We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , U21(tt()) -> tt()
  , U31(tt(), V2) -> U32(isNat(activate(V2)))
  , U32(tt()) -> tt()
  , U41(tt(), N) -> activate(N)
  , U51(tt(), M, N) ->
    U52(isNat(activate(N)), activate(M), activate(N))
  , U52(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , plus(N, s(M)) -> U51(isNat(M), M, N)
  , plus(N, 0()) -> U41(isNat(N), N)
  , U61(tt()) -> 0()
  , 0() -> n__0()
  , U71(tt(), M, N) ->
    U72(isNat(activate(N)), activate(M), activate(N))
  , U72(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2)
  , x(N, s(M)) -> U71(isNat(M), M, N)
  , x(N, 0()) -> U61(isNat(N)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

Arguments of following rules are not normal-forms:

{ plus(N, s(M)) -> U51(isNat(M), M, N)
, plus(N, 0()) -> U41(isNat(N), N)
, x(N, s(M)) -> U71(isNat(M), M, N)
, x(N, 0()) -> U61(isNat(N)) }

All above mentioned rules can be savely removed.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , U21(tt()) -> tt()
  , U31(tt(), V2) -> U32(isNat(activate(V2)))
  , U32(tt()) -> tt()
  , U41(tt(), N) -> activate(N)
  , U51(tt(), M, N) ->
    U52(isNat(activate(N)), activate(M), activate(N))
  , U52(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , U61(tt()) -> 0()
  , 0() -> n__0()
  , U71(tt(), M, N) ->
    U72(isNat(activate(N)), activate(M), activate(N))
  , U72(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We add the following dependency tuples:

Strict DPs:
  { U11^#(tt(), V2) ->
    c_1(U12^#(isNat(activate(V2))),
        isNat^#(activate(V2)),
        activate^#(V2))
  , U12^#(tt()) -> c_2()
  , isNat^#(n__0()) -> c_3()
  , isNat^#(n__plus(V1, V2)) ->
    c_4(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) ->
    c_5(U21^#(isNat(activate(V1))),
        isNat^#(activate(V1)),
        activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_6(U31^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , activate^#(X) -> c_7()
  , activate^#(n__0()) -> c_8(0^#())
  , activate^#(n__plus(X1, X2)) -> c_9(plus^#(X1, X2))
  , activate^#(n__s(X)) -> c_10(s^#(X))
  , activate^#(n__x(X1, X2)) -> c_11(x^#(X1, X2))
  , U21^#(tt()) -> c_12()
  , U31^#(tt(), V2) ->
    c_13(U32^#(isNat(activate(V2))),
         isNat^#(activate(V2)),
         activate^#(V2))
  , 0^#() -> c_21()
  , plus^#(X1, X2) -> c_19()
  , s^#(X) -> c_18()
  , x^#(X1, X2) -> c_24()
  , U32^#(tt()) -> c_14()
  , U41^#(tt(), N) -> c_15(activate^#(N))
  , U51^#(tt(), M, N) ->
    c_16(U52^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U52^#(tt(), M, N) ->
    c_17(s^#(plus(activate(N), activate(M))),
         plus^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M))
  , U61^#(tt()) -> c_20(0^#())
  , U71^#(tt(), M, N) ->
    c_22(U72^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U72^#(tt(), M, N) ->
    c_23(plus^#(x(activate(N), activate(M)), activate(N)),
         x^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M),
         activate^#(N)) }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { U11^#(tt(), V2) ->
    c_1(U12^#(isNat(activate(V2))),
        isNat^#(activate(V2)),
        activate^#(V2))
  , U12^#(tt()) -> c_2()
  , isNat^#(n__0()) -> c_3()
  , isNat^#(n__plus(V1, V2)) ->
    c_4(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) ->
    c_5(U21^#(isNat(activate(V1))),
        isNat^#(activate(V1)),
        activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_6(U31^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , activate^#(X) -> c_7()
  , activate^#(n__0()) -> c_8(0^#())
  , activate^#(n__plus(X1, X2)) -> c_9(plus^#(X1, X2))
  , activate^#(n__s(X)) -> c_10(s^#(X))
  , activate^#(n__x(X1, X2)) -> c_11(x^#(X1, X2))
  , U21^#(tt()) -> c_12()
  , U31^#(tt(), V2) ->
    c_13(U32^#(isNat(activate(V2))),
         isNat^#(activate(V2)),
         activate^#(V2))
  , 0^#() -> c_21()
  , plus^#(X1, X2) -> c_19()
  , s^#(X) -> c_18()
  , x^#(X1, X2) -> c_24()
  , U32^#(tt()) -> c_14()
  , U41^#(tt(), N) -> c_15(activate^#(N))
  , U51^#(tt(), M, N) ->
    c_16(U52^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U52^#(tt(), M, N) ->
    c_17(s^#(plus(activate(N), activate(M))),
         plus^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M))
  , U61^#(tt()) -> c_20(0^#())
  , U71^#(tt(), M, N) ->
    c_22(U72^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U72^#(tt(), M, N) ->
    c_23(plus^#(x(activate(N), activate(M)), activate(N)),
         x^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M),
         activate^#(N)) }
Weak Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , U21(tt()) -> tt()
  , U31(tt(), V2) -> U32(isNat(activate(V2)))
  , U32(tt()) -> tt()
  , U41(tt(), N) -> activate(N)
  , U51(tt(), M, N) ->
    U52(isNat(activate(N)), activate(M), activate(N))
  , U52(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , U61(tt()) -> 0()
  , 0() -> n__0()
  , U71(tt(), M, N) ->
    U72(isNat(activate(N)), activate(M), activate(N))
  , U72(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We estimate the number of application of {2,3,7,12,14,15,16,17,18}
by applications of Pre({2,3,7,12,14,15,16,17,18}) =
{1,4,5,6,8,9,10,11,13,19,20,21,22,23,24}. Here rules are labeled as
follows:

  DPs:
    { 1: U11^#(tt(), V2) ->
         c_1(U12^#(isNat(activate(V2))),
             isNat^#(activate(V2)),
             activate^#(V2))
    , 2: U12^#(tt()) -> c_2()
    , 3: isNat^#(n__0()) -> c_3()
    , 4: isNat^#(n__plus(V1, V2)) ->
         c_4(U11^#(isNat(activate(V1)), activate(V2)),
             isNat^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
    , 5: isNat^#(n__s(V1)) ->
         c_5(U21^#(isNat(activate(V1))),
             isNat^#(activate(V1)),
             activate^#(V1))
    , 6: isNat^#(n__x(V1, V2)) ->
         c_6(U31^#(isNat(activate(V1)), activate(V2)),
             isNat^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
    , 7: activate^#(X) -> c_7()
    , 8: activate^#(n__0()) -> c_8(0^#())
    , 9: activate^#(n__plus(X1, X2)) -> c_9(plus^#(X1, X2))
    , 10: activate^#(n__s(X)) -> c_10(s^#(X))
    , 11: activate^#(n__x(X1, X2)) -> c_11(x^#(X1, X2))
    , 12: U21^#(tt()) -> c_12()
    , 13: U31^#(tt(), V2) ->
          c_13(U32^#(isNat(activate(V2))),
               isNat^#(activate(V2)),
               activate^#(V2))
    , 14: 0^#() -> c_21()
    , 15: plus^#(X1, X2) -> c_19()
    , 16: s^#(X) -> c_18()
    , 17: x^#(X1, X2) -> c_24()
    , 18: U32^#(tt()) -> c_14()
    , 19: U41^#(tt(), N) -> c_15(activate^#(N))
    , 20: U51^#(tt(), M, N) ->
          c_16(U52^#(isNat(activate(N)), activate(M), activate(N)),
               isNat^#(activate(N)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
    , 21: U52^#(tt(), M, N) ->
          c_17(s^#(plus(activate(N), activate(M))),
               plus^#(activate(N), activate(M)),
               activate^#(N),
               activate^#(M))
    , 22: U61^#(tt()) -> c_20(0^#())
    , 23: U71^#(tt(), M, N) ->
          c_22(U72^#(isNat(activate(N)), activate(M), activate(N)),
               isNat^#(activate(N)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
    , 24: U72^#(tt(), M, N) ->
          c_23(plus^#(x(activate(N), activate(M)), activate(N)),
               x^#(activate(N), activate(M)),
               activate^#(N),
               activate^#(M),
               activate^#(N)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { U11^#(tt(), V2) ->
    c_1(U12^#(isNat(activate(V2))),
        isNat^#(activate(V2)),
        activate^#(V2))
  , isNat^#(n__plus(V1, V2)) ->
    c_4(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) ->
    c_5(U21^#(isNat(activate(V1))),
        isNat^#(activate(V1)),
        activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_6(U31^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , activate^#(n__0()) -> c_8(0^#())
  , activate^#(n__plus(X1, X2)) -> c_9(plus^#(X1, X2))
  , activate^#(n__s(X)) -> c_10(s^#(X))
  , activate^#(n__x(X1, X2)) -> c_11(x^#(X1, X2))
  , U31^#(tt(), V2) ->
    c_13(U32^#(isNat(activate(V2))),
         isNat^#(activate(V2)),
         activate^#(V2))
  , U41^#(tt(), N) -> c_15(activate^#(N))
  , U51^#(tt(), M, N) ->
    c_16(U52^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U52^#(tt(), M, N) ->
    c_17(s^#(plus(activate(N), activate(M))),
         plus^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M))
  , U61^#(tt()) -> c_20(0^#())
  , U71^#(tt(), M, N) ->
    c_22(U72^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U72^#(tt(), M, N) ->
    c_23(plus^#(x(activate(N), activate(M)), activate(N)),
         x^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M),
         activate^#(N)) }
Weak DPs:
  { U12^#(tt()) -> c_2()
  , isNat^#(n__0()) -> c_3()
  , activate^#(X) -> c_7()
  , U21^#(tt()) -> c_12()
  , 0^#() -> c_21()
  , plus^#(X1, X2) -> c_19()
  , s^#(X) -> c_18()
  , x^#(X1, X2) -> c_24()
  , U32^#(tt()) -> c_14() }
Weak Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , U21(tt()) -> tt()
  , U31(tt(), V2) -> U32(isNat(activate(V2)))
  , U32(tt()) -> tt()
  , U41(tt(), N) -> activate(N)
  , U51(tt(), M, N) ->
    U52(isNat(activate(N)), activate(M), activate(N))
  , U52(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , U61(tt()) -> 0()
  , 0() -> n__0()
  , U71(tt(), M, N) ->
    U72(isNat(activate(N)), activate(M), activate(N))
  , U72(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We estimate the number of application of {5,6,7,8,13} by
applications of Pre({5,6,7,8,13}) = {1,2,3,4,9,10,11,12,14,15}.
Here rules are labeled as follows:

  DPs:
    { 1: U11^#(tt(), V2) ->
         c_1(U12^#(isNat(activate(V2))),
             isNat^#(activate(V2)),
             activate^#(V2))
    , 2: isNat^#(n__plus(V1, V2)) ->
         c_4(U11^#(isNat(activate(V1)), activate(V2)),
             isNat^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
    , 3: isNat^#(n__s(V1)) ->
         c_5(U21^#(isNat(activate(V1))),
             isNat^#(activate(V1)),
             activate^#(V1))
    , 4: isNat^#(n__x(V1, V2)) ->
         c_6(U31^#(isNat(activate(V1)), activate(V2)),
             isNat^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
    , 5: activate^#(n__0()) -> c_8(0^#())
    , 6: activate^#(n__plus(X1, X2)) -> c_9(plus^#(X1, X2))
    , 7: activate^#(n__s(X)) -> c_10(s^#(X))
    , 8: activate^#(n__x(X1, X2)) -> c_11(x^#(X1, X2))
    , 9: U31^#(tt(), V2) ->
         c_13(U32^#(isNat(activate(V2))),
              isNat^#(activate(V2)),
              activate^#(V2))
    , 10: U41^#(tt(), N) -> c_15(activate^#(N))
    , 11: U51^#(tt(), M, N) ->
          c_16(U52^#(isNat(activate(N)), activate(M), activate(N)),
               isNat^#(activate(N)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
    , 12: U52^#(tt(), M, N) ->
          c_17(s^#(plus(activate(N), activate(M))),
               plus^#(activate(N), activate(M)),
               activate^#(N),
               activate^#(M))
    , 13: U61^#(tt()) -> c_20(0^#())
    , 14: U71^#(tt(), M, N) ->
          c_22(U72^#(isNat(activate(N)), activate(M), activate(N)),
               isNat^#(activate(N)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
    , 15: U72^#(tt(), M, N) ->
          c_23(plus^#(x(activate(N), activate(M)), activate(N)),
               x^#(activate(N), activate(M)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
    , 16: U12^#(tt()) -> c_2()
    , 17: isNat^#(n__0()) -> c_3()
    , 18: activate^#(X) -> c_7()
    , 19: U21^#(tt()) -> c_12()
    , 20: 0^#() -> c_21()
    , 21: plus^#(X1, X2) -> c_19()
    , 22: s^#(X) -> c_18()
    , 23: x^#(X1, X2) -> c_24()
    , 24: U32^#(tt()) -> c_14() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { U11^#(tt(), V2) ->
    c_1(U12^#(isNat(activate(V2))),
        isNat^#(activate(V2)),
        activate^#(V2))
  , isNat^#(n__plus(V1, V2)) ->
    c_4(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) ->
    c_5(U21^#(isNat(activate(V1))),
        isNat^#(activate(V1)),
        activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_6(U31^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , U31^#(tt(), V2) ->
    c_13(U32^#(isNat(activate(V2))),
         isNat^#(activate(V2)),
         activate^#(V2))
  , U41^#(tt(), N) -> c_15(activate^#(N))
  , U51^#(tt(), M, N) ->
    c_16(U52^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U52^#(tt(), M, N) ->
    c_17(s^#(plus(activate(N), activate(M))),
         plus^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M))
  , U71^#(tt(), M, N) ->
    c_22(U72^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U72^#(tt(), M, N) ->
    c_23(plus^#(x(activate(N), activate(M)), activate(N)),
         x^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M),
         activate^#(N)) }
Weak DPs:
  { U12^#(tt()) -> c_2()
  , isNat^#(n__0()) -> c_3()
  , activate^#(X) -> c_7()
  , activate^#(n__0()) -> c_8(0^#())
  , activate^#(n__plus(X1, X2)) -> c_9(plus^#(X1, X2))
  , activate^#(n__s(X)) -> c_10(s^#(X))
  , activate^#(n__x(X1, X2)) -> c_11(x^#(X1, X2))
  , U21^#(tt()) -> c_12()
  , 0^#() -> c_21()
  , plus^#(X1, X2) -> c_19()
  , s^#(X) -> c_18()
  , x^#(X1, X2) -> c_24()
  , U32^#(tt()) -> c_14()
  , U61^#(tt()) -> c_20(0^#()) }
Weak Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , U21(tt()) -> tt()
  , U31(tt(), V2) -> U32(isNat(activate(V2)))
  , U32(tt()) -> tt()
  , U41(tt(), N) -> activate(N)
  , U51(tt(), M, N) ->
    U52(isNat(activate(N)), activate(M), activate(N))
  , U52(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , U61(tt()) -> 0()
  , 0() -> n__0()
  , U71(tt(), M, N) ->
    U72(isNat(activate(N)), activate(M), activate(N))
  , U72(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We estimate the number of application of {6,8,10} by applications
of Pre({6,8,10}) = {7,9}. Here rules are labeled as follows:

  DPs:
    { 1: U11^#(tt(), V2) ->
         c_1(U12^#(isNat(activate(V2))),
             isNat^#(activate(V2)),
             activate^#(V2))
    , 2: isNat^#(n__plus(V1, V2)) ->
         c_4(U11^#(isNat(activate(V1)), activate(V2)),
             isNat^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
    , 3: isNat^#(n__s(V1)) ->
         c_5(U21^#(isNat(activate(V1))),
             isNat^#(activate(V1)),
             activate^#(V1))
    , 4: isNat^#(n__x(V1, V2)) ->
         c_6(U31^#(isNat(activate(V1)), activate(V2)),
             isNat^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
    , 5: U31^#(tt(), V2) ->
         c_13(U32^#(isNat(activate(V2))),
              isNat^#(activate(V2)),
              activate^#(V2))
    , 6: U41^#(tt(), N) -> c_15(activate^#(N))
    , 7: U51^#(tt(), M, N) ->
         c_16(U52^#(isNat(activate(N)), activate(M), activate(N)),
              isNat^#(activate(N)),
              activate^#(N),
              activate^#(M),
              activate^#(N))
    , 8: U52^#(tt(), M, N) ->
         c_17(s^#(plus(activate(N), activate(M))),
              plus^#(activate(N), activate(M)),
              activate^#(N),
              activate^#(M))
    , 9: U71^#(tt(), M, N) ->
         c_22(U72^#(isNat(activate(N)), activate(M), activate(N)),
              isNat^#(activate(N)),
              activate^#(N),
              activate^#(M),
              activate^#(N))
    , 10: U72^#(tt(), M, N) ->
          c_23(plus^#(x(activate(N), activate(M)), activate(N)),
               x^#(activate(N), activate(M)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
    , 11: U12^#(tt()) -> c_2()
    , 12: isNat^#(n__0()) -> c_3()
    , 13: activate^#(X) -> c_7()
    , 14: activate^#(n__0()) -> c_8(0^#())
    , 15: activate^#(n__plus(X1, X2)) -> c_9(plus^#(X1, X2))
    , 16: activate^#(n__s(X)) -> c_10(s^#(X))
    , 17: activate^#(n__x(X1, X2)) -> c_11(x^#(X1, X2))
    , 18: U21^#(tt()) -> c_12()
    , 19: 0^#() -> c_21()
    , 20: plus^#(X1, X2) -> c_19()
    , 21: s^#(X) -> c_18()
    , 22: x^#(X1, X2) -> c_24()
    , 23: U32^#(tt()) -> c_14()
    , 24: U61^#(tt()) -> c_20(0^#()) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { U11^#(tt(), V2) ->
    c_1(U12^#(isNat(activate(V2))),
        isNat^#(activate(V2)),
        activate^#(V2))
  , isNat^#(n__plus(V1, V2)) ->
    c_4(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) ->
    c_5(U21^#(isNat(activate(V1))),
        isNat^#(activate(V1)),
        activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_6(U31^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , U31^#(tt(), V2) ->
    c_13(U32^#(isNat(activate(V2))),
         isNat^#(activate(V2)),
         activate^#(V2))
  , U51^#(tt(), M, N) ->
    c_16(U52^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U71^#(tt(), M, N) ->
    c_22(U72^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N)) }
Weak DPs:
  { U12^#(tt()) -> c_2()
  , isNat^#(n__0()) -> c_3()
  , activate^#(X) -> c_7()
  , activate^#(n__0()) -> c_8(0^#())
  , activate^#(n__plus(X1, X2)) -> c_9(plus^#(X1, X2))
  , activate^#(n__s(X)) -> c_10(s^#(X))
  , activate^#(n__x(X1, X2)) -> c_11(x^#(X1, X2))
  , U21^#(tt()) -> c_12()
  , 0^#() -> c_21()
  , plus^#(X1, X2) -> c_19()
  , s^#(X) -> c_18()
  , x^#(X1, X2) -> c_24()
  , U32^#(tt()) -> c_14()
  , U41^#(tt(), N) -> c_15(activate^#(N))
  , U52^#(tt(), M, N) ->
    c_17(s^#(plus(activate(N), activate(M))),
         plus^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M))
  , U61^#(tt()) -> c_20(0^#())
  , U72^#(tt(), M, N) ->
    c_23(plus^#(x(activate(N), activate(M)), activate(N)),
         x^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M),
         activate^#(N)) }
Weak Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , U21(tt()) -> tt()
  , U31(tt(), V2) -> U32(isNat(activate(V2)))
  , U32(tt()) -> tt()
  , U41(tt(), N) -> activate(N)
  , U51(tt(), M, N) ->
    U52(isNat(activate(N)), activate(M), activate(N))
  , U52(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , U61(tt()) -> 0()
  , 0() -> n__0()
  , U71(tt(), M, N) ->
    U72(isNat(activate(N)), activate(M), activate(N))
  , U72(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ U12^#(tt()) -> c_2()
, isNat^#(n__0()) -> c_3()
, activate^#(X) -> c_7()
, activate^#(n__0()) -> c_8(0^#())
, activate^#(n__plus(X1, X2)) -> c_9(plus^#(X1, X2))
, activate^#(n__s(X)) -> c_10(s^#(X))
, activate^#(n__x(X1, X2)) -> c_11(x^#(X1, X2))
, U21^#(tt()) -> c_12()
, 0^#() -> c_21()
, plus^#(X1, X2) -> c_19()
, s^#(X) -> c_18()
, x^#(X1, X2) -> c_24()
, U32^#(tt()) -> c_14()
, U41^#(tt(), N) -> c_15(activate^#(N))
, U52^#(tt(), M, N) ->
  c_17(s^#(plus(activate(N), activate(M))),
       plus^#(activate(N), activate(M)),
       activate^#(N),
       activate^#(M))
, U61^#(tt()) -> c_20(0^#())
, U72^#(tt(), M, N) ->
  c_23(plus^#(x(activate(N), activate(M)), activate(N)),
       x^#(activate(N), activate(M)),
       activate^#(N),
       activate^#(M),
       activate^#(N)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { U11^#(tt(), V2) ->
    c_1(U12^#(isNat(activate(V2))),
        isNat^#(activate(V2)),
        activate^#(V2))
  , isNat^#(n__plus(V1, V2)) ->
    c_4(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) ->
    c_5(U21^#(isNat(activate(V1))),
        isNat^#(activate(V1)),
        activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_6(U31^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , U31^#(tt(), V2) ->
    c_13(U32^#(isNat(activate(V2))),
         isNat^#(activate(V2)),
         activate^#(V2))
  , U51^#(tt(), M, N) ->
    c_16(U52^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U71^#(tt(), M, N) ->
    c_22(U72^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N)) }
Weak Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , U21(tt()) -> tt()
  , U31(tt(), V2) -> U32(isNat(activate(V2)))
  , U32(tt()) -> tt()
  , U41(tt(), N) -> activate(N)
  , U51(tt(), M, N) ->
    U52(isNat(activate(N)), activate(M), activate(N))
  , U52(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , U61(tt()) -> 0()
  , 0() -> n__0()
  , U71(tt(), M, N) ->
    U72(isNat(activate(N)), activate(M), activate(N))
  , U72(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

Due to missing edges in the dependency-graph, the right-hand sides
of following rules could be simplified:

  { U11^#(tt(), V2) ->
    c_1(U12^#(isNat(activate(V2))),
        isNat^#(activate(V2)),
        activate^#(V2))
  , isNat^#(n__plus(V1, V2)) ->
    c_4(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) ->
    c_5(U21^#(isNat(activate(V1))),
        isNat^#(activate(V1)),
        activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_6(U31^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , U31^#(tt(), V2) ->
    c_13(U32^#(isNat(activate(V2))),
         isNat^#(activate(V2)),
         activate^#(V2))
  , U51^#(tt(), M, N) ->
    c_16(U52^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U71^#(tt(), M, N) ->
    c_22(U72^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
  , isNat^#(n__plus(V1, V2)) ->
    c_2(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)))
  , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
  , isNat^#(n__x(V1, V2)) ->
    c_4(U31^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)))
  , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
  , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
  , U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
Weak Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , U21(tt()) -> tt()
  , U31(tt(), V2) -> U32(isNat(activate(V2)))
  , U32(tt()) -> tt()
  , U41(tt(), N) -> activate(N)
  , U51(tt(), M, N) ->
    U52(isNat(activate(N)), activate(M), activate(N))
  , U52(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , U61(tt()) -> 0()
  , 0() -> n__0()
  , U71(tt(), M, N) ->
    U72(isNat(activate(N)), activate(M), activate(N))
  , U72(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We replace rewrite rules by usable rules:

  Weak Usable Rules:
    { U11(tt(), V2) -> U12(isNat(activate(V2)))
    , U12(tt()) -> tt()
    , isNat(n__0()) -> tt()
    , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
    , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
    , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
    , activate(X) -> X
    , activate(n__0()) -> 0()
    , activate(n__plus(X1, X2)) -> plus(X1, X2)
    , activate(n__s(X)) -> s(X)
    , activate(n__x(X1, X2)) -> x(X1, X2)
    , U21(tt()) -> tt()
    , U31(tt(), V2) -> U32(isNat(activate(V2)))
    , U32(tt()) -> tt()
    , s(X) -> n__s(X)
    , plus(X1, X2) -> n__plus(X1, X2)
    , 0() -> n__0()
    , x(X1, X2) -> n__x(X1, X2) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
  , isNat^#(n__plus(V1, V2)) ->
    c_2(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)))
  , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
  , isNat^#(n__x(V1, V2)) ->
    c_4(U31^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)))
  , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
  , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
  , U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
Weak Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(X1, X2)
  , activate(n__s(X)) -> s(X)
  , activate(n__x(X1, X2)) -> x(X1, X2)
  , U21(tt()) -> tt()
  , U31(tt(), V2) -> U32(isNat(activate(V2)))
  , U32(tt()) -> tt()
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , 0() -> n__0()
  , x(X1, X2) -> n__x(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We analyse the complexity of following sub-problems (R) and (S).
Problem (S) is obtained from the input problem by shifting strict
rules from (R) into the weak component:

Problem (R):
------------
  Strict DPs:
    { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
    , isNat^#(n__plus(V1, V2)) ->
      c_2(U11^#(isNat(activate(V1)), activate(V2)),
          isNat^#(activate(V1)))
    , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
    , isNat^#(n__x(V1, V2)) ->
      c_4(U31^#(isNat(activate(V1)), activate(V2)),
          isNat^#(activate(V1)))
    , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
    , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N))) }
  Weak DPs: { U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
  Weak Trs:
    { U11(tt(), V2) -> U12(isNat(activate(V2)))
    , U12(tt()) -> tt()
    , isNat(n__0()) -> tt()
    , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
    , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
    , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
    , activate(X) -> X
    , activate(n__0()) -> 0()
    , activate(n__plus(X1, X2)) -> plus(X1, X2)
    , activate(n__s(X)) -> s(X)
    , activate(n__x(X1, X2)) -> x(X1, X2)
    , U21(tt()) -> tt()
    , U31(tt(), V2) -> U32(isNat(activate(V2)))
    , U32(tt()) -> tt()
    , s(X) -> n__s(X)
    , plus(X1, X2) -> n__plus(X1, X2)
    , 0() -> n__0()
    , x(X1, X2) -> n__x(X1, X2) }
  StartTerms: basic terms
  Strategy: innermost

