*** 1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        U31(tt()) -> 0()
        U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        and(tt(),X) -> activate(X)
        isNat(X) -> n__isNat(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        isNat(n__s(V1)) -> isNat(activate(V1))
        isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        plus(N,0()) -> U11(isNat(N),N)
        plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N)
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(N,0()) -> U31(isNat(N))
        x(N,s(M)) -> U41(and(isNat(M),n__isNat(N)),M,N)
        x(X1,X2) -> n__x(X1,X2)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,n__x/2,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,U31,U41,activate,and,isNat,plus,s,x}/{n__0,n__isNat,n__plus,n__s,n__x,tt}
    Applied Processor:
      InnermostRuleRemoval
    Proof:
      Arguments of following rules are not normal-forms.
        plus(N,0()) -> U11(isNat(N),N)
        plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N)
        x(N,0()) -> U31(isNat(N))
        x(N,s(M)) -> U41(and(isNat(M),n__isNat(N)),M,N)
      All above mentioned rules can be savely removed.
*** 1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        U31(tt()) -> 0()
        U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        and(tt(),X) -> activate(X)
        isNat(X) -> n__isNat(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        isNat(n__s(V1)) -> isNat(activate(V1))
        isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,n__x/2,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,U31,U41,activate,and,isNat,plus,s,x}/{n__0,n__isNat,n__plus,n__s,n__x,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isNat) = {1},
          uargs(n__isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1},
          uargs(x) = {1,2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
               p(U11) = [1] x2 + [0]         
               p(U21) = [1] x2 + [1] x3 + [0]
               p(U31) = [0]                  
               p(U41) = [1] x2 + [2] x3 + [0]
          p(activate) = [1] x1 + [0]         
               p(and) = [1] x1 + [1] x2 + [0]
             p(isNat) = [1] x1 + [0]         
              p(n__0) = [0]                  
          p(n__isNat) = [1] x1 + [0]         
           p(n__plus) = [1] x1 + [1] x2 + [0]
              p(n__s) = [1] x1 + [0]         
              p(n__x) = [1] x1 + [1] x2 + [0]
              p(plus) = [1] x1 + [1] x2 + [0]
                 p(s) = [1] x1 + [0]         
                p(tt) = [0]                  
                 p(x) = [1] x1 + [1] x2 + [7]
        
        Following rules are strictly oriented:
        x(X1,X2) = [1] X1 + [1] X2 + [7]
                 > [1] X1 + [1] X2 + [0]
                 = n__x(X1,X2)          
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                             
                                 >= [0]                             
                                 =  n__0()                          
        
                     U11(tt(),N) =  [1] N + [0]                     
                                 >= [1] N + [0]                     
                                 =  activate(N)                     
        
                   U21(tt(),M,N) =  [1] M + [1] N + [0]             
                                 >= [1] M + [1] N + [0]             
                                 =  s(plus(activate(N),activate(M)))
        
                       U31(tt()) =  [0]                             
                                 >= [0]                             
                                 =  0()                             
        
                   U41(tt(),M,N) =  [1] M + [2] N + [0]             
                                 >= [1] M + [2] N + [7]             
                                 =  plus(x(activate(N),activate(M)) 
                                        ,activate(N))               
        
                     activate(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  X                               
        
                activate(n__0()) =  [0]                             
                                 >= [0]                             
                                 =  0()                             
        
           activate(n__isNat(X)) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  isNat(X)                        
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]           
                                 >= [1] X1 + [1] X2 + [0]           
                                 =  plus(X1,X2)                     
        
               activate(n__s(X)) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  s(X)                            
        
           activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [0]           
                                 >= [1] X1 + [1] X2 + [7]           
                                 =  x(X1,X2)                        
        
                     and(tt(),X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  activate(X)                     
        
                        isNat(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  n__isNat(X)                     
        
                   isNat(n__0()) =  [0]                             
                                 >= [0]                             
                                 =  tt()                            
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [0]           
                                 >= [1] V1 + [1] V2 + [0]           
                                 =  and(isNat(activate(V1))         
                                       ,n__isNat(activate(V2)))     
        
                 isNat(n__s(V1)) =  [1] V1 + [0]                    
                                 >= [1] V1 + [0]                    
                                 =  isNat(activate(V1))             
        
              isNat(n__x(V1,V2)) =  [1] V1 + [1] V2 + [0]           
                                 >= [1] V1 + [1] V2 + [0]           
                                 =  and(isNat(activate(V1))         
                                       ,n__isNat(activate(V2)))     
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [0]           
                                 >= [1] X1 + [1] X2 + [0]           
                                 =  n__plus(X1,X2)                  
        
                            s(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  n__s(X)                         
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        U31(tt()) -> 0()
        U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        and(tt(),X) -> activate(X)
        isNat(X) -> n__isNat(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        isNat(n__s(V1)) -> isNat(activate(V1))
        isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,n__x/2,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,U31,U41,activate,and,isNat,plus,s,x}/{n__0,n__isNat,n__plus,n__s,n__x,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isNat) = {1},
          uargs(n__isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1},
          uargs(x) = {1,2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
               p(U11) = [1] x2 + [0]         
               p(U21) = [1] x2 + [1] x3 + [0]
               p(U31) = [0]                  
               p(U41) = [1] x2 + [2] x3 + [0]
          p(activate) = [1] x1 + [0]         
               p(and) = [1] x1 + [1] x2 + [0]
             p(isNat) = [1] x1 + [0]         
              p(n__0) = [0]                  
          p(n__isNat) = [1] x1 + [0]         
           p(n__plus) = [1] x1 + [1] x2 + [0]
              p(n__s) = [1] x1 + [0]         
              p(n__x) = [1] x1 + [1] x2 + [5]
              p(plus) = [1] x1 + [1] x2 + [3]
                 p(s) = [1] x1 + [5]         
                p(tt) = [0]                  
                 p(x) = [1] x1 + [1] x2 + [5]
        
