We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { U11(tt(), N) -> activate(N)
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__isNat(X)) -> isNat(X)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , U21(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , plus(N, s(M)) -> U21(and(isNat(M), n__isNat(N)), M, N)
  , plus(N, 0()) -> U11(isNat(N), N)
  , U31(tt()) -> 0()
  , 0() -> n__0()
  , U41(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2)
  , x(N, s(M)) -> U41(and(isNat(M), n__isNat(N)), M, N)
  , x(N, 0()) -> U31(isNat(N))
  , and(tt(), X) -> activate(X)
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , isNat(n__s(V1)) -> isNat(activate(V1))
  , isNat(n__x(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

Arguments of following rules are not normal-forms:

{ plus(N, s(M)) -> U21(and(isNat(M), n__isNat(N)), M, N)
, plus(N, 0()) -> U11(isNat(N), N)
, x(N, s(M)) -> U41(and(isNat(M), n__isNat(N)), M, N)
, x(N, 0()) -> U31(isNat(N)) }

All above mentioned rules can be savely removed.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { U11(tt(), N) -> activate(N)
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__isNat(X)) -> isNat(X)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , U21(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , U31(tt()) -> 0()
  , 0() -> n__0()
  , U41(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2)
  , and(tt(), X) -> activate(X)
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , isNat(n__s(V1)) -> isNat(activate(V1))
  , isNat(n__x(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We add the following dependency tuples:

Strict DPs:
  { U11^#(tt(), N) -> c_1(activate^#(N))
  , activate^#(X) -> c_2()
  , activate^#(n__0()) -> c_3(0^#())
  , activate^#(n__plus(X1, X2)) -> c_4(plus^#(X1, X2))
  , activate^#(n__isNat(X)) -> c_5(isNat^#(X))
  , activate^#(n__s(X)) -> c_6(s^#(X))
  , activate^#(n__x(X1, X2)) -> c_7(x^#(X1, X2))
  , 0^#() -> c_12()
  , plus^#(X1, X2) -> c_10()
  , isNat^#(X) -> c_16()
  , isNat^#(n__0()) -> c_17()
  , isNat^#(n__plus(V1, V2)) ->
    c_18(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
         isNat^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
  , isNat^#(n__s(V1)) -> c_19(isNat^#(activate(V1)), activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_20(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
         isNat^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
  , s^#(X) -> c_9()
  , x^#(X1, X2) -> c_14()
  , U21^#(tt(), M, N) ->
    c_8(s^#(plus(activate(N), activate(M))),
        plus^#(activate(N), activate(M)),
        activate^#(N),
        activate^#(M))
  , U31^#(tt()) -> c_11(0^#())
  , U41^#(tt(), M, N) ->
    c_13(plus^#(x(activate(N), activate(M)), activate(N)),
         x^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , and^#(tt(), X) -> c_15(activate^#(X)) }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { U11^#(tt(), N) -> c_1(activate^#(N))
  , activate^#(X) -> c_2()
  , activate^#(n__0()) -> c_3(0^#())
  , activate^#(n__plus(X1, X2)) -> c_4(plus^#(X1, X2))
  , activate^#(n__isNat(X)) -> c_5(isNat^#(X))
  , activate^#(n__s(X)) -> c_6(s^#(X))
  , activate^#(n__x(X1, X2)) -> c_7(x^#(X1, X2))
  , 0^#() -> c_12()
  , plus^#(X1, X2) -> c_10()
  , isNat^#(X) -> c_16()
  , isNat^#(n__0()) -> c_17()
  , isNat^#(n__plus(V1, V2)) ->
    c_18(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
         isNat^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
  , isNat^#(n__s(V1)) -> c_19(isNat^#(activate(V1)), activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_20(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
         isNat^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
  , s^#(X) -> c_9()
  , x^#(X1, X2) -> c_14()
  , U21^#(tt(), M, N) ->
    c_8(s^#(plus(activate(N), activate(M))),
        plus^#(activate(N), activate(M)),
        activate^#(N),
        activate^#(M))
  , U31^#(tt()) -> c_11(0^#())
  , U41^#(tt(), M, N) ->
    c_13(plus^#(x(activate(N), activate(M)), activate(N)),
         x^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , and^#(tt(), X) -> c_15(activate^#(X)) }
Weak Trs:
  { U11(tt(), N) -> activate(N)
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__isNat(X)) -> isNat(X)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , U21(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , U31(tt()) -> 0()
  , 0() -> n__0()
  , U41(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2)
  , and(tt(), X) -> activate(X)
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , isNat(n__s(V1)) -> isNat(activate(V1))
  , isNat(n__x(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We estimate the number of application of {2,8,9,10,11,15,16} by
applications of Pre({2,8,9,10,11,15,16}) =
{1,3,4,5,6,7,12,13,14,17,18,19,20}. Here rules are labeled as
follows:

  DPs:
    { 1: U11^#(tt(), N) -> c_1(activate^#(N))
    , 2: activate^#(X) -> c_2()
    , 3: activate^#(n__0()) -> c_3(0^#())
    , 4: activate^#(n__plus(X1, X2)) -> c_4(plus^#(X1, X2))
    , 5: activate^#(n__isNat(X)) -> c_5(isNat^#(X))
    , 6: activate^#(n__s(X)) -> c_6(s^#(X))
    , 7: activate^#(n__x(X1, X2)) -> c_7(x^#(X1, X2))
    , 8: 0^#() -> c_12()
    , 9: plus^#(X1, X2) -> c_10()
    , 10: isNat^#(X) -> c_16()
    , 11: isNat^#(n__0()) -> c_17()
    , 12: isNat^#(n__plus(V1, V2)) ->
          c_18(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2))
    , 13: isNat^#(n__s(V1)) ->
          c_19(isNat^#(activate(V1)), activate^#(V1))
    , 14: isNat^#(n__x(V1, V2)) ->
          c_20(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2))
    , 15: s^#(X) -> c_9()
    , 16: x^#(X1, X2) -> c_14()
    , 17: U21^#(tt(), M, N) ->
          c_8(s^#(plus(activate(N), activate(M))),
              plus^#(activate(N), activate(M)),
              activate^#(N),
              activate^#(M))
    , 18: U31^#(tt()) -> c_11(0^#())
    , 19: U41^#(tt(), M, N) ->
          c_13(plus^#(x(activate(N), activate(M)), activate(N)),
               x^#(activate(N), activate(M)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
    , 20: and^#(tt(), X) -> c_15(activate^#(X)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { U11^#(tt(), N) -> c_1(activate^#(N))
  , activate^#(n__0()) -> c_3(0^#())
  , activate^#(n__plus(X1, X2)) -> c_4(plus^#(X1, X2))
  , activate^#(n__isNat(X)) -> c_5(isNat^#(X))
  , activate^#(n__s(X)) -> c_6(s^#(X))
  , activate^#(n__x(X1, X2)) -> c_7(x^#(X1, X2))
  , isNat^#(n__plus(V1, V2)) ->
    c_18(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
         isNat^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
  , isNat^#(n__s(V1)) -> c_19(isNat^#(activate(V1)), activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_20(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
         isNat^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
  , U21^#(tt(), M, N) ->
    c_8(s^#(plus(activate(N), activate(M))),
        plus^#(activate(N), activate(M)),
        activate^#(N),
        activate^#(M))
  , U31^#(tt()) -> c_11(0^#())
  , U41^#(tt(), M, N) ->
    c_13(plus^#(x(activate(N), activate(M)), activate(N)),
         x^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , and^#(tt(), X) -> c_15(activate^#(X)) }
Weak DPs:
  { activate^#(X) -> c_2()
  , 0^#() -> c_12()
  , plus^#(X1, X2) -> c_10()
  , isNat^#(X) -> c_16()
  , isNat^#(n__0()) -> c_17()
  , s^#(X) -> c_9()
  , x^#(X1, X2) -> c_14() }
Weak Trs:
  { U11(tt(), N) -> activate(N)
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__isNat(X)) -> isNat(X)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , U21(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , U31(tt()) -> 0()
  , 0() -> n__0()
  , U41(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2)
  , and(tt(), X) -> activate(X)
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , isNat(n__s(V1)) -> isNat(activate(V1))
  , isNat(n__x(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We estimate the number of application of {2,3,5,6,11} by
applications of Pre({2,3,5,6,11}) = {1,7,8,9,10,12,13}. Here rules
are labeled as follows:

  DPs:
    { 1: U11^#(tt(), N) -> c_1(activate^#(N))
    , 2: activate^#(n__0()) -> c_3(0^#())
    , 3: activate^#(n__plus(X1, X2)) -> c_4(plus^#(X1, X2))
    , 4: activate^#(n__isNat(X)) -> c_5(isNat^#(X))
    , 5: activate^#(n__s(X)) -> c_6(s^#(X))
    , 6: activate^#(n__x(X1, X2)) -> c_7(x^#(X1, X2))
    , 7: isNat^#(n__plus(V1, V2)) ->
         c_18(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
              isNat^#(activate(V1)),
              activate^#(V1),
              activate^#(V2))
    , 8: isNat^#(n__s(V1)) ->
         c_19(isNat^#(activate(V1)), activate^#(V1))
    , 9: isNat^#(n__x(V1, V2)) ->
         c_20(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
              isNat^#(activate(V1)),
              activate^#(V1),
              activate^#(V2))
    , 10: U21^#(tt(), M, N) ->
          c_8(s^#(plus(activate(N), activate(M))),
              plus^#(activate(N), activate(M)),
              activate^#(N),
              activate^#(M))
    , 11: U31^#(tt()) -> c_11(0^#())
    , 12: U41^#(tt(), M, N) ->
          c_13(plus^#(x(activate(N), activate(M)), activate(N)),
               x^#(activate(N), activate(M)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
    , 13: and^#(tt(), X) -> c_15(activate^#(X))
    , 14: activate^#(X) -> c_2()
    , 15: 0^#() -> c_12()
    , 16: plus^#(X1, X2) -> c_10()
    , 17: isNat^#(X) -> c_16()
    , 18: isNat^#(n__0()) -> c_17()
    , 19: s^#(X) -> c_9()
    , 20: x^#(X1, X2) -> c_14() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { U11^#(tt(), N) -> c_1(activate^#(N))
  , activate^#(n__isNat(X)) -> c_5(isNat^#(X))
  , isNat^#(n__plus(V1, V2)) ->
    c_18(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
         isNat^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
  , isNat^#(n__s(V1)) -> c_19(isNat^#(activate(V1)), activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_20(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
         isNat^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
  , U21^#(tt(), M, N) ->
    c_8(s^#(plus(activate(N), activate(M))),
        plus^#(activate(N), activate(M)),
        activate^#(N),
        activate^#(M))
  , U41^#(tt(), M, N) ->
    c_13(plus^#(x(activate(N), activate(M)), activate(N)),
         x^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , and^#(tt(), X) -> c_15(activate^#(X)) }
Weak DPs:
  { activate^#(X) -> c_2()
  , activate^#(n__0()) -> c_3(0^#())
  , activate^#(n__plus(X1, X2)) -> c_4(plus^#(X1, X2))
  , activate^#(n__s(X)) -> c_6(s^#(X))
  , activate^#(n__x(X1, X2)) -> c_7(x^#(X1, X2))
  , 0^#() -> c_12()
  , plus^#(X1, X2) -> c_10()
  , isNat^#(X) -> c_16()
  , isNat^#(n__0()) -> c_17()
  , s^#(X) -> c_9()
  , x^#(X1, X2) -> c_14()
  , U31^#(tt()) -> c_11(0^#()) }
Weak Trs:
  { U11(tt(), N) -> activate(N)
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__isNat(X)) -> isNat(X)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , U21(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , U31(tt()) -> 0()
  , 0() -> n__0()
  , U41(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2)
  , and(tt(), X) -> activate(X)
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , isNat(n__s(V1)) -> isNat(activate(V1))
  , isNat(n__x(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ activate^#(X) -> c_2()
, activate^#(n__0()) -> c_3(0^#())
, activate^#(n__plus(X1, X2)) -> c_4(plus^#(X1, X2))
, activate^#(n__s(X)) -> c_6(s^#(X))
, activate^#(n__x(X1, X2)) -> c_7(x^#(X1, X2))
, 0^#() -> c_12()
, plus^#(X1, X2) -> c_10()
, isNat^#(X) -> c_16()
, isNat^#(n__0()) -> c_17()
, s^#(X) -> c_9()
, x^#(X1, X2) -> c_14()
, U31^#(tt()) -> c_11(0^#()) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { U11^#(tt(), N) -> c_1(activate^#(N))
  , activate^#(n__isNat(X)) -> c_5(isNat^#(X))
  , isNat^#(n__plus(V1, V2)) ->
    c_18(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
         isNat^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
  , isNat^#(n__s(V1)) -> c_19(isNat^#(activate(V1)), activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_20(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
         isNat^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
  , U21^#(tt(), M, N) ->
    c_8(s^#(plus(activate(N), activate(M))),
        plus^#(activate(N), activate(M)),
        activate^#(N),
        activate^#(M))
  , U41^#(tt(), M, N) ->
    c_13(plus^#(x(activate(N), activate(M)), activate(N)),
         x^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , and^#(tt(), X) -> c_15(activate^#(X)) }
Weak Trs:
  { U11(tt(), N) -> activate(N)
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__isNat(X)) -> isNat(X)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , U21(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , U31(tt()) -> 0()
  , 0() -> n__0()
  , U41(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2)
  , and(tt(), X) -> activate(X)
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , isNat(n__s(V1)) -> isNat(activate(V1))
  , isNat(n__x(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

