*** 1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),V2) -> U32(isNat(activate(V2)))
        U32(tt()) -> tt()
        U41(tt(),N) -> activate(N)
        U51(tt(),M,N) -> U52(isNat(activate(N)),activate(M),activate(N))
        U52(tt(),M,N) -> s(plus(activate(N),activate(M)))
        U61(tt()) -> 0()
        U71(tt(),M,N) -> U72(isNat(activate(N)),activate(M),activate(N))
        U72(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
        plus(N,0()) -> U41(isNat(N),N)
        plus(N,s(M)) -> U51(isNat(M),M,N)
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(N,0()) -> U61(isNat(N))
        x(N,s(M)) -> U71(isNat(M),M,N)
        x(X1,X2) -> n__x(X1,X2)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate,isNat,plus,s,x}/{n__0,n__plus,n__s,n__x,tt}
    Applied Processor:
      InnermostRuleRemoval
    Proof:
      Arguments of following rules are not normal-forms.
        plus(N,0()) -> U41(isNat(N),N)
        plus(N,s(M)) -> U51(isNat(M),M,N)
        x(N,0()) -> U61(isNat(N))
        x(N,s(M)) -> U71(isNat(M),M,N)
      All above mentioned rules can be savely removed.
*** 1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),V2) -> U32(isNat(activate(V2)))
        U32(tt()) -> tt()
        U41(tt(),N) -> activate(N)
        U51(tt(),M,N) -> U52(isNat(activate(N)),activate(M),activate(N))
        U52(tt(),M,N) -> s(plus(activate(N),activate(M)))
        U61(tt()) -> 0()
        U71(tt(),M,N) -> U72(isNat(activate(N)),activate(M),activate(N))
        U72(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate,isNat,plus,s,x}/{n__0,n__plus,n__s,n__x,tt}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        0#() -> c_1()
        U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U12#(tt()) -> c_3()
        U21#(tt()) -> c_4()
        U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U32#(tt()) -> c_6()
        U41#(tt(),N) -> c_7(activate#(N))
        U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        U61#(tt()) -> c_10(0#())
        U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N))
        activate#(X) -> c_13()
        activate#(n__0()) -> c_14(0#())
        activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
        activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X))
        activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
        isNat#(n__0()) -> c_18()
        isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        plus#(X1,X2) -> c_22()
        s#(X) -> c_23()
        x#(X1,X2) -> c_24()
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        0#() -> c_1()
        U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U12#(tt()) -> c_3()
        U21#(tt()) -> c_4()
        U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U32#(tt()) -> c_6()
        U41#(tt(),N) -> c_7(activate#(N))
        U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        U61#(tt()) -> c_10(0#())
        U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N))
        activate#(X) -> c_13()
        activate#(n__0()) -> c_14(0#())
        activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
        activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X))
        activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
        isNat#(n__0()) -> c_18()
        isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        plus#(X1,X2) -> c_22()
        s#(X) -> c_23()
        x#(X1,X2) -> c_24()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),V2) -> U32(isNat(activate(V2)))
        U32(tt()) -> tt()
        U41(tt(),N) -> activate(N)
        U51(tt(),M,N) -> U52(isNat(activate(N)),activate(M),activate(N))
        U52(tt(),M,N) -> s(plus(activate(N),activate(M)))
        U61(tt()) -> 0()
        U71(tt(),M,N) -> U72(isNat(activate(N)),activate(M),activate(N))
        U72(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/3,c_3/0,c_4/0,c_5/3,c_6/0,c_7/1,c_8/5,c_9/4,c_10/1,c_11/5,c_12/5,c_13/0,c_14/1,c_15/3,c_16/2,c_17/3,c_18/0,c_19/4,c_20/3,c_21/4,c_22/0,c_23/0,c_24/0}
      Obligation:
        Innermost
        basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        0() -> n__0()
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),V2) -> U32(isNat(activate(V2)))
        U32(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
        0#() -> c_1()
        U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U12#(tt()) -> c_3()
        U21#(tt()) -> c_4()
        U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U32#(tt()) -> c_6()
        U41#(tt(),N) -> c_7(activate#(N))
        U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        U61#(tt()) -> c_10(0#())
        U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N))
        activate#(X) -> c_13()
        activate#(n__0()) -> c_14(0#())
        activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
        activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X))
        activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
        isNat#(n__0()) -> c_18()
        isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        plus#(X1,X2) -> c_22()
        s#(X) -> c_23()
        x#(X1,X2) -> c_24()
*** 1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        0#() -> c_1()
        U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U12#(tt()) -> c_3()
        U21#(tt()) -> c_4()
        U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U32#(tt()) -> c_6()
        U41#(tt(),N) -> c_7(activate#(N))
        U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        U61#(tt()) -> c_10(0#())
        U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N))
        activate#(X) -> c_13()
        activate#(n__0()) -> c_14(0#())
        activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
        activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X))
        activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
        isNat#(n__0()) -> c_18()
        isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        plus#(X1,X2) -> c_22()
        s#(X) -> c_23()
        x#(X1,X2) -> c_24()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),V2) -> U32(isNat(activate(V2)))
        U32(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/3,c_3/0,c_4/0,c_5/3,c_6/0,c_7/1,c_8/5,c_9/4,c_10/1,c_11/5,c_12/5,c_13/0,c_14/1,c_15/3,c_16/2,c_17/3,c_18/0,c_19/4,c_20/3,c_21/4,c_22/0,c_23/0,c_24/0}
      Obligation:
        Innermost
        basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,3,4,6,13,18,22,23,24}
      by application of
        Pre({1,3,4,6,13,18,22,23,24}) = {2,5,7,8,9,10,11,12,14,15,16,17,19,20,21}.
      Here rules are labelled as follows:
        1:  0#() -> c_1()                       
        2:  U11#(tt(),V2) ->                    
              c_2(U12#(isNat(activate(V2)))     
                 ,isNat#(activate(V2))          
                 ,activate#(V2))                
        3:  U12#(tt()) -> c_3()                 
        4:  U21#(tt()) -> c_4()                 
        5:  U31#(tt(),V2) ->                    
              c_5(U32#(isNat(activate(V2)))     
                 ,isNat#(activate(V2))          
                 ,activate#(V2))                
        6:  U32#(tt()) -> c_6()                 
        7:  U41#(tt(),N) ->                     
              c_7(activate#(N))                 
        8:  U51#(tt(),M,N) ->                   
              c_8(U52#(isNat(activate(N))       
                      ,activate(M)              
                      ,activate(N))             
                 ,isNat#(activate(N))           
                 ,activate#(N)                  
                 ,activate#(M)                  
                 ,activate#(N))                 
        9:  U52#(tt(),M,N) ->                   
              c_9(s#(plus(activate(N)           
                         ,activate(M)))         
                 ,plus#(activate(N),activate(M))
                 ,activate#(N)                  
                 ,activate#(M))                 
        10: U61#(tt()) -> c_10(0#())            
        11: U71#(tt(),M,N) ->                   
              c_11(U72#(isNat(activate(N))      
                       ,activate(M)             
                       ,activate(N))            
                  ,isNat#(activate(N))          
                  ,activate#(N)                 
                  ,activate#(M)                 
                  ,activate#(N))                
        12: U72#(tt(),M,N) ->                   
              c_12(plus#(x(activate(N)          
                          ,activate(M))         
                        ,activate(N))           
                  ,x#(activate(N),activate(M))  
                  ,activate#(N)                 
                  ,activate#(M)                 
                  ,activate#(N))                
        13: activate#(X) -> c_13()              
        14: activate#(n__0()) -> c_14(0#())     
        15: activate#(n__plus(X1,X2)) ->        
              c_15(plus#(activate(X1)           
                        ,activate(X2))          
                  ,activate#(X1)                
                  ,activate#(X2))               
        16: activate#(n__s(X)) ->               
              c_16(s#(activate(X))              
                  ,activate#(X))                
        17: activate#(n__x(X1,X2)) ->           
              c_17(x#(activate(X1)              
                     ,activate(X2))             
                  ,activate#(X1)                
                  ,activate#(X2))               
        18: isNat#(n__0()) -> c_18()            
        19: isNat#(n__plus(V1,V2)) ->           
              c_19(U11#(isNat(activate(V1))     
                       ,activate(V2))           
                  ,isNat#(activate(V1))         
                  ,activate#(V1)                
                  ,activate#(V2))               
        20: isNat#(n__s(V1)) ->                 
              c_20(U21#(isNat(activate(V1)))    
                  ,isNat#(activate(V1))         
                  ,activate#(V1))               
        21: isNat#(n__x(V1,V2)) ->              
              c_21(U31#(isNat(activate(V1))     
                       ,activate(V2))           
                  ,isNat#(activate(V1))         
                  ,activate#(V1)                
                  ,activate#(V2))               
        22: plus#(X1,X2) -> c_22()              
        23: s#(X) -> c_23()                     
        24: x#(X1,X2) -> c_24()                 
*** 1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U41#(tt(),N) -> c_7(activate#(N))
        U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        U61#(tt()) -> c_10(0#())
        U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N))
        activate#(n__0()) -> c_14(0#())
        activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
        activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X))
        activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
        isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
      Strict TRS Rules:
        