Problem (S):
------------
  Strict DPs: { U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
  Weak DPs:
    { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
    , isNat^#(n__plus(V1, V2)) ->
      c_2(U11^#(isNat(activate(V1)), activate(V2)),
          isNat^#(activate(V1)))
    , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
    , isNat^#(n__x(V1, V2)) ->
      c_4(U31^#(isNat(activate(V1)), activate(V2)),
          isNat^#(activate(V1)))
    , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
    , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N))) }
  Weak Trs:
    { U11(tt(), V2) -> U12(isNat(activate(V2)))
    , U12(tt()) -> tt()
    , isNat(n__0()) -> tt()
    , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
    , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
    , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
    , activate(X) -> X
    , activate(n__0()) -> 0()
    , activate(n__plus(X1, X2)) -> plus(X1, X2)
    , activate(n__s(X)) -> s(X)
    , activate(n__x(X1, X2)) -> x(X1, X2)
    , U21(tt()) -> tt()
    , U31(tt(), V2) -> U32(isNat(activate(V2)))
    , U32(tt()) -> tt()
    , s(X) -> n__s(X)
    , plus(X1, X2) -> n__plus(X1, X2)
    , 0() -> n__0()
    , x(X1, X2) -> n__x(X1, X2) }
  StartTerms: basic terms
  Strategy: innermost

Overall, the transformation results in the following sub-problem(s):

Generated new problems:
-----------------------
R) Strict DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , isNat^#(n__x(V1, V2)) ->
       c_4(U31^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
     , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N))) }
   Weak DPs: { U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(X1, X2)
     , activate(n__s(X)) -> s(X)
     , activate(n__x(X1, X2)) -> x(X1, X2)
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   StartTerms: basic terms
   Strategy: innermost
   
   This problem was proven YES(O(1),O(n^1)).

S) Strict DPs: { U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
   Weak DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , isNat^#(n__x(V1, V2)) ->
       c_4(U31^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
     , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N))) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(X1, X2)
     , activate(n__s(X)) -> s(X)
     , activate(n__x(X1, X2)) -> x(X1, X2)
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   StartTerms: basic terms
   Strategy: innermost
   
   This problem was proven YES(O(1),O(1)).


Proofs for generated problems:
------------------------------
R) We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(n^1)).
   
   Strict DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , isNat^#(n__x(V1, V2)) ->
       c_4(U31^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
     , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N))) }
   Weak DPs: { U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(X1, X2)
     , activate(n__s(X)) -> s(X)
     , activate(n__x(X1, X2)) -> x(X1, X2)
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(n^1))
   
   We use the processor 'matrix interpretation of dimension 1' to
   orient following rules strictly.
   
   DPs:
     { 1: U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , 6: U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
     , 7: U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
   
   Sub-proof:
   ----------
     The following argument positions are usable:
       Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1},
       Uargs(c_4) = {1, 2}, Uargs(c_5) = {1}, Uargs(c_6) = {1},
       Uargs(c_7) = {1}
     
     TcT has computed the following constructor-based matrix
     interpretation satisfying not(EDA).
     
             [U11](x1, x2) = [0]                  
                                                  
                      [tt] = [0]                  
                                                  
                 [U12](x1) = [0]                  
                                                  
               [isNat](x1) = [0]                  
                                                  
            [activate](x1) = [1] x1 + [0]         
                                                  
                 [U21](x1) = [0]                  
                                                  
             [U31](x1, x2) = [0]                  
                                                  
                 [U32](x1) = [0]                  
                                                  
                   [s](x1) = [1] x1 + [0]         
                                                  
            [plus](x1, x2) = [1] x1 + [1] x2 + [5]
                                                  
                       [0] = [1]                  
                                                  
               [x](x1, x2) = [1] x1 + [1] x2 + [2]
                                                  
                    [n__0] = [1]                  
                                                  
         [n__plus](x1, x2) = [1] x1 + [1] x2 + [5]
                                                  
                [n__s](x1) = [1] x1 + [0]         
                                                  
            [n__x](x1, x2) = [1] x1 + [1] x2 + [2]
                                                  
           [U11^#](x1, x2) = [1] x1 + [1] x2 + [5]
                                                  
             [isNat^#](x1) = [1] x1 + [2]         
                                                  
           [U31^#](x1, x2) = [1] x1 + [1] x2 + [2]
                                                  
       [U51^#](x1, x2, x3) = [4] x2 + [7] x3 + [7]
                                                  
       [U71^#](x1, x2, x3) = [4] x2 + [7] x3 + [4]
                                                  
                 [c_1](x1) = [1] x1 + [0]         
                                                  
             [c_2](x1, x2) = [1] x1 + [1] x2 + [0]
                                                  
                 [c_3](x1) = [1] x1 + [0]         
                                                  
             [c_4](x1, x2) = [1] x1 + [1] x2 + [0]
                                                  
                 [c_5](x1) = [1] x1 + [0]         
                                                  
                 [c_6](x1) = [2] x1 + [0]         
                                                  
                 [c_7](x1) = [1] x1 + [0]         
     
     The order satisfies the following ordering constraints:
     
                   [U11(tt(), V2)] =  [0]                                           
                                   >= [0]                                           
                                   =  [U12(isNat(activate(V2)))]                    
                                                                                    
                       [U12(tt())] =  [0]                                           
                                   >= [0]                                           
                                   =  [tt()]                                        
                                                                                    
                   [isNat(n__0())] =  [0]                                           
                                   >= [0]                                           
                                   =  [tt()]                                        
                                                                                    
          [isNat(n__plus(V1, V2))] =  [0]                                           
                                   >= [0]                                           
                                   =  [U11(isNat(activate(V1)), activate(V2))]      
                                                                                    
                 [isNat(n__s(V1))] =  [0]                                           
                                   >= [0]                                           
                                   =  [U21(isNat(activate(V1)))]                    
                                                                                    
             [isNat(n__x(V1, V2))] =  [0]                                           
                                   >= [0]                                           
                                   =  [U31(isNat(activate(V1)), activate(V2))]      
                                                                                    
                     [activate(X)] =  [1] X + [0]                                   
                                   >= [1] X + [0]                                   
                                   =  [X]                                           
                                                                                    
                [activate(n__0())] =  [1]                                           
                                   >= [1]                                           
                                   =  [0()]                                         
                                                                                    
       [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [5]                         
                                   >= [1] X1 + [1] X2 + [5]                         
                                   =  [plus(X1, X2)]                                
                                                                                    
               [activate(n__s(X))] =  [1] X + [0]                                   
                                   >= [1] X + [0]                                   
                                   =  [s(X)]                                        
                                                                                    
          [activate(n__x(X1, X2))] =  [1] X1 + [1] X2 + [2]                         
                                   >= [1] X1 + [1] X2 + [2]                         
                                   =  [x(X1, X2)]                                   
                                                                                    
                       [U21(tt())] =  [0]                                           
                                   >= [0]                                           
                                   =  [tt()]                                        
                                                                                    
                   [U31(tt(), V2)] =  [0]                                           
                                   >= [0]                                           
                                   =  [U32(isNat(activate(V2)))]                    
                                                                                    
                       [U32(tt())] =  [0]                                           
                                   >= [0]                                           
                                   =  [tt()]                                        
                                                                                    
                            [s(X)] =  [1] X + [0]                                   
                                   >= [1] X + [0]                                   
                                   =  [n__s(X)]                                     
                                                                                    
                    [plus(X1, X2)] =  [1] X1 + [1] X2 + [5]                         
                                   >= [1] X1 + [1] X2 + [5]                         
                                   =  [n__plus(X1, X2)]                             
                                                                                    
                             [0()] =  [1]                                           
                                   >= [1]                                           
                                   =  [n__0()]                                      
                                                                                    
                       [x(X1, X2)] =  [1] X1 + [1] X2 + [2]                         
                                   >= [1] X1 + [1] X2 + [2]                         
                                   =  [n__x(X1, X2)]                                
                                                                                    
                 [U11^#(tt(), V2)] =  [1] V2 + [5]                                  
                                   >  [1] V2 + [2]                                  
                                   =  [c_1(isNat^#(activate(V2)))]                  
                                                                                    
        [isNat^#(n__plus(V1, V2))] =  [1] V2 + [1] V1 + [7]                         
                                   >= [1] V2 + [1] V1 + [7]                         
                                   =  [c_2(U11^#(isNat(activate(V1)), activate(V2)),
                                           isNat^#(activate(V1)))]                  
                                                                                    
               [isNat^#(n__s(V1))] =  [1] V1 + [2]                                  
                                   >= [1] V1 + [2]                                  
                                   =  [c_3(isNat^#(activate(V1)))]                  
                                                                                    
           [isNat^#(n__x(V1, V2))] =  [1] V2 + [1] V1 + [4]                         
                                   >= [1] V2 + [1] V1 + [4]                         
                                   =  [c_4(U31^#(isNat(activate(V1)), activate(V2)),
                                           isNat^#(activate(V1)))]                  
                                                                                    
                 [U31^#(tt(), V2)] =  [1] V2 + [2]                                  
                                   >= [1] V2 + [2]                                  
                                   =  [c_5(isNat^#(activate(V2)))]                  
                                                                                    
               [U51^#(tt(), M, N)] =  [7] N + [4] M + [7]                           
                                   >  [2] N + [4]                                   
                                   =  [c_6(isNat^#(activate(N)))]                   
                                                                                    
               [U71^#(tt(), M, N)] =  [7] N + [4] M + [4]                           
                                   >  [1] N + [2]                                   
                                   =  [c_7(isNat^#(activate(N)))]                   
                                                                                    
   
   The strictly oriented rules are moved into the weak component.
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(n^1)).
   
