*** 1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() U41(tt(),N) -> activate(N) U51(tt(),M,N) -> U52(isNat(activate(N)),activate(M),activate(N)) U52(tt(),M,N) -> s(plus(activate(N),activate(M))) U61(tt()) -> 0() U71(tt(),M,N) -> U72(isNat(activate(N)),activate(M),activate(N)) U72(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N)) activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(N,0()) -> U41(isNat(N),N) plus(N,s(M)) -> U51(isNat(M),M,N) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(N,0()) -> U61(isNat(N)) x(N,s(M)) -> U71(isNat(M),M,N) x(X1,X2) -> n__x(X1,X2) Weak DP Rules: Weak TRS Rules: Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0} Obligation: Innermost basic terms: {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate,isNat,plus,s,x}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: InnermostRuleRemoval Proof: Arguments of following rules are not normal-forms. plus(N,0()) -> U41(isNat(N),N) plus(N,s(M)) -> U51(isNat(M),M,N) x(N,0()) -> U61(isNat(N)) x(N,s(M)) -> U71(isNat(M),M,N) All above mentioned rules can be savely removed. *** 1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() U41(tt(),N) -> activate(N) U51(tt(),M,N) -> U52(isNat(activate(N)),activate(M),activate(N)) U52(tt(),M,N) -> s(plus(activate(N),activate(M))) U61(tt()) -> 0() U71(tt(),M,N) -> U72(isNat(activate(N)),activate(M),activate(N)) U72(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N)) activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Weak DP Rules: Weak TRS Rules: Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0} Obligation: Innermost basic terms: {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate,isNat,plus,s,x}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs 0#() -> c_1() U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)) U12#(tt()) -> c_3() U21#(tt()) -> c_4() U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)) U32#(tt()) -> c_6() U41#(tt(),N) -> c_7(activate#(N)) U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M)) U61#(tt()) -> c_10(0#()) U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N)) activate#(X) -> c_13() activate#(n__0()) -> c_14(0#()) activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)) activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) isNat#(n__0()) -> c_18() isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) plus#(X1,X2) -> c_22() s#(X) -> c_23() x#(X1,X2) -> c_24() Weak DPs and mark the set of starting terms. *** 1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: 0#() -> c_1() U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)) U12#(tt()) -> c_3() U21#(tt()) -> c_4() U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)) U32#(tt()) -> c_6() U41#(tt(),N) -> c_7(activate#(N)) U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M)) U61#(tt()) -> c_10(0#()) U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N)) activate#(X) -> c_13() activate#(n__0()) -> c_14(0#()) activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)) activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) isNat#(n__0()) -> c_18() isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) plus#(X1,X2) -> c_22() s#(X) -> c_23() x#(X1,X2) -> c_24() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() U41(tt(),N) -> activate(N) U51(tt(),M,N) -> U52(isNat(activate(N)),activate(M),activate(N)) U52(tt(),M,N) -> s(plus(activate(N),activate(M))) U61(tt()) -> 0() U71(tt(),M,N) -> U72(isNat(activate(N)),activate(M),activate(N)) U72(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N)) activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/3,c_3/0,c_4/0,c_5/3,c_6/0,c_7/1,c_8/5,c_9/4,c_10/1,c_11/5,c_12/5,c_13/0,c_14/1,c_15/3,c_16/2,c_17/3,c_18/0,c_19/4,c_20/3,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) 0#() -> c_1() U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)) U12#(tt()) -> c_3() U21#(tt()) -> c_4() U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)) U32#(tt()) -> c_6() U41#(tt(),N) -> c_7(activate#(N)) U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M)) U61#(tt()) -> c_10(0#()) U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N)) activate#(X) -> c_13() activate#(n__0()) -> c_14(0#()) activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)) activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) isNat#(n__0()) -> c_18() isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) plus#(X1,X2) -> c_22() s#(X) -> c_23() x#(X1,X2) -> c_24() *** 1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: 0#() -> c_1() U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)) U12#(tt()) -> c_3() U21#(tt()) -> c_4() U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)) U32#(tt()) -> c_6() U41#(tt(),N) -> c_7(activate#(N)) U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M)) U61#(tt()) -> c_10(0#()) U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N)) activate#(X) -> c_13() activate#(n__0()) -> c_14(0#()) activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)) activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) isNat#(n__0()) -> c_18() isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) plus#(X1,X2) -> c_22() s#(X) -> c_23() x#(X1,X2) -> c_24() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/3,c_3/0,c_4/0,c_5/3,c_6/0,c_7/1,c_8/5,c_9/4,c_10/1,c_11/5,c_12/5,c_13/0,c_14/1,c_15/3,c_16/2,c_17/3,c_18/0,c_19/4,c_20/3,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,3,4,6,13,18,22,23,24} by application of Pre({1,3,4,6,13,18,22,23,24}) = {2,5,7,8,9,10,11,12,14,15,16,17,19,20,21}. Here rules are labelled as follows: 1: 0#() -> c_1() 2: U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))) ,isNat#(activate(V2)) ,activate#(V2)) 3: U12#(tt()) -> c_3() 4: U21#(tt()) -> c_4() 5: U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))) ,isNat#(activate(V2)) ,activate#(V2)) 6: U32#(tt()) -> c_6() 7: U41#(tt(),N) -> c_7(activate#(N)) 8: U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)) ,activate(M) ,activate(N)) ,isNat#(activate(N)) ,activate#(N) ,activate#(M) ,activate#(N)) 9: U52#(tt(),M,N) -> c_9(s#(plus(activate(N) ,activate(M))) ,plus#(activate(N),activate(M)) ,activate#(N) ,activate#(M)) 10: U61#(tt()) -> c_10(0#()) 11: U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)) ,activate(M) ,activate(N)) ,isNat#(activate(N)) ,activate#(N) ,activate#(M) ,activate#(N)) 12: U72#(tt(),M,N) -> c_12(plus#(x(activate(N) ,activate(M)) ,activate(N)) ,x#(activate(N),activate(M)) ,activate#(N) ,activate#(M) ,activate#(N)) 13: activate#(X) -> c_13() 14: activate#(n__0()) -> c_14(0#()) 15: activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1) ,activate(X2)) ,activate#(X1) ,activate#(X2)) 16: activate#(n__s(X)) -> c_16(s#(activate(X)) ,activate#(X)) 17: activate#(n__x(X1,X2)) -> c_17(x#(activate(X1) ,activate(X2)) ,activate#(X1) ,activate#(X2)) 18: isNat#(n__0()) -> c_18() 19: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1)) ,activate#(V1) ,activate#(V2)) 20: isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))) ,isNat#(activate(V1)) ,activate#(V1)) 21: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1)) ,activate#(V1) ,activate#(V2)) 22: plus#(X1,X2) -> c_22() 23: s#(X) -> c_23() 24: x#(X1,X2) -> c_24() *** 1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)) U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)) U41#(tt(),N) -> c_7(activate#(N)) U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M)) U61#(tt()) -> c_10(0#()) U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N)) activate#(n__0()) -> c_14(0#()) activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)) activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) Strict TRS Rules: Weak DP Rules: 0#() -> c_1() U12#(tt()) -> c_3() U21#(tt()) -> c_4() U32#(tt()) -> c_6() activate#(X) -> c_13() isNat#(n__0()) -> c_18() plus#(X1,X2) -> c_22() s#(X) -> c_23() x#(X1,X2) -> c_24() Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/3,c_3/0,c_4/0,c_5/3,c_6/0,c_7/1,c_8/5,c_9/4,c_10/1,c_11/5,c_12/5,c_13/0,c_14/1,c_15/3,c_16/2,c_17/3,c_18/0,c_19/4,c_20/3,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {6,9} by application of Pre({6,9}) = {1,2,3,4,5,7,8,10,11,12,13,14,15}. Here rules are labelled as follows: 1: U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))) ,isNat#(activate(V2)) ,activate#(V2)) 2: U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))) ,isNat#(activate(V2)) ,activate#(V2)) 3: U41#(tt(),N) -> c_7(activate#(N)) 4: U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)) ,activate(M) ,activate(N)) ,isNat#(activate(N)) ,activate#(N) ,activate#(M) ,activate#(N)) 5: U52#(tt(),M,N) -> c_9(s#(plus(activate(N) ,activate(M))) ,plus#(activate(N),activate(M)) ,activate#(N) ,activate#(M)) 6: U61#(tt()) -> c_10(0#()) 7: U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)) ,activate(M) ,activate(N)) ,isNat#(activate(N)) ,activate#(N) ,activate#(M) ,activate#(N)) 8: U72#(tt(),M,N) -> c_12(plus#(x(activate(N) ,activate(M)) ,activate(N)) ,x#(activate(N),activate(M)) ,activate#(N) ,activate#(M) ,activate#(N)) 9: activate#(n__0()) -> c_14(0#()) 10: activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1) ,activate(X2)) ,activate#(X1) ,activate#(X2)) 11: activate#(n__s(X)) -> c_16(s#(activate(X)) ,activate#(X)) 12: activate#(n__x(X1,X2)) -> c_17(x#(activate(X1) ,activate(X2)) ,activate#(X1) ,activate#(X2)) 13: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1)) ,activate#(V1) ,activate#(V2)) 14: isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))) ,isNat#(activate(V1)) ,activate#(V1)) 15: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1)) ,activate#(V1) ,activate#(V2)) 16: 0#() -> c_1() 17: U12#(tt()) -> c_3() 18: U21#(tt()) -> c_4() 19: U32#(tt()) -> c_6() 20: activate#(X) -> c_13() 21: isNat#(n__0()) -> c_18() 22: plus#(X1,X2) -> c_22() 23: s#(X) -> c_23() 24: x#(X1,X2) -> c_24() *** 1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)) U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)) U41#(tt(),N) -> c_7(activate#(N)) U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M)) U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N)) activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)) activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) Strict TRS Rules: Weak DP Rules: 0#() -> c_1() U12#(tt()) -> c_3() U21#(tt()) -> c_4() U32#(tt()) -> c_6() U61#(tt()) -> c_10(0#()) activate#(X) -> c_13() activate#(n__0()) -> c_14(0#()) isNat#(n__0()) -> c_18() plus#(X1,X2) -> c_22() s#(X) -> c_23() x#(X1,X2) -> c_24() Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/3,c_3/0,c_4/0,c_5/3,c_6/0,c_7/1,c_8/5,c_9/4,c_10/1,c_11/5,c_12/5,c_13/0,c_14/1,c_15/3,c_16/2,c_17/3,c_18/0,c_19/4,c_20/3,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)) -->_3 activate#(n__0()) -> c_14(0#()):20 -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13 -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11 -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_2 isNat#(n__0()) -> c_18():21 -->_3 activate#(X) -> c_13():19 -->_1 U12#(tt()) -> c_3():15 2:S:U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)) -->_3 activate#(n__0()) -> c_14(0#()):20 -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13 -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11 -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_2 isNat#(n__0()) -> c_18():21 -->_3 activate#(X) -> c_13():19 -->_1 U32#(tt()) -> c_6():17 3:S:U41#(tt(),N) -> c_7(activate#(N)) -->_1 activate#(n__0()) -> c_14(0#()):20 -->_1 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_1 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_1 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_1 activate#(X) -> c_13():19 4:S:U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) -->_5 activate#(n__0()) -> c_14(0#()):20 -->_4 activate#(n__0()) -> c_14(0#()):20 -->_3 activate#(n__0()) -> c_14(0#()):20 -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13 -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11 -->_5 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_5 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_5 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_1 U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M)):5 -->_2 isNat#(n__0()) -> c_18():21 -->_5 activate#(X) -> c_13():19 -->_4 activate#(X) -> c_13():19 -->_3 activate#(X) -> c_13():19 5:S:U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M)) -->_4 activate#(n__0()) -> c_14(0#()):20 -->_3 activate#(n__0()) -> c_14(0#()):20 -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_1 s#(X) -> c_23():23 -->_2 plus#(X1,X2) -> c_22():22 -->_4 activate#(X) -> c_13():19 -->_3 activate#(X) -> c_13():19 6:S:U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) -->_5 activate#(n__0()) -> c_14(0#()):20 -->_4 activate#(n__0()) -> c_14(0#()):20 -->_3 activate#(n__0()) -> c_14(0#()):20 -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13 -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11 -->_5 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_5 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_5 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_1 U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N)):7 -->_2 isNat#(n__0()) -> c_18():21 -->_5 activate#(X) -> c_13():19 -->_4 activate#(X) -> c_13():19 -->_3 activate#(X) -> c_13():19 7:S:U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N)) -->_5 activate#(n__0()) -> c_14(0#()):20 -->_4 activate#(n__0()) -> c_14(0#()):20 -->_3 activate#(n__0()) -> c_14(0#()):20 -->_5 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_5 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_5 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_2 x#(X1,X2) -> c_24():24 -->_1 plus#(X1,X2) -> c_22():22 -->_5 activate#(X) -> c_13():19 -->_4 activate#(X) -> c_13():19 -->_3 activate#(X) -> c_13():19 8:S:activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) -->_3 activate#(n__0()) -> c_14(0#()):20 -->_2 activate#(n__0()) -> c_14(0#()):20 -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_2 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_2 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_1 plus#(X1,X2) -> c_22():22 -->_3 activate#(X) -> c_13():19 -->_2 activate#(X) -> c_13():19 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_2 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 9:S:activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)) -->_2 activate#(n__0()) -> c_14(0#()):20 -->_2 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_1 s#(X) -> c_23():23 -->_2 activate#(X) -> c_13():19 -->_2 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_2 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 10:S:activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) -->_3 activate#(n__0()) -> c_14(0#()):20 -->_2 activate#(n__0()) -> c_14(0#()):20 -->_1 x#(X1,X2) -> c_24():24 -->_3 activate#(X) -> c_13():19 -->_2 activate#(X) -> c_13():19 -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_2 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_2 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_2 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 11:S:isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) -->_4 activate#(n__0()) -> c_14(0#()):20 -->_3 activate#(n__0()) -> c_14(0#()):20 -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13 -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12 -->_2 isNat#(n__0()) -> c_18():21 -->_4 activate#(X) -> c_13():19 -->_3 activate#(X) -> c_13():19 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11 -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_1 U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):1 12:S:isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)) -->_3 activate#(n__0()) -> c_14(0#()):20 -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13 -->_2 isNat#(n__0()) -> c_18():21 -->_3 activate#(X) -> c_13():19 -->_1 U21#(tt()) -> c_4():16 -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11 -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 13:S:isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) -->_4 activate#(n__0()) -> c_14(0#()):20 -->_3 activate#(n__0()) -> c_14(0#()):20 -->_2 isNat#(n__0()) -> c_18():21 -->_4 activate#(X) -> c_13():19 -->_3 activate#(X) -> c_13():19 -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13 -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11 -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_1 U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):2 14:W:0#() -> c_1() 15:W:U12#(tt()) -> c_3() 16:W:U21#(tt()) -> c_4() 17:W:U32#(tt()) -> c_6() 18:W:U61#(tt()) -> c_10(0#()) -->_1 0#() -> c_1():14 19:W:activate#(X) -> c_13() 20:W:activate#(n__0()) -> c_14(0#()) -->_1 0#() -> c_1():14 21:W:isNat#(n__0()) -> c_18() 22:W:plus#(X1,X2) -> c_22() 23:W:s#(X) -> c_23() 24:W:x#(X1,X2) -> c_24() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 18: U61#(tt()) -> c_10(0#()) 15: U12#(tt()) -> c_3() 17: U32#(tt()) -> c_6() 22: plus#(X1,X2) -> c_22() 23: s#(X) -> c_23() 24: x#(X1,X2) -> c_24() 16: U21#(tt()) -> c_4() 19: activate#(X) -> c_13() 21: isNat#(n__0()) -> c_18() 20: activate#(n__0()) -> c_14(0#()) 14: 0#() -> c_1() *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)) U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)) U41#(tt(),N) -> c_7(activate#(N)) U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M)) U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N)) activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)) activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/3,c_3/0,c_4/0,c_5/3,c_6/0,c_7/1,c_8/5,c_9/4,c_10/1,c_11/5,c_12/5,c_13/0,c_14/1,c_15/3,c_16/2,c_17/3,c_18/0,c_19/4,c_20/3,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13 -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11 -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 2:S:U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13 -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11 -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 3:S:U41#(tt(),N) -> c_7(activate#(N)) -->_1 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_1 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_1 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 4:S:U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13 -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11 -->_5 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_5 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_5 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_1 U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M)):5 5:S:U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M)) -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 6:S:U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13 -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11 -->_5 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_5 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_5 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_1 U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N)):7 7:S:U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N)) -->_5 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_5 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_5 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 8:S:activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_2 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_2 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_2 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 9:S:activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)) -->_2 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_2 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_2 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 10:S:activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_2 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_2 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_2 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 11:S:isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13 -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11 -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_1 U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):1 12:S:isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13 -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11 -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 13:S:isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13 -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11 -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10 -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9 -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8 -->_1 U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):2 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)) U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)) U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)) U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)) activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) activate#(n__s(X)) -> c_16(activate#(X)) activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)) *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)) U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)) U41#(tt(),N) -> c_7(activate#(N)) U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)) U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)) activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) activate#(n__s(X)) -> c_16(activate#(X)) activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: RemoveHeads Proof: Consider the dependency graph 1:S:U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)) -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13 -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):12 -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11 -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_2 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 2:S:U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)) -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13 -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):12 -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11 -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_2 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 3:S:U41#(tt(),N) -> c_7(activate#(N)) -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 4:S:U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13 -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):12 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11 -->_5 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_5 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_4 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_3 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_5 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 -->_1 U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)):5 5:S:U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)) -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_2 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 6:S:U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13 -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):12 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11 -->_5 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_5 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_4 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_3 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_5 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 -->_1 U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)):7 7:S:U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)) -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_3 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_2 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 8:S:activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_2 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 9:S:activate#(n__s(X)) -> c_16(activate#(X)) -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 10:S:activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_2 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 11:S:isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13 -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):12 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11 -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_4 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_3 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 -->_1 U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)):1 12:S:isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)) -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13 -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):12 -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11 -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_2 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 13:S:isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13 -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):12 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11 -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10 -->_4 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_3 activate#(n__s(X)) -> c_16(activate#(X)):9 -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8 -->_1 U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)):2 