        Following rules are strictly oriented:
        isNat(n__x(V1,V2)) = [1] V1 + [1] V2 + [5]      
                           > [1] V1 + [1] V2 + [0]      
                           = and(isNat(activate(V1))    
                                ,n__isNat(activate(V2)))
        
               plus(X1,X2) = [1] X1 + [1] X2 + [3]      
                           > [1] X1 + [1] X2 + [0]      
                           = n__plus(X1,X2)             
        
                      s(X) = [1] X + [5]                
                           > [1] X + [0]                
                           = n__s(X)                    
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                             
                                 >= [0]                             
                                 =  n__0()                          
        
                     U11(tt(),N) =  [1] N + [0]                     
                                 >= [1] N + [0]                     
                                 =  activate(N)                     
        
                   U21(tt(),M,N) =  [1] M + [1] N + [0]             
                                 >= [1] M + [1] N + [8]             
                                 =  s(plus(activate(N),activate(M)))
        
                       U31(tt()) =  [0]                             
                                 >= [0]                             
                                 =  0()                             
        
                   U41(tt(),M,N) =  [1] M + [2] N + [0]             
                                 >= [1] M + [2] N + [8]             
                                 =  plus(x(activate(N),activate(M)) 
                                        ,activate(N))               
        
                     activate(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  X                               
        
                activate(n__0()) =  [0]                             
                                 >= [0]                             
                                 =  0()                             
        
           activate(n__isNat(X)) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  isNat(X)                        
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]           
                                 >= [1] X1 + [1] X2 + [3]           
                                 =  plus(X1,X2)                     
        
               activate(n__s(X)) =  [1] X + [0]                     
                                 >= [1] X + [5]                     
                                 =  s(X)                            
        
           activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [5]           
                                 >= [1] X1 + [1] X2 + [5]           
                                 =  x(X1,X2)                        
        
                     and(tt(),X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  activate(X)                     
        
                        isNat(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  n__isNat(X)                     
        
                   isNat(n__0()) =  [0]                             
                                 >= [0]                             
                                 =  tt()                            
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [0]           
                                 >= [1] V1 + [1] V2 + [0]           
                                 =  and(isNat(activate(V1))         
                                       ,n__isNat(activate(V2)))     
        
                 isNat(n__s(V1)) =  [1] V1 + [0]                    
                                 >= [1] V1 + [0]                    
                                 =  isNat(activate(V1))             
        
                        x(X1,X2) =  [1] X1 + [1] X2 + [5]           
                                 >= [1] X1 + [1] X2 + [5]           
                                 =  n__x(X1,X2)                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        U31(tt()) -> 0()
        U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        and(tt(),X) -> activate(X)
        isNat(X) -> n__isNat(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        isNat(n__s(V1)) -> isNat(activate(V1))
      Weak DP Rules:
        
      Weak TRS Rules:
        isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,n__x/2,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,U31,U41,activate,and,isNat,plus,s,x}/{n__0,n__isNat,n__plus,n__s,n__x,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isNat) = {1},
          uargs(n__isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1},
          uargs(x) = {1,2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                           
               p(U11) = [1] x2 + [0]                  
               p(U21) = [1] x2 + [1] x3 + [0]         
               p(U31) = [3] x1 + [0]                  
               p(U41) = [3] x1 + [1] x2 + [2] x3 + [0]
          p(activate) = [1] x1 + [0]                  
               p(and) = [1] x1 + [1] x2 + [5]         
             p(isNat) = [1] x1 + [0]                  
              p(n__0) = [0]                           
          p(n__isNat) = [1] x1 + [0]                  
           p(n__plus) = [1] x1 + [1] x2 + [0]         
              p(n__s) = [1] x1 + [3]                  
              p(n__x) = [1] x1 + [1] x2 + [5]         
              p(plus) = [1] x1 + [1] x2 + [0]         
                 p(s) = [1] x1 + [3]                  
                p(tt) = [1]                           
                 p(x) = [1] x1 + [1] x2 + [5]         
        
        Following rules are strictly oriented:
              U31(tt()) = [3]                
                        > [0]                
                        = 0()                
        
            and(tt(),X) = [1] X + [6]        
                        > [1] X + [0]        
                        = activate(X)        
        
        isNat(n__s(V1)) = [1] V1 + [3]       
                        > [1] V1 + [0]       
                        = isNat(activate(V1))
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                             
                                 >= [0]                             
                                 =  n__0()                          
        
                     U11(tt(),N) =  [1] N + [0]                     
                                 >= [1] N + [0]                     
                                 =  activate(N)                     
        
                   U21(tt(),M,N) =  [1] M + [1] N + [0]             
                                 >= [1] M + [1] N + [3]             
                                 =  s(plus(activate(N),activate(M)))
        
                   U41(tt(),M,N) =  [1] M + [2] N + [3]             
                                 >= [1] M + [2] N + [5]             
                                 =  plus(x(activate(N),activate(M)) 
                                        ,activate(N))               
        
                     activate(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  X                               
        
                activate(n__0()) =  [0]                             
                                 >= [0]                             
                                 =  0()                             
        
           activate(n__isNat(X)) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  isNat(X)                        
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]           
                                 >= [1] X1 + [1] X2 + [0]           
                                 =  plus(X1,X2)                     
        
               activate(n__s(X)) =  [1] X + [3]                     
                                 >= [1] X + [3]                     
                                 =  s(X)                            
        
           activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [5]           
                                 >= [1] X1 + [1] X2 + [5]           
                                 =  x(X1,X2)                        
        