      Weak DP Rules:
        0#() -> c_1()
        U12#(tt()) -> c_3()
        U21#(tt()) -> c_4()
        U32#(tt()) -> c_6()
        activate#(X) -> c_13()
        isNat#(n__0()) -> c_18()
        plus#(X1,X2) -> c_22()
        s#(X) -> c_23()
        x#(X1,X2) -> c_24()
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),V2) -> U32(isNat(activate(V2)))
        U32(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/3,c_3/0,c_4/0,c_5/3,c_6/0,c_7/1,c_8/5,c_9/4,c_10/1,c_11/5,c_12/5,c_13/0,c_14/1,c_15/3,c_16/2,c_17/3,c_18/0,c_19/4,c_20/3,c_21/4,c_22/0,c_23/0,c_24/0}
      Obligation:
        Innermost
        basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {6,9}
      by application of
        Pre({6,9}) = {1,2,3,4,5,7,8,10,11,12,13,14,15}.
      Here rules are labelled as follows:
        1:  U11#(tt(),V2) ->                    
              c_2(U12#(isNat(activate(V2)))     
                 ,isNat#(activate(V2))          
                 ,activate#(V2))                
        2:  U31#(tt(),V2) ->                    
              c_5(U32#(isNat(activate(V2)))     
                 ,isNat#(activate(V2))          
                 ,activate#(V2))                
        3:  U41#(tt(),N) ->                     
              c_7(activate#(N))                 
        4:  U51#(tt(),M,N) ->                   
              c_8(U52#(isNat(activate(N))       
                      ,activate(M)              
                      ,activate(N))             
                 ,isNat#(activate(N))           
                 ,activate#(N)                  
                 ,activate#(M)                  
                 ,activate#(N))                 
        5:  U52#(tt(),M,N) ->                   
              c_9(s#(plus(activate(N)           
                         ,activate(M)))         
                 ,plus#(activate(N),activate(M))
                 ,activate#(N)                  
                 ,activate#(M))                 
        6:  U61#(tt()) -> c_10(0#())            
        7:  U71#(tt(),M,N) ->                   
              c_11(U72#(isNat(activate(N))      
                       ,activate(M)             
                       ,activate(N))            
                  ,isNat#(activate(N))          
                  ,activate#(N)                 
                  ,activate#(M)                 
                  ,activate#(N))                
        8:  U72#(tt(),M,N) ->                   
              c_12(plus#(x(activate(N)          
                          ,activate(M))         
                        ,activate(N))           
                  ,x#(activate(N),activate(M))  
                  ,activate#(N)                 
                  ,activate#(M)                 
                  ,activate#(N))                
        9:  activate#(n__0()) -> c_14(0#())     
        10: activate#(n__plus(X1,X2)) ->        
              c_15(plus#(activate(X1)           
                        ,activate(X2))          
                  ,activate#(X1)                
                  ,activate#(X2))               
        11: activate#(n__s(X)) ->               
              c_16(s#(activate(X))              
                  ,activate#(X))                
        12: activate#(n__x(X1,X2)) ->           
              c_17(x#(activate(X1)              
                     ,activate(X2))             
                  ,activate#(X1)                
                  ,activate#(X2))               
        13: isNat#(n__plus(V1,V2)) ->           
              c_19(U11#(isNat(activate(V1))     
                       ,activate(V2))           
                  ,isNat#(activate(V1))         
                  ,activate#(V1)                
                  ,activate#(V2))               
        14: isNat#(n__s(V1)) ->                 
              c_20(U21#(isNat(activate(V1)))    
                  ,isNat#(activate(V1))         
                  ,activate#(V1))               
        15: isNat#(n__x(V1,V2)) ->              
              c_21(U31#(isNat(activate(V1))     
                       ,activate(V2))           
                  ,isNat#(activate(V1))         
                  ,activate#(V1)                
                  ,activate#(V2))               
        16: 0#() -> c_1()                       
        17: U12#(tt()) -> c_3()                 
        18: U21#(tt()) -> c_4()                 
        19: U32#(tt()) -> c_6()                 
        20: activate#(X) -> c_13()              
        21: isNat#(n__0()) -> c_18()            
        22: plus#(X1,X2) -> c_22()              
        23: s#(X) -> c_23()                     
        24: x#(X1,X2) -> c_24()                 
*** 1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U41#(tt(),N) -> c_7(activate#(N))
        U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N))
        activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
        activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X))
        activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
        isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
      Strict TRS Rules:
        