Due to missing edges in the dependency-graph, the right-hand sides
of following rules could be simplified:

  { U21^#(tt(), M, N) ->
    c_8(s^#(plus(activate(N), activate(M))),
        plus^#(activate(N), activate(M)),
        activate^#(N),
        activate^#(M))
  , U41^#(tt(), M, N) ->
    c_13(plus^#(x(activate(N), activate(M)), activate(N)),
         x^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M),
         activate^#(N)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { U11^#(tt(), N) -> c_1(activate^#(N))
  , activate^#(n__isNat(X)) -> c_2(isNat^#(X))
  , isNat^#(n__plus(V1, V2)) ->
    c_3(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) -> c_4(isNat^#(activate(V1)), activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_5(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , U21^#(tt(), M, N) -> c_6(activate^#(N), activate^#(M))
  , U41^#(tt(), M, N) ->
    c_7(activate^#(N), activate^#(M), activate^#(N))
  , and^#(tt(), X) -> c_8(activate^#(X)) }
Weak Trs:
  { U11(tt(), N) -> activate(N)
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__isNat(X)) -> isNat(X)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , U21(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , U31(tt()) -> 0()
  , 0() -> n__0()
  , U41(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2)
  , and(tt(), X) -> activate(X)
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , isNat(n__s(V1)) -> isNat(activate(V1))
  , isNat(n__x(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We replace rewrite rules by usable rules:

  Weak Usable Rules:
    { activate(X) -> X
    , activate(n__0()) -> 0()
    , activate(n__plus(X1, X2)) -> plus(X1, X2)
    , activate(n__isNat(X)) -> isNat(X)
    , activate(n__s(X)) -> s(X)
    , activate(n__x(X1, X2)) -> x(X1, X2)
    , s(X) -> n__s(X)
    , plus(X1, X2) -> n__plus(X1, X2)
    , 0() -> n__0()
    , x(X1, X2) -> n__x(X1, X2)
    , and(tt(), X) -> activate(X)
    , isNat(X) -> n__isNat(X)
    , isNat(n__0()) -> tt()
    , isNat(n__plus(V1, V2)) ->
      and(isNat(activate(V1)), n__isNat(activate(V2)))
    , isNat(n__s(V1)) -> isNat(activate(V1))
    , isNat(n__x(V1, V2)) ->
      and(isNat(activate(V1)), n__isNat(activate(V2))) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { U11^#(tt(), N) -> c_1(activate^#(N))
  , activate^#(n__isNat(X)) -> c_2(isNat^#(X))
  , isNat^#(n__plus(V1, V2)) ->
    c_3(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) -> c_4(isNat^#(activate(V1)), activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_5(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , U21^#(tt(), M, N) -> c_6(activate^#(N), activate^#(M))
  , U41^#(tt(), M, N) ->
    c_7(activate^#(N), activate^#(M), activate^#(N))
  , and^#(tt(), X) -> c_8(activate^#(X)) }
Weak Trs:
  { activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__isNat(X)) -> isNat(X)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , 0() -> n__0()
  , x(X1, X2) -> n__x(X1, X2)
  , and(tt(), X) -> activate(X)
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , isNat(n__s(V1)) -> isNat(activate(V1))
  , isNat(n__x(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

Consider the dependency graph

  1: U11^#(tt(), N) -> c_1(activate^#(N))
     -->_1 activate^#(n__isNat(X)) -> c_2(isNat^#(X)) :2
  
  2: activate^#(n__isNat(X)) -> c_2(isNat^#(X))
     -->_1 isNat^#(n__x(V1, V2)) ->
           c_5(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :5
     -->_1 isNat^#(n__s(V1)) ->
           c_4(isNat^#(activate(V1)), activate^#(V1)) :4
     -->_1 isNat^#(n__plus(V1, V2)) ->
           c_3(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :3
  
  3: isNat^#(n__plus(V1, V2)) ->
     c_3(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
         isNat^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
     -->_1 and^#(tt(), X) -> c_8(activate^#(X)) :8
     -->_2 isNat^#(n__x(V1, V2)) ->
           c_5(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :5
     -->_2 isNat^#(n__s(V1)) ->
           c_4(isNat^#(activate(V1)), activate^#(V1)) :4
     -->_2 isNat^#(n__plus(V1, V2)) ->
           c_3(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :3
     -->_4 activate^#(n__isNat(X)) -> c_2(isNat^#(X)) :2
     -->_3 activate^#(n__isNat(X)) -> c_2(isNat^#(X)) :2
  
  4: isNat^#(n__s(V1)) -> c_4(isNat^#(activate(V1)), activate^#(V1))
     -->_1 isNat^#(n__x(V1, V2)) ->
           c_5(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :5
     -->_1 isNat^#(n__s(V1)) ->
           c_4(isNat^#(activate(V1)), activate^#(V1)) :4
     -->_1 isNat^#(n__plus(V1, V2)) ->
           c_3(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :3
     -->_2 activate^#(n__isNat(X)) -> c_2(isNat^#(X)) :2
  
  5: isNat^#(n__x(V1, V2)) ->
     c_5(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
         isNat^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
     -->_1 and^#(tt(), X) -> c_8(activate^#(X)) :8
     -->_2 isNat^#(n__x(V1, V2)) ->
           c_5(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :5
     -->_2 isNat^#(n__s(V1)) ->
           c_4(isNat^#(activate(V1)), activate^#(V1)) :4
     -->_2 isNat^#(n__plus(V1, V2)) ->
           c_3(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :3
     -->_4 activate^#(n__isNat(X)) -> c_2(isNat^#(X)) :2
     -->_3 activate^#(n__isNat(X)) -> c_2(isNat^#(X)) :2
  
  6: U21^#(tt(), M, N) -> c_6(activate^#(N), activate^#(M))
     -->_2 activate^#(n__isNat(X)) -> c_2(isNat^#(X)) :2
     -->_1 activate^#(n__isNat(X)) -> c_2(isNat^#(X)) :2
  
  7: U41^#(tt(), M, N) ->
     c_7(activate^#(N), activate^#(M), activate^#(N))
     -->_3 activate^#(n__isNat(X)) -> c_2(isNat^#(X)) :2
     -->_2 activate^#(n__isNat(X)) -> c_2(isNat^#(X)) :2
     -->_1 activate^#(n__isNat(X)) -> c_2(isNat^#(X)) :2
  
  8: and^#(tt(), X) -> c_8(activate^#(X))
     -->_1 activate^#(n__isNat(X)) -> c_2(isNat^#(X)) :2
  

Following roots of the dependency graph are removed, as the
considered set of starting terms is closed under reduction with
respect to these rules (modulo compound contexts).