                        isNat(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  n__isNat(X)                     
        
                   isNat(n__0()) =  [0]                             
                                 >= [1]                             
                                 =  tt()                            
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [0]           
                                 >= [1] V1 + [1] V2 + [5]           
                                 =  and(isNat(activate(V1))         
                                       ,n__isNat(activate(V2)))     
        
              isNat(n__x(V1,V2)) =  [1] V1 + [1] V2 + [5]           
                                 >= [1] V1 + [1] V2 + [5]           
                                 =  and(isNat(activate(V1))         
                                       ,n__isNat(activate(V2)))     
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [0]           
                                 >= [1] X1 + [1] X2 + [0]           
                                 =  n__plus(X1,X2)                  
        
                            s(X) =  [1] X + [3]                     
                                 >= [1] X + [3]                     
                                 =  n__s(X)                         
        
                        x(X1,X2) =  [1] X1 + [1] X2 + [5]           
                                 >= [1] X1 + [1] X2 + [5]           
                                 =  n__x(X1,X2)                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        isNat(X) -> n__isNat(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
      Weak DP Rules:
        
      Weak TRS Rules:
        U31(tt()) -> 0()
        and(tt(),X) -> activate(X)
        isNat(n__s(V1)) -> isNat(activate(V1))
        isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,n__x/2,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,U31,U41,activate,and,isNat,plus,s,x}/{n__0,n__isNat,n__plus,n__s,n__x,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isNat) = {1},
          uargs(n__isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1},
          uargs(x) = {1,2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
               p(U11) = [1] x2 + [0]         
               p(U21) = [1] x2 + [1] x3 + [0]
               p(U31) = [0]                  
               p(U41) = [1] x2 + [2] x3 + [0]
          p(activate) = [1] x1 + [0]         
               p(and) = [1] x1 + [1] x2 + [0]
             p(isNat) = [1] x1 + [5]         
              p(n__0) = [0]                  
          p(n__isNat) = [1] x1 + [6]         
           p(n__plus) = [1] x1 + [1] x2 + [0]
              p(n__s) = [1] x1 + [4]         
              p(n__x) = [1] x1 + [1] x2 + [6]
              p(plus) = [1] x1 + [1] x2 + [2]
                 p(s) = [1] x1 + [5]         
                p(tt) = [0]                  
                 p(x) = [1] x1 + [1] x2 + [7]
        
        Following rules are strictly oriented:
        activate(n__isNat(X)) = [1] X + [6]
                              > [1] X + [5]
                              = isNat(X)   
        
                isNat(n__0()) = [5]        
                              > [0]        
                              = tt()       
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                             
                                 >= [0]                             
                                 =  n__0()                          
        
                     U11(tt(),N) =  [1] N + [0]                     
                                 >= [1] N + [0]                     
                                 =  activate(N)                     
        
                   U21(tt(),M,N) =  [1] M + [1] N + [0]             
                                 >= [1] M + [1] N + [7]             
                                 =  s(plus(activate(N),activate(M)))
        
                       U31(tt()) =  [0]                             
                                 >= [0]                             
                                 =  0()                             
        
                   U41(tt(),M,N) =  [1] M + [2] N + [0]             
                                 >= [1] M + [2] N + [9]             
                                 =  plus(x(activate(N),activate(M)) 
                                        ,activate(N))               
        
                     activate(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  X                               
        
                activate(n__0()) =  [0]                             
                                 >= [0]                             
                                 =  0()                             
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]           
                                 >= [1] X1 + [1] X2 + [2]           
                                 =  plus(X1,X2)                     
        
               activate(n__s(X)) =  [1] X + [4]                     
                                 >= [1] X + [5]                     
                                 =  s(X)                            
        
           activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [6]           
                                 >= [1] X1 + [1] X2 + [7]           
                                 =  x(X1,X2)                        
        
                     and(tt(),X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  activate(X)                     
        
                        isNat(X) =  [1] X + [5]                     
                                 >= [1] X + [6]                     
                                 =  n__isNat(X)                     
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [5]           
                                 >= [1] V1 + [1] V2 + [11]          
                                 =  and(isNat(activate(V1))         
                                       ,n__isNat(activate(V2)))     
        
                 isNat(n__s(V1)) =  [1] V1 + [9]                    
                                 >= [1] V1 + [5]                    
                                 =  isNat(activate(V1))             
        
              isNat(n__x(V1,V2)) =  [1] V1 + [1] V2 + [11]          
                                 >= [1] V1 + [1] V2 + [11]          
                                 =  and(isNat(activate(V1))         
                                       ,n__isNat(activate(V2)))     
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [2]           
                                 >= [1] X1 + [1] X2 + [0]           
                                 =  n__plus(X1,X2)                  
        
                            s(X) =  [1] X + [5]                     
                                 >= [1] X + [4]                     
                                 =  n__s(X)                         
        
                        x(X1,X2) =  [1] X1 + [1] X2 + [7]           
                                 >= [1] X1 + [1] X2 + [6]           
                                 =  n__x(X1,X2)                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        isNat(X) -> n__isNat(X)
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
      Weak DP Rules:
        