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(3,U41#(tt(),N) -> c_7(activate#(N)))] *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)) U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)) U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)) U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)) activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) activate#(n__s(X)) -> c_16(activate#(X)) activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)) U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)) activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) activate#(n__s(X)) -> c_16(activate#(X)) activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) Strict TRS Rules: Weak DP Rules: U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)) U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Problem (S) Strict DP Rules: U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)) U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)) Strict TRS Rules: Weak DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)) U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)) activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) activate#(n__s(X)) -> c_16(activate#(X)) activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)) U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)) activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) activate#(n__s(X)) -> c_16(activate#(X)) activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) Strict TRS Rules: Weak DP Rules: U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)) U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} Proof: We decompose the input problem according to the dependency graph into the upper component U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)) U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)) U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)) U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) and a lower component activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) activate#(n__s(X)) -> c_16(activate#(X)) activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) Further, following extension rules are added to the lower component. U11#(tt(),V2) -> activate#(V2) U11#(tt(),V2) -> isNat#(activate(V2)) U31#(tt(),V2) -> activate#(V2) U31#(tt(),V2) -> isNat#(activate(V2)) U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N)) U51#(tt(),M,N) -> activate#(M) U51#(tt(),M,N) -> activate#(N) U51#(tt(),M,N) -> isNat#(activate(N)) U52#(tt(),M,N) -> activate#(M) U52#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N)) U71#(tt(),M,N) -> activate#(M) U71#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> isNat#(activate(N)) U72#(tt(),M,N) -> activate#(M) U72#(tt(),M,N) -> activate#(N) isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) isNat#(n__plus(V1,V2)) -> activate#(V1) isNat#(n__plus(V1,V2)) -> activate#(V2) isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) isNat#(n__s(V1)) -> activate#(V1) isNat#(n__s(V1)) -> isNat#(activate(V1)) isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)) isNat#(n__x(V1,V2)) -> activate#(V1) isNat#(n__x(V1,V2)) -> activate#(V2) isNat#(n__x(V1,V2)) -> isNat#(activate(V1)) *** 1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)) U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)) U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)) U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {4,6} by application of Pre({4,6}) = {3,5}. Here rules are labelled as follows: 1: U11#(tt(),V2) -> c_2(isNat#(activate(V2)) ,activate#(V2)) 2: U31#(tt(),V2) -> c_5(isNat#(activate(V2)) ,activate#(V2)) 3: U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)) ,activate(M) ,activate(N)) ,isNat#(activate(N)) ,activate#(N) ,activate#(M) ,activate#(N)) 4: U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)) 5: U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)) ,activate(M) ,activate(N)) ,isNat#(activate(N)) ,activate#(N) ,activate#(M) ,activate#(N)) 6: U72#(tt(),M,N) -> c_12(activate#(N) ,activate#(M) ,activate#(N)) 7: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1)) ,activate#(V1) ,activate#(V2)) 8: isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)) ,activate#(V1)) 9: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1)) ,activate#(V1) ,activate#(V2)) *** 1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)) U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)) U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) Strict TRS Rules: Weak DP Rules: U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)) U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)) -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7 -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6 -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5 2:S:U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)) -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7 -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6 -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5 3:S:U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7 -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5 -->_1 U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)):8 4:S:U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7 -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5 -->_1 U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)):9 5:S:isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7 -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5 -->_1 U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)):1 6:S:isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)) -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7 -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6 -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5 7:S:isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7 -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5 -->_1 U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)):2 8:W:U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)) 9:W:U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 9: U72#(tt(),M,N) -> c_12(activate#(N) ,activate#(M) ,activate#(N)) 8: U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)) *** 1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)) U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)) U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)) -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7 -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6 -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5 2:S:U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)) -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7 -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6 -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5 3:S:U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7 -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5 4:S:U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7 -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5 5:S:isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7 -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5 -->_1 U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)):1 6:S:isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)) -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7 -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6 -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5 7:S:isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7 -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5 -->_1 U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)):2 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: U11#(tt(),V2) -> c_2(isNat#(activate(V2))) U31#(tt(),V2) -> c_5(isNat#(activate(V2))) U51#(tt(),M,N) -> c_8(isNat#(activate(N))) U71#(tt(),M,N) -> c_11(isNat#(activate(N))) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2))) U31#(tt(),V2) -> c_5(isNat#(activate(V2))) U51#(tt(),M,N) -> c_8(isNat#(activate(N))) U71#(tt(),M,N) -> c_11(isNat#(activate(N))) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 4: U71#(tt(),M,N) -> c_11(isNat#(activate(N))) 6: isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))) Consider the set of all dependency pairs 1: U11#(tt(),V2) -> c_2(isNat#(activate(V2))) 2: U31#(tt(),V2) -> c_5(isNat#(activate(V2))) 3: U51#(tt(),M,N) -> c_8(isNat#(activate(N))) 4: U71#(tt(),M,N) -> c_11(isNat#(activate(N))) 5: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1))) 6: isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))) 7: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1))) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {4,6} These cover all (indirect) predecessors of dependency pairs {3,4,6} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2))) U31#(tt(),V2) -> c_5(isNat#(activate(V2))) U51#(tt(),M,N) -> c_8(isNat#(activate(N))) U71#(tt(),M,N) -> c_11(isNat#(activate(N))) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_5) = {1}, uargs(c_8) = {1}, uargs(c_11) = {1}, uargs(c_19) = {1,2}, uargs(c_20) = {1}, uargs(c_21) = {1,2} Following symbols are considered usable: {0,activate,plus,s,x,0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#} TcT has computed the following interpretation: p(0) = [4] p(U11) = [3] x1 + [4] x2 + [1] p(U12) = [1] x1 + [2] p(U21) = [4] p(U31) = [0] p(U32) = [1] x1 + [5] p(U41) = [4] x1 + [4] x2 + [1] p(U51) = [4] x1 + [0] p(U52) = [1] x1 + [1] x2 + [1] x3 + [1] p(U61) = [1] p(U71) = [1] x2 + [4] p(U72) = [4] x1 + [1] x3 + [0] p(activate) = [1] x1 + [0] p(isNat) = [4] p(n__0) = [4] p(n__plus) = [1] x1 + [1] x2 + [0] p(n__s) = [1] x1 + [2] p(n__x) = [1] x1 + [1] x2 + [0] p(plus) = [1] x1 + [1] x2 + [0] p(s) = [1] x1 + [2] p(tt) = [0] p(x) = [1] x1 + [1] x2 + [0] p(0#) = [2] p(U11#) = [4] x2 + [0] p(U12#) = [0] p(U21#) = [1] p(U31#) = [4] x2 + [0] p(U32#) = [1] x1 + [0] p(U41#) = [4] x1 + [1] p(U51#) = [4] x1 + [2] x2 + [4] x3 + [0] p(U52#) = [2] x1 + [2] x3 + [0] p(U61#) = [1] x1 + [2] p(U71#) = [4] x3 + [1] p(U72#) = [1] x3 + [1] p(activate#) = [1] p(isNat#) = [4] x1 + [0] p(plus#) = [4] x1 + [2] p(s#) = [4] x1 + [0] p(x#) = [1] x2 + [0] p(c_1) = [1] p(c_2) = [1] x1 + [0] p(c_3) = [1] p(c_4) = [4] p(c_5) = [1] x1 + [0] p(c_6) = [1] p(c_7) = [2] x1 + [0] p(c_8) = [1] x1 + [0] p(c_9) = [1] x2 + [0] p(c_10) = [4] x1 + [0] p(c_11) = [1] x1 + [0] p(c_12) = [2] x3 + [0] p(c_13) = [2] p(c_14) = [2] x1 + [1] p(c_15) = [2] x1 + [1] p(c_16) = [2] x1 + [2] p(c_17) = [2] x2 + [0] p(c_18) = [4] p(c_19) = [1] x1 + [1] x2 + [0] p(c_20) = [1] x1 + [3] p(c_21) = [1] x1 + [1] x2 + [0] p(c_22) = [1] p(c_23) = [2] p(c_24) = [1] Following rules are strictly oriented: U71#(tt(),M,N) = [4] N + [1] > [4] N + [0] = c_11(isNat#(activate(N))) isNat#(n__s(V1)) = [4] V1 + [8] > [4] V1 + [3] = c_20(isNat#(activate(V1))) Following rules are (at-least) weakly oriented: U11#(tt(),V2) = [4] V2 + [0] >= [4] V2 + [0] = c_2(isNat#(activate(V2))) U31#(tt(),V2) = [4] V2 + [0] >= [4] V2 + [0] = c_5(isNat#(activate(V2))) U51#(tt(),M,N) = [2] M + [4] N + [0] >= [4] N + [0] = c_8(isNat#(activate(N))) isNat#(n__plus(V1,V2)) = [4] V1 + [4] V2 + [0] >= [4] V1 + [4] V2 + [0] = c_19(U11#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1))) isNat#(n__x(V1,V2)) = [4] V1 + [4] V2 + [0] >= [4] V1 + [4] V2 + [0] = c_21(U31#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1))) 0() = [4] >= [4] = n__0() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__0()) = [4] >= [4] = 0() activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = plus(activate(X1),activate(X2)) activate(n__s(X)) = [1] X + [2] >= [1] X + [2] = s(activate(X)) activate(n__x(X1,X2)) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = x(activate(X1),activate(X2)) plus(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = n__plus(X1,X2) s(X) = [1] X + [2] >= [1] X + [2] = n__s(X) x(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = n__x(X1,X2) *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2))) U31#(tt(),V2) -> c_5(isNat#(activate(V2))) U51#(tt(),M,N) -> c_8(isNat#(activate(N))) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) Strict TRS Rules: Weak DP Rules: U71#(tt(),M,N) -> c_11(isNat#(activate(N))) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2))) U31#(tt(),V2) -> c_5(isNat#(activate(V2))) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) Strict TRS Rules: Weak DP Rules: U51#(tt(),M,N) -> c_8(isNat#(activate(N))) U71#(tt(),M,N) -> c_11(isNat#(activate(N))) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 2: U31#(tt(),V2) -> c_5(isNat#(activate(V2))) Consider the set of all dependency pairs 1: U11#(tt(),V2) -> c_2(isNat#(activate(V2))) 2: U31#(tt(),V2) -> c_5(isNat#(activate(V2))) 3: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1))) 4: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1))) 5: U51#(tt(),M,N) -> c_8(isNat#(activate(N))) 6: U71#(tt(),M,N) -> c_11(isNat#(activate(N))) 7: isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {2} These cover all (indirect) predecessors of dependency pairs {2,5,6} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2))) U31#(tt(),V2) -> c_5(isNat#(activate(V2))) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) Strict TRS Rules: Weak DP Rules: U51#(tt(),M,N) -> c_8(isNat#(activate(N))) U71#(tt(),M,N) -> c_11(isNat#(activate(N))) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_5) = {1}, uargs(c_8) = {1}, uargs(c_11) = {1}, uargs(c_19) = {1,2}, uargs(c_20) = {1}, uargs(c_21) = {1,2} Following symbols are considered usable: {0,U11,U12,U21,U31,U32,activate,isNat,plus,s,x,0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#} TcT has computed the following interpretation: p(0) = [0] p(U11) = [0] p(U12) = [0] p(U21) = [1] p(U31) = [3] p(U32) = [3] p(U41) = [1] x1 + [4] x2 + [0] p(U51) = [1] p(U52) = [2] x1 + [1] x3 + [1] p(U61) = [1] x1 + [0] p(U71) = [1] x1 + [4] x2 + [0] p(U72) = [1] x1 + [1] x3 + [1] p(activate) = [1] x1 + [0] p(isNat) = [4] p(n__0) = [0] p(n__plus) = [1] x1 + [1] x2 + [2] p(n__s) = [1] x1 + [1] p(n__x) = [1] x1 + [1] x2 + [2] p(plus) = [1] x1 + [1] x2 + [2] p(s) = [1] x1 + [1] p(tt) = [0] p(x) = [1] x1 + [1] x2 + [2] p(0#) = [0] p(U11#) = [2] x1 + [4] x2 + [0] p(U12#) = [2] p(U21#) = [1] x1 + [2] p(U31#) = [4] x2 + [7] p(U32#) = [1] x1 + [0] p(U41#) = [2] x1 + [1] x2 + [2] p(U51#) = [2] x2 + [4] x3 + [1] p(U52#) = [2] x1 + [1] x2 + [4] x3 + [1] p(U61#) = [2] p(U71#) = [4] x3 + [5] p(U72#) = [1] x1 + [4] x2 + [1] x3 + [2] p(activate#) = [2] x1 + [1] p(isNat#) = [4] x1 + [0] p(plus#) = [1] x1 + [1] x2 + [1] p(s#) = [4] x1 + [1] p(x#) = [2] p(c_1) = [1] p(c_2) = [1] x1 + [0] p(c_3) = [4] p(c_4) = [2] p(c_5) = [1] x1 + [3] p(c_6) = [1] p(c_7) = [1] p(c_8) = [1] x1 + [0] p(c_9) = [1] p(c_10) = [2] x1 + [0] p(c_11) = [1] x1 + [1] p(c_12) = [4] x1 + [1] x2 + [2] x3 + [4] p(c_13) = [1] p(c_14) = [0] p(c_15) = [1] p(c_16) = [2] x1 + [4] p(c_17) = [1] x2 + [0] p(c_18) = [2] p(c_19) = [1] x1 + [1] x2 + [0] p(c_20) = [1] x1 + [4] p(c_21) = [1] x1 + [1] x2 + [1] p(c_22) = [4] p(c_23) = [1] p(c_24) = [0] Following rules are strictly oriented: U31#(tt(),V2) = [4] V2 + [7] > [4] V2 + [3] = c_5(isNat#(activate(V2))) Following rules are (at-least) weakly oriented: U11#(tt(),V2) = [4] V2 + [0] >= [4] V2 + [0] = c_2(isNat#(activate(V2))) U51#(tt(),M,N) = [2] M + [4] N + [1] >= [4] N + [0] = c_8(isNat#(activate(N))) U71#(tt(),M,N) = [4] N + [5] >= [4] N + [1] = c_11(isNat#(activate(N))) isNat#(n__plus(V1,V2)) = [4] V1 + [4] V2 + [8] >= [4] V1 + [4] V2 + [8] = c_19(U11#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1))) isNat#(n__s(V1)) = [4] V1 + [4] >= [4] V1 + [4] = c_20(isNat#(activate(V1))) isNat#(n__x(V1,V2)) = [4] V1 + [4] V2 + [8] >= [4] V1 + [4] V2 + [8] = c_21(U31#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1))) 0() = [0] >= [0] = n__0() U11(tt(),V2) = [0] >= [0] = U12(isNat(activate(V2))) U12(tt()) = [0] >= [0] = tt() U21(tt()) = [1] >= [0] = tt() U31(tt(),V2) = [3] >= [3] = U32(isNat(activate(V2))) U32(tt()) = [3] >= [0] = tt() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__0()) = [0] >= [0] = 0() activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [2] >= [1] X1 + [1] X2 + [2] = plus(activate(X1),activate(X2)) activate(n__s(X)) = [1] X + [1] >= [1] X + [1] = s(activate(X)) activate(n__x(X1,X2)) = [1] X1 + [1] X2 + [2] >= [1] X1 + [1] X2 + [2] = x(activate(X1),activate(X2)) isNat(n__0()) = [4] >= [0] = tt() isNat(n__plus(V1,V2)) = [4] >= [0] = U11(isNat(activate(V1)) ,activate(V2)) isNat(n__s(V1)) = [4] >= [1] = U21(isNat(activate(V1))) isNat(n__x(V1,V2)) = [4] >= [3] = U31(isNat(activate(V1)) ,activate(V2)) plus(X1,X2) = [1] X1 + [1] X2 + [2] >= [1] X1 + [1] X2 + [2] = n__plus(X1,X2) s(X) = [1] X + [1] >= [1] X + [1] = n__s(X) x(X1,X2) = [1] X1 + [1] X2 + [2] >= [1] X1 + [1] X2 + [2] = n__x(X1,X2) *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2))) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) Strict TRS Rules: Weak DP Rules: U31#(tt(),V2) -> c_5(isNat#(activate(V2))) U51#(tt(),M,N) -> c_8(isNat#(activate(N))) U71#(tt(),M,N) -> c_11(isNat#(activate(N))) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2))) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) Strict TRS Rules: Weak DP Rules: U31#(tt(),V2) -> c_5(isNat#(activate(V2))) U51#(tt(),M,N) -> c_8(isNat#(activate(N))) U71#(tt(),M,N) -> c_11(isNat#(activate(N))) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 3: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1))) Consider the set of all dependency pairs 1: U11#(tt(),V2) -> c_2(isNat#(activate(V2))) 2: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1))) 3: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1))) 4: U31#(tt(),V2) -> c_5(isNat#(activate(V2))) 5: U51#(tt(),M,N) -> c_8(isNat#(activate(N))) 6: U71#(tt(),M,N) -> c_11(isNat#(activate(N))) 7: isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {3} These cover all (indirect) predecessors of dependency pairs {3,4,5,6} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2))) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) Strict TRS Rules: Weak DP Rules: U31#(tt(),V2) -> c_5(isNat#(activate(V2))) U51#(tt(),M,N) -> c_8(isNat#(activate(N))) U71#(tt(),M,N) -> c_11(isNat#(activate(N))) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_5) = {1}, uargs(c_8) = {1}, uargs(c_11) = {1}, uargs(c_19) = {1,2}, uargs(c_20) = {1}, uargs(c_21) = {1,2} Following symbols are considered usable: {0,activate,plus,s,x,0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#} TcT has computed the following interpretation: p(0) = [1] p(U11) = [1] p(U12) = [2] p(U21) = [1] x1 + [4] p(U31) = [2] x2 + [0] p(U32) = [2] x1 + [4] p(U41) = [1] x1 + [0] p(U51) = [1] x2 + [1] x3 + [2] p(U52) = [1] x2 + [1] p(U61) = [4] x1 + [1] p(U71) = [0] p(U72) = [1] x1 + [0] p(activate) = [1] x1 + [0] p(isNat) = [4] p(n__0) = [1] p(n__plus) = [1] x1 + [1] x2 + [1] p(n__s) = [1] x1 + [1] p(n__x) = [1] x1 + [1] x2 + [2] p(plus) = [1] x1 + [1] x2 + [1] p(s) = [1] x1 + [1] p(tt) = [0] p(x) = [1] x1 + [1] x2 + [2] p(0#) = [0] p(U11#) = [4] x2 + [0] p(U12#) = [4] x1 + [4] p(U21#) = [4] p(U31#) = [4] x2 + [4] p(U32#) = [1] x1 + [1] p(U41#) = [0] p(U51#) = [1] x1 + [4] x3 + [6] p(U52#) = [2] p(U61#) = [1] x1 + [4] p(U71#) = [2] x1 + [4] x3 + [1] p(U72#) = [4] x2 + [2] p(activate#) = [2] x1 + [0] p(isNat#) = [4] x1 + [0] p(plus#) = [4] p(s#) = [1] x1 + [0] p(x#) = [1] x1 + [1] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [1] p(c_5) = [1] x1 + [4] p(c_6) = [0] p(c_7) = [0] p(c_8) = [1] x1 + [4] p(c_9) = [1] x1 + [1] p(c_10) = [1] p(c_11) = [1] x1 + [0] p(c_12) = [1] x2 + [4] p(c_13) = [2] p(c_14) = [1] x1 + [1] p(c_15) = [4] x1 + [1] p(c_16) = [0] p(c_17) = [1] x1 + [0] p(c_18) = [0] p(c_19) = [1] x1 + [1] x2 + [4] p(c_20) = [1] x1 + [4] p(c_21) = [1] x1 + [1] x2 + [0] p(c_22) = [0] p(c_23) = [4] p(c_24) = [1] Following rules are strictly oriented: isNat#(n__x(V1,V2)) = [4] V1 + [4] V2 + [8] > [4] V1 + [4] V2 + [4] = c_21(U31#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1))) Following rules are (at-least) weakly oriented: U11#(tt(),V2) = [4] V2 + [0] >= [4] V2 + [0] = c_2(isNat#(activate(V2))) U31#(tt(),V2) = [4] V2 + [4] >= [4] V2 + [4] = c_5(isNat#(activate(V2))) U51#(tt(),M,N) = [4] N + [6] >= [4] N + [4] = c_8(isNat#(activate(N))) U71#(tt(),M,N) = [4] N + [1] >= [4] N + [0] = c_11(isNat#(activate(N))) isNat#(n__plus(V1,V2)) = [4] V1 + [4] V2 + [4] >= [4] V1 + [4] V2 + [4] = c_19(U11#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1))) isNat#(n__s(V1)) = [4] V1 + [4] >= [4] V1 + [4] = c_20(isNat#(activate(V1))) 0() = [1] >= [1] = n__0() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__0()) = [1] >= [1] = 0() activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [1] >= [1] X1 + [1] X2 + [1] = plus(activate(X1),activate(X2)) activate(n__s(X)) = [1] X + [1] >= [1] X + [1] = s(activate(X)) activate(n__x(X1,X2)) = [1] X1 + [1] X2 + [2] >= [1] X1 + [1] X2 + [2] = x(activate(X1),activate(X2)) plus(X1,X2) = [1] X1 + [1] X2 + [1] >= [1] X1 + [1] X2 + [1] = n__plus(X1,X2) s(X) = [1] X + [1] >= [1] X + [1] = n__s(X) x(X1,X2) = [1] X1 + [1] X2 + [2] >= [1] X1 + [1] X2 + [2] = n__x(X1,X2) *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2))) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) Strict TRS Rules: Weak DP Rules: U31#(tt(),V2) -> c_5(isNat#(activate(V2))) U51#(tt(),M,N) -> c_8(isNat#(activate(N))) U71#(tt(),M,N) -> c_11(isNat#(activate(N))) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2))) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) Strict TRS Rules: Weak DP Rules: U31#(tt(),V2) -> c_5(isNat#(activate(V2))) U51#(tt(),M,N) -> c_8(isNat#(activate(N))) U71#(tt(),M,N) -> c_11(isNat#(activate(N))) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 2: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1))) Consider the set of all dependency pairs 1: U11#(tt(),V2) -> c_2(isNat#(activate(V2))) 2: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1))) 3: U31#(tt(),V2) -> c_5(isNat#(activate(V2))) 4: U51#(tt(),M,N) -> c_8(isNat#(activate(N))) 5: U71#(tt(),M,N) -> c_11(isNat#(activate(N))) 6: isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))) 7: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1))) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {2} These cover all (indirect) predecessors of dependency pairs {1,2,4,5} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2))) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) Strict TRS Rules: Weak DP Rules: U31#(tt(),V2) -> c_5(isNat#(activate(V2))) U51#(tt(),M,N) -> c_8(isNat#(activate(N))) U71#(tt(),M,N) -> c_11(isNat#(activate(N))) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_5) = {1}, uargs(c_8) = {1}, uargs(c_11) = {1}, uargs(c_19) = {1,2}, uargs(c_20) = {1}, uargs(c_21) = {1,2} Following symbols are considered usable: {0,activate,plus,s,x,0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#} TcT has computed the following interpretation: p(0) = [0] p(U11) = [0] p(U12) = [0] p(U21) = [0] p(U31) = [0] p(U32) = [1] x1 + [0] p(U41) = [0] p(U51) = [0] p(U52) = [0] p(U61) = [0] p(U71) = [0] p(U72) = [0] p(activate) = [1] x1 + [0] p(isNat) = [0] p(n__0) = [0] p(n__plus) = [1] x1 + [1] x2 + [3] p(n__s) = [1] x1 + [2] p(n__x) = [1] x1 + [1] x2 + [3] p(plus) = [1] x1 + [1] x2 + [3] p(s) = [1] x1 + [2] p(tt) = [0] p(x) = [1] x1 + [1] x2 + [3] p(0#) = [0] p(U11#) = [4] x2 + [7] p(U12#) = [0] p(U21#) = [0] p(U31#) = [4] x2 + [1] p(U32#) = [0] p(U41#) = [0] p(U51#) = [4] x3 + [2] p(U52#) = [0] p(U61#) = [0] p(U71#) = [4] x3 + [7] p(U72#) = [0] p(activate#) = [0] p(isNat#) = [4] x1 + [1] p(plus#) = [0] p(s#) = [0] p(x#) = [0] p(c_1) = [0] p(c_2) = [1] x1 + [6] p(c_3) = [0] p(c_4) = [0] p(c_5) = [1] x1 + [0] p(c_6) = [0] p(c_7) = [0] p(c_8) = [1] x1 + [1] p(c_9) = [0] p(c_10) = [0] p(c_11) = [1] x1 + [6] p(c_12) = [1] x2 + [0] p(c_13) = [0] p(c_14) = [4] x1 + [0] p(c_15) = [1] x1 + [0] p(c_16) = [0] p(c_17) = [1] x2 + [0] p(c_18) = [0] p(c_19) = [1] x1 + [1] x2 + [1] p(c_20) = [1] x1 + [1] p(c_21) = [1] x1 + [1] x2 + [5] p(c_22) = [0] p(c_23) = [0] p(c_24) = [0] Following rules are strictly oriented: isNat#(n__plus(V1,V2)) = [4] V1 + [4] V2 + [13] > [4] V1 + [4] V2 + [9] = c_19(U11#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1))) Following rules are (at-least) weakly oriented: U11#(tt(),V2) = [4] V2 + [7] >= [4] V2 + [7] = c_2(isNat#(activate(V2))) U31#(tt(),V2) = [4] V2 + [1] >= [4] V2 + [1] = c_5(isNat#(activate(V2))) U51#(tt(),M,N) = [4] N + [2] >= [4] N + [2] = c_8(isNat#(activate(N))) U71#(tt(),M,N) = [4] N + [7] >= [4] N + [7] = c_11(isNat#(activate(N))) isNat#(n__s(V1)) = [4] V1 + [9] >= [4] V1 + [2] = c_20(isNat#(activate(V1))) isNat#(n__x(V1,V2)) = [4] V1 + [4] V2 + [13] >= [4] V1 + [4] V2 + [7] = c_21(U31#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1))) 0() = [0] >= [0] = n__0() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__0()) = [0] >= [0] = 0() activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [3] >= [1] X1 + [1] X2 + [3] = plus(activate(X1),activate(X2)) activate(n__s(X)) = [1] X + [2] >= [1] X + [2] = s(activate(X)) activate(n__x(X1,X2)) = [1] X1 + [1] X2 + [3] >= [1] X1 + [1] X2 + [3] = x(activate(X1),activate(X2)) plus(X1,X2) = [1] X1 + [1] X2 + [3] >= [1] X1 + [1] X2 + [3] = n__plus(X1,X2) s(X) = [1] X + [2] >= [1] X + [2] = n__s(X) x(X1,X2) = [1] X1 + [1] X2 + [3] >= [1] X1 + [1] X2 + [3] = n__x(X1,X2) *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2))) Strict TRS Rules: Weak DP Rules: U31#(tt(),V2) -> c_5(isNat#(activate(V2))) U51#(tt(),M,N) -> c_8(isNat#(activate(N))) U71#(tt(),M,N) -> c_11(isNat#(activate(N))) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2))) U31#(tt(),V2) -> c_5(isNat#(activate(V2))) U51#(tt(),M,N) -> c_8(isNat#(activate(N))) U71#(tt(),M,N) -> c_11(isNat#(activate(N))) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:U11#(tt(),V2) -> c_2(isNat#(activate(V2))) -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7 -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))):6 -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5 2:W:U31#(tt(),V2) -> c_5(isNat#(activate(V2))) -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7 -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))):6 -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5 3:W:U51#(tt(),M,N) -> c_8(isNat#(activate(N))) -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7 -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))):6 -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5 4:W:U71#(tt(),M,N) -> c_11(isNat#(activate(N))) -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7 -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))):6 -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5 5:W:isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7 -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))):6 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5 -->_1 U11#(tt(),V2) -> c_2(isNat#(activate(V2))):1 6:W:isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))) -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7 -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))):6 -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5 7:W:isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7 -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))):6 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5 -->_1 U31#(tt(),V2) -> c_5(isNat#(activate(V2))):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: U71#(tt(),M,N) -> c_11(isNat#(activate(N))) 3: U51#(tt(),M,N) -> c_8(isNat#(activate(N))) 1: U11#(tt(),V2) -> c_2(isNat#(activate(V2))) 5: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1))) 7: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1))) 6: isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))) 2: U31#(tt(),V2) -> c_5(isNat#(activate(V2))) *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) activate#(n__s(X)) -> c_16(activate#(X)) activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) Strict TRS Rules: Weak DP Rules: U11#(tt(),V2) -> activate#(V2) U11#(tt(),V2) -> isNat#(activate(V2)) U31#(tt(),V2) -> activate#(V2) U31#(tt(),V2) -> isNat#(activate(V2)) U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N)) U51#(tt(),M,N) -> activate#(M) U51#(tt(),M,N) -> activate#(N) U51#(tt(),M,N) -> isNat#(activate(N)) U52#(tt(),M,N) -> activate#(M) U52#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N)) U71#(tt(),M,N) -> activate#(M) U71#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> isNat#(activate(N)) U72#(tt(),M,N) -> activate#(M) U72#(tt(),M,N) -> activate#(N) isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) isNat#(n__plus(V1,V2)) -> activate#(V1) isNat#(n__plus(V1,V2)) -> activate#(V2) isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) isNat#(n__s(V1)) -> activate#(V1) isNat#(n__s(V1)) -> isNat#(activate(V1)) isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)) isNat#(n__x(V1,V2)) -> activate#(V1) isNat#(n__x(V1,V2)) -> activate#(V2) isNat#(n__x(V1,V2)) -> isNat#(activate(V1)) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 2: activate#(n__s(X)) -> c_16(activate#(X)) Consider the set of all dependency pairs 1: activate#(n__plus(X1,X2)) -> c_15(activate#(X1) ,activate#(X2)) 2: activate#(n__s(X)) -> c_16(activate#(X)) 3: activate#(n__x(X1,X2)) -> c_17(activate#(X1) ,activate#(X2)) 4: U11#(tt(),V2) -> activate#(V2) 5: U11#(tt(),V2) -> isNat#(activate(V2)) 6: U31#(tt(),V2) -> activate#(V2) 7: U31#(tt(),V2) -> isNat#(activate(V2)) 8: U51#(tt(),M,N) -> U52#(isNat(activate(N)) ,activate(M) ,activate(N)) 9: U51#(tt(),M,N) -> activate#(M) 10: U51#(tt(),M,N) -> activate#(N) 11: U51#(tt(),M,N) -> isNat#(activate(N)) 12: U52#(tt(),M,N) -> activate#(M) 13: U52#(tt(),M,N) -> activate#(N) 14: U71#(tt(),M,N) -> U72#(isNat(activate(N)) ,activate(M) ,activate(N)) 15: U71#(tt(),M,N) -> activate#(M) 16: U71#(tt(),M,N) -> activate#(N) 17: U71#(tt(),M,N) -> isNat#(activate(N)) 18: U72#(tt(),M,N) -> activate#(M) 19: U72#(tt(),M,N) -> activate#(N) 20: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)) ,activate(V2)) 21: isNat#(n__plus(V1,V2)) -> activate#(V1) 22: isNat#(n__plus(V1,V2)) -> activate#(V2) 23: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) 24: isNat#(n__s(V1)) -> activate#(V1) 25: isNat#(n__s(V1)) -> isNat#(activate(V1)) 26: isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)) ,activate(V2)) 27: isNat#(n__x(V1,V2)) -> activate#(V1) 28: isNat#(n__x(V1,V2)) -> activate#(V2) 29: isNat#(n__x(V1,V2)) -> isNat#(activate(V1)) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {2} These cover all (indirect) predecessors of dependency pairs {2,8,9,10,11,12,13,14,15,16,17,18,19} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) activate#(n__s(X)) -> c_16(activate#(X)) activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) Strict TRS Rules: Weak DP Rules: U11#(tt(),V2) -> activate#(V2) U11#(tt(),V2) -> isNat#(activate(V2)) U31#(tt(),V2) -> activate#(V2) U31#(tt(),V2) -> isNat#(activate(V2)) U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N)) U51#(tt(),M,N) -> activate#(M) U51#(tt(),M,N) -> activate#(N) U51#(tt(),M,N) -> isNat#(activate(N)) U52#(tt(),M,N) -> activate#(M) U52#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N)) U71#(tt(),M,N) -> activate#(M) U71#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> isNat#(activate(N)) U72#(tt(),M,N) -> activate#(M) U72#(tt(),M,N) -> activate#(N) isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) isNat#(n__plus(V1,V2)) -> activate#(V1) isNat#(n__plus(V1,V2)) -> activate#(V2) isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) isNat#(n__s(V1)) -> activate#(V1) isNat#(n__s(V1)) -> isNat#(activate(V1)) isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)) isNat#(n__x(V1,V2)) -> activate#(V1) isNat#(n__x(V1,V2)) -> activate#(V2) isNat#(n__x(V1,V2)) -> isNat#(activate(V1)) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_15) = {1,2}, uargs(c_16) = {1}, uargs(c_17) = {1,2} Following symbols are considered usable: {0,activate,plus,s,x,0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#} TcT has computed the following interpretation: p(0) = [0] p(U11) = [0] p(U12) = [0] p(U21) = [0] p(U31) = [0] p(U32) = [0] p(U41) = [0] p(U51) = [0] p(U52) = [0] p(U61) = [4] p(U71) = [4] x1 + [0] p(U72) = [1] x1 + [4] p(activate) = [1] x1 + [0] p(isNat) = [0] p(n__0) = [0] p(n__plus) = [1] x1 + [1] x2 + [0] p(n__s) = [1] x1 + [1] p(n__x) = [1] x1 + [1] x2 + [0] p(plus) = [1] x1 + [1] x2 + [0] p(s) = [1] x1 + [1] p(tt) = [0] p(x) = [1] x1 + [1] x2 + [0] p(0#) = [0] p(U11#) = [4] x2 + [0] p(U12#) = [0] p(U21#) = [1] x1 + [4] p(U31#) = [4] x2 + [0] p(U32#) = [1] x1 + [0] p(U41#) = [0] p(U51#) = [4] x1 + [3] x2 + [4] x3 + [2] p(U52#) = [3] x2 + [4] x3 + [2] p(U61#) = [4] x1 + [0] p(U71#) = [4] x1 + [4] x2 + [7] x3 + [0] p(U72#) = [4] x2 + [2] x3 + [0] p(activate#) = [2] x1 + [0] p(isNat#) = [4] x1 + [0] p(plus#) = [1] x1 + [4] x2 + [1] p(s#) = [1] p(x#) = [1] x1 + [2] x2 + [0] p(c_1) = [1] p(c_2) = [1] p(c_3) = [1] p(c_4) = [0] p(c_5) = [0] p(c_6) = [0] p(c_7) = [1] p(c_8) = [1] x1 + [1] x3 + [0] p(c_9) = [1] x1 + [2] x2 + [1] p(c_10) = [4] x1 + [0] p(c_11) = [1] x1 + [2] x3 + [2] x5 + [1] p(c_12) = [0] p(c_13) = [1] p(c_14) = [4] x1 + [1] p(c_15) = [1] x1 + [1] x2 + [0] p(c_16) = [1] x1 + [0] p(c_17) = [1] x1 + [1] x2 + [0] p(c_18) = [1] p(c_19) = [4] p(c_20) = [1] x1 + [0] p(c_21) = [4] x1 + [1] x2 + [0] p(c_22) = [0] p(c_23) = [0] p(c_24) = [1] Following rules are strictly oriented: activate#(n__s(X)) = [2] X + [2] > [2] X + [0] = c_16(activate#(X)) Following rules are (at-least) weakly oriented: U11#(tt(),V2) = [4] V2 + [0] >= [2] V2 + [0] = activate#(V2) U11#(tt(),V2) = [4] V2 + [0] >= [4] V2 + [0] = isNat#(activate(V2)) U31#(tt(),V2) = [4] V2 + [0] >= [2] V2 + [0] = activate#(V2) U31#(tt(),V2) = [4] V2 + [0] >= [4] V2 + [0] = isNat#(activate(V2)) U51#(tt(),M,N) = [3] M + [4] N + [2] >= [3] M + [4] N + [2] = U52#(isNat(activate(N)) ,activate(M) ,activate(N)) U51#(tt(),M,N) = [3] M + [4] N + [2] >= [2] M + [0] = activate#(M) U51#(tt(),M,N) = [3] M + [4] N + [2] >= [2] N + [0] = activate#(N) U51#(tt(),M,N) = [3] M + [4] N + [2] >= [4] N + [0] = isNat#(activate(N)) U52#(tt(),M,N) = [3] M + [4] N + [2] >= [2] M + [0] = activate#(M) U52#(tt(),M,N) = [3] M + [4] N + [2] >= [2] N + [0] = activate#(N) U71#(tt(),M,N) = [4] M + [7] N + [0] >= [4] M + [2] N + [0] = U72#(isNat(activate(N)) ,activate(M) ,activate(N)) U71#(tt(),M,N) = [4] M + [7] N + [0] >= [2] M + [0] = activate#(M) U71#(tt(),M,N) = [4] M + [7] N + [0] >= [2] N + [0] = activate#(N) U71#(tt(),M,N) = [4] M + [7] N + [0] >= [4] N + [0] = isNat#(activate(N)) U72#(tt(),M,N) = [4] M + [2] N + [0] >= [2] M + [0] = activate#(M) U72#(tt(),M,N) = [4] M + [2] N + [0] >= [2] N + [0] = activate#(N) activate#(n__plus(X1,X2)) = [2] X1 + [2] X2 + [0] >= [2] X1 + [2] X2 + [0] = c_15(activate#(X1) ,activate#(X2)) activate#(n__x(X1,X2)) = [2] X1 + [2] X2 + [0] >= [2] X1 + [2] X2 + [0] = c_17(activate#(X1) ,activate#(X2)) isNat#(n__plus(V1,V2)) = [4] V1 + [4] V2 + [0] >= [4] V2 + [0] = U11#(isNat(activate(V1)) ,activate(V2)) isNat#(n__plus(V1,V2)) = [4] V1 + [4] V2 + [0] >= [2] V1 + [0] = activate#(V1) isNat#(n__plus(V1,V2)) = [4] V1 + [4] V2 + [0] >= [2] V2 + [0] = activate#(V2) isNat#(n__plus(V1,V2)) = [4] V1 + [4] V2 + [0] >= [4] V1 + [0] = isNat#(activate(V1)) isNat#(n__s(V1)) = [4] V1 + [4] >= [2] V1 + [0] = activate#(V1) isNat#(n__s(V1)) = [4] V1 + [4] >= [4] V1 + [0] = isNat#(activate(V1)) isNat#(n__x(V1,V2)) = [4] V1 + [4] V2 + [0] >= [4] V2 + [0] = U31#(isNat(activate(V1)) ,activate(V2)) isNat#(n__x(V1,V2)) = [4] V1 + [4] V2 + [0] >= [2] V1 + [0] = activate#(V1) isNat#(n__x(V1,V2)) = [4] V1 + [4] V2 + [0] >= [2] V2 + [0] = activate#(V2) isNat#(n__x(V1,V2)) = [4] V1 + [4] V2 + [0] >= [4] V1 + [0] = isNat#(activate(V1)) 0() = [0] >= [0] = n__0() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__0()) = [0] >= [0] = 0() activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = plus(activate(X1),activate(X2)) activate(n__s(X)) = [1] X + [1] >= [1] X + [1] = s(activate(X)) activate(n__x(X1,X2)) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = x(activate(X1),activate(X2)) plus(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = n__plus(X1,X2) s(X) = [1] X + [1] >= [1] X + [1] = n__s(X) x(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = n__x(X1,X2) *** 1.1.1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) Strict TRS Rules: Weak DP Rules: U11#(tt(),V2) -> activate#(V2) U11#(tt(),V2) -> isNat#(activate(V2)) U31#(tt(),V2) -> activate#(V2) U31#(tt(),V2) -> isNat#(activate(V2)) U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N)) U51#(tt(),M,N) -> activate#(M) U51#(tt(),M,N) -> activate#(N) U51#(tt(),M,N) -> isNat#(activate(N)) U52#(tt(),M,N) -> activate#(M) U52#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N)) U71#(tt(),M,N) -> activate#(M) U71#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> isNat#(activate(N)) U72#(tt(),M,N) -> activate#(M) U72#(tt(),M,N) -> activate#(N) activate#(n__s(X)) -> c_16(activate#(X)) isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) isNat#(n__plus(V1,V2)) -> activate#(V1) isNat#(n__plus(V1,V2)) -> activate#(V2) isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) isNat#(n__s(V1)) -> activate#(V1) isNat#(n__s(V1)) -> isNat#(activate(V1)) isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)) isNat#(n__x(V1,V2)) -> activate#(V1) isNat#(n__x(V1,V2)) -> activate#(V2) isNat#(n__x(V1,V2)) -> isNat#(activate(V1)) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.1.1.2.