   Strict DPs:
     { isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , isNat^#(n__x(V1, V2)) ->
       c_4(U31^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2))) }
   Weak DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
     , U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(X1, X2)
     , activate(n__s(X)) -> s(X)
     , activate(n__x(X1, X2)) -> x(X1, X2)
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(n^1))
   
   We use the processor 'matrix interpretation of dimension 1' to
   orient following rules strictly.
   
   DPs:
     { 4: U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
     , 6: U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
     , 7: U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
   
   Sub-proof:
   ----------
     The following argument positions are usable:
       Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1},
       Uargs(c_4) = {1, 2}, Uargs(c_5) = {1}, Uargs(c_6) = {1},
       Uargs(c_7) = {1}
     
     TcT has computed the following constructor-based matrix
     interpretation satisfying not(EDA).
     
             [U11](x1, x2) = [2]                  
                                                  
                      [tt] = [2]                  
                                                  
                 [U12](x1) = [1] x1 + [0]         
                                                  
               [isNat](x1) = [2]                  
                                                  
            [activate](x1) = [1] x1 + [0]         
                                                  
                 [U21](x1) = [2]                  
                                                  
             [U31](x1, x2) = [2]                  
                                                  
                 [U32](x1) = [2]                  
                                                  
                   [s](x1) = [1] x1 + [0]         
                                                  
            [plus](x1, x2) = [1] x1 + [1] x2 + [0]
                                                  
                       [0] = [4]                  
                                                  
               [x](x1, x2) = [1] x1 + [1] x2 + [6]
                                                  
                    [n__0] = [4]                  
                                                  
         [n__plus](x1, x2) = [1] x1 + [1] x2 + [0]
                                                  
                [n__s](x1) = [1] x1 + [0]         
                                                  
            [n__x](x1, x2) = [1] x1 + [1] x2 + [6]
                                                  
           [U11^#](x1, x2) = [1] x2 + [0]         
                                                  
             [isNat^#](x1) = [1] x1 + [0]         
                                                  
           [U31^#](x1, x2) = [3] x1 + [1] x2 + [0]
                                                  
       [U51^#](x1, x2, x3) = [2] x2 + [7] x3 + [4]
                                                  
       [U71^#](x1, x2, x3) = [4] x2 + [7] x3 + [6]
                                                  
                 [c_1](x1) = [1] x1 + [0]         
                                                  
             [c_2](x1, x2) = [1] x1 + [1] x2 + [0]
                                                  
                 [c_3](x1) = [1] x1 + [0]         
                                                  
             [c_4](x1, x2) = [1] x1 + [1] x2 + [0]
                                                  
                 [c_5](x1) = [1] x1 + [1]         
                                                  
                 [c_6](x1) = [4] x1 + [0]         
                                                  
                 [c_7](x1) = [1] x1 + [0]         
     
     The order satisfies the following ordering constraints:
     
                   [U11(tt(), V2)] =  [2]                                           
                                   >= [2]                                           
                                   =  [U12(isNat(activate(V2)))]                    
                                                                                    
                       [U12(tt())] =  [2]                                           
                                   >= [2]                                           
                                   =  [tt()]                                        
                                                                                    
                   [isNat(n__0())] =  [2]                                           
                                   >= [2]                                           
                                   =  [tt()]                                        
                                                                                    
          [isNat(n__plus(V1, V2))] =  [2]                                           
                                   >= [2]                                           
                                   =  [U11(isNat(activate(V1)), activate(V2))]      
                                                                                    
                 [isNat(n__s(V1))] =  [2]                                           
                                   >= [2]                                           
                                   =  [U21(isNat(activate(V1)))]                    
                                                                                    
             [isNat(n__x(V1, V2))] =  [2]                                           
                                   >= [2]                                           
                                   =  [U31(isNat(activate(V1)), activate(V2))]      
                                                                                    
                     [activate(X)] =  [1] X + [0]                                   
                                   >= [1] X + [0]                                   
                                   =  [X]                                           
                                                                                    
                [activate(n__0())] =  [4]                                           
                                   >= [4]                                           
                                   =  [0()]                                         
                                                                                    
       [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [0]                         
                                   >= [1] X1 + [1] X2 + [0]                         
                                   =  [plus(X1, X2)]                                
                                                                                    
               [activate(n__s(X))] =  [1] X + [0]                                   
                                   >= [1] X + [0]                                   
                                   =  [s(X)]                                        
                                                                                    
          [activate(n__x(X1, X2))] =  [1] X1 + [1] X2 + [6]                         
                                   >= [1] X1 + [1] X2 + [6]                         
                                   =  [x(X1, X2)]                                   
                                                                                    
                       [U21(tt())] =  [2]                                           
                                   >= [2]                                           
                                   =  [tt()]                                        
                                                                                    
                   [U31(tt(), V2)] =  [2]                                           
                                   >= [2]                                           
                                   =  [U32(isNat(activate(V2)))]                    
                                                                                    
                       [U32(tt())] =  [2]                                           
                                   >= [2]                                           
                                   =  [tt()]                                        
                                                                                    
                            [s(X)] =  [1] X + [0]                                   
                                   >= [1] X + [0]                                   
                                   =  [n__s(X)]                                     
                                                                                    
                    [plus(X1, X2)] =  [1] X1 + [1] X2 + [0]                         
                                   >= [1] X1 + [1] X2 + [0]                         
                                   =  [n__plus(X1, X2)]                             
                                                                                    
                             [0()] =  [4]                                           
                                   >= [4]                                           
                                   =  [n__0()]                                      
                                                                                    
                       [x(X1, X2)] =  [1] X1 + [1] X2 + [6]                         
                                   >= [1] X1 + [1] X2 + [6]                         
                                   =  [n__x(X1, X2)]                                
                                                                                    
                 [U11^#(tt(), V2)] =  [1] V2 + [0]                                  
                                   >= [1] V2 + [0]                                  
                                   =  [c_1(isNat^#(activate(V2)))]                  
                                                                                    
        [isNat^#(n__plus(V1, V2))] =  [1] V2 + [1] V1 + [0]                         
                                   >= [1] V2 + [1] V1 + [0]                         
                                   =  [c_2(U11^#(isNat(activate(V1)), activate(V2)),
                                           isNat^#(activate(V1)))]                  
                                                                                    
               [isNat^#(n__s(V1))] =  [1] V1 + [0]                                  
                                   >= [1] V1 + [0]                                  
                                   =  [c_3(isNat^#(activate(V1)))]                  
                                                                                    
           [isNat^#(n__x(V1, V2))] =  [1] V2 + [1] V1 + [6]                         
                                   >= [1] V2 + [1] V1 + [6]                         
                                   =  [c_4(U31^#(isNat(activate(V1)), activate(V2)),
                                           isNat^#(activate(V1)))]                  
                                                                                    
                 [U31^#(tt(), V2)] =  [1] V2 + [6]                                  
                                   >  [1] V2 + [1]                                  
                                   =  [c_5(isNat^#(activate(V2)))]                  
                                                                                    
               [U51^#(tt(), M, N)] =  [7] N + [2] M + [4]                           
                                   >  [4] N + [0]                                   
                                   =  [c_6(isNat^#(activate(N)))]                   
                                                                                    
               [U71^#(tt(), M, N)] =  [7] N + [4] M + [6]                           
                                   >  [1] N + [0]                                   
                                   =  [c_7(isNat^#(activate(N)))]                   
                                                                                    
   
   The strictly oriented rules are moved into the weak component.
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(n^1)).
   