      Weak TRS Rules:
        U31(tt()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        and(tt(),X) -> activate(X)
        isNat(n__0()) -> tt()
        isNat(n__s(V1)) -> isNat(activate(V1))
        isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,n__x/2,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,U31,U41,activate,and,isNat,plus,s,x}/{n__0,n__isNat,n__plus,n__s,n__x,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isNat) = {1},
          uargs(n__isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1},
          uargs(x) = {1,2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
               p(U11) = [1] x2 + [0]         
               p(U21) = [1] x2 + [1] x3 + [0]
               p(U31) = [0]                  
               p(U41) = [1] x2 + [2] x3 + [0]
          p(activate) = [1] x1 + [0]         
               p(and) = [1] x1 + [1] x2 + [0]
             p(isNat) = [1] x1 + [2]         
              p(n__0) = [0]                  
          p(n__isNat) = [1] x1 + [2]         
           p(n__plus) = [1] x1 + [1] x2 + [6]
              p(n__s) = [1] x1 + [0]         
              p(n__x) = [1] x1 + [1] x2 + [4]
              p(plus) = [1] x1 + [1] x2 + [6]
                 p(s) = [1] x1 + [3]         
                p(tt) = [0]                  
                 p(x) = [1] x1 + [1] x2 + [5]
        
        Following rules are strictly oriented:
        isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [8]      
                              > [1] V1 + [1] V2 + [4]      
                              = and(isNat(activate(V1))    
                                   ,n__isNat(activate(V2)))
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                             
                                 >= [0]                             
                                 =  n__0()                          
        
                     U11(tt(),N) =  [1] N + [0]                     
                                 >= [1] N + [0]                     
                                 =  activate(N)                     
        
                   U21(tt(),M,N) =  [1] M + [1] N + [0]             
                                 >= [1] M + [1] N + [9]             
                                 =  s(plus(activate(N),activate(M)))
        
                       U31(tt()) =  [0]                             
                                 >= [0]                             
                                 =  0()                             
        
                   U41(tt(),M,N) =  [1] M + [2] N + [0]             
                                 >= [1] M + [2] N + [11]            
                                 =  plus(x(activate(N),activate(M)) 
                                        ,activate(N))               
        
                     activate(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  X                               
        
                activate(n__0()) =  [0]                             
                                 >= [0]                             
                                 =  0()                             
        
           activate(n__isNat(X)) =  [1] X + [2]                     
                                 >= [1] X + [2]                     
                                 =  isNat(X)                        
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [6]           
                                 >= [1] X1 + [1] X2 + [6]           
                                 =  plus(X1,X2)                     
        
               activate(n__s(X)) =  [1] X + [0]                     
                                 >= [1] X + [3]                     
                                 =  s(X)                            
        
           activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [4]           
                                 >= [1] X1 + [1] X2 + [5]           
                                 =  x(X1,X2)                        
        
                     and(tt(),X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  activate(X)                     
        
                        isNat(X) =  [1] X + [2]                     
                                 >= [1] X + [2]                     
                                 =  n__isNat(X)                     
        
                   isNat(n__0()) =  [2]                             
                                 >= [0]                             
                                 =  tt()                            
        
                 isNat(n__s(V1)) =  [1] V1 + [2]                    
                                 >= [1] V1 + [2]                    
                                 =  isNat(activate(V1))             
        
              isNat(n__x(V1,V2)) =  [1] V1 + [1] V2 + [6]           
                                 >= [1] V1 + [1] V2 + [4]           
                                 =  and(isNat(activate(V1))         
                                       ,n__isNat(activate(V2)))     
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [6]           
                                 >= [1] X1 + [1] X2 + [6]           
                                 =  n__plus(X1,X2)                  
        
                            s(X) =  [1] X + [3]                     
                                 >= [1] X + [0]                     
                                 =  n__s(X)                         
        
                        x(X1,X2) =  [1] X1 + [1] X2 + [5]           
                                 >= [1] X1 + [1] X2 + [4]           
                                 =  n__x(X1,X2)                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        isNat(X) -> n__isNat(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        U31(tt()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        and(tt(),X) -> activate(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        isNat(n__s(V1)) -> isNat(activate(V1))
        isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,n__x/2,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,U31,U41,activate,and,isNat,plus,s,x}/{n__0,n__isNat,n__plus,n__s,n__x,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isNat) = {1},
          uargs(n__isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1},
          uargs(x) = {1,2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
               p(U11) = [1] x2 + [1]         
               p(U21) = [2] x2 + [5] x3 + [0]
               p(U31) = [0]                  
               p(U41) = [1] x2 + [2] x3 + [3]
          p(activate) = [1] x1 + [0]         
               p(and) = [1] x1 + [1] x2 + [0]
             p(isNat) = [1] x1 + [0]         
              p(n__0) = [5]                  
          p(n__isNat) = [1] x1 + [0]         
           p(n__plus) = [1] x1 + [1] x2 + [7]
              p(n__s) = [1] x1 + [0]         
              p(n__x) = [1] x1 + [1] x2 + [4]
              p(plus) = [1] x1 + [1] x2 + [7]
                 p(s) = [1] x1 + [0]         
                p(tt) = [0]                  
                 p(x) = [1] x1 + [1] x2 + [5]
        
        Following rules are strictly oriented:
             U11(tt(),N) = [1] N + [1]
                         > [1] N + [0]
                         = activate(N)
        
        activate(n__0()) = [5]        
                         > [0]        
                         = 0()        
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                             
                                 >= [5]                             
                                 =  n__0()                          
        
                   U21(tt(),M,N) =  [2] M + [5] N + [0]             
                                 >= [1] M + [1] N + [7]             
                                 =  s(plus(activate(N),activate(M)))
        
                       U31(tt()) =  [0]                             
                                 >= [0]                             
                                 =  0()                             
        
                   U41(tt(),M,N) =  [1] M + [2] N + [3]             
                                 >= [1] M + [2] N + [12]            
                                 =  plus(x(activate(N),activate(M)) 
                                        ,activate(N))               
        
                     activate(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  X                               
        
           activate(n__isNat(X)) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  isNat(X)                        
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [7]           
                                 >= [1] X1 + [1] X2 + [7]           
                                 =  plus(X1,X2)                     
        
               activate(n__s(X)) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  s(X)                            
        
           activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [4]           
                                 >= [1] X1 + [1] X2 + [5]           
                                 =  x(X1,X2)                        
        
                     and(tt(),X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  activate(X)                     
        