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) Strict TRS Rules: Weak DP Rules: U11#(tt(),V2) -> activate#(V2) U11#(tt(),V2) -> isNat#(activate(V2)) U31#(tt(),V2) -> activate#(V2) U31#(tt(),V2) -> isNat#(activate(V2)) U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N)) U51#(tt(),M,N) -> activate#(M) U51#(tt(),M,N) -> activate#(N) U51#(tt(),M,N) -> isNat#(activate(N)) U52#(tt(),M,N) -> activate#(M) U52#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N)) U71#(tt(),M,N) -> activate#(M) U71#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> isNat#(activate(N)) U72#(tt(),M,N) -> activate#(M) U72#(tt(),M,N) -> activate#(N) activate#(n__s(X)) -> c_16(activate#(X)) isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) isNat#(n__plus(V1,V2)) -> activate#(V1) isNat#(n__plus(V1,V2)) -> activate#(V2) isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) isNat#(n__s(V1)) -> activate#(V1) isNat#(n__s(V1)) -> isNat#(activate(V1)) isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)) isNat#(n__x(V1,V2)) -> activate#(V1) isNat#(n__x(V1,V2)) -> activate#(V2) isNat#(n__x(V1,V2)) -> isNat#(activate(V1)) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 2: activate#(n__x(X1,X2)) -> c_17(activate#(X1) ,activate#(X2)) Consider the set of all dependency pairs 1: activate#(n__plus(X1,X2)) -> c_15(activate#(X1) ,activate#(X2)) 2: activate#(n__x(X1,X2)) -> c_17(activate#(X1) ,activate#(X2)) 3: U11#(tt(),V2) -> activate#(V2) 4: U11#(tt(),V2) -> isNat#(activate(V2)) 5: U31#(tt(),V2) -> activate#(V2) 6: U31#(tt(),V2) -> isNat#(activate(V2)) 7: U51#(tt(),M,N) -> U52#(isNat(activate(N)) ,activate(M) ,activate(N)) 8: U51#(tt(),M,N) -> activate#(M) 9: U51#(tt(),M,N) -> activate#(N) 10: U51#(tt(),M,N) -> isNat#(activate(N)) 11: U52#(tt(),M,N) -> activate#(M) 12: U52#(tt(),M,N) -> activate#(N) 13: U71#(tt(),M,N) -> U72#(isNat(activate(N)) ,activate(M) ,activate(N)) 14: U71#(tt(),M,N) -> activate#(M) 15: U71#(tt(),M,N) -> activate#(N) 16: U71#(tt(),M,N) -> isNat#(activate(N)) 17: U72#(tt(),M,N) -> activate#(M) 18: U72#(tt(),M,N) -> activate#(N) 19: activate#(n__s(X)) -> c_16(activate#(X)) 20: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)) ,activate(V2)) 21: isNat#(n__plus(V1,V2)) -> activate#(V1) 22: isNat#(n__plus(V1,V2)) -> activate#(V2) 23: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) 24: isNat#(n__s(V1)) -> activate#(V1) 25: isNat#(n__s(V1)) -> isNat#(activate(V1)) 26: isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)) ,activate(V2)) 27: isNat#(n__x(V1,V2)) -> activate#(V1) 28: isNat#(n__x(V1,V2)) -> activate#(V2) 29: isNat#(n__x(V1,V2)) -> isNat#(activate(V1)) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {2} These cover all (indirect) predecessors of dependency pairs {2,7,8,9,10,11,12,13,14,15,16,17,18} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.1.1.1.1.2.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) Strict TRS Rules: Weak DP Rules: U11#(tt(),V2) -> activate#(V2) U11#(tt(),V2) -> isNat#(activate(V2)) U31#(tt(),V2) -> activate#(V2) U31#(tt(),V2) -> isNat#(activate(V2)) U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N)) U51#(tt(),M,N) -> activate#(M) U51#(tt(),M,N) -> activate#(N) U51#(tt(),M,N) -> isNat#(activate(N)) U52#(tt(),M,N) -> activate#(M) U52#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N)) U71#(tt(),M,N) -> activate#(M) U71#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> isNat#(activate(N)) U72#(tt(),M,N) -> activate#(M) U72#(tt(),M,N) -> activate#(N) activate#(n__s(X)) -> c_16(activate#(X)) isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) isNat#(n__plus(V1,V2)) -> activate#(V1) isNat#(n__plus(V1,V2)) -> activate#(V2) isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) isNat#(n__s(V1)) -> activate#(V1) isNat#(n__s(V1)) -> isNat#(activate(V1)) isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)) isNat#(n__x(V1,V2)) -> activate#(V1) isNat#(n__x(V1,V2)) -> activate#(V2) isNat#(n__x(V1,V2)) -> isNat#(activate(V1)) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_15) = {1,2}, uargs(c_16) = {1}, uargs(c_17) = {1,2} Following symbols are considered usable: {0,U11,U12,U21,U31,U32,activate,isNat,plus,s,x,0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#} TcT has computed the following interpretation: p(0) = [0] p(U11) = [0] p(U12) = [0] p(U21) = [0] p(U31) = [2] p(U32) = [1] p(U41) = [0] p(U51) = [0] p(U52) = [0] p(U61) = [0] p(U71) = [0] p(U72) = [2] x3 + [0] p(activate) = [1] x1 + [0] p(isNat) = [2] p(n__0) = [0] p(n__plus) = [1] x1 + [1] x2 + [0] p(n__s) = [1] x1 + [1] p(n__x) = [1] x1 + [1] x2 + [2] p(plus) = [1] x1 + [1] x2 + [0] p(s) = [1] x1 + [1] p(tt) = [0] p(x) = [1] x1 + [1] x2 + [2] p(0#) = [0] p(U11#) = [4] x2 + [0] p(U12#) = [0] p(U21#) = [1] x1 + [0] p(U31#) = [4] x1 + [4] x2 + [0] p(U32#) = [0] p(U41#) = [0] p(U51#) = [6] x2 + [4] x3 + [0] p(U52#) = [6] x2 + [4] x3 + [0] p(U61#) = [0] p(U71#) = [4] x2 + [4] x3 + [2] p(U72#) = [1] x1 + [4] x2 + [4] x3 + [0] p(activate#) = [4] x1 + [0] p(isNat#) = [4] x1 + [0] p(plus#) = [2] x1 + [1] p(s#) = [1] p(x#) = [1] x1 + [1] p(c_1) = [0] p(c_2) = [2] x2 + [0] p(c_3) = [1] p(c_4) = [0] p(c_5) = [0] p(c_6) = [1] p(c_7) = [1] p(c_8) = [1] x1 + [4] x4 + [1] x5 + [1] p(c_9) = [1] p(c_10) = [2] p(c_11) = [1] x5 + [4] p(c_12) = [1] x2 + [4] x3 + [0] p(c_13) = [0] p(c_14) = [1] x1 + [2] p(c_15) = [1] x1 + [1] x2 + [0] p(c_16) = [1] x1 + [2] p(c_17) = [1] x1 + [1] x2 + [3] p(c_18) = [4] p(c_19) = [1] p(c_20) = [2] x1 + [1] x2 + [1] p(c_21) = [1] x2 + [1] x3 + [4] x4 + [2] p(c_22) = [1] p(c_23) = [1] p(c_24) = [0] Following rules are strictly oriented: activate#(n__x(X1,X2)) = [4] X1 + [4] X2 + [8] > [4] X1 + [4] X2 + [3] = c_17(activate#(X1) ,activate#(X2)) Following rules are (at-least) weakly oriented: U11#(tt(),V2) = [4] V2 + [0] >= [4] V2 + [0] = activate#(V2) U11#(tt(),V2) = [4] V2 + [0] >= [4] V2 + [0] = isNat#(activate(V2)) U31#(tt(),V2) = [4] V2 + [0] >= [4] V2 + [0] = activate#(V2) U31#(tt(),V2) = [4] V2 + [0] >= [4] V2 + [0] = isNat#(activate(V2)) U51#(tt(),M,N) = [6] M + [4] N + [0] >= [6] M + [4] N + [0] = U52#(isNat(activate(N)) ,activate(M) ,activate(N)) U51#(tt(),M,N) = [6] M + [4] N + [0] >= [4] M + [0] = activate#(M) U51#(tt(),M,N) = [6] M + [4] N + [0] >= [4] N + [0] = activate#(N) U51#(tt(),M,N) = [6] M + [4] N + [0] >= [4] N + [0] = isNat#(activate(N)) U52#(tt(),M,N) = [6] M + [4] N + [0] >= [4] M + [0] = activate#(M) U52#(tt(),M,N) = [6] M + [4] N + [0] >= [4] N + [0] = activate#(N) U71#(tt(),M,N) = [4] M + [4] N + [2] >= [4] M + [4] N + [2] = U72#(isNat(activate(N)) ,activate(M) ,activate(N)) U71#(tt(),M,N) = [4] M + [4] N + [2] >= [4] M + [0] = activate#(M) U71#(tt(),M,N) = [4] M + [4] N + [2] >= [4] N + [0] = activate#(N) U71#(tt(),M,N) = [4] M + [4] N + [2] >= [4] N + [0] = isNat#(activate(N)) U72#(tt(),M,N) = [4] M + [4] N + [0] >= [4] M + [0] = activate#(M) U72#(tt(),M,N) = [4] M + [4] N + [0] >= [4] N + [0] = activate#(N) activate#(n__plus(X1,X2)) = [4] X1 + [4] X2 + [0] >= [4] X1 + [4] X2 + [0] = c_15(activate#(X1) ,activate#(X2)) activate#(n__s(X)) = [4] X + [4] >= [4] X + [2] = c_16(activate#(X)) isNat#(n__plus(V1,V2)) = [4] V1 + [4] V2 + [0] >= [4] V2 + [0] = U11#(isNat(activate(V1)) ,activate(V2)) isNat#(n__plus(V1,V2)) = [4] V1 + [4] V2 + [0] >= [4] V1 + [0] = activate#(V1) isNat#(n__plus(V1,V2)) = [4] V1 + [4] V2 + [0] >= [4] V2 + [0] = activate#(V2) isNat#(n__plus(V1,V2)) = [4] V1 + [4] V2 + [0] >= [4] V1 + [0] = isNat#(activate(V1)) isNat#(n__s(V1)) = [4] V1 + [4] >= [4] V1 + [0] = activate#(V1) isNat#(n__s(V1)) = [4] V1 + [4] >= [4] V1 + [0] = isNat#(activate(V1)) isNat#(n__x(V1,V2)) = [4] V1 + [4] V2 + [8] >= [4] V2 + [8] = U31#(isNat(activate(V1)) ,activate(V2)) isNat#(n__x(V1,V2)) = [4] V1 + [4] V2 + [8] >= [4] V1 + [0] = activate#(V1) isNat#(n__x(V1,V2)) = [4] V1 + [4] V2 + [8] >= [4] V2 + [0] = activate#(V2) isNat#(n__x(V1,V2)) = [4] V1 + [4] V2 + [8] >= [4] V1 + [0] = isNat#(activate(V1)) 0() = [0] >= [0] = n__0() U11(tt(),V2) = [0] >= [0] = U12(isNat(activate(V2))) U12(tt()) = [0] >= [0] = tt() U21(tt()) = [0] >= [0] = tt() U31(tt(),V2) = [2] >= [1] = U32(isNat(activate(V2))) U32(tt()) = [1] >= [0] = tt() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__0()) = [0] >= [0] = 0() activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = plus(activate(X1),activate(X2)) activate(n__s(X)) = [1] X + [1] >= [1] X + [1] = s(activate(X)) activate(n__x(X1,X2)) = [1] X1 + [1] X2 + [2] >= [1] X1 + [1] X2 + [2] = x(activate(X1),activate(X2)) isNat(n__0()) = [2] >= [0] = tt() isNat(n__plus(V1,V2)) = [2] >= [0] = U11(isNat(activate(V1)) ,activate(V2)) isNat(n__s(V1)) = [2] >= [0] = U21(isNat(activate(V1))) isNat(n__x(V1,V2)) = [2] >= [2] = U31(isNat(activate(V1)) ,activate(V2)) plus(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = n__plus(X1,X2) s(X) = [1] X + [1] >= [1] X + [1] = n__s(X) x(X1,X2) = [1] X1 + [1] X2 + [2] >= [1] X1 + [1] X2 + [2] = n__x(X1,X2) *** 1.1.1.1.1.1.1.1.1.1.2.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) Strict TRS Rules: Weak DP Rules: U11#(tt(),V2) -> activate#(V2) U11#(tt(),V2) -> isNat#(activate(V2)) U31#(tt(),V2) -> activate#(V2) U31#(tt(),V2) -> isNat#(activate(V2)) U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N)) U51#(tt(),M,N) -> activate#(M) U51#(tt(),M,N) -> activate#(N) U51#(tt(),M,N) -> isNat#(activate(N)) U52#(tt(),M,N) -> activate#(M) U52#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N)) U71#(tt(),M,N) -> activate#(M) U71#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> isNat#(activate(N)) U72#(tt(),M,N) -> activate#(M) U72#(tt(),M,N) -> activate#(N) activate#(n__s(X)) -> c_16(activate#(X)) activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) isNat#(n__plus(V1,V2)) -> activate#(V1) isNat#(n__plus(V1,V2)) -> activate#(V2) isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) isNat#(n__s(V1)) -> activate#(V1) isNat#(n__s(V1)) -> isNat#(activate(V1)) isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)) isNat#(n__x(V1,V2)) -> activate#(V1) isNat#(n__x(V1,V2)) -> activate#(V2) isNat#(n__x(V1,V2)) -> isNat#(activate(V1)) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.1.1.2.2.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) Strict TRS Rules: Weak DP Rules: U11#(tt(),V2) -> activate#(V2) U11#(tt(),V2) -> isNat#(activate(V2)) U31#(tt(),V2) -> activate#(V2) U31#(tt(),V2) -> isNat#(activate(V2)) U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N)) U51#(tt(),M,N) -> activate#(M) U51#(tt(),M,N) -> activate#(N) U51#(tt(),M,N) -> isNat#(activate(N)) U52#(tt(),M,N) -> activate#(M) U52#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N)) U71#(tt(),M,N) -> activate#(M) U71#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> isNat#(activate(N)) U72#(tt(),M,N) -> activate#(M) U72#(tt(),M,N) -> activate#(N) activate#(n__s(X)) -> c_16(activate#(X)) activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) isNat#(n__plus(V1,V2)) -> activate#(V1) isNat#(n__plus(V1,V2)) -> activate#(V2) isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) isNat#(n__s(V1)) -> activate#(V1) isNat#(n__s(V1)) -> isNat#(activate(V1)) isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)) isNat#(n__x(V1,V2)) -> activate#(V1) isNat#(n__x(V1,V2)) -> activate#(V2) isNat#(n__x(V1,V2)) -> isNat#(activate(V1)) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: activate#(n__plus(X1,X2)) -> c_15(activate#(X1) ,activate#(X2)) Consider the set of all dependency pairs 1: activate#(n__plus(X1,X2)) -> c_15(activate#(X1) ,activate#(X2)) 2: U11#(tt(),V2) -> activate#(V2) 3: U11#(tt(),V2) -> isNat#(activate(V2)) 4: U31#(tt(),V2) -> activate#(V2) 5: U31#(tt(),V2) -> isNat#(activate(V2)) 6: U51#(tt(),M,N) -> U52#(isNat(activate(N)) ,activate(M) ,activate(N)) 7: U51#(tt(),M,N) -> activate#(M) 8: U51#(tt(),M,N) -> activate#(N) 9: U51#(tt(),M,N) -> isNat#(activate(N)) 10: U52#(tt(),M,N) -> activate#(M) 11: U52#(tt(),M,N) -> activate#(N) 12: U71#(tt(),M,N) -> U72#(isNat(activate(N)) ,activate(M) ,activate(N)) 13: U71#(tt(),M,N) -> activate#(M) 14: U71#(tt(),M,N) -> activate#(N) 15: U71#(tt(),M,N) -> isNat#(activate(N)) 16: U72#(tt(),M,N) -> activate#(M) 17: U72#(tt(),M,N) -> activate#(N) 18: activate#(n__s(X)) -> c_16(activate#(X)) 19: activate#(n__x(X1,X2)) -> c_17(activate#(X1) ,activate#(X2)) 20: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)) ,activate(V2)) 21: isNat#(n__plus(V1,V2)) -> activate#(V1) 22: isNat#(n__plus(V1,V2)) -> activate#(V2) 23: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) 24: isNat#(n__s(V1)) -> activate#(V1) 25: isNat#(n__s(V1)) -> isNat#(activate(V1)) 26: isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)) ,activate(V2)) 27: isNat#(n__x(V1,V2)) -> activate#(V1) 28: isNat#(n__x(V1,V2)) -> activate#(V2) 29: isNat#(n__x(V1,V2)) -> isNat#(activate(V1)) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {1} These cover all (indirect) predecessors of dependency pairs {1,6,7,8,9,10,11,12,13,14,15,16,17} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.1.1.1.1.2.2.