      Weak DP Rules:
        0#() -> c_1()
        U12#(tt()) -> c_3()
        U21#(tt()) -> c_4()
        U32#(tt()) -> c_6()
        U61#(tt()) -> c_10(0#())
        activate#(X) -> c_13()
        activate#(n__0()) -> c_14(0#())
        isNat#(n__0()) -> c_18()
        plus#(X1,X2) -> c_22()
        s#(X) -> c_23()
        x#(X1,X2) -> c_24()
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),V2) -> U32(isNat(activate(V2)))
        U32(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/3,c_3/0,c_4/0,c_5/3,c_6/0,c_7/1,c_8/5,c_9/4,c_10/1,c_11/5,c_12/5,c_13/0,c_14/1,c_15/3,c_16/2,c_17/3,c_18/0,c_19/4,c_20/3,c_21/4,c_22/0,c_23/0,c_24/0}
      Obligation:
        Innermost
        basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
           -->_3 activate#(n__0()) -> c_14(0#()):20
           -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13
           -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
           -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_2 isNat#(n__0()) -> c_18():21
           -->_3 activate#(X) -> c_13():19
           -->_1 U12#(tt()) -> c_3():15
        
        2:S:U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
           -->_3 activate#(n__0()) -> c_14(0#()):20
           -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13
           -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
           -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_2 isNat#(n__0()) -> c_18():21
           -->_3 activate#(X) -> c_13():19
           -->_1 U32#(tt()) -> c_6():17
        
        3:S:U41#(tt(),N) -> c_7(activate#(N))
           -->_1 activate#(n__0()) -> c_14(0#()):20
           -->_1 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_1 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_1 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_1 activate#(X) -> c_13():19
        
        4:S:U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
           -->_5 activate#(n__0()) -> c_14(0#()):20
           -->_4 activate#(n__0()) -> c_14(0#()):20
           -->_3 activate#(n__0()) -> c_14(0#()):20
           -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13
           -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
           -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11
           -->_5 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_5 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_5 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_1 U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M)):5
           -->_2 isNat#(n__0()) -> c_18():21
           -->_5 activate#(X) -> c_13():19
           -->_4 activate#(X) -> c_13():19
           -->_3 activate#(X) -> c_13():19
        
        5:S:U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
           -->_4 activate#(n__0()) -> c_14(0#()):20
           -->_3 activate#(n__0()) -> c_14(0#()):20
           -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_1 s#(X) -> c_23():23
           -->_2 plus#(X1,X2) -> c_22():22
           -->_4 activate#(X) -> c_13():19
           -->_3 activate#(X) -> c_13():19
        
        6:S:U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
           -->_5 activate#(n__0()) -> c_14(0#()):20
           -->_4 activate#(n__0()) -> c_14(0#()):20
           -->_3 activate#(n__0()) -> c_14(0#()):20
           -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13
           -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
           -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11
           -->_5 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_5 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_5 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_1 U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N)):7
           -->_2 isNat#(n__0()) -> c_18():21
           -->_5 activate#(X) -> c_13():19
           -->_4 activate#(X) -> c_13():19
           -->_3 activate#(X) -> c_13():19
        
        7:S:U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N))
           -->_5 activate#(n__0()) -> c_14(0#()):20
           -->_4 activate#(n__0()) -> c_14(0#()):20
           -->_3 activate#(n__0()) -> c_14(0#()):20
           -->_5 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_5 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_5 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_2 x#(X1,X2) -> c_24():24
           -->_1 plus#(X1,X2) -> c_22():22
           -->_5 activate#(X) -> c_13():19
           -->_4 activate#(X) -> c_13():19
           -->_3 activate#(X) -> c_13():19
        
        8:S:activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
           -->_3 activate#(n__0()) -> c_14(0#()):20
           -->_2 activate#(n__0()) -> c_14(0#()):20
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_2 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_2 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_1 plus#(X1,X2) -> c_22():22
           -->_3 activate#(X) -> c_13():19
           -->_2 activate#(X) -> c_13():19
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_2 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
        