                        isNat(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  n__isNat(X)                     
        
                   isNat(n__0()) =  [5]                             
                                 >= [0]                             
                                 =  tt()                            
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [7]           
                                 >= [1] V1 + [1] V2 + [0]           
                                 =  and(isNat(activate(V1))         
                                       ,n__isNat(activate(V2)))     
        
                 isNat(n__s(V1)) =  [1] V1 + [0]                    
                                 >= [1] V1 + [0]                    
                                 =  isNat(activate(V1))             
        
              isNat(n__x(V1,V2)) =  [1] V1 + [1] V2 + [4]           
                                 >= [1] V1 + [1] V2 + [0]           
                                 =  and(isNat(activate(V1))         
                                       ,n__isNat(activate(V2)))     
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [7]           
                                 >= [1] X1 + [1] X2 + [7]           
                                 =  n__plus(X1,X2)                  
        
                            s(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  n__s(X)                         
        
                        x(X1,X2) =  [1] X1 + [1] X2 + [5]           
                                 >= [1] X1 + [1] X2 + [4]           
                                 =  n__x(X1,X2)                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
        activate(X) -> X
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        isNat(X) -> n__isNat(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt(),N) -> activate(N)
        U31(tt()) -> 0()
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        and(tt(),X) -> activate(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        isNat(n__s(V1)) -> isNat(activate(V1))
        isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,n__x/2,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,U31,U41,activate,and,isNat,plus,s,x}/{n__0,n__isNat,n__plus,n__s,n__x,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isNat) = {1},
          uargs(n__isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1},
          uargs(x) = {1,2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                           
               p(U11) = [3] x1 + [1] x2 + [0]         
               p(U21) = [2] x1 + [1] x2 + [2] x3 + [1]
               p(U31) = [0]                           
               p(U41) = [4] x2 + [2] x3 + [0]         
          p(activate) = [1] x1 + [0]                  
               p(and) = [1] x1 + [1] x2 + [0]         
             p(isNat) = [1] x1 + [0]                  
              p(n__0) = [5]                           
          p(n__isNat) = [1] x1 + [0]                  
           p(n__plus) = [1] x1 + [1] x2 + [0]         
              p(n__s) = [1] x1 + [2]                  
              p(n__x) = [1] x1 + [1] x2 + [0]         
              p(plus) = [1] x1 + [1] x2 + [4]         
                 p(s) = [1] x1 + [4]                  
                p(tt) = [5]                           
                 p(x) = [1] x1 + [1] x2 + [0]         
        
        Following rules are strictly oriented:
        U21(tt(),M,N) = [1] M + [2] N + [11]            
                      > [1] M + [1] N + [8]             
                      = s(plus(activate(N),activate(M)))
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                            
                                 >= [5]                            
                                 =  n__0()                         
        
                     U11(tt(),N) =  [1] N + [15]                   
                                 >= [1] N + [0]                    
                                 =  activate(N)                    
        
                       U31(tt()) =  [0]                            
                                 >= [0]                            
                                 =  0()                            
        
                   U41(tt(),M,N) =  [4] M + [2] N + [0]            
                                 >= [1] M + [2] N + [4]            
                                 =  plus(x(activate(N),activate(M))
                                        ,activate(N))              
        
                     activate(X) =  [1] X + [0]                    
                                 >= [1] X + [0]                    
                                 =  X                              
        
                activate(n__0()) =  [5]                            
                                 >= [0]                            
                                 =  0()                            
        
           activate(n__isNat(X)) =  [1] X + [0]                    
                                 >= [1] X + [0]                    
                                 =  isNat(X)                       
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]          
                                 >= [1] X1 + [1] X2 + [4]          
                                 =  plus(X1,X2)                    
        
               activate(n__s(X)) =  [1] X + [2]                    
                                 >= [1] X + [4]                    
                                 =  s(X)                           
        
           activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [0]          
                                 >= [1] X1 + [1] X2 + [0]          
                                 =  x(X1,X2)                       
        
                     and(tt(),X) =  [1] X + [5]                    
                                 >= [1] X + [0]                    
                                 =  activate(X)                    
        
                        isNat(X) =  [1] X + [0]                    
                                 >= [1] X + [0]                    
                                 =  n__isNat(X)                    
        
                   isNat(n__0()) =  [5]                            
                                 >= [5]                            
                                 =  tt()                           
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [0]          
                                 >= [1] V1 + [1] V2 + [0]          
                                 =  and(isNat(activate(V1))        
                                       ,n__isNat(activate(V2)))    
        
                 isNat(n__s(V1)) =  [1] V1 + [2]                   
                                 >= [1] V1 + [0]                   
                                 =  isNat(activate(V1))            
        
              isNat(n__x(V1,V2)) =  [1] V1 + [1] V2 + [0]          
                                 >= [1] V1 + [1] V2 + [0]          
                                 =  and(isNat(activate(V1))        
                                       ,n__isNat(activate(V2)))    
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [4]          
                                 >= [1] X1 + [1] X2 + [0]          
                                 =  n__plus(X1,X2)                 
        
                            s(X) =  [1] X + [4]                    
                                 >= [1] X + [2]                    
                                 =  n__s(X)                        
        