   Strict DPs:
     { isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , isNat^#(n__x(V1, V2)) ->
       c_4(U31^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1))) }
   Weak DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
     , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
     , U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(X1, X2)
     , activate(n__s(X)) -> s(X)
     , activate(n__x(X1, X2)) -> x(X1, X2)
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(n^1))
   
   We use the processor 'matrix interpretation of dimension 1' to
   orient following rules strictly.
   
   DPs:
     { 2: isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , 4: U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , 6: U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
     , 7: U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
   
   Sub-proof:
   ----------
     The following argument positions are usable:
       Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1},
       Uargs(c_4) = {1, 2}, Uargs(c_5) = {1}, Uargs(c_6) = {1},
       Uargs(c_7) = {1}
     
     TcT has computed the following constructor-based matrix
     interpretation satisfying not(EDA).
     
             [U11](x1, x2) = [0]                  
                                                  
                      [tt] = [6]                  
                                                  
                 [U12](x1) = [0]                  
                                                  
               [isNat](x1) = [0]                  
                                                  
            [activate](x1) = [1] x1 + [0]         
                                                  
                 [U21](x1) = [0]                  
                                                  
             [U31](x1, x2) = [0]                  
                                                  
                 [U32](x1) = [0]                  
                                                  
                   [s](x1) = [1] x1 + [1]         
                                                  
            [plus](x1, x2) = [1] x1 + [1] x2 + [4]
                                                  
                       [0] = [1]                  
                                                  
               [x](x1, x2) = [1] x1 + [1] x2 + [1]
                                                  
                    [n__0] = [1]                  
                                                  
         [n__plus](x1, x2) = [1] x1 + [1] x2 + [4]
                                                  
                [n__s](x1) = [1] x1 + [1]         
                                                  
            [n__x](x1, x2) = [1] x1 + [1] x2 + [1]
                                                  
           [U11^#](x1, x2) = [1] x2 + [4]         
                                                  
             [isNat^#](x1) = [1] x1 + [1]         
                                                  
           [U31^#](x1, x2) = [1] x2 + [1]         
                                                  
       [U51^#](x1, x2, x3) = [4] x2 + [7] x3 + [7]
                                                  
       [U71^#](x1, x2, x3) = [4] x2 + [7] x3 + [4]
                                                  
                 [c_1](x1) = [1] x1 + [1]         
                                                  
             [c_2](x1, x2) = [1] x1 + [1] x2 + [0]
                                                  
                 [c_3](x1) = [1] x1 + [0]         
                                                  
             [c_4](x1, x2) = [1] x1 + [1] x2 + [0]
                                                  
                 [c_5](x1) = [1] x1 + [0]         
                                                  
                 [c_6](x1) = [2] x1 + [0]         
                                                  
                 [c_7](x1) = [2] x1 + [0]         
     
     The order satisfies the following ordering constraints:
     
                   [U11(tt(), V2)] =  [0]                                           
                                   >= [0]                                           
                                   =  [U12(isNat(activate(V2)))]                    
                                                                                    
                       [U12(tt())] =  [0]                                           
                                   ?  [6]                                           
                                   =  [tt()]                                        
                                                                                    
                   [isNat(n__0())] =  [0]                                           
                                   ?  [6]                                           
                                   =  [tt()]                                        
                                                                                    
          [isNat(n__plus(V1, V2))] =  [0]                                           
                                   >= [0]                                           
                                   =  [U11(isNat(activate(V1)), activate(V2))]      
                                                                                    
                 [isNat(n__s(V1))] =  [0]                                           
                                   >= [0]                                           
                                   =  [U21(isNat(activate(V1)))]                    
                                                                                    
             [isNat(n__x(V1, V2))] =  [0]                                           
                                   >= [0]                                           
                                   =  [U31(isNat(activate(V1)), activate(V2))]      
                                                                                    
                     [activate(X)] =  [1] X + [0]                                   
                                   >= [1] X + [0]                                   
                                   =  [X]                                           
                                                                                    
                [activate(n__0())] =  [1]                                           
                                   >= [1]                                           
                                   =  [0()]                                         
                                                                                    
       [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [4]                         
                                   >= [1] X1 + [1] X2 + [4]                         
                                   =  [plus(X1, X2)]                                
                                                                                    
               [activate(n__s(X))] =  [1] X + [1]                                   
                                   >= [1] X + [1]                                   
                                   =  [s(X)]                                        
                                                                                    
          [activate(n__x(X1, X2))] =  [1] X1 + [1] X2 + [1]                         
                                   >= [1] X1 + [1] X2 + [1]                         
                                   =  [x(X1, X2)]                                   
                                                                                    
                       [U21(tt())] =  [0]                                           
                                   ?  [6]                                           
                                   =  [tt()]                                        
                                                                                    
                   [U31(tt(), V2)] =  [0]                                           
                                   >= [0]                                           
                                   =  [U32(isNat(activate(V2)))]                    
                                                                                    
                       [U32(tt())] =  [0]                                           
                                   ?  [6]                                           
                                   =  [tt()]                                        
                                                                                    
                            [s(X)] =  [1] X + [1]                                   
                                   >= [1] X + [1]                                   
                                   =  [n__s(X)]                                     
                                                                                    
                    [plus(X1, X2)] =  [1] X1 + [1] X2 + [4]                         
                                   >= [1] X1 + [1] X2 + [4]                         
                                   =  [n__plus(X1, X2)]                             
                                                                                    
                             [0()] =  [1]                                           
                                   >= [1]                                           
                                   =  [n__0()]                                      
                                                                                    
                       [x(X1, X2)] =  [1] X1 + [1] X2 + [1]                         
                                   >= [1] X1 + [1] X2 + [1]                         
                                   =  [n__x(X1, X2)]                                
                                                                                    
                 [U11^#(tt(), V2)] =  [1] V2 + [4]                                  
                                   >  [1] V2 + [2]                                  
                                   =  [c_1(isNat^#(activate(V2)))]                  
                                                                                    
        [isNat^#(n__plus(V1, V2))] =  [1] V2 + [1] V1 + [5]                         
                                   >= [1] V2 + [1] V1 + [5]                         
                                   =  [c_2(U11^#(isNat(activate(V1)), activate(V2)),
                                           isNat^#(activate(V1)))]                  
                                                                                    
               [isNat^#(n__s(V1))] =  [1] V1 + [2]                                  
                                   >  [1] V1 + [1]                                  
                                   =  [c_3(isNat^#(activate(V1)))]                  
                                                                                    
           [isNat^#(n__x(V1, V2))] =  [1] V2 + [1] V1 + [2]                         
                                   >= [1] V2 + [1] V1 + [2]                         
                                   =  [c_4(U31^#(isNat(activate(V1)), activate(V2)),
                                           isNat^#(activate(V1)))]                  
                                                                                    
                 [U31^#(tt(), V2)] =  [1] V2 + [1]                                  
                                   >= [1] V2 + [1]                                  
                                   =  [c_5(isNat^#(activate(V2)))]                  
                                                                                    
               [U51^#(tt(), M, N)] =  [7] N + [4] M + [7]                           
                                   >  [2] N + [2]                                   
                                   =  [c_6(isNat^#(activate(N)))]                   
                                                                                    
               [U71^#(tt(), M, N)] =  [7] N + [4] M + [4]                           
                                   >  [2] N + [2]                                   
                                   =  [c_7(isNat^#(activate(N)))]                   
                                                                                    
   
   The strictly oriented rules are moved into the weak component.
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(n^1)).
   
   Strict DPs:
     { isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , isNat^#(n__x(V1, V2)) ->
       c_4(U31^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1))) }
   Weak DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
     , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
     , U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(X1, X2)
     , activate(n__s(X)) -> s(X)
     , activate(n__x(X1, X2)) -> x(X1, X2)
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(n^1))
   
   We use the processor 'matrix interpretation of dimension 1' to
   orient following rules strictly.
   
   DPs:
     { 2: isNat^#(n__x(V1, V2)) ->
          c_4(U31^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)))
     , 3: U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , 5: U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
     , 6: U51^#(tt(), M, N) -> c_6(isNat^#(activate(N))) }
   
   Sub-proof:
   ----------
     The following argument positions are usable:
       Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1},
       Uargs(c_4) = {1, 2}, Uargs(c_5) = {1}, Uargs(c_6) = {1},
       Uargs(c_7) = {1}
     
     TcT has computed the following constructor-based matrix
     interpretation satisfying not(EDA).
     