  { U11^#(tt(), N) -> c_1(activate^#(N))
  , U21^#(tt(), M, N) -> c_6(activate^#(N), activate^#(M))
  , U41^#(tt(), M, N) ->
    c_7(activate^#(N), activate^#(M), activate^#(N)) }


We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { activate^#(n__isNat(X)) -> c_2(isNat^#(X))
  , isNat^#(n__plus(V1, V2)) ->
    c_3(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) -> c_4(isNat^#(activate(V1)), activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_5(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , and^#(tt(), X) -> c_8(activate^#(X)) }
Weak Trs:
  { activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__isNat(X)) -> isNat(X)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , 0() -> n__0()
  , x(X1, X2) -> n__x(X1, X2)
  , and(tt(), X) -> activate(X)
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , isNat(n__s(V1)) -> isNat(activate(V1))
  , isNat(n__x(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 2' to
orient following rules strictly.

DPs:
  { 2: isNat^#(n__plus(V1, V2)) ->
       c_3(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
  , 4: isNat^#(n__x(V1, V2)) ->
       c_5(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2)) }
Trs:
  { activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__isNat(X)) -> isNat(X)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , s(X) -> n__s(X)
  , isNat(X) -> n__isNat(X)
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , isNat(n__s(V1)) -> isNat(activate(V1))
  , isNat(n__x(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2))) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_2) = {1}, Uargs(c_3) = {1, 2, 3, 4}, Uargs(c_4) = {1, 2},
    Uargs(c_5) = {1, 2, 3, 4}, Uargs(c_8) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA) and not(IDA(1)).
  
                     [tt] = [4]                                          
                            [3]                                          
                                                                         
           [activate](x1) = [1 0] x1 + [4]                               
                            [0 1]      [1]                               
                                                                         
                  [s](x1) = [0 0] x1 + [3]                               
                            [1 1]      [2]                               
                                                                         
           [plus](x1, x2) = [0 0] x1 + [0 0] x2 + [4]                    
                            [1 1]      [1 1]      [7]                    
                                                                         
                      [0] = [1]                                          
                            [0]                                          
                                                                         
              [x](x1, x2) = [0 0] x1 + [0 0] x2 + [0]                    
                            [1 1]      [1 1]      [4]                    
                                                                         
            [and](x1, x2) = [1 0] x1 + [1 0] x2 + [0]                    
                            [0 0]      [0 1]      [1]                    
                                                                         
              [isNat](x1) = [0 1] x1 + [4]                               
                            [0 0]      [3]                               
                                                                         
                   [n__0] = [1]                                          
                            [0]                                          
                                                                         
        [n__plus](x1, x2) = [0 0] x1 + [0 0] x2 + [4]                    
                            [1 1]      [1 1]      [7]                    
                                                                         
           [n__isNat](x1) = [0 1] x1 + [1]                               
                            [0 0]      [2]                               
                                                                         
               [n__s](x1) = [0 0] x1 + [1]                               
                            [1 1]      [2]                               
                                                                         
           [n__x](x1, x2) = [0 0] x1 + [0 0] x2 + [0]                    
                            [1 1]      [1 1]      [4]                    
                                                                         
         [activate^#](x1) = [2 0] x1 + [0]                               
                            [0 0]      [2]                               
                                                                         
            [isNat^#](x1) = [0 2] x1 + [1]                               
                            [0 0]      [0]                               
                                                                         
          [and^#](x1, x2) = [0 0] x1 + [2 0] x2 + [0]                    
                            [0 1]      [0 0]      [0]                    
                                                                         
                [c_2](x1) = [1 1] x1 + [1]                               
                            [0 0]      [0]                               
                                                                         
    [c_3](x1, x2, x3, x4) = [1 1] x1 + [1 2] x2 + [1 0] x3 + [1          
                                                              2] x4 + [0]
                            [0 0]      [0 0]      [0 0]      [0          
                                                              0]      [0]
                                                                         
            [c_4](x1, x2) = [1 0] x1 + [1 1] x2 + [0]                    
                            [0 0]      [0 0]      [0]                    
                                                                         
    [c_5](x1, x2, x3, x4) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1          
                                                              0] x4 + [0]
                            [0 0]      [0 0]      [0 0]      [0          
                                                              0]      [0]
                                                                         
                [c_8](x1) = [1 0] x1 + [0]                               
                            [0 0]      [0]                               
  
  The order satisfies the following ordering constraints:
  
                  [activate(X)] =  [1 0] X + [4]                                           
                                   [0 1]     [1]                                           
                                >  [1 0] X + [0]                                           
                                   [0 1]     [0]                                           
                                =  [X]                                                     
                                                                                           
             [activate(n__0())] =  [5]                                                     
                                   [1]                                                     
                                >  [1]                                                     
                                   [0]                                                     
                                =  [0()]                                                   
                                                                                           
    [activate(n__plus(X1, X2))] =  [0 0] X1 + [0 0] X2 + [8]                               
                                   [1 1]      [1 1]      [8]                               
                                >  [0 0] X1 + [0 0] X2 + [4]                               
                                   [1 1]      [1 1]      [7]                               
                                =  [plus(X1, X2)]                                          
                                                                                           
        [activate(n__isNat(X))] =  [0 1] X + [5]                                           
                                   [0 0]     [3]                                           
                                >  [0 1] X + [4]                                           
                                   [0 0]     [3]                                           
                                =  [isNat(X)]                                              
                                                                                           
            [activate(n__s(X))] =  [0 0] X + [5]                                           
                                   [1 1]     [3]                                           
                                >  [0 0] X + [3]                                           
                                   [1 1]     [2]                                           
                                =  [s(X)]                                                  
                                                                                           
       [activate(n__x(X1, X2))] =  [0 0] X1 + [0 0] X2 + [4]                               
                                   [1 1]      [1 1]      [5]                               
                                >  [0 0] X1 + [0 0] X2 + [0]                               
                                   [1 1]      [1 1]      [4]                               
                                =  [x(X1, X2)]                                             
                                                                                           
                         [s(X)] =  [0 0] X + [3]                                           
                                   [1 1]     [2]                                           
                                >  [0 0] X + [1]                                           
                                   [1 1]     [2]                                           
                                =  [n__s(X)]                                               
                                                                                           
                 [plus(X1, X2)] =  [0 0] X1 + [0 0] X2 + [4]                               
                                   [1 1]      [1 1]      [7]                               
                                >= [0 0] X1 + [0 0] X2 + [4]                               
                                   [1 1]      [1 1]      [7]                               
                                =  [n__plus(X1, X2)]                                       
                                                                                           
                          [0()] =  [1]                                                     
                                   [0]                                                     
                                >= [1]                                                     
                                   [0]                                                     
                                =  [n__0()]                                                
                                                                                           