        9:S:activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X))
           -->_2 activate#(n__0()) -> c_14(0#()):20
           -->_2 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_1 s#(X) -> c_23():23
           -->_2 activate#(X) -> c_13():19
           -->_2 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_2 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
        
        10:S:activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
           -->_3 activate#(n__0()) -> c_14(0#()):20
           -->_2 activate#(n__0()) -> c_14(0#()):20
           -->_1 x#(X1,X2) -> c_24():24
           -->_3 activate#(X) -> c_13():19
           -->_2 activate#(X) -> c_13():19
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_2 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_2 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_2 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
        
        11:S:isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
           -->_4 activate#(n__0()) -> c_14(0#()):20
           -->_3 activate#(n__0()) -> c_14(0#()):20
           -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13
           -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
           -->_2 isNat#(n__0()) -> c_18():21
           -->_4 activate#(X) -> c_13():19
           -->_3 activate#(X) -> c_13():19
           -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11
           -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_1 U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):1
        
        12:S:isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
           -->_3 activate#(n__0()) -> c_14(0#()):20
           -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13
           -->_2 isNat#(n__0()) -> c_18():21
           -->_3 activate#(X) -> c_13():19
           -->_1 U21#(tt()) -> c_4():16
           -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
           -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
        
        13:S:isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
           -->_4 activate#(n__0()) -> c_14(0#()):20
           -->_3 activate#(n__0()) -> c_14(0#()):20
           -->_2 isNat#(n__0()) -> c_18():21
           -->_4 activate#(X) -> c_13():19
           -->_3 activate#(X) -> c_13():19
           -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13
           -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
           -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11
           -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_1 U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):2
        
        14:W:0#() -> c_1()
           
        
        15:W:U12#(tt()) -> c_3()
           
        
        16:W:U21#(tt()) -> c_4()
           
        
        17:W:U32#(tt()) -> c_6()
           
        
        18:W:U61#(tt()) -> c_10(0#())
           -->_1 0#() -> c_1():14
        
        19:W:activate#(X) -> c_13()
           
        
        20:W:activate#(n__0()) -> c_14(0#())
           -->_1 0#() -> c_1():14
        
        21:W:isNat#(n__0()) -> c_18()
           
        
        22:W:plus#(X1,X2) -> c_22()
           
        
        23:W:s#(X) -> c_23()
           
        
        24:W:x#(X1,X2) -> c_24()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        18: U61#(tt()) -> c_10(0#())       
        15: U12#(tt()) -> c_3()            
        17: U32#(tt()) -> c_6()            
        22: plus#(X1,X2) -> c_22()         
        23: s#(X) -> c_23()                
        24: x#(X1,X2) -> c_24()            
        16: U21#(tt()) -> c_4()            
        19: activate#(X) -> c_13()         
        21: isNat#(n__0()) -> c_18()       
        20: activate#(n__0()) -> c_14(0#())
        14: 0#() -> c_1()                  
*** 1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U41#(tt(),N) -> c_7(activate#(N))
        U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N))
        activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
        activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X))
        activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
        isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),V2) -> U32(isNat(activate(V2)))
        U32(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/3,c_3/0,c_4/0,c_5/3,c_6/0,c_7/1,c_8/5,c_9/4,c_10/1,c_11/5,c_12/5,c_13/0,c_14/1,c_15/3,c_16/2,c_17/3,c_18/0,c_19/4,c_20/3,c_21/4,c_22/0,c_23/0,c_24/0}
      Obligation:
        Innermost
        basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
    Applied Processor:
      SimplifyRHS
    Proof:
      Consider the dependency graph
        1:S:U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
           -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13
           -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
           -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
        
        2:S:U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
           -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13
           -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
           -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
        
        3:S:U41#(tt(),N) -> c_7(activate#(N))
           -->_1 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_1 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_1 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
        
        4:S:U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
           -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13
           -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
           -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11
           -->_5 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_5 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_5 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_1 U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M)):5
        
        5:S:U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
           -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
        
        6:S:U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
           -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13
           -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
           -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11
           -->_5 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_5 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_5 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_1 U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N)):7
        
        7:S:U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N))
           -->_5 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_5 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_5 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
        
        8:S:activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_2 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_2 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_2 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
        
        9:S:activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X))
           -->_2 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_2 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_2 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
        
        10:S:activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_2 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_2 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_2 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
        
        11:S:isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
           -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13
           -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
           -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11
           -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_1 U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):1
        
        12:S:isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
           -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13
           -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
           -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
        
        13:S:isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
           -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13
           -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
           -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11
           -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
           -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
           -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
           -->_1 U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):2
        
      Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
        U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
        U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
        U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
        U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
        activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
        activate#(n__s(X)) -> c_16(activate#(X))
        activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
        isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
*** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
        U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
        U41#(tt(),N) -> c_7(activate#(N))
        U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
        U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
        activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
        activate#(n__s(X)) -> c_16(activate#(X))
        activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
        isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
        isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),V2) -> U32(isNat(activate(V2)))
        U32(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
      Obligation:
        Innermost
        basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
    Applied Processor:
      RemoveHeads
    Proof:
      Consider the dependency graph
      
      1:S:U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
         -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13
         -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):12
         -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11
         -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_2 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
      
      2:S:U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
         -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13
         -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):12
         -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11
         -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_2 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
      
      3:S:U41#(tt(),N) -> c_7(activate#(N))
         -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_1 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
      
      4:S:U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
         -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13
         -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):12
         -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11
         -->_5 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_5 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_4 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_3 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_5 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
         -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
         -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
         -->_1 U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)):5
      
      5:S:U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
         -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_2 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_1 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
         -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
      
      6:S:U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
         -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13
         -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):12
         -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11
         -->_5 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_5 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_4 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_3 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_5 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
         -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
         -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
         -->_1 U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)):7
      