             [U11](x1, x2) = [1]                  
                                                  
                      [tt] = [1]                  
                                                  
                 [U12](x1) = [1]                  
                                                  
               [isNat](x1) = [1]                  
                                                  
            [activate](x1) = [1] x1 + [0]         
                                                  
                 [U21](x1) = [1] x1 + [0]         
                                                  
             [U31](x1, x2) = [1]                  
                                                  
                 [U32](x1) = [1] x1 + [0]         
                                                  
                   [s](x1) = [1] x1 + [0]         
                                                  
            [plus](x1, x2) = [1] x1 + [1] x2 + [5]
                                                  
                       [0] = [1]                  
                                                  
               [x](x1, x2) = [1] x1 + [1] x2 + [6]
                                                  
                    [n__0] = [1]                  
                                                  
         [n__plus](x1, x2) = [1] x1 + [1] x2 + [5]
                                                  
                [n__s](x1) = [1] x1 + [0]         
                                                  
            [n__x](x1, x2) = [1] x1 + [1] x2 + [6]
                                                  
           [U11^#](x1, x2) = [5] x1 + [1] x2 + [0]
                                                  
             [isNat^#](x1) = [1] x1 + [4]         
                                                  
           [U31^#](x1, x2) = [1] x1 + [1] x2 + [4]
                                                  
       [U51^#](x1, x2, x3) = [4] x2 + [7] x3 + [5]
                                                  
       [U71^#](x1, x2, x3) = [4] x2 + [7] x3 + [4]
                                                  
                 [c_1](x1) = [1] x1 + [0]         
                                                  
             [c_2](x1, x2) = [1] x1 + [1] x2 + [0]
                                                  
                 [c_3](x1) = [1] x1 + [0]         
                                                  
             [c_4](x1, x2) = [1] x1 + [1] x2 + [0]
                                                  
                 [c_5](x1) = [1] x1 + [0]         
                                                  
                 [c_6](x1) = [1] x1 + [0]         
                                                  
                 [c_7](x1) = [1] x1 + [0]         
     
     The order satisfies the following ordering constraints:
     
                   [U11(tt(), V2)] =  [1]                                           
                                   >= [1]                                           
                                   =  [U12(isNat(activate(V2)))]                    
                                                                                    
                       [U12(tt())] =  [1]                                           
                                   >= [1]                                           
                                   =  [tt()]                                        
                                                                                    
                   [isNat(n__0())] =  [1]                                           
                                   >= [1]                                           
                                   =  [tt()]                                        
                                                                                    
          [isNat(n__plus(V1, V2))] =  [1]                                           
                                   >= [1]                                           
                                   =  [U11(isNat(activate(V1)), activate(V2))]      
                                                                                    
                 [isNat(n__s(V1))] =  [1]                                           
                                   >= [1]                                           
                                   =  [U21(isNat(activate(V1)))]                    
                                                                                    
             [isNat(n__x(V1, V2))] =  [1]                                           
                                   >= [1]                                           
                                   =  [U31(isNat(activate(V1)), activate(V2))]      
                                                                                    
                     [activate(X)] =  [1] X + [0]                                   
                                   >= [1] X + [0]                                   
                                   =  [X]                                           
                                                                                    
                [activate(n__0())] =  [1]                                           
                                   >= [1]                                           
                                   =  [0()]                                         
                                                                                    
       [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [5]                         
                                   >= [1] X1 + [1] X2 + [5]                         
                                   =  [plus(X1, X2)]                                
                                                                                    
               [activate(n__s(X))] =  [1] X + [0]                                   
                                   >= [1] X + [0]                                   
                                   =  [s(X)]                                        
                                                                                    
          [activate(n__x(X1, X2))] =  [1] X1 + [1] X2 + [6]                         
                                   >= [1] X1 + [1] X2 + [6]                         
                                   =  [x(X1, X2)]                                   
                                                                                    
                       [U21(tt())] =  [1]                                           
                                   >= [1]                                           
                                   =  [tt()]                                        
                                                                                    
                   [U31(tt(), V2)] =  [1]                                           
                                   >= [1]                                           
                                   =  [U32(isNat(activate(V2)))]                    
                                                                                    
                       [U32(tt())] =  [1]                                           
                                   >= [1]                                           
                                   =  [tt()]                                        
                                                                                    
                            [s(X)] =  [1] X + [0]                                   
                                   >= [1] X + [0]                                   
                                   =  [n__s(X)]                                     
                                                                                    
                    [plus(X1, X2)] =  [1] X1 + [1] X2 + [5]                         
                                   >= [1] X1 + [1] X2 + [5]                         
                                   =  [n__plus(X1, X2)]                             
                                                                                    
                             [0()] =  [1]                                           
                                   >= [1]                                           
                                   =  [n__0()]                                      
                                                                                    
                       [x(X1, X2)] =  [1] X1 + [1] X2 + [6]                         
                                   >= [1] X1 + [1] X2 + [6]                         
                                   =  [n__x(X1, X2)]                                
                                                                                    
                 [U11^#(tt(), V2)] =  [1] V2 + [5]                                  
                                   >  [1] V2 + [4]                                  
                                   =  [c_1(isNat^#(activate(V2)))]                  
                                                                                    
        [isNat^#(n__plus(V1, V2))] =  [1] V2 + [1] V1 + [9]                         
                                   >= [1] V2 + [1] V1 + [9]                         
                                   =  [c_2(U11^#(isNat(activate(V1)), activate(V2)),
                                           isNat^#(activate(V1)))]                  
                                                                                    
               [isNat^#(n__s(V1))] =  [1] V1 + [4]                                  
                                   >= [1] V1 + [4]                                  
                                   =  [c_3(isNat^#(activate(V1)))]                  
                                                                                    
           [isNat^#(n__x(V1, V2))] =  [1] V2 + [1] V1 + [10]                        
                                   >  [1] V2 + [1] V1 + [9]                         
                                   =  [c_4(U31^#(isNat(activate(V1)), activate(V2)),
                                           isNat^#(activate(V1)))]                  
                                                                                    
                 [U31^#(tt(), V2)] =  [1] V2 + [5]                                  
                                   >  [1] V2 + [4]                                  
                                   =  [c_5(isNat^#(activate(V2)))]                  
                                                                                    
               [U51^#(tt(), M, N)] =  [7] N + [4] M + [5]                           
                                   >  [1] N + [4]                                   
                                   =  [c_6(isNat^#(activate(N)))]                   
                                                                                    
               [U71^#(tt(), M, N)] =  [7] N + [4] M + [4]                           
                                   >= [1] N + [4]                                   
                                   =  [c_7(isNat^#(activate(N)))]                   
                                                                                    
   
   We return to the main proof. Consider the set of all dependency
   pairs
   
   :
     { 1: isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)))
     , 2: isNat^#(n__x(V1, V2)) ->
          c_4(U31^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)))
     , 3: U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , 4: isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , 5: U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
     , 6: U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
     , 7: U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
   
   Processor 'matrix interpretation of dimension 1' induces the
   complexity certificate YES(?,O(n^1)) on application of dependency
   pairs {2,3,5,6}. These cover all (indirect) predecessors of
   dependency pairs {2,3,5,6,7}, their number of application is
   equally bounded. The dependency pairs are shifted into the weak
   component.
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(n^1)).
   
   Strict DPs:
     { isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1))) }
   Weak DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , isNat^#(n__x(V1, V2)) ->
       c_4(U31^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
     , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
     , U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(X1, X2)
     , activate(n__s(X)) -> s(X)
     , activate(n__x(X1, X2)) -> x(X1, X2)
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(n^1))
   
   We use the processor 'matrix interpretation of dimension 1' to
   orient following rules strictly.
   
   DPs:
     { 1: isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)))
     , 6: U51^#(tt(), M, N) -> c_6(isNat^#(activate(N))) }
   Trs:
     { activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(X1, X2)
     , activate(n__s(X)) -> s(X)
     , activate(n__x(X1, X2)) -> x(X1, X2)
     , s(X) -> n__s(X)
     , 0() -> n__0() }
   
   Sub-proof:
   ----------
     The following argument positions are usable:
       Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1},
       Uargs(c_4) = {1, 2}, Uargs(c_5) = {1}, Uargs(c_6) = {1},
       Uargs(c_7) = {1}
     
     TcT has computed the following constructor-based matrix
     interpretation satisfying not(EDA).
     