                        x(X1,X2) =  [1] X1 + [1] X2 + [0]          
                                 >= [1] X1 + [1] X2 + [0]          
                                 =  n__x(X1,X2)                    
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
        activate(X) -> X
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        isNat(X) -> n__isNat(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        U31(tt()) -> 0()
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        and(tt(),X) -> activate(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        isNat(n__s(V1)) -> isNat(activate(V1))
        isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,n__x/2,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,U31,U41,activate,and,isNat,plus,s,x}/{n__0,n__isNat,n__plus,n__s,n__x,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isNat) = {1},
          uargs(n__isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1},
          uargs(x) = {1,2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [2]                           
               p(U11) = [4] x2 + [0]                  
               p(U21) = [5] x1 + [1] x2 + [4] x3 + [4]
               p(U31) = [6] x1 + [4]                  
               p(U41) = [4] x1 + [4] x2 + [2] x3 + [4]
          p(activate) = [1] x1 + [0]                  
               p(and) = [1] x1 + [1] x2 + [0]         
             p(isNat) = [1] x1 + [0]                  
              p(n__0) = [6]                           
          p(n__isNat) = [1] x1 + [0]                  
           p(n__plus) = [1] x1 + [1] x2 + [0]         
              p(n__s) = [1] x1 + [0]                  
              p(n__x) = [1] x1 + [1] x2 + [0]         
              p(plus) = [1] x1 + [1] x2 + [1]         
                 p(s) = [1] x1 + [0]                  
                p(tt) = [1]                           
                 p(x) = [1] x1 + [1] x2 + [0]         
        
        Following rules are strictly oriented:
        U41(tt(),M,N) = [4] M + [2] N + [8]            
                      > [1] M + [2] N + [1]            
                      = plus(x(activate(N),activate(M))
                            ,activate(N))              
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [2]                             
                                 >= [6]                             
                                 =  n__0()                          
        
                     U11(tt(),N) =  [4] N + [0]                     
                                 >= [1] N + [0]                     
                                 =  activate(N)                     
        
                   U21(tt(),M,N) =  [1] M + [4] N + [9]             
                                 >= [1] M + [1] N + [1]             
                                 =  s(plus(activate(N),activate(M)))
        
                       U31(tt()) =  [10]                            
                                 >= [2]                             
                                 =  0()                             
        
                     activate(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  X                               
        
                activate(n__0()) =  [6]                             
                                 >= [2]                             
                                 =  0()                             
        
           activate(n__isNat(X)) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  isNat(X)                        
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]           
                                 >= [1] X1 + [1] X2 + [1]           
                                 =  plus(X1,X2)                     
        
               activate(n__s(X)) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  s(X)                            
        
           activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [0]           
                                 >= [1] X1 + [1] X2 + [0]           
                                 =  x(X1,X2)                        
        
                     and(tt(),X) =  [1] X + [1]                     
                                 >= [1] X + [0]                     
                                 =  activate(X)                     
        
                        isNat(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  n__isNat(X)                     
        
                   isNat(n__0()) =  [6]                             
                                 >= [1]                             
                                 =  tt()                            
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [0]           
                                 >= [1] V1 + [1] V2 + [0]           
                                 =  and(isNat(activate(V1))         
                                       ,n__isNat(activate(V2)))     
        
                 isNat(n__s(V1)) =  [1] V1 + [0]                    
                                 >= [1] V1 + [0]                    
                                 =  isNat(activate(V1))             
        
              isNat(n__x(V1,V2)) =  [1] V1 + [1] V2 + [0]           
                                 >= [1] V1 + [1] V2 + [0]           
                                 =  and(isNat(activate(V1))         
                                       ,n__isNat(activate(V2)))     
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [1]           
                                 >= [1] X1 + [1] X2 + [0]           
                                 =  n__plus(X1,X2)                  
        
                            s(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  n__s(X)                         
        
                        x(X1,X2) =  [1] X1 + [1] X2 + [0]           
                                 >= [1] X1 + [1] X2 + [0]           
                                 =  n__x(X1,X2)                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        activate(X) -> X
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        isNat(X) -> n__isNat(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        U31(tt()) -> 0()
        U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        and(tt(),X) -> activate(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        isNat(n__s(V1)) -> isNat(activate(V1))
        isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,n__x/2,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,U31,U41,activate,and,isNat,plus,s,x}/{n__0,n__isNat,n__plus,n__s,n__x,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isNat) = {1},
          uargs(n__isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1},
          uargs(x) = {1,2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                           
               p(U11) = [3] x1 + [1] x2 + [0]         
               p(U21) = [3] x1 + [1] x2 + [3] x3 + [1]
               p(U31) = [1] x1 + [0]                  
               p(U41) = [3] x1 + [2] x2 + [3] x3 + [3]
          p(activate) = [1] x1 + [2]                  
               p(and) = [1] x1 + [1] x2 + [0]         
             p(isNat) = [1] x1 + [2]                  
              p(n__0) = [4]                           
          p(n__isNat) = [1] x1 + [0]                  
           p(n__plus) = [1] x1 + [1] x2 + [5]         
              p(n__s) = [1] x1 + [2]                  
              p(n__x) = [1] x1 + [1] x2 + [4]         
              p(plus) = [1] x1 + [1] x2 + [5]         
                 p(s) = [1] x1 + [4]                  
                p(tt) = [4]                           
                 p(x) = [1] x1 + [1] x2 + [4]         
        
        Following rules are strictly oriented:
                     activate(X) = [1] X + [2]          
                                 > [1] X + [0]          
                                 = X                    
        
        activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [7]
                                 > [1] X1 + [1] X2 + [5]
                                 = plus(X1,X2)          
        
           activate(n__x(X1,X2)) = [1] X1 + [1] X2 + [6]
                                 > [1] X1 + [1] X2 + [4]
                                 = x(X1,X2)             
        
                        isNat(X) = [1] X + [2]          
                                 > [1] X + [0]          
                                 = n__isNat(X)          
        
        
        Following rules are (at-least) weakly oriented:
                          0() =  [0]                             
                              >= [4]                             
                              =  n__0()                          
        