                    [x(X1, X2)] =  [0 0] X1 + [0 0] X2 + [0]                               
                                   [1 1]      [1 1]      [4]                               
                                >= [0 0] X1 + [0 0] X2 + [0]                               
                                   [1 1]      [1 1]      [4]                               
                                =  [n__x(X1, X2)]                                          
                                                                                           
                 [and(tt(), X)] =  [1 0] X + [4]                                           
                                   [0 1]     [1]                                           
                                >= [1 0] X + [4]                                           
                                   [0 1]     [1]                                           
                                =  [activate(X)]                                           
                                                                                           
                     [isNat(X)] =  [0 1] X + [4]                                           
                                   [0 0]     [3]                                           
                                >  [0 1] X + [1]                                           
                                   [0 0]     [2]                                           
                                =  [n__isNat(X)]                                           
                                                                                           
                [isNat(n__0())] =  [4]                                                     
                                   [3]                                                     
                                >= [4]                                                     
                                   [3]                                                     
                                =  [tt()]                                                  
                                                                                           
       [isNat(n__plus(V1, V2))] =  [1 1] V1 + [1 1] V2 + [11]                              
                                   [0 0]      [0 0]      [3]                               
                                >  [0 1] V1 + [0 1] V2 + [7]                               
                                   [0 0]      [0 0]      [3]                               
                                =  [and(isNat(activate(V1)), n__isNat(activate(V2)))]      
                                                                                           
              [isNat(n__s(V1))] =  [1 1] V1 + [6]                                          
                                   [0 0]      [3]                                          
                                >  [0 1] V1 + [5]                                          
                                   [0 0]      [3]                                          
                                =  [isNat(activate(V1))]                                   
                                                                                           
          [isNat(n__x(V1, V2))] =  [1 1] V1 + [1 1] V2 + [8]                               
                                   [0 0]      [0 0]      [3]                               
                                >  [0 1] V1 + [0 1] V2 + [7]                               
                                   [0 0]      [0 0]      [3]                               
                                =  [and(isNat(activate(V1)), n__isNat(activate(V2)))]      
                                                                                           
      [activate^#(n__isNat(X))] =  [0 2] X + [2]                                           
                                   [0 0]     [2]                                           
                                >= [0 2] X + [2]                                           
                                   [0 0]     [0]                                           
                                =  [c_2(isNat^#(X))]                                       
                                                                                           
     [isNat^#(n__plus(V1, V2))] =  [2 2] V1 + [2 2] V2 + [15]                              
                                   [0 0]      [0 0]      [0]                               
                                >  [2 2] V1 + [2 2] V2 + [14]                              
                                   [0 0]      [0 0]      [0]                               
                                =  [c_3(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
                                        isNat^#(activate(V1)),                             
                                        activate^#(V1),                                    
                                        activate^#(V2))]                                   
                                                                                           
            [isNat^#(n__s(V1))] =  [2 2] V1 + [5]                                          
                                   [0 0]      [0]                                          
                                >= [2 2] V1 + [5]                                          
                                   [0 0]      [0]                                          
                                =  [c_4(isNat^#(activate(V1)), activate^#(V1))]            
                                                                                           
        [isNat^#(n__x(V1, V2))] =  [2 2] V1 + [2 2] V2 + [9]                               
                                   [0 0]      [0 0]      [0]                               
                                >  [2 2] V1 + [2 2] V2 + [7]                               
                                   [0 0]      [0 0]      [0]                               
                                =  [c_5(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
                                        isNat^#(activate(V1)),                             
                                        activate^#(V1),                                    
                                        activate^#(V2))]                                   
                                                                                           
               [and^#(tt(), X)] =  [2 0] X + [0]                                           
                                   [0 0]     [3]                                           
                                >= [2 0] X + [0]                                           
                                   [0 0]     [0]                                           
                                =  [c_8(activate^#(X))]                                    
                                                                                           

We return to the main proof. Consider the set of all dependency
pairs

:
  { 1: activate^#(n__isNat(X)) -> c_2(isNat^#(X))
  , 2: isNat^#(n__plus(V1, V2)) ->
       c_3(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
  , 3: isNat^#(n__s(V1)) ->
       c_4(isNat^#(activate(V1)), activate^#(V1))
  , 4: isNat^#(n__x(V1, V2)) ->
       c_5(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
  , 5: and^#(tt(), X) -> c_8(activate^#(X)) }

Processor 'matrix interpretation of dimension 2' induces the
complexity certificate YES(?,O(n^1)) on application of dependency
pairs {2,4}. These cover all (indirect) predecessors of dependency
pairs {2,4,5}, their number of application is equally bounded. The
dependency pairs are shifted into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { activate^#(n__isNat(X)) -> c_2(isNat^#(X))
  , isNat^#(n__s(V1)) -> c_4(isNat^#(activate(V1)), activate^#(V1)) }
Weak DPs:
  { isNat^#(n__plus(V1, V2)) ->
    c_3(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__x(V1, V2)) ->
    c_5(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , and^#(tt(), X) -> c_8(activate^#(X)) }
Weak Trs:
  { activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__isNat(X)) -> isNat(X)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , 0() -> n__0()
  , x(X1, X2) -> n__x(X1, X2)
  , and(tt(), X) -> activate(X)
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , isNat(n__s(V1)) -> isNat(activate(V1))
  , isNat(n__x(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 2' to
orient following rules strictly.

DPs:
  { 1: activate^#(n__isNat(X)) -> c_2(isNat^#(X))
  , 3: isNat^#(n__plus(V1, V2)) ->
       c_3(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
  , 4: isNat^#(n__x(V1, V2)) ->
       c_5(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2)) }
Trs:
  { activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__isNat(X)) -> isNat(X)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , 0() -> n__0()
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2))) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_2) = {1}, Uargs(c_3) = {1, 2, 3, 4}, Uargs(c_4) = {1, 2},
    Uargs(c_5) = {1, 2, 3, 4}, Uargs(c_8) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA) and not(IDA(1)).
  