      7:S:U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
         -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_3 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_2 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_1 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
         -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
         -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
      
      8:S:activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
         -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_2 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_1 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
         -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
      
      9:S:activate#(n__s(X)) -> c_16(activate#(X))
         -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_1 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
      
      10:S:activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
         -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_2 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_1 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
         -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
      
      11:S:isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
         -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13
         -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):12
         -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11
         -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_4 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_3 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
         -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
         -->_1 U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)):1
      
      12:S:isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
         -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13
         -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):12
         -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11
         -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_2 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
      
      13:S:isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
         -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):13
         -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):12
         -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):11
         -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
         -->_4 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_3 activate#(n__s(X)) -> c_16(activate#(X)):9
         -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
         -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
         -->_1 U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)):2
      
      
      Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
      
      [(3,U41#(tt(),N) -> c_7(activate#(N)))]
*** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
        U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
        U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
        U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
        activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
        activate#(n__s(X)) -> c_16(activate#(X))
        activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
        isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
        isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V2) -> U12(isNat(activate(V2)))
        U12(tt()) -> tt()
        U21(tt()) -> tt()
        U31(tt(),V2) -> U32(isNat(activate(V2)))
        U32(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
        isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
      Obligation:
        Innermost
        basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
    Applied Processor:
      Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    Proof:
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
      
      Problem (R)
        Strict DP Rules:
          U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
          U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
          activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_16(activate#(X))
          activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
          isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
          isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
          isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        Strict TRS Rules:
          
        Weak DP Rules:
          U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
          U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
          U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
          U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V2) -> U12(isNat(activate(V2)))
          U12(tt()) -> tt()
          U21(tt()) -> tt()
          U31(tt(),V2) -> U32(isNat(activate(V2)))
          U32(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
          activate(n__s(X)) -> s(activate(X))
          activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
          isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
          x(X1,X2) -> n__x(X1,X2)
        Signature:
          {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
      
      Problem (S)
        Strict DP Rules:
          U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
          U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
          U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
          U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
        Strict TRS Rules:
          
        Weak DP Rules:
          U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
          U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
          activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_16(activate#(X))
          activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
          isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
          isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
          isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V2) -> U12(isNat(activate(V2)))
          U12(tt()) -> tt()
          U21(tt()) -> tt()
          U31(tt(),V2) -> U32(isNat(activate(V2)))
          U32(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
          activate(n__s(X)) -> s(activate(X))
          activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
          isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
          x(X1,X2) -> n__x(X1,X2)
        Signature:
          {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
  *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
          U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
          activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_16(activate#(X))
          activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
          isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
          isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
          isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        Strict TRS Rules:
          
        Weak DP Rules:
          U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
          U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
          U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
          U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V2) -> U12(isNat(activate(V2)))
          U12(tt()) -> tt()
          U21(tt()) -> tt()
          U31(tt(),V2) -> U32(isNat(activate(V2)))
          U32(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
          activate(n__s(X)) -> s(activate(X))
          activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
          isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
          x(X1,X2) -> n__x(X1,X2)
        Signature:
          {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
      Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
      Proof:
        We decompose the input problem according to the dependency graph into the upper component
          U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
          U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
          U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
          U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
          U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
          U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
          isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
          isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
          isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        and a lower component
          activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_16(activate#(X))
          activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
        Further, following extension rules are added to the lower component.
          U11#(tt(),V2) -> activate#(V2)
          U11#(tt(),V2) -> isNat#(activate(V2))
          U31#(tt(),V2) -> activate#(V2)
          U31#(tt(),V2) -> isNat#(activate(V2))
          U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
          U51#(tt(),M,N) -> activate#(M)
          U51#(tt(),M,N) -> activate#(N)
          U51#(tt(),M,N) -> isNat#(activate(N))
          U52#(tt(),M,N) -> activate#(M)
          U52#(tt(),M,N) -> activate#(N)
          U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
          U71#(tt(),M,N) -> activate#(M)
          U71#(tt(),M,N) -> activate#(N)
          U71#(tt(),M,N) -> isNat#(activate(N))
          U72#(tt(),M,N) -> activate#(M)
          U72#(tt(),M,N) -> activate#(N)
          isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
          isNat#(n__plus(V1,V2)) -> activate#(V1)
          isNat#(n__plus(V1,V2)) -> activate#(V2)
          isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
          isNat#(n__s(V1)) -> activate#(V1)
          isNat#(n__s(V1)) -> isNat#(activate(V1))
          isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
          isNat#(n__x(V1,V2)) -> activate#(V1)
          isNat#(n__x(V1,V2)) -> activate#(V2)
          isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
    *** 1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
            U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
            U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
            U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
            U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
          Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
          Obligation:
            Innermost
            basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
        Applied Processor:
          PredecessorEstimation {onSelection = all simple predecessor estimation selector}
        Proof:
          We estimate the number of application of
            {4,6}
          by application of
            Pre({4,6}) = {3,5}.
          Here rules are labelled as follows:
            1: U11#(tt(),V2) ->                
                 c_2(isNat#(activate(V2))      
                    ,activate#(V2))            
            2: U31#(tt(),V2) ->                
                 c_5(isNat#(activate(V2))      
                    ,activate#(V2))            
            3: U51#(tt(),M,N) ->               
                 c_8(U52#(isNat(activate(N))   
                         ,activate(M)          
                         ,activate(N))         
                    ,isNat#(activate(N))       
                    ,activate#(N)              
                    ,activate#(M)              
                    ,activate#(N))             
            4: U52#(tt(),M,N) ->               
                 c_9(activate#(N),activate#(M))
            5: U71#(tt(),M,N) ->               
                 c_11(U72#(isNat(activate(N))  
                          ,activate(M)         
                          ,activate(N))        
                     ,isNat#(activate(N))      
                     ,activate#(N)             
                     ,activate#(M)             
                     ,activate#(N))            
            6: U72#(tt(),M,N) ->               
                 c_12(activate#(N)             
                     ,activate#(M)             
                     ,activate#(N))            
            7: isNat#(n__plus(V1,V2)) ->       
                 c_19(U11#(isNat(activate(V1)) 
                          ,activate(V2))       
                     ,isNat#(activate(V1))     
                     ,activate#(V1)            
                     ,activate#(V2))           
            8: isNat#(n__s(V1)) ->             
                 c_20(isNat#(activate(V1))     
                     ,activate#(V1))           
            9: isNat#(n__x(V1,V2)) ->          
                 c_21(U31#(isNat(activate(V1)) 
                          ,activate(V2))       
                     ,isNat#(activate(V1))     
                     ,activate#(V1)            
                     ,activate#(V2))           
    *** 1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
            U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
            U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
          Strict TRS Rules:
            