                  U11(tt(),N) =  [1] N + [12]                    
                              >= [1] N + [2]                     
                              =  activate(N)                     
        
                U21(tt(),M,N) =  [1] M + [3] N + [13]            
                              >= [1] M + [1] N + [13]            
                              =  s(plus(activate(N),activate(M)))
        
                    U31(tt()) =  [4]                             
                              >= [0]                             
                              =  0()                             
        
                U41(tt(),M,N) =  [2] M + [3] N + [15]            
                              >= [1] M + [2] N + [15]            
                              =  plus(x(activate(N),activate(M)) 
                                     ,activate(N))               
        
             activate(n__0()) =  [6]                             
                              >= [0]                             
                              =  0()                             
        
        activate(n__isNat(X)) =  [1] X + [2]                     
                              >= [1] X + [2]                     
                              =  isNat(X)                        
        
            activate(n__s(X)) =  [1] X + [4]                     
                              >= [1] X + [4]                     
                              =  s(X)                            
        
                  and(tt(),X) =  [1] X + [4]                     
                              >= [1] X + [2]                     
                              =  activate(X)                     
        
                isNat(n__0()) =  [6]                             
                              >= [4]                             
                              =  tt()                            
        
        isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [7]           
                              >= [1] V1 + [1] V2 + [6]           
                              =  and(isNat(activate(V1))         
                                    ,n__isNat(activate(V2)))     
        
              isNat(n__s(V1)) =  [1] V1 + [4]                    
                              >= [1] V1 + [4]                    
                              =  isNat(activate(V1))             
        
           isNat(n__x(V1,V2)) =  [1] V1 + [1] V2 + [6]           
                              >= [1] V1 + [1] V2 + [6]           
                              =  and(isNat(activate(V1))         
                                    ,n__isNat(activate(V2)))     
        
                  plus(X1,X2) =  [1] X1 + [1] X2 + [5]           
                              >= [1] X1 + [1] X2 + [5]           
                              =  n__plus(X1,X2)                  
        
                         s(X) =  [1] X + [4]                     
                              >= [1] X + [2]                     
                              =  n__s(X)                         
        
                     x(X1,X2) =  [1] X1 + [1] X2 + [4]           
                              >= [1] X1 + [1] X2 + [4]           
                              =  n__x(X1,X2)                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        activate(n__s(X)) -> s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        U31(tt()) -> 0()
        U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__x(X1,X2)) -> x(X1,X2)
        and(tt(),X) -> activate(X)
        isNat(X) -> n__isNat(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        isNat(n__s(V1)) -> isNat(activate(V1))
        isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,n__x/2,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,U31,U41,activate,and,isNat,plus,s,x}/{n__0,n__isNat,n__plus,n__s,n__x,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isNat) = {1},
          uargs(n__isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1},
          uargs(x) = {1,2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                           
               p(U11) = [2] x1 + [2] x2 + [0]         
               p(U21) = [3] x1 + [4] x2 + [2] x3 + [0]
               p(U31) = [1] x1 + [2]                  
               p(U41) = [2] x1 + [1] x2 + [4] x3 + [6]
          p(activate) = [1] x1 + [1]                  
               p(and) = [1] x1 + [1] x2 + [3]         
             p(isNat) = [1] x1 + [0]                  
              p(n__0) = [4]                           
          p(n__isNat) = [1] x1 + [0]                  
           p(n__plus) = [1] x1 + [1] x2 + [5]         
              p(n__s) = [1] x1 + [1]                  
              p(n__x) = [1] x1 + [1] x2 + [5]         
              p(plus) = [1] x1 + [1] x2 + [5]         
                 p(s) = [1] x1 + [1]                  
                p(tt) = [4]                           
                 p(x) = [1] x1 + [1] x2 + [6]         
        
        Following rules are strictly oriented:
        activate(n__s(X)) = [1] X + [2]
                          > [1] X + [1]
                          = s(X)       
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                             
                                 >= [4]                             
                                 =  n__0()                          
        
                     U11(tt(),N) =  [2] N + [8]                     
                                 >= [1] N + [1]                     
                                 =  activate(N)                     
        
                   U21(tt(),M,N) =  [4] M + [2] N + [12]            
                                 >= [1] M + [1] N + [8]             
                                 =  s(plus(activate(N),activate(M)))
        
                       U31(tt()) =  [6]                             
                                 >= [0]                             
                                 =  0()                             
        
                   U41(tt(),M,N) =  [1] M + [4] N + [14]            
                                 >= [1] M + [2] N + [14]            
                                 =  plus(x(activate(N),activate(M)) 
                                        ,activate(N))               
        
                     activate(X) =  [1] X + [1]                     
                                 >= [1] X + [0]                     
                                 =  X                               
        
                activate(n__0()) =  [5]                             
                                 >= [0]                             
                                 =  0()                             
        
           activate(n__isNat(X)) =  [1] X + [1]                     
                                 >= [1] X + [0]                     
                                 =  isNat(X)                        
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [6]           
                                 >= [1] X1 + [1] X2 + [5]           
                                 =  plus(X1,X2)                     
        
           activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [6]           
                                 >= [1] X1 + [1] X2 + [6]           
                                 =  x(X1,X2)                        
        
                     and(tt(),X) =  [1] X + [7]                     
                                 >= [1] X + [1]                     
                                 =  activate(X)                     
        