             [U11](x1, x2) = [1]                           
                                                           
                      [tt] = [1]                           
                                                           
                 [U12](x1) = [1]                           
                                                           
               [isNat](x1) = [1]                           
                                                           
            [activate](x1) = [1] x1 + [2]                  
                                                           
                 [U21](x1) = [1] x1 + [0]                  
                                                           
             [U31](x1, x2) = [1]                           
                                                           
                 [U32](x1) = [1]                           
                                                           
                   [s](x1) = [1] x1 + [3]                  
                                                           
            [plus](x1, x2) = [1] x1 + [1] x2 + [7]         
                                                           
                       [0] = [1]                           
                                                           
               [x](x1, x2) = [1] x1 + [1] x2 + [7]         
                                                           
                    [n__0] = [0]                           
                                                           
         [n__plus](x1, x2) = [1] x1 + [1] x2 + [7]         
                                                           
                [n__s](x1) = [1] x1 + [2]                  
                                                           
            [n__x](x1, x2) = [1] x1 + [1] x2 + [7]         
                                                           
           [U11^#](x1, x2) = [2] x2 + [5]                  
                                                           
             [isNat^#](x1) = [2] x1 + [1]                  
                                                           
           [U31^#](x1, x2) = [5] x1 + [2] x2 + [1]         
                                                           
       [U51^#](x1, x2, x3) = [4] x1 + [4] x2 + [7] x3 + [7]
                                                           
       [U71^#](x1, x2, x3) = [4] x1 + [4] x2 + [7] x3 + [6]
                                                           
                 [c_1](x1) = [1] x1 + [0]                  
                                                           
             [c_2](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                           
                 [c_3](x1) = [1] x1 + [0]                  
                                                           
             [c_4](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                           
                 [c_5](x1) = [1] x1 + [1]                  
                                                           
                 [c_6](x1) = [2] x1 + [0]                  
                                                           
                 [c_7](x1) = [2] x1 + [0]                  
     
     The order satisfies the following ordering constraints:
     
                   [U11(tt(), V2)] =  [1]                                           
                                   >= [1]                                           
                                   =  [U12(isNat(activate(V2)))]                    
                                                                                    
                       [U12(tt())] =  [1]                                           
                                   >= [1]                                           
                                   =  [tt()]                                        
                                                                                    
                   [isNat(n__0())] =  [1]                                           
                                   >= [1]                                           
                                   =  [tt()]                                        
                                                                                    
          [isNat(n__plus(V1, V2))] =  [1]                                           
                                   >= [1]                                           
                                   =  [U11(isNat(activate(V1)), activate(V2))]      
                                                                                    
                 [isNat(n__s(V1))] =  [1]                                           
                                   >= [1]                                           
                                   =  [U21(isNat(activate(V1)))]                    
                                                                                    
             [isNat(n__x(V1, V2))] =  [1]                                           
                                   >= [1]                                           
                                   =  [U31(isNat(activate(V1)), activate(V2))]      
                                                                                    
                     [activate(X)] =  [1] X + [2]                                   
                                   >  [1] X + [0]                                   
                                   =  [X]                                           
                                                                                    
                [activate(n__0())] =  [2]                                           
                                   >  [1]                                           
                                   =  [0()]                                         
                                                                                    
       [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [9]                         
                                   >  [1] X1 + [1] X2 + [7]                         
                                   =  [plus(X1, X2)]                                
                                                                                    
               [activate(n__s(X))] =  [1] X + [4]                                   
                                   >  [1] X + [3]                                   
                                   =  [s(X)]                                        
                                                                                    
          [activate(n__x(X1, X2))] =  [1] X1 + [1] X2 + [9]                         
                                   >  [1] X1 + [1] X2 + [7]                         
                                   =  [x(X1, X2)]                                   
                                                                                    
                       [U21(tt())] =  [1]                                           
                                   >= [1]                                           
                                   =  [tt()]                                        
                                                                                    
                   [U31(tt(), V2)] =  [1]                                           
                                   >= [1]                                           
                                   =  [U32(isNat(activate(V2)))]                    
                                                                                    
                       [U32(tt())] =  [1]                                           
                                   >= [1]                                           
                                   =  [tt()]                                        
                                                                                    
                            [s(X)] =  [1] X + [3]                                   
                                   >  [1] X + [2]                                   
                                   =  [n__s(X)]                                     
                                                                                    
                    [plus(X1, X2)] =  [1] X1 + [1] X2 + [7]                         
                                   >= [1] X1 + [1] X2 + [7]                         
                                   =  [n__plus(X1, X2)]                             
                                                                                    
                             [0()] =  [1]                                           
                                   >  [0]                                           
                                   =  [n__0()]                                      
                                                                                    
                       [x(X1, X2)] =  [1] X1 + [1] X2 + [7]                         
                                   >= [1] X1 + [1] X2 + [7]                         
                                   =  [n__x(X1, X2)]                                
                                                                                    
                 [U11^#(tt(), V2)] =  [2] V2 + [5]                                  
                                   >= [2] V2 + [5]                                  
                                   =  [c_1(isNat^#(activate(V2)))]                  
                                                                                    
        [isNat^#(n__plus(V1, V2))] =  [2] V2 + [2] V1 + [15]                        
                                   >  [2] V2 + [2] V1 + [14]                        
                                   =  [c_2(U11^#(isNat(activate(V1)), activate(V2)),
                                           isNat^#(activate(V1)))]                  
                                                                                    
               [isNat^#(n__s(V1))] =  [2] V1 + [5]                                  
                                   >= [2] V1 + [5]                                  
                                   =  [c_3(isNat^#(activate(V1)))]                  
                                                                                    
           [isNat^#(n__x(V1, V2))] =  [2] V2 + [2] V1 + [15]                        
                                   >= [2] V2 + [2] V1 + [15]                        
                                   =  [c_4(U31^#(isNat(activate(V1)), activate(V2)),
                                           isNat^#(activate(V1)))]                  
                                                                                    
                 [U31^#(tt(), V2)] =  [2] V2 + [6]                                  
                                   >= [2] V2 + [6]                                  
                                   =  [c_5(isNat^#(activate(V2)))]                  
                                                                                    
               [U51^#(tt(), M, N)] =  [7] N + [4] M + [11]                          
                                   >  [4] N + [10]                                  
                                   =  [c_6(isNat^#(activate(N)))]                   
                                                                                    
               [U71^#(tt(), M, N)] =  [7] N + [4] M + [10]                          
                                   >= [4] N + [10]                                  
                                   =  [c_7(isNat^#(activate(N)))]                   
                                                                                    
   
   We return to the main proof. Consider the set of all dependency
   pairs
   
   :
     { 1: isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)))
     , 2: U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , 3: isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , 4: isNat^#(n__x(V1, V2)) ->
          c_4(U31^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)))
     , 5: U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
     , 6: U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
     , 7: U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
   
   Processor 'matrix interpretation of dimension 1' induces the
   complexity certificate YES(?,O(n^1)) on application of dependency
   pairs {1,6}. These cover all (indirect) predecessors of dependency
   pairs {1,2,6,7}, their number of application is equally bounded.
   The dependency pairs are shifted into the weak component.
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Weak DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , isNat^#(n__x(V1, V2)) ->
       c_4(U31^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
     , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
     , U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(X1, X2)
     , activate(n__s(X)) -> s(X)
     , activate(n__x(X1, X2)) -> x(X1, X2)
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   The following weak DPs constitute a sub-graph of the DG that is
   closed under successors. The DPs are removed.
   
   { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
   , isNat^#(n__plus(V1, V2)) ->
     c_2(U11^#(isNat(activate(V1)), activate(V2)),
         isNat^#(activate(V1)))
   , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
   , isNat^#(n__x(V1, V2)) ->
     c_4(U31^#(isNat(activate(V1)), activate(V2)),
         isNat^#(activate(V1)))
   , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
   , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
   , U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(X1, X2)
     , activate(n__s(X)) -> s(X)
     , activate(n__x(X1, X2)) -> x(X1, X2)
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   No rule is usable, rules are removed from the input problem.
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Rules: Empty
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   Empty rules are trivially bounded

S) We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Strict DPs: { U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
   Weak DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , isNat^#(n__x(V1, V2)) ->
       c_4(U31^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
     , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N))) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(X1, X2)
     , activate(n__s(X)) -> s(X)
     , activate(n__x(X1, X2)) -> x(X1, X2)
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   We estimate the number of application of {1} by applications of
   Pre({1}) = {}. Here rules are labeled as follows:
   
     DPs:
       { 1: U71^#(tt(), M, N) -> c_7(isNat^#(activate(N)))
       , 2: U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
       , 3: isNat^#(n__plus(V1, V2)) ->
            c_2(U11^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)))
       , 4: isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
       , 5: isNat^#(n__x(V1, V2)) ->
            c_4(U31^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)))
       , 6: U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
       , 7: U51^#(tt(), M, N) -> c_6(isNat^#(activate(N))) }
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Weak DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , isNat^#(n__x(V1, V2)) ->
       c_4(U31^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
     , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
     , U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(X1, X2)
     , activate(n__s(X)) -> s(X)
     , activate(n__x(X1, X2)) -> x(X1, X2)
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   The following weak DPs constitute a sub-graph of the DG that is
   closed under successors. The DPs are removed.
   
   { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
   , isNat^#(n__plus(V1, V2)) ->
     c_2(U11^#(isNat(activate(V1)), activate(V2)),
         isNat^#(activate(V1)))
   , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
   , isNat^#(n__x(V1, V2)) ->
     c_4(U31^#(isNat(activate(V1)), activate(V2)),
         isNat^#(activate(V1)))
   , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
   , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
   , U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(X1, X2)
     , activate(n__s(X)) -> s(X)
     , activate(n__x(X1, X2)) -> x(X1, X2)
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   No rule is usable, rules are removed from the input problem.
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Rules: Empty
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   Empty rules are trivially bounded


Hurray, we answered YES(O(1),O(n^1))