                     [tt] = [0]                                          
                            [0]                                          
                                                                         
           [activate](x1) = [1 0] x1 + [4]                               
                            [0 1]      [0]                               
                                                                         
                  [s](x1) = [0 0] x1 + [1]                               
                            [1 1]      [0]                               
                                                                         
           [plus](x1, x2) = [0 0] x1 + [0 0] x2 + [0]                    
                            [1 1]      [1 1]      [7]                    
                                                                         
                      [0] = [1]                                          
                            [2]                                          
                                                                         
              [x](x1, x2) = [0 0] x1 + [0 0] x2 + [4]                    
                            [1 1]      [1 1]      [5]                    
                                                                         
            [and](x1, x2) = [1 2] x2 + [4]                               
                            [0 1]      [0]                               
                                                                         
              [isNat](x1) = [0 1] x1 + [7]                               
                            [0 0]      [2]                               
                                                                         
                   [n__0] = [0]                                          
                            [2]                                          
                                                                         
        [n__plus](x1, x2) = [0 0] x1 + [0 0] x2 + [0]                    
                            [1 1]      [1 1]      [7]                    
                                                                         
           [n__isNat](x1) = [0 1] x1 + [4]                               
                            [0 0]      [2]                               
                                                                         
               [n__s](x1) = [0 0] x1 + [1]                               
                            [1 1]      [0]                               
                                                                         
           [n__x](x1, x2) = [0 0] x1 + [0 0] x2 + [4]                    
                            [1 1]      [1 1]      [5]                    
                                                                         
         [activate^#](x1) = [2 0] x1 + [0]                               
                            [0 0]      [0]                               
                                                                         
            [isNat^#](x1) = [0 2] x1 + [1]                               
                            [0 1]      [2]                               
                                                                         
          [and^#](x1, x2) = [0 0] x1 + [2 0] x2 + [0]                    
                            [0 1]      [0 0]      [1]                    
                                                                         
                [c_2](x1) = [1 0] x1 + [6]                               
                            [0 0]      [0]                               
                                                                         
    [c_3](x1, x2, x3, x4) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1          
                                                              0] x4 + [1]
                            [0 0]      [0 0]      [0 0]      [0          
                                                              0]      [0]
                                                                         
            [c_4](x1, x2) = [1 0] x1 + [1 1] x2 + [0]                    
                            [0 0]      [0 0]      [0]                    
                                                                         
    [c_5](x1, x2, x3, x4) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1          
                                                              0] x4 + [1]
                            [0 0]      [0 0]      [0 0]      [0          
                                                              0]      [0]
                                                                         
                [c_8](x1) = [1 0] x1 + [0]                               
                            [0 0]      [0]                               
  
  The order satisfies the following ordering constraints:
  
                  [activate(X)] =  [1 0] X + [4]                                           
                                   [0 1]     [0]                                           
                                >  [1 0] X + [0]                                           
                                   [0 1]     [0]                                           
                                =  [X]                                                     
                                                                                           
             [activate(n__0())] =  [4]                                                     
                                   [2]                                                     
                                >  [1]                                                     
                                   [2]                                                     
                                =  [0()]                                                   
                                                                                           
    [activate(n__plus(X1, X2))] =  [0 0] X1 + [0 0] X2 + [4]                               
                                   [1 1]      [1 1]      [7]                               
                                >  [0 0] X1 + [0 0] X2 + [0]                               
                                   [1 1]      [1 1]      [7]                               
                                =  [plus(X1, X2)]                                          
                                                                                           
        [activate(n__isNat(X))] =  [0 1] X + [8]                                           
                                   [0 0]     [2]                                           
                                >  [0 1] X + [7]                                           
                                   [0 0]     [2]                                           
                                =  [isNat(X)]                                              
                                                                                           
            [activate(n__s(X))] =  [0 0] X + [5]                                           
                                   [1 1]     [0]                                           
                                >  [0 0] X + [1]                                           
                                   [1 1]     [0]                                           
                                =  [s(X)]                                                  
                                                                                           
       [activate(n__x(X1, X2))] =  [0 0] X1 + [0 0] X2 + [8]                               
                                   [1 1]      [1 1]      [5]                               
                                >  [0 0] X1 + [0 0] X2 + [4]                               
                                   [1 1]      [1 1]      [5]                               
                                =  [x(X1, X2)]                                             
                                                                                           
                         [s(X)] =  [0 0] X + [1]                                           
                                   [1 1]     [0]                                           
                                >= [0 0] X + [1]                                           
                                   [1 1]     [0]                                           
                                =  [n__s(X)]                                               
                                                                                           
                 [plus(X1, X2)] =  [0 0] X1 + [0 0] X2 + [0]                               
                                   [1 1]      [1 1]      [7]                               
                                >= [0 0] X1 + [0 0] X2 + [0]                               
                                   [1 1]      [1 1]      [7]                               
                                =  [n__plus(X1, X2)]                                       
                                                                                           
                          [0()] =  [1]                                                     
                                   [2]                                                     
                                >  [0]                                                     
                                   [2]                                                     
                                =  [n__0()]                                                
                                                                                           
                    [x(X1, X2)] =  [0 0] X1 + [0 0] X2 + [4]                               
                                   [1 1]      [1 1]      [5]                               
                                >= [0 0] X1 + [0 0] X2 + [4]                               
                                   [1 1]      [1 1]      [5]                               
                                =  [n__x(X1, X2)]                                          
                                                                                           
                 [and(tt(), X)] =  [1 2] X + [4]                                           
                                   [0 1]     [0]                                           
                                >= [1 0] X + [4]                                           
                                   [0 1]     [0]                                           
                                =  [activate(X)]                                           
                                                                                           
                     [isNat(X)] =  [0 1] X + [7]                                           
                                   [0 0]     [2]                                           
                                >  [0 1] X + [4]                                           
                                   [0 0]     [2]                                           
                                =  [n__isNat(X)]                                           
                                                                                           
                [isNat(n__0())] =  [9]                                                     
                                   [2]                                                     
                                >  [0]                                                     
                                   [0]                                                     
                                =  [tt()]                                                  
                                                                                           
       [isNat(n__plus(V1, V2))] =  [1 1] V1 + [1 1] V2 + [14]                              
                                   [0 0]      [0 0]      [2]                               
                                >  [0 1] V2 + [12]                                         
                                   [0 0]      [2]                                          
                                =  [and(isNat(activate(V1)), n__isNat(activate(V2)))]      
                                                                                           
              [isNat(n__s(V1))] =  [1 1] V1 + [7]                                          
                                   [0 0]      [2]                                          
                                >= [0 1] V1 + [7]                                          
                                   [0 0]      [2]                                          
                                =  [isNat(activate(V1))]                                   
                                                                                           
          [isNat(n__x(V1, V2))] =  [1 1] V1 + [1 1] V2 + [12]                              
                                   [0 0]      [0 0]      [2]                               
                                >= [0 1] V2 + [12]                                         
                                   [0 0]      [2]                                          
                                =  [and(isNat(activate(V1)), n__isNat(activate(V2)))]      
                                                                                           
      [activate^#(n__isNat(X))] =  [0 2] X + [8]                                           
                                   [0 0]     [0]                                           
                                >  [0 2] X + [7]                                           
                                   [0 0]     [0]                                           
                                =  [c_2(isNat^#(X))]                                       
                                                                                           
     [isNat^#(n__plus(V1, V2))] =  [2 2] V1 + [2 2] V2 + [15]                              
                                   [1 1]      [1 1]      [9]                               
                                >  [2 2] V1 + [2 2] V2 + [10]                              
                                   [0 0]      [0 0]      [0]                               
                                =  [c_3(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
                                        isNat^#(activate(V1)),                             
                                        activate^#(V1),                                    
                                        activate^#(V2))]                                   
                                                                                           