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) Strict TRS Rules: Weak DP Rules: U11#(tt(),V2) -> activate#(V2) U11#(tt(),V2) -> isNat#(activate(V2)) U31#(tt(),V2) -> activate#(V2) U31#(tt(),V2) -> isNat#(activate(V2)) U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N)) U51#(tt(),M,N) -> activate#(M) U51#(tt(),M,N) -> activate#(N) U51#(tt(),M,N) -> isNat#(activate(N)) U52#(tt(),M,N) -> activate#(M) U52#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N)) U71#(tt(),M,N) -> activate#(M) U71#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> isNat#(activate(N)) U72#(tt(),M,N) -> activate#(M) U72#(tt(),M,N) -> activate#(N) activate#(n__s(X)) -> c_16(activate#(X)) activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) isNat#(n__plus(V1,V2)) -> activate#(V1) isNat#(n__plus(V1,V2)) -> activate#(V2) isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) isNat#(n__s(V1)) -> activate#(V1) isNat#(n__s(V1)) -> isNat#(activate(V1)) isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)) isNat#(n__x(V1,V2)) -> activate#(V1) isNat#(n__x(V1,V2)) -> activate#(V2) isNat#(n__x(V1,V2)) -> isNat#(activate(V1)) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_15) = {1,2}, uargs(c_16) = {1}, uargs(c_17) = {1,2} Following symbols are considered usable: {0,U11,U12,U21,U31,U32,activate,isNat,plus,s,x,0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#} TcT has computed the following interpretation: p(0) = [7] p(U11) = [1] x2 + [7] p(U12) = [1] x1 + [0] p(U21) = [1] x1 + [4] p(U31) = [1] x2 + [2] p(U32) = [2] p(U41) = [1] p(U51) = [1] x2 + [1] x3 + [1] p(U52) = [1] x3 + [0] p(U61) = [0] p(U71) = [1] x2 + [1] x3 + [0] p(U72) = [1] x2 + [0] p(activate) = [1] x1 + [0] p(isNat) = [1] x1 + [4] p(n__0) = [7] p(n__plus) = [1] x1 + [1] x2 + [4] p(n__s) = [1] x1 + [4] p(n__x) = [1] x1 + [1] x2 + [1] p(plus) = [1] x1 + [1] x2 + [4] p(s) = [1] x1 + [4] p(tt) = [2] p(x) = [1] x1 + [1] x2 + [1] p(0#) = [4] p(U11#) = [2] x2 + [4] p(U12#) = [4] x1 + [1] p(U21#) = [4] x1 + [0] p(U31#) = [1] x1 + [2] x2 + [0] p(U32#) = [1] x1 + [1] p(U41#) = [4] p(U51#) = [4] x1 + [2] x2 + [4] x3 + [0] p(U52#) = [1] x1 + [2] x2 + [2] x3 + [4] p(U61#) = [4] p(U71#) = [4] x1 + [2] x2 + [6] x3 + [0] p(U72#) = [2] x1 + [2] x2 + [4] x3 + [0] p(activate#) = [2] x1 + [0] p(isNat#) = [2] x1 + [2] p(plus#) = [1] p(s#) = [1] p(x#) = [2] x2 + [2] p(c_1) = [0] p(c_2) = [1] x1 + [1] x2 + [1] p(c_3) = [1] p(c_4) = [0] p(c_5) = [4] x1 + [1] p(c_6) = [1] p(c_7) = [4] x1 + [0] p(c_8) = [4] x2 + [1] x3 + [1] x5 + [1] p(c_9) = [1] p(c_10) = [0] p(c_11) = [4] x3 + [1] p(c_12) = [0] p(c_13) = [4] p(c_14) = [2] p(c_15) = [1] x1 + [1] x2 + [4] p(c_16) = [1] x1 + [0] p(c_17) = [1] x1 + [1] x2 + [2] p(c_18) = [0] p(c_19) = [1] x1 + [2] x2 + [0] p(c_20) = [2] x2 + [1] p(c_21) = [1] x1 + [1] x3 + [1] x4 + [0] p(c_22) = [0] p(c_23) = [0] p(c_24) = [0] Following rules are strictly oriented: activate#(n__plus(X1,X2)) = [2] X1 + [2] X2 + [8] > [2] X1 + [2] X2 + [4] = c_15(activate#(X1) ,activate#(X2)) Following rules are (at-least) weakly oriented: U11#(tt(),V2) = [2] V2 + [4] >= [2] V2 + [0] = activate#(V2) U11#(tt(),V2) = [2] V2 + [4] >= [2] V2 + [2] = isNat#(activate(V2)) U31#(tt(),V2) = [2] V2 + [2] >= [2] V2 + [0] = activate#(V2) U31#(tt(),V2) = [2] V2 + [2] >= [2] V2 + [2] = isNat#(activate(V2)) U51#(tt(),M,N) = [2] M + [4] N + [8] >= [2] M + [3] N + [8] = U52#(isNat(activate(N)) ,activate(M) ,activate(N)) U51#(tt(),M,N) = [2] M + [4] N + [8] >= [2] M + [0] = activate#(M) U51#(tt(),M,N) = [2] M + [4] N + [8] >= [2] N + [0] = activate#(N) U51#(tt(),M,N) = [2] M + [4] N + [8] >= [2] N + [2] = isNat#(activate(N)) U52#(tt(),M,N) = [2] M + [2] N + [6] >= [2] M + [0] = activate#(M) U52#(tt(),M,N) = [2] M + [2] N + [6] >= [2] N + [0] = activate#(N) U71#(tt(),M,N) = [2] M + [6] N + [8] >= [2] M + [6] N + [8] = U72#(isNat(activate(N)) ,activate(M) ,activate(N)) U71#(tt(),M,N) = [2] M + [6] N + [8] >= [2] M + [0] = activate#(M) U71#(tt(),M,N) = [2] M + [6] N + [8] >= [2] N + [0] = activate#(N) U71#(tt(),M,N) = [2] M + [6] N + [8] >= [2] N + [2] = isNat#(activate(N)) U72#(tt(),M,N) = [2] M + [4] N + [4] >= [2] M + [0] = activate#(M) U72#(tt(),M,N) = [2] M + [4] N + [4] >= [2] N + [0] = activate#(N) activate#(n__s(X)) = [2] X + [8] >= [2] X + [0] = c_16(activate#(X)) activate#(n__x(X1,X2)) = [2] X1 + [2] X2 + [2] >= [2] X1 + [2] X2 + [2] = c_17(activate#(X1) ,activate#(X2)) isNat#(n__plus(V1,V2)) = [2] V1 + [2] V2 + [10] >= [2] V2 + [4] = U11#(isNat(activate(V1)) ,activate(V2)) isNat#(n__plus(V1,V2)) = [2] V1 + [2] V2 + [10] >= [2] V1 + [0] = activate#(V1) isNat#(n__plus(V1,V2)) = [2] V1 + [2] V2 + [10] >= [2] V2 + [0] = activate#(V2) isNat#(n__plus(V1,V2)) = [2] V1 + [2] V2 + [10] >= [2] V1 + [2] = isNat#(activate(V1)) isNat#(n__s(V1)) = [2] V1 + [10] >= [2] V1 + [0] = activate#(V1) isNat#(n__s(V1)) = [2] V1 + [10] >= [2] V1 + [2] = isNat#(activate(V1)) isNat#(n__x(V1,V2)) = [2] V1 + [2] V2 + [4] >= [1] V1 + [2] V2 + [4] = U31#(isNat(activate(V1)) ,activate(V2)) isNat#(n__x(V1,V2)) = [2] V1 + [2] V2 + [4] >= [2] V1 + [0] = activate#(V1) isNat#(n__x(V1,V2)) = [2] V1 + [2] V2 + [4] >= [2] V2 + [0] = activate#(V2) isNat#(n__x(V1,V2)) = [2] V1 + [2] V2 + [4] >= [2] V1 + [2] = isNat#(activate(V1)) 0() = [7] >= [7] = n__0() U11(tt(),V2) = [1] V2 + [7] >= [1] V2 + [4] = U12(isNat(activate(V2))) U12(tt()) = [2] >= [2] = tt() U21(tt()) = [6] >= [2] = tt() U31(tt(),V2) = [1] V2 + [2] >= [2] = U32(isNat(activate(V2))) U32(tt()) = [2] >= [2] = tt() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__0()) = [7] >= [7] = 0() activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [4] >= [1] X1 + [1] X2 + [4] = plus(activate(X1),activate(X2)) activate(n__s(X)) = [1] X + [4] >= [1] X + [4] = s(activate(X)) activate(n__x(X1,X2)) = [1] X1 + [1] X2 + [1] >= [1] X1 + [1] X2 + [1] = x(activate(X1),activate(X2)) isNat(n__0()) = [11] >= [2] = tt() isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [8] >= [1] V2 + [7] = U11(isNat(activate(V1)) ,activate(V2)) isNat(n__s(V1)) = [1] V1 + [8] >= [1] V1 + [8] = U21(isNat(activate(V1))) isNat(n__x(V1,V2)) = [1] V1 + [1] V2 + [5] >= [1] V2 + [2] = U31(isNat(activate(V1)) ,activate(V2)) plus(X1,X2) = [1] X1 + [1] X2 + [4] >= [1] X1 + [1] X2 + [4] = n__plus(X1,X2) s(X) = [1] X + [4] >= [1] X + [4] = n__s(X) x(X1,X2) = [1] X1 + [1] X2 + [1] >= [1] X1 + [1] X2 + [1] = n__x(X1,X2) *** 1.1.1.1.1.1.1.1.1.1.2.2.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: U11#(tt(),V2) -> activate#(V2) U11#(tt(),V2) -> isNat#(activate(V2)) U31#(tt(),V2) -> activate#(V2) U31#(tt(),V2) -> isNat#(activate(V2)) U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N)) U51#(tt(),M,N) -> activate#(M) U51#(tt(),M,N) -> activate#(N) U51#(tt(),M,N) -> isNat#(activate(N)) U52#(tt(),M,N) -> activate#(M) U52#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N)) U71#(tt(),M,N) -> activate#(M) U71#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> isNat#(activate(N)) U72#(tt(),M,N) -> activate#(M) U72#(tt(),M,N) -> activate#(N) activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) activate#(n__s(X)) -> c_16(activate#(X)) activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) isNat#(n__plus(V1,V2)) -> activate#(V1) isNat#(n__plus(V1,V2)) -> activate#(V2) isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) isNat#(n__s(V1)) -> activate#(V1) isNat#(n__s(V1)) -> isNat#(activate(V1)) isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)) isNat#(n__x(V1,V2)) -> activate#(V1) isNat#(n__x(V1,V2)) -> activate#(V2) isNat#(n__x(V1,V2)) -> isNat#(activate(V1)) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.1.1.2.2.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: U11#(tt(),V2) -> activate#(V2) U11#(tt(),V2) -> isNat#(activate(V2)) U31#(tt(),V2) -> activate#(V2) U31#(tt(),V2) -> isNat#(activate(V2)) U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N)) U51#(tt(),M,N) -> activate#(M) U51#(tt(),M,N) -> activate#(N) U51#(tt(),M,N) -> isNat#(activate(N)) U52#(tt(),M,N) -> activate#(M) U52#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N)) U71#(tt(),M,N) -> activate#(M) U71#(tt(),M,N) -> activate#(N) U71#(tt(),M,N) -> isNat#(activate(N)) U72#(tt(),M,N) -> activate#(M) U72#(tt(),M,N) -> activate#(N) activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) activate#(n__s(X)) -> c_16(activate#(X)) activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) isNat#(n__plus(V1,V2)) -> activate#(V1) isNat#(n__plus(V1,V2)) -> activate#(V2) isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) isNat#(n__s(V1)) -> activate#(V1) isNat#(n__s(V1)) -> isNat#(activate(V1)) isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)) isNat#(n__x(V1,V2)) -> activate#(V1) isNat#(n__x(V1,V2)) -> activate#(V2) isNat#(n__x(V1,V2)) -> isNat#(activate(V1)) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:U11#(tt(),V2) -> activate#(V2) -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17 2:W:U11#(tt(),V2) -> isNat#(activate(V2)) -->_1 isNat#(n__x(V1,V2)) -> isNat#(activate(V1)):29 -->_1 isNat#(n__x(V1,V2)) -> activate#(V2):28 -->_1 isNat#(n__x(V1,V2)) -> activate#(V1):27 -->_1 isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)):26 -->_1 isNat#(n__s(V1)) -> isNat#(activate(V1)):25 -->_1 isNat#(n__s(V1)) -> activate#(V1):24 -->_1 isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)):23 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):22 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):21 -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)):20 3:W:U31#(tt(),V2) -> activate#(V2) -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17 4:W:U31#(tt(),V2) -> isNat#(activate(V2)) -->_1 isNat#(n__x(V1,V2)) -> isNat#(activate(V1)):29 -->_1 isNat#(n__x(V1,V2)) -> activate#(V2):28 -->_1 isNat#(n__x(V1,V2)) -> activate#(V1):27 -->_1 isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)):26 -->_1 isNat#(n__s(V1)) -> isNat#(activate(V1)):25 -->_1 isNat#(n__s(V1)) -> activate#(V1):24 -->_1 isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)):23 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):22 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):21 -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)):20 5:W:U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N)) -->_1 U52#(tt(),M,N) -> activate#(N):10 -->_1 U52#(tt(),M,N) -> activate#(M):9 6:W:U51#(tt(),M,N) -> activate#(M) -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17 7:W:U51#(tt(),M,N) -> activate#(N) -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17 8:W:U51#(tt(),M,N) -> isNat#(activate(N)) -->_1 isNat#(n__x(V1,V2)) -> isNat#(activate(V1)):29 -->_1 isNat#(n__x(V1,V2)) -> activate#(V2):28 -->_1 isNat#(n__x(V1,V2)) -> activate#(V1):27 -->_1 isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)):26 -->_1 isNat#(n__s(V1)) -> isNat#(activate(V1)):25 -->_1 isNat#(n__s(V1)) -> activate#(V1):24 -->_1 isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)):23 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):22 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):21 -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)):20 9:W:U52#(tt(),M,N) -> activate#(M) -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17 10:W:U52#(tt(),M,N) -> activate#(N) -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17 11:W:U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N)) -->_1 U72#(tt(),M,N) -> activate#(N):16 -->_1 U72#(tt(),M,N) -> activate#(M):15 12:W:U71#(tt(),M,N) -> activate#(M) -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17 13:W:U71#(tt(),M,N) -> activate#(N) -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17 14:W:U71#(tt(),M,N) -> isNat#(activate(N)) -->_1 isNat#(n__x(V1,V2)) -> isNat#(activate(V1)):29 -->_1 isNat#(n__x(V1,V2)) -> activate#(V2):28 -->_1 isNat#(n__x(V1,V2)) -> activate#(V1):27 -->_1 isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)):26 -->_1 isNat#(n__s(V1)) -> isNat#(activate(V1)):25 -->_1 isNat#(n__s(V1)) -> activate#(V1):24 -->_1 isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)):23 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):22 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):21 -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)):20 15:W:U72#(tt(),M,N) -> activate#(M) -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17 16:W:U72#(tt(),M,N) -> activate#(N) -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17 17:W:activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19 -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19 -->_2 activate#(n__s(X)) -> c_16(activate#(X)):18 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18 -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17 18:W:activate#(n__s(X)) -> c_16(activate#(X)) -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17 19:W:activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19 -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19 -->_2 activate#(n__s(X)) -> c_16(activate#(X)):18 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18 -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17 20:W:isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)) -->_1 U11#(tt(),V2) -> isNat#(activate(V2)):2 -->_1 U11#(tt(),V2) -> activate#(V2):1 21:W:isNat#(n__plus(V1,V2)) -> activate#(V1) -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17 