          Weak DP Rules:
            U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
            U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
          Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
          Obligation:
            Innermost
            basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:S:U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
               -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7
               -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
               -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5
            
            2:S:U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
               -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7
               -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
               -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5
            
            3:S:U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
               -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7
               -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
               -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5
               -->_1 U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)):8
            
            4:S:U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
               -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7
               -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
               -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5
               -->_1 U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)):9
            
            5:S:isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
               -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7
               -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
               -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5
               -->_1 U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)):1
            
            6:S:isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
               -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7
               -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
               -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5
            
            7:S:isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
               -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7
               -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
               -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5
               -->_1 U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)):2
            
            8:W:U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
               
            
            9:W:U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
               
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            9: U72#(tt(),M,N) ->               
                 c_12(activate#(N)             
                     ,activate#(M)             
                     ,activate#(N))            
            8: U52#(tt(),M,N) ->               
                 c_9(activate#(N),activate#(M))
    *** 1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
            U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
            U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
          Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
          Obligation:
            Innermost
            basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
        Applied Processor:
          SimplifyRHS
        Proof:
          Consider the dependency graph
            1:S:U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
               -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7
               -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
               -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5
            
            2:S:U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
               -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7
               -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
               -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5
            
            3:S:U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
               -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7
               -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
               -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5
            
            4:S:U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
               -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7
               -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
               -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5
            
            5:S:isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
               -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7
               -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
               -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5
               -->_1 U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)):1
            
            6:S:isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
               -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7
               -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
               -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5
            
            7:S:isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
               -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7
               -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
               -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):5
               -->_1 U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)):2
            
          Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
            U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
            U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
    *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
            U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
            U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
          Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0}
          Obligation:
            Innermost
            basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            4: U71#(tt(),M,N) ->           
                 c_11(isNat#(activate(N))) 
            6: isNat#(n__s(V1)) ->         
                 c_20(isNat#(activate(V1)))
            
          Consider the set of all dependency pairs
            1: U11#(tt(),V2) ->               
                 c_2(isNat#(activate(V2)))    
            2: U31#(tt(),V2) ->               
                 c_5(isNat#(activate(V2)))    
            3: U51#(tt(),M,N) ->              
                 c_8(isNat#(activate(N)))     
            4: U71#(tt(),M,N) ->              
                 c_11(isNat#(activate(N)))    
            5: isNat#(n__plus(V1,V2)) ->      
                 c_19(U11#(isNat(activate(V1))
                          ,activate(V2))      
                     ,isNat#(activate(V1)))   
            6: isNat#(n__s(V1)) ->            
                 c_20(isNat#(activate(V1)))   
            7: isNat#(n__x(V1,V2)) ->         
                 c_21(U31#(isNat(activate(V1))
                          ,activate(V2))      
                     ,isNat#(activate(V1)))   
          Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
          SPACE(?,?)on application of the dependency pairs
            {4,6}
          These cover all (indirect) predecessors of dependency pairs
            {3,4,6}
          their number of applications is equally bounded.
          The dependency pairs are shifted into the weak component.
      *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
              U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
              U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
              U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
              isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
              isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V2) -> U12(isNat(activate(V2)))
              U12(tt()) -> tt()
              U21(tt()) -> tt()
              U31(tt(),V2) -> U32(isNat(activate(V2)))
              U32(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
              activate(n__s(X)) -> s(activate(X))
              activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
              isNat(n__s(V1)) -> U21(isNat(activate(V1)))
              isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
              x(X1,X2) -> n__x(X1,X2)
            Signature:
              {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0}
            Obligation:
              Innermost
              basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
          Applied Processor:
            NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation:
            The following argument positions are considered usable:
              uargs(c_2) = {1},
              uargs(c_5) = {1},
              uargs(c_8) = {1},
              uargs(c_11) = {1},
              uargs(c_19) = {1,2},
              uargs(c_20) = {1},
              uargs(c_21) = {1,2}
            