            [isNat^#(n__s(V1))] =  [2 2] V1 + [1]                                          
                                   [1 1]      [2]                                          
                                >= [2 2] V1 + [1]                                          
                                   [0 0]      [0]                                          
                                =  [c_4(isNat^#(activate(V1)), activate^#(V1))]            
                                                                                           
        [isNat^#(n__x(V1, V2))] =  [2 2] V1 + [2 2] V2 + [11]                              
                                   [1 1]      [1 1]      [7]                               
                                >  [2 2] V1 + [2 2] V2 + [10]                              
                                   [0 0]      [0 0]      [0]                               
                                =  [c_5(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
                                        isNat^#(activate(V1)),                             
                                        activate^#(V1),                                    
                                        activate^#(V2))]                                   
                                                                                           
               [and^#(tt(), X)] =  [2 0] X + [0]                                           
                                   [0 0]     [1]                                           
                                >= [2 0] X + [0]                                           
                                   [0 0]     [0]                                           
                                =  [c_8(activate^#(X))]                                    
                                                                                           

We return to the main proof. Consider the set of all dependency
pairs

:
  { 1: activate^#(n__isNat(X)) -> c_2(isNat^#(X))
  , 2: isNat^#(n__s(V1)) ->
       c_4(isNat^#(activate(V1)), activate^#(V1))
  , 3: isNat^#(n__plus(V1, V2)) ->
       c_3(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
  , 4: isNat^#(n__x(V1, V2)) ->
       c_5(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
  , 5: and^#(tt(), X) -> c_8(activate^#(X)) }

Processor 'matrix interpretation of dimension 2' induces the
complexity certificate YES(?,O(n^1)) on application of dependency
pairs {1,3,4}. These cover all (indirect) predecessors of
dependency pairs {1,3,4,5}, their number of application is equally
bounded. The dependency pairs are shifted into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { isNat^#(n__s(V1)) -> c_4(isNat^#(activate(V1)), activate^#(V1)) }
Weak DPs:
  { activate^#(n__isNat(X)) -> c_2(isNat^#(X))
  , isNat^#(n__plus(V1, V2)) ->
    c_3(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__x(V1, V2)) ->
    c_5(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , and^#(tt(), X) -> c_8(activate^#(X)) }
Weak Trs:
  { activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__isNat(X)) -> isNat(X)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , 0() -> n__0()
  , x(X1, X2) -> n__x(X1, X2)
  , and(tt(), X) -> activate(X)
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , isNat(n__s(V1)) -> isNat(activate(V1))
  , isNat(n__x(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 2' to
orient following rules strictly.

DPs:
  { 1: isNat^#(n__s(V1)) ->
       c_4(isNat^#(activate(V1)), activate^#(V1))
  , 3: isNat^#(n__plus(V1, V2)) ->
       c_3(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2)) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_2) = {1}, Uargs(c_3) = {1, 2, 3, 4}, Uargs(c_4) = {1, 2},
    Uargs(c_5) = {1, 2, 3, 4}, Uargs(c_8) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA) and not(IDA(1)).
  
                     [tt] = [0]                                          
                            [0]                                          
                                                                         
           [activate](x1) = [1 0] x1 + [0]                               
                            [0 3]      [0]                               
                                                                         
                  [s](x1) = [1 1] x1 + [1]                               
                            [0 0]      [2]                               
                                                                         
           [plus](x1, x2) = [1 1] x1 + [1 1] x2 + [4]                    
                            [0 0]      [0 0]      [2]                    
                                                                         
                      [0] = [0]                                          
                            [0]                                          
                                                                         
              [x](x1, x2) = [1 1] x1 + [1 1] x2 + [0]                    
                            [0 0]      [0 0]      [1]                    
                                                                         
            [and](x1, x2) = [5 0] x2 + [0]                               
                            [0 3]      [0]                               
                                                                         
              [isNat](x1) = [0 0] x1 + [0]                               
                            [3 0]      [0]                               
                                                                         
                   [n__0] = [0]                                          
                            [0]                                          
                                                                         
        [n__plus](x1, x2) = [1 1] x1 + [1 1] x2 + [4]                    
                            [0 0]      [0 0]      [1]                    
                                                                         
           [n__isNat](x1) = [0 0] x1 + [0]                               
                            [1 0]      [0]                               
                                                                         
               [n__s](x1) = [1 1] x1 + [1]                               
                            [0 0]      [1]                               
                                                                         
           [n__x](x1, x2) = [1 1] x1 + [1 1] x2 + [0]                    
                            [0 0]      [0 0]      [1]                    
                                                                         
         [activate^#](x1) = [0 1] x1 + [0]                               
                            [1 0]      [0]                               
                                                                         
            [isNat^#](x1) = [1 0] x1 + [0]                               
                            [0 0]      [0]                               
                                                                         
          [and^#](x1, x2) = [2 1] x2 + [0]                               
                            [0 0]      [1]                               
                                                                         
                [c_2](x1) = [1 1] x1 + [0]                               
                            [0 0]      [0]                               
                                                                         
    [c_3](x1, x2, x3, x4) = [1 3] x1 + [1 0] x2 + [1 0] x3 + [1          
                                                              0] x4 + [0]
                            [0 0]      [0 0]      [0 0]      [0          
                                                              0]      [0]
                                                                         
            [c_4](x1, x2) = [1 0] x1 + [1 0] x2 + [0]                    
                            [0 0]      [0 0]      [0]                    
                                                                         
    [c_5](x1, x2, x3, x4) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1          
                                                              0] x4 + [0]
                            [0 0]      [0 0]      [0 0]      [0          
                                                              0]      [0]
                                                                         
                [c_8](x1) = [1 2] x1 + [0]                               
                            [0 0]      [0]                               
  
  The order satisfies the following ordering constraints:
  
                  [activate(X)] =  [1 0] X + [0]                                           
                                   [0 3]     [0]                                           
                                >= [1 0] X + [0]                                           
                                   [0 1]     [0]                                           
                                =  [X]                                                     
                                                                                           
             [activate(n__0())] =  [0]                                                     
                                   [0]                                                     
                                >= [0]                                                     
                                   [0]                                                     
                                =  [0()]                                                   
                                                                                           
    [activate(n__plus(X1, X2))] =  [1 1] X1 + [1 1] X2 + [4]                               
                                   [0 0]      [0 0]      [3]                               
                                >= [1 1] X1 + [1 1] X2 + [4]                               
                                   [0 0]      [0 0]      [2]                               
                                =  [plus(X1, X2)]                                          
                                                                                           
        [activate(n__isNat(X))] =  [0 0] X + [0]                                           
                                   [3 0]     [0]                                           
                                >= [0 0] X + [0]                                           
                                   [3 0]     [0]                                           
                                =  [isNat(X)]                                              
                                                                                           