22:W:isNat#(n__plus(V1,V2)) -> activate#(V2) -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17 23:W:isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) -->_1 isNat#(n__x(V1,V2)) -> isNat#(activate(V1)):29 -->_1 isNat#(n__x(V1,V2)) -> activate#(V2):28 -->_1 isNat#(n__x(V1,V2)) -> activate#(V1):27 -->_1 isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)):26 -->_1 isNat#(n__s(V1)) -> isNat#(activate(V1)):25 -->_1 isNat#(n__s(V1)) -> activate#(V1):24 -->_1 isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)):23 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):22 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):21 -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)):20 24:W:isNat#(n__s(V1)) -> activate#(V1) -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17 25:W:isNat#(n__s(V1)) -> isNat#(activate(V1)) -->_1 isNat#(n__x(V1,V2)) -> isNat#(activate(V1)):29 -->_1 isNat#(n__x(V1,V2)) -> activate#(V2):28 -->_1 isNat#(n__x(V1,V2)) -> activate#(V1):27 -->_1 isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)):26 -->_1 isNat#(n__s(V1)) -> isNat#(activate(V1)):25 -->_1 isNat#(n__s(V1)) -> activate#(V1):24 -->_1 isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)):23 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):22 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):21 -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)):20 26:W:isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)) -->_1 U31#(tt(),V2) -> isNat#(activate(V2)):4 -->_1 U31#(tt(),V2) -> activate#(V2):3 27:W:isNat#(n__x(V1,V2)) -> activate#(V1) -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17 28:W:isNat#(n__x(V1,V2)) -> activate#(V2) -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17 29:W:isNat#(n__x(V1,V2)) -> isNat#(activate(V1)) -->_1 isNat#(n__x(V1,V2)) -> isNat#(activate(V1)):29 -->_1 isNat#(n__x(V1,V2)) -> activate#(V2):28 -->_1 isNat#(n__x(V1,V2)) -> activate#(V1):27 -->_1 isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)):26 -->_1 isNat#(n__s(V1)) -> isNat#(activate(V1)):25 -->_1 isNat#(n__s(V1)) -> activate#(V1):24 -->_1 isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)):23 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):22 -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):21 -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)):20 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 14: U71#(tt(),M,N) -> isNat#(activate(N)) 13: U71#(tt(),M,N) -> activate#(N) 12: U71#(tt(),M,N) -> activate#(M) 11: U71#(tt(),M,N) -> U72#(isNat(activate(N)) ,activate(M) ,activate(N)) 15: U72#(tt(),M,N) -> activate#(M) 16: U72#(tt(),M,N) -> activate#(N) 8: U51#(tt(),M,N) -> isNat#(activate(N)) 7: U51#(tt(),M,N) -> activate#(N) 6: U51#(tt(),M,N) -> activate#(M) 5: U51#(tt(),M,N) -> U52#(isNat(activate(N)) ,activate(M) ,activate(N)) 9: U52#(tt(),M,N) -> activate#(M) 10: U52#(tt(),M,N) -> activate#(N) 2: U11#(tt(),V2) -> isNat#(activate(V2)) 20: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)) ,activate(V2)) 29: isNat#(n__x(V1,V2)) -> isNat#(activate(V1)) 25: isNat#(n__s(V1)) -> isNat#(activate(V1)) 23: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)) 4: U31#(tt(),V2) -> isNat#(activate(V2)) 26: isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)) ,activate(V2)) 3: U31#(tt(),V2) -> activate#(V2) 21: isNat#(n__plus(V1,V2)) -> activate#(V1) 22: isNat#(n__plus(V1,V2)) -> activate#(V2) 24: isNat#(n__s(V1)) -> activate#(V1) 27: isNat#(n__x(V1,V2)) -> activate#(V1) 28: isNat#(n__x(V1,V2)) -> activate#(V2) 1: U11#(tt(),V2) -> activate#(V2) 19: activate#(n__x(X1,X2)) -> c_17(activate#(X1) ,activate#(X2)) 18: activate#(n__s(X)) -> c_16(activate#(X)) 17: activate#(n__plus(X1,X2)) -> c_15(activate#(X1) ,activate#(X2)) *** 1.1.1.1.1.1.1.1.1.1.2.2.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)) U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)) Strict TRS Rules: Weak DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)) U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)) activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) activate#(n__s(X)) -> c_16(activate#(X)) activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {2,4} by application of Pre({2,4}) = {1,3}. Here rules are labelled as follows: 1: U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)) ,activate(M) ,activate(N)) ,isNat#(activate(N)) ,activate#(N) ,activate#(M) ,activate#(N)) 2: U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)) 3: U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)) ,activate(M) ,activate(N)) ,isNat#(activate(N)) ,activate#(N) ,activate#(M) ,activate#(N)) 4: U72#(tt(),M,N) -> c_12(activate#(N) ,activate#(M) ,activate#(N)) 5: U11#(tt(),V2) -> c_2(isNat#(activate(V2)) ,activate#(V2)) 6: U31#(tt(),V2) -> c_5(isNat#(activate(V2)) ,activate#(V2)) 7: activate#(n__plus(X1,X2)) -> c_15(activate#(X1) ,activate#(X2)) 8: activate#(n__s(X)) -> c_16(activate#(X)) 9: activate#(n__x(X1,X2)) -> c_17(activate#(X1) ,activate#(X2)) 10: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1)) ,activate#(V1) ,activate#(V2)) 11: isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)) ,activate#(V1)) 12: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1)) ,activate#(V1) ,activate#(V2)) *** 1.1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) Strict TRS Rules: Weak DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)) U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)) U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)) U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)) activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) activate#(n__s(X)) -> c_16(activate#(X)) activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,2} by application of Pre({1,2}) = {}. Here rules are labelled as follows: 1: U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)) ,activate(M) ,activate(N)) ,isNat#(activate(N)) ,activate#(N) ,activate#(M) ,activate#(N)) 2: U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)) ,activate(M) ,activate(N)) ,isNat#(activate(N)) ,activate#(N) ,activate#(M) ,activate#(N)) 3: U11#(tt(),V2) -> c_2(isNat#(activate(V2)) ,activate#(V2)) 4: U31#(tt(),V2) -> c_5(isNat#(activate(V2)) ,activate#(V2)) 5: U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)) 6: U72#(tt(),M,N) -> c_12(activate#(N) ,activate#(M) ,activate#(N)) 7: activate#(n__plus(X1,X2)) -> c_15(activate#(X1) ,activate#(X2)) 8: activate#(n__s(X)) -> c_16(activate#(X)) 9: activate#(n__x(X1,X2)) -> c_17(activate#(X1) ,activate#(X2)) 10: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1)) ,activate#(V1) ,activate#(V2)) 11: isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)) ,activate#(V1)) 12: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1)) ,activate#(V1) ,activate#(V2)) *** 1.1.1.1.1.1.1.1.1.2.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)) U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)) U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)) U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)) activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) activate#(n__s(X)) -> c_16(activate#(X)) activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)) isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)) -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):12 -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):11 -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):10 -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_2 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 2:W:U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)) -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):12 -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):11 -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):10 -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_2 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 3:W:U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):12 -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):11 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):10 -->_5 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_5 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_4 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_3 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_5 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 -->_1 U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)):4 4:W:U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)) -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_2 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 5:W:U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):12 -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):11 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):10 -->_5 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_5 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_4 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_3 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_5 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 -->_1 U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)):6 6:W:U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)) -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_3 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_2 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 7:W:activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)) -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_2 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 8:W:activate#(n__s(X)) -> c_16(activate#(X)) -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 9:W:activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)) -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_2 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_1 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 10:W:isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):12 -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):11 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):10 -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_4 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_3 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 -->_1 U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)):1 11:W:isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)) -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):12 -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):11 -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):10 -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_2 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 12:W:isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)) -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):12 -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):11 -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):10 -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9 -->_4 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_3 activate#(n__s(X)) -> c_16(activate#(X)):8 -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7 -->_1 U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)) ,activate(M) ,activate(N)) ,isNat#(activate(N)) ,activate#(N) ,activate#(M) ,activate#(N)) 6: U72#(tt(),M,N) -> c_12(activate#(N) ,activate#(M) ,activate#(N)) 3: U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)) ,activate(M) ,activate(N)) ,isNat#(activate(N)) ,activate#(N) ,activate#(M) ,activate#(N)) 4: U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)) 1: U11#(tt(),V2) -> c_2(isNat#(activate(V2)) ,activate#(V2)) 10: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1)) ,activate#(V1) ,activate#(V2)) 12: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)) ,activate(V2)) ,isNat#(activate(V1)) ,activate#(V1) ,activate#(V2)) 11: isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)) ,activate#(V1)) 2: U31#(tt(),V2) -> c_5(isNat#(activate(V2)) ,activate#(V2)) 9: activate#(n__x(X1,X2)) -> c_17(activate#(X1) ,activate#(X2)) 8: activate#(n__s(X)) -> c_16(activate#(X)) 7: activate#(n__plus(X1,X2)) -> c_15(activate#(X1) ,activate#(X2)) *** 1.1.1.1.1.1.1.1.1.2.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: 0() -> n__0() U11(tt(),V2) -> U12(isNat(activate(V2))) U12(tt()) -> tt() U21(tt()) -> tt() U31(tt(),V2) -> U32(isNat(activate(V2))) U32(tt()) -> tt() activate(X) -> X activate(n__0()) -> 0() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1,X2)) -> x(activate(X1),activate(X2)) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2)) plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) x(X1,X2) -> n__x(X1,X2) Signature: {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0} Obligation: Innermost basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).