            Following symbols are considered usable:
              {0,activate,plus,s,x,0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}
            TcT has computed the following interpretation:
                      p(0) = [4]                           
                    p(U11) = [3] x1 + [4] x2 + [1]         
                    p(U12) = [1] x1 + [2]                  
                    p(U21) = [4]                           
                    p(U31) = [0]                           
                    p(U32) = [1] x1 + [5]                  
                    p(U41) = [4] x1 + [4] x2 + [1]         
                    p(U51) = [4] x1 + [0]                  
                    p(U52) = [1] x1 + [1] x2 + [1] x3 + [1]
                    p(U61) = [1]                           
                    p(U71) = [1] x2 + [4]                  
                    p(U72) = [4] x1 + [1] x3 + [0]         
               p(activate) = [1] x1 + [0]                  
                  p(isNat) = [4]                           
                   p(n__0) = [4]                           
                p(n__plus) = [1] x1 + [1] x2 + [0]         
                   p(n__s) = [1] x1 + [2]                  
                   p(n__x) = [1] x1 + [1] x2 + [0]         
                   p(plus) = [1] x1 + [1] x2 + [0]         
                      p(s) = [1] x1 + [2]                  
                     p(tt) = [0]                           
                      p(x) = [1] x1 + [1] x2 + [0]         
                     p(0#) = [2]                           
                   p(U11#) = [4] x2 + [0]                  
                   p(U12#) = [0]                           
                   p(U21#) = [1]                           
                   p(U31#) = [4] x2 + [0]                  
                   p(U32#) = [1] x1 + [0]                  
                   p(U41#) = [4] x1 + [1]                  
                   p(U51#) = [4] x1 + [2] x2 + [4] x3 + [0]
                   p(U52#) = [2] x1 + [2] x3 + [0]         
                   p(U61#) = [1] x1 + [2]                  
                   p(U71#) = [4] x3 + [1]                  
                   p(U72#) = [1] x3 + [1]                  
              p(activate#) = [1]                           
                 p(isNat#) = [4] x1 + [0]                  
                  p(plus#) = [4] x1 + [2]                  
                     p(s#) = [4] x1 + [0]                  
                     p(x#) = [1] x2 + [0]                  
                    p(c_1) = [1]                           
                    p(c_2) = [1] x1 + [0]                  
                    p(c_3) = [1]                           
                    p(c_4) = [4]                           
                    p(c_5) = [1] x1 + [0]                  
                    p(c_6) = [1]                           
                    p(c_7) = [2] x1 + [0]                  
                    p(c_8) = [1] x1 + [0]                  
                    p(c_9) = [1] x2 + [0]                  
                   p(c_10) = [4] x1 + [0]                  
                   p(c_11) = [1] x1 + [0]                  
                   p(c_12) = [2] x3 + [0]                  
                   p(c_13) = [2]                           
                   p(c_14) = [2] x1 + [1]                  
                   p(c_15) = [2] x1 + [1]                  
                   p(c_16) = [2] x1 + [2]                  
                   p(c_17) = [2] x2 + [0]                  
                   p(c_18) = [4]                           
                   p(c_19) = [1] x1 + [1] x2 + [0]         
                   p(c_20) = [1] x1 + [3]                  
                   p(c_21) = [1] x1 + [1] x2 + [0]         
                   p(c_22) = [1]                           
                   p(c_23) = [2]                           
                   p(c_24) = [1]                           
            
            Following rules are strictly oriented:
              U71#(tt(),M,N) = [4] N + [1]               
                             > [4] N + [0]               
                             = c_11(isNat#(activate(N))) 
            
            isNat#(n__s(V1)) = [4] V1 + [8]              
                             > [4] V1 + [3]              
                             = c_20(isNat#(activate(V1)))
            
            
            Following rules are (at-least) weakly oriented:
                       U11#(tt(),V2) =  [4] V2 + [0]                   
                                     >= [4] V2 + [0]                   
                                     =  c_2(isNat#(activate(V2)))      
            
                       U31#(tt(),V2) =  [4] V2 + [0]                   
                                     >= [4] V2 + [0]                   
                                     =  c_5(isNat#(activate(V2)))      
            
                      U51#(tt(),M,N) =  [2] M + [4] N + [0]            
                                     >= [4] N + [0]                    
                                     =  c_8(isNat#(activate(N)))       
            
              isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [0]          
                                     >= [4] V1 + [4] V2 + [0]          
                                     =  c_19(U11#(isNat(activate(V1))  
                                                 ,activate(V2))        
                                            ,isNat#(activate(V1)))     
            
                 isNat#(n__x(V1,V2)) =  [4] V1 + [4] V2 + [0]          
                                     >= [4] V1 + [4] V2 + [0]          
                                     =  c_21(U31#(isNat(activate(V1))  
                                                 ,activate(V2))        
                                            ,isNat#(activate(V1)))     
            
                                 0() =  [4]                            
                                     >= [4]                            
                                     =  n__0()                         
            
                         activate(X) =  [1] X + [0]                    
                                     >= [1] X + [0]                    
                                     =  X                              
            
                    activate(n__0()) =  [4]                            
                                     >= [4]                            
                                     =  0()                            
            
            activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]          
                                     >= [1] X1 + [1] X2 + [0]          
                                     =  plus(activate(X1),activate(X2))
            
                   activate(n__s(X)) =  [1] X + [2]                    
                                     >= [1] X + [2]                    
                                     =  s(activate(X))                 
            
               activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [0]          
                                     >= [1] X1 + [1] X2 + [0]          
                                     =  x(activate(X1),activate(X2))   
            
                         plus(X1,X2) =  [1] X1 + [1] X2 + [0]          
                                     >= [1] X1 + [1] X2 + [0]          
                                     =  n__plus(X1,X2)                 
            
                                s(X) =  [1] X + [2]                    
                                     >= [1] X + [2]                    
                                     =  n__s(X)                        
            
                            x(X1,X2) =  [1] X1 + [1] X2 + [0]          
                                     >= [1] X1 + [1] X2 + [0]          
                                     =  n__x(X1,X2)                    
            
      *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
              U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
              U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
              isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            Strict TRS Rules:
              
            Weak DP Rules:
              U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
              isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V2) -> U12(isNat(activate(V2)))
              U12(tt()) -> tt()
              U21(tt()) -> tt()
              U31(tt(),V2) -> U32(isNat(activate(V2)))
              U32(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
              activate(n__s(X)) -> s(activate(X))
              activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
              isNat(n__s(V1)) -> U21(isNat(activate(V1)))
              isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
              x(X1,X2) -> n__x(X1,X2)
            Signature:
              {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0}
            Obligation:
              Innermost
              basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
              U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
              isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            Strict TRS Rules:
              