            [activate(n__s(X))] =  [1 1] X + [1]                                           
                                   [0 0]     [3]                                           
                                >= [1 1] X + [1]                                           
                                   [0 0]     [2]                                           
                                =  [s(X)]                                                  
                                                                                           
       [activate(n__x(X1, X2))] =  [1 1] X1 + [1 1] X2 + [0]                               
                                   [0 0]      [0 0]      [3]                               
                                >= [1 1] X1 + [1 1] X2 + [0]                               
                                   [0 0]      [0 0]      [1]                               
                                =  [x(X1, X2)]                                             
                                                                                           
                         [s(X)] =  [1 1] X + [1]                                           
                                   [0 0]     [2]                                           
                                >= [1 1] X + [1]                                           
                                   [0 0]     [1]                                           
                                =  [n__s(X)]                                               
                                                                                           
                 [plus(X1, X2)] =  [1 1] X1 + [1 1] X2 + [4]                               
                                   [0 0]      [0 0]      [2]                               
                                >= [1 1] X1 + [1 1] X2 + [4]                               
                                   [0 0]      [0 0]      [1]                               
                                =  [n__plus(X1, X2)]                                       
                                                                                           
                          [0()] =  [0]                                                     
                                   [0]                                                     
                                >= [0]                                                     
                                   [0]                                                     
                                =  [n__0()]                                                
                                                                                           
                    [x(X1, X2)] =  [1 1] X1 + [1 1] X2 + [0]                               
                                   [0 0]      [0 0]      [1]                               
                                >= [1 1] X1 + [1 1] X2 + [0]                               
                                   [0 0]      [0 0]      [1]                               
                                =  [n__x(X1, X2)]                                          
                                                                                           
                 [and(tt(), X)] =  [5 0] X + [0]                                           
                                   [0 3]     [0]                                           
                                >= [1 0] X + [0]                                           
                                   [0 3]     [0]                                           
                                =  [activate(X)]                                           
                                                                                           
                     [isNat(X)] =  [0 0] X + [0]                                           
                                   [3 0]     [0]                                           
                                >= [0 0] X + [0]                                           
                                   [1 0]     [0]                                           
                                =  [n__isNat(X)]                                           
                                                                                           
                [isNat(n__0())] =  [0]                                                     
                                   [0]                                                     
                                >= [0]                                                     
                                   [0]                                                     
                                =  [tt()]                                                  
                                                                                           
       [isNat(n__plus(V1, V2))] =  [0 0] V1 + [0 0] V2 + [0]                               
                                   [3 3]      [3 3]      [12]                              
                                >= [0 0] V2 + [0]                                          
                                   [3 0]      [0]                                          
                                =  [and(isNat(activate(V1)), n__isNat(activate(V2)))]      
                                                                                           
              [isNat(n__s(V1))] =  [0 0] V1 + [0]                                          
                                   [3 3]      [3]                                          
                                >= [0 0] V1 + [0]                                          
                                   [3 0]      [0]                                          
                                =  [isNat(activate(V1))]                                   
                                                                                           
          [isNat(n__x(V1, V2))] =  [0 0] V1 + [0 0] V2 + [0]                               
                                   [3 3]      [3 3]      [0]                               
                                >= [0 0] V2 + [0]                                          
                                   [3 0]      [0]                                          
                                =  [and(isNat(activate(V1)), n__isNat(activate(V2)))]      
                                                                                           
      [activate^#(n__isNat(X))] =  [1 0] X + [0]                                           
                                   [0 0]     [0]                                           
                                >= [1 0] X + [0]                                           
                                   [0 0]     [0]                                           
                                =  [c_2(isNat^#(X))]                                       
                                                                                           
     [isNat^#(n__plus(V1, V2))] =  [1 1] V1 + [1 1] V2 + [4]                               
                                   [0 0]      [0 0]      [0]                               
                                >  [1 1] V1 + [1 1] V2 + [3]                               
                                   [0 0]      [0 0]      [0]                               
                                =  [c_3(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
                                        isNat^#(activate(V1)),                             
                                        activate^#(V1),                                    
                                        activate^#(V2))]                                   
                                                                                           
            [isNat^#(n__s(V1))] =  [1 1] V1 + [1]                                          
                                   [0 0]      [0]                                          
                                >  [1 1] V1 + [0]                                          
                                   [0 0]      [0]                                          
                                =  [c_4(isNat^#(activate(V1)), activate^#(V1))]            
                                                                                           
        [isNat^#(n__x(V1, V2))] =  [1 1] V1 + [1 1] V2 + [0]                               
                                   [0 0]      [0 0]      [0]                               
                                >= [1 1] V1 + [1 1] V2 + [0]                               
                                   [0 0]      [0 0]      [0]                               
                                =  [c_5(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
                                        isNat^#(activate(V1)),                             
                                        activate^#(V1),                                    
                                        activate^#(V2))]                                   
                                                                                           
               [and^#(tt(), X)] =  [2 1] X + [0]                                           
                                   [0 0]     [1]                                           
                                >= [2 1] X + [0]                                           
                                   [0 0]     [0]                                           
                                =  [c_8(activate^#(X))]                                    
                                                                                           

The strictly oriented rules are moved into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak DPs:
  { activate^#(n__isNat(X)) -> c_2(isNat^#(X))
  , isNat^#(n__plus(V1, V2)) ->
    c_3(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) -> c_4(isNat^#(activate(V1)), activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_5(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , and^#(tt(), X) -> c_8(activate^#(X)) }
Weak Trs:
  { activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__isNat(X)) -> isNat(X)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , 0() -> n__0()
  , x(X1, X2) -> n__x(X1, X2)
  , and(tt(), X) -> activate(X)
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , isNat(n__s(V1)) -> isNat(activate(V1))
  , isNat(n__x(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ activate^#(n__isNat(X)) -> c_2(isNat^#(X))
, isNat^#(n__plus(V1, V2)) ->
  c_3(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
      isNat^#(activate(V1)),
      activate^#(V1),
      activate^#(V2))
, isNat^#(n__s(V1)) -> c_4(isNat^#(activate(V1)), activate^#(V1))
, isNat^#(n__x(V1, V2)) ->
  c_5(and^#(isNat(activate(V1)), n__isNat(activate(V2))),
      isNat^#(activate(V1)),
      activate^#(V1),
      activate^#(V2))
, and^#(tt(), X) -> c_8(activate^#(X)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak Trs:
  { activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__isNat(X)) -> isNat(X)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , 0() -> n__0()
  , x(X1, X2) -> n__x(X1, X2)
  , and(tt(), X) -> activate(X)
  , isNat(X) -> n__isNat(X)
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2)))
  , isNat(n__s(V1)) -> isNat(activate(V1))
  , isNat(n__x(V1, V2)) ->
    and(isNat(activate(V1)), n__isNat(activate(V2))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

No rule is usable, rules are removed from the input problem.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Rules: Empty
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^1))