                        isNat(X) =  [1] X + [0]                     
                                 >= [1] X + [0]                     
                                 =  n__isNat(X)                     
        
                   isNat(n__0()) =  [4]                             
                                 >= [4]                             
                                 =  tt()                            
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [5]           
                                 >= [1] V1 + [1] V2 + [5]           
                                 =  and(isNat(activate(V1))         
                                       ,n__isNat(activate(V2)))     
        
                 isNat(n__s(V1)) =  [1] V1 + [1]                    
                                 >= [1] V1 + [1]                    
                                 =  isNat(activate(V1))             
        
              isNat(n__x(V1,V2)) =  [1] V1 + [1] V2 + [5]           
                                 >= [1] V1 + [1] V2 + [5]           
                                 =  and(isNat(activate(V1))         
                                       ,n__isNat(activate(V2)))     
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [5]           
                                 >= [1] X1 + [1] X2 + [5]           
                                 =  n__plus(X1,X2)                  
        
                            s(X) =  [1] X + [1]                     
                                 >= [1] X + [1]                     
                                 =  n__s(X)                         
        
                        x(X1,X2) =  [1] X1 + [1] X2 + [6]           
                                 >= [1] X1 + [1] X2 + [5]           
                                 =  n__x(X1,X2)                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        U31(tt()) -> 0()
        U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        and(tt(),X) -> activate(X)
        isNat(X) -> n__isNat(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        isNat(n__s(V1)) -> isNat(activate(V1))
        isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,n__x/2,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,U31,U41,activate,and,isNat,plus,s,x}/{n__0,n__isNat,n__plus,n__s,n__x,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isNat) = {1},
          uargs(n__isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1},
          uargs(x) = {1,2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [1]                           
               p(U11) = [1] x1 + [1] x2 + [0]         
               p(U21) = [5] x1 + [1] x2 + [1] x3 + [4]
               p(U31) = [1]                           
               p(U41) = [4] x1 + [1] x2 + [2] x3 + [7]
          p(activate) = [1] x1 + [1]                  
               p(and) = [1] x1 + [1] x2 + [0]         
             p(isNat) = [1] x1 + [1]                  
              p(n__0) = [0]                           
          p(n__isNat) = [1] x1 + [1]                  
           p(n__plus) = [1] x1 + [1] x2 + [3]         
              p(n__s) = [1] x1 + [2]                  
              p(n__x) = [1] x1 + [1] x2 + [3]         
              p(plus) = [1] x1 + [1] x2 + [4]         
                 p(s) = [1] x1 + [3]                  
                p(tt) = [1]                           
                 p(x) = [1] x1 + [1] x2 + [4]         
        
        Following rules are strictly oriented:
        0() = [1]   
            > [0]   
            = n__0()
        
        
        Following rules are (at-least) weakly oriented:
                     U11(tt(),N) =  [1] N + [1]                     
                                 >= [1] N + [1]                     
                                 =  activate(N)                     
        
                   U21(tt(),M,N) =  [1] M + [1] N + [9]             
                                 >= [1] M + [1] N + [9]             
                                 =  s(plus(activate(N),activate(M)))
        
                       U31(tt()) =  [1]                             
                                 >= [1]                             
                                 =  0()                             
        
                   U41(tt(),M,N) =  [1] M + [2] N + [11]            
                                 >= [1] M + [2] N + [11]            
                                 =  plus(x(activate(N),activate(M)) 
                                        ,activate(N))               
        
                     activate(X) =  [1] X + [1]                     
                                 >= [1] X + [0]                     
                                 =  X                               
        
                activate(n__0()) =  [1]                             
                                 >= [1]                             
                                 =  0()                             
        
           activate(n__isNat(X)) =  [1] X + [2]                     
                                 >= [1] X + [1]                     
                                 =  isNat(X)                        
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [4]           
                                 >= [1] X1 + [1] X2 + [4]           
                                 =  plus(X1,X2)                     
        
               activate(n__s(X)) =  [1] X + [3]                     
                                 >= [1] X + [3]                     
                                 =  s(X)                            
        
           activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [4]           
                                 >= [1] X1 + [1] X2 + [4]           
                                 =  x(X1,X2)                        
        
                     and(tt(),X) =  [1] X + [1]                     
                                 >= [1] X + [1]                     
                                 =  activate(X)                     
        
                        isNat(X) =  [1] X + [1]                     
                                 >= [1] X + [1]                     
                                 =  n__isNat(X)                     
        
                   isNat(n__0()) =  [1]                             
                                 >= [1]                             
                                 =  tt()                            
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [4]           
                                 >= [1] V1 + [1] V2 + [4]           
                                 =  and(isNat(activate(V1))         
                                       ,n__isNat(activate(V2)))     
        
                 isNat(n__s(V1)) =  [1] V1 + [3]                    
                                 >= [1] V1 + [2]                    
                                 =  isNat(activate(V1))             
        
              isNat(n__x(V1,V2)) =  [1] V1 + [1] V2 + [4]           
                                 >= [1] V1 + [1] V2 + [4]           
                                 =  and(isNat(activate(V1))         
                                       ,n__isNat(activate(V2)))     
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [4]           
                                 >= [1] X1 + [1] X2 + [3]           
                                 =  n__plus(X1,X2)                  
        
                            s(X) =  [1] X + [3]                     
                                 >= [1] X + [2]                     
                                 =  n__s(X)                         
        
                        x(X1,X2) =  [1] X1 + [1] X2 + [4]           
                                 >= [1] X1 + [1] X2 + [3]           
                                 =  n__x(X1,X2)                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),N) -> activate(N)
        U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
        U31(tt()) -> 0()
        U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__isNat(X)) -> isNat(X)
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        and(tt(),X) -> activate(X)
        isNat(X) -> n__isNat(X)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        isNat(n__s(V1)) -> isNat(activate(V1))
        isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,n__x/2,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U21,U31,U41,activate,and,isNat,plus,s,x}/{n__0,n__isNat,n__plus,n__s,n__x,tt}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).