            Weak DP Rules:
              U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
              U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
              isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V2) -> U12(isNat(activate(V2)))
              U12(tt()) -> tt()
              U21(tt()) -> tt()
              U31(tt(),V2) -> U32(isNat(activate(V2)))
              U32(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
              activate(n__s(X)) -> s(activate(X))
              activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
              isNat(n__s(V1)) -> U21(isNat(activate(V1)))
              isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
              x(X1,X2) -> n__x(X1,X2)
            Signature:
              {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0}
            Obligation:
              Innermost
              basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              2: U31#(tt(),V2) ->           
                   c_5(isNat#(activate(V2)))
              
            Consider the set of all dependency pairs
              1: U11#(tt(),V2) ->               
                   c_2(isNat#(activate(V2)))    
              2: U31#(tt(),V2) ->               
                   c_5(isNat#(activate(V2)))    
              3: isNat#(n__plus(V1,V2)) ->      
                   c_19(U11#(isNat(activate(V1))
                            ,activate(V2))      
                       ,isNat#(activate(V1)))   
              4: isNat#(n__x(V1,V2)) ->         
                   c_21(U31#(isNat(activate(V1))
                            ,activate(V2))      
                       ,isNat#(activate(V1)))   
              5: U51#(tt(),M,N) ->              
                   c_8(isNat#(activate(N)))     
              6: U71#(tt(),M,N) ->              
                   c_11(isNat#(activate(N)))    
              7: isNat#(n__s(V1)) ->            
                   c_20(isNat#(activate(V1)))   
            Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
            SPACE(?,?)on application of the dependency pairs
              {2}
            These cover all (indirect) predecessors of dependency pairs
              {2,5,6}
            their number of applications is equally bounded.
            The dependency pairs are shifted into the weak component.
        *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
                U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
                isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              Strict TRS Rules:
                
              Weak DP Rules:
                U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
                U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
                isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
              Weak TRS Rules:
                0() -> n__0()
                U11(tt(),V2) -> U12(isNat(activate(V2)))
                U12(tt()) -> tt()
                U21(tt()) -> tt()
                U31(tt(),V2) -> U32(isNat(activate(V2)))
                U32(tt()) -> tt()
                activate(X) -> X
                activate(n__0()) -> 0()
                activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
                activate(n__s(X)) -> s(activate(X))
                activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
                isNat(n__0()) -> tt()
                isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
                isNat(n__s(V1)) -> U21(isNat(activate(V1)))
                isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
                plus(X1,X2) -> n__plus(X1,X2)
                s(X) -> n__s(X)
                x(X1,X2) -> n__x(X1,X2)
              Signature:
                {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0}
              Obligation:
                Innermost
                basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
            Applied Processor:
              NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a matrix interpretation of kind constructor based matrix interpretation:
              The following argument positions are considered usable:
                uargs(c_2) = {1},
                uargs(c_5) = {1},
                uargs(c_8) = {1},
                uargs(c_11) = {1},
                uargs(c_19) = {1,2},
                uargs(c_20) = {1},
                uargs(c_21) = {1,2}
              
              Following symbols are considered usable:
                {0,U11,U12,U21,U31,U32,activate,isNat,plus,s,x,0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}
              TcT has computed the following interpretation:
                        p(0) = [0]                           
                      p(U11) = [0]                           
                      p(U12) = [0]                           
                      p(U21) = [1]                           
                      p(U31) = [3]                           
                      p(U32) = [3]                           
                      p(U41) = [1] x1 + [4] x2 + [0]         
                      p(U51) = [1]                           
                      p(U52) = [2] x1 + [1] x3 + [1]         
                      p(U61) = [1] x1 + [0]                  
                      p(U71) = [1] x1 + [4] x2 + [0]         
                      p(U72) = [1] x1 + [1] x3 + [1]         
                 p(activate) = [1] x1 + [0]                  
                    p(isNat) = [4]                           
                     p(n__0) = [0]                           
                  p(n__plus) = [1] x1 + [1] x2 + [2]         
                     p(n__s) = [1] x1 + [1]                  
                     p(n__x) = [1] x1 + [1] x2 + [2]         
                     p(plus) = [1] x1 + [1] x2 + [2]         
                        p(s) = [1] x1 + [1]                  
                       p(tt) = [0]                           
                        p(x) = [1] x1 + [1] x2 + [2]         
                       p(0#) = [0]                           
                     p(U11#) = [2] x1 + [4] x2 + [0]         
                     p(U12#) = [2]                           
                     p(U21#) = [1] x1 + [2]                  
                     p(U31#) = [4] x2 + [7]                  
                     p(U32#) = [1] x1 + [0]                  
                     p(U41#) = [2] x1 + [1] x2 + [2]         
                     p(U51#) = [2] x2 + [4] x3 + [1]         
                     p(U52#) = [2] x1 + [1] x2 + [4] x3 + [1]
                     p(U61#) = [2]                           
                     p(U71#) = [4] x3 + [5]                  
                     p(U72#) = [1] x1 + [4] x2 + [1] x3 + [2]
                p(activate#) = [2] x1 + [1]                  
                   p(isNat#) = [4] x1 + [0]                  
                    p(plus#) = [1] x1 + [1] x2 + [1]         
                       p(s#) = [4] x1 + [1]                  
                       p(x#) = [2]                           
                      p(c_1) = [1]                           
                      p(c_2) = [1] x1 + [0]                  
                      p(c_3) = [4]                           
                      p(c_4) = [2]                           
                      p(c_5) = [1] x1 + [3]                  
                      p(c_6) = [1]                           
                      p(c_7) = [1]                           
                      p(c_8) = [1] x1 + [0]                  
                      p(c_9) = [1]                           
                     p(c_10) = [2] x1 + [0]                  
                     p(c_11) = [1] x1 + [1]                  
                     p(c_12) = [4] x1 + [1] x2 + [2] x3 + [4]
                     p(c_13) = [1]                           
                     p(c_14) = [0]                           
                     p(c_15) = [1]                           
                     p(c_16) = [2] x1 + [4]                  
                     