V1)), activate(V2))
  , isNeList(n____(V1, V2)) ->
    U51(isNeList(activate(V1)), activate(V2))
  , U51(tt(), V2) -> U52(isList(activate(V2)))
  , U52(tt()) -> tt()
  , isQid(n__a()) -> tt()
  , isQid(n__e()) -> tt()
  , isQid(n__i()) -> tt()
  , isQid(n__o()) -> tt()
  , isQid(n__u()) -> tt()
  , a() -> n__a()
  , e() -> n__e()
  , i() -> n__i()
  , o() -> n__o()
  , u() -> n__u() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ U21^#(tt(), V2) -> isList^#(activate(V2))
, U21^#(tt(), V2) -> activate^#(V2)
, isList^#(V) -> activate^#(V)
, isList^#(V) -> isNeList^#(activate(V))
, isList^#(n____(V1, V2)) ->
  U21^#(isList(activate(V1)), activate(V2))
, isList^#(n____(V1, V2)) -> isList^#(activate(V1))
, isList^#(n____(V1, V2)) -> activate^#(V1)
, isList^#(n____(V1, V2)) -> activate^#(V2)
, activate^#(n____(X1, X2)) -> c_4(activate^#(X1), activate^#(X2))
, isNeList^#(V) -> c_5(activate^#(V))
, isNeList^#(n____(V1, V2)) -> isList^#(activate(V1))
, isNeList^#(n____(V1, V2)) -> activate^#(V1)
, isNeList^#(n____(V1, V2)) -> activate^#(V2)
, isNeList^#(n____(V1, V2)) -> isNeList^#(activate(V1))
, isNeList^#(n____(V1, V2)) ->
  U41^#(isList(activate(V1)), activate(V2))
, isNeList^#(n____(V1, V2)) ->
  U51^#(isNeList(activate(V1)), activate(V2))
, U41^#(tt(), V2) -> activate^#(V2)
, U41^#(tt(), V2) -> isNeList^#(activate(V2))
, U51^#(tt(), V2) -> isList^#(activate(V2))
, U51^#(tt(), V2) -> activate^#(V2)
, U71^#(tt(), P) -> activate^#(P)
, U71^#(tt(), P) -> isPal^#(activate(P))
, isPal^#(V) -> activate^#(V)
, isPal^#(V) -> isNePal^#(activate(V))
, isNePal^#(V) -> c_12(activate^#(V))
, isNePal^#(n____(I, n____(P, I))) -> activate^#(I)
, isNePal^#(n____(I, n____(P, I))) -> activate^#(P)
, isNePal^#(n____(I, n____(P, I))) ->
  U71^#(isQid(activate(I)), activate(P)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak Trs:
  { __(X1, X2) -> n____(X1, X2)
  , nil() -> n__nil()
  , U11(tt()) -> tt()
  , U21(tt(), V2) -> U22(isList(activate(V2)))
  , U22(tt()) -> tt()
  , isList(V) -> U11(isNeList(activate(V)))
  , isList(n__nil()) -> tt()
  , isList(n____(V1, V2)) -> U21(isList(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__nil()) -> nil()
  , activate(n____(X1, X2)) -> __(activate(X1), activate(X2))
  , activate(n__a()) -> a()
  , activate(n__e()) -> e()
  , activate(n__i()) -> i()
  , activate(n__o()) -> o()
  , activate(n__u()) -> u()
  , U31(tt()) -> tt()
  , U41(tt(), V2) -> U42(isNeList(activate(V2)))
  , U42(tt()) -> tt()
  , isNeList(V) -> U31(isQid(activate(V)))
  , isNeList(n____(V1, V2)) ->
    U41(isList(activate(V1)), activate(V2))
  , isNeList(n____(V1, V2)) ->
    U51(isNeList(activate(V1)), activate(V2))
  , U51(tt(), V2) -> U52(isList(activate(V2)))
  , U52(tt()) -> tt()
  , isQid(n__a()) -> tt()
  , isQid(n__e()) -> tt()
  , isQid(n__i()) -> tt()
  , isQid(n__o()) -> tt()
  , isQid(n__u()) -> tt()
  , a() -> n__a()
  , e() -> n__e()
  , i() -> n__i()
  , o() -> n__o()
  , u() -> n__u() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

No rule is usable, rules are removed from the input problem.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Rules: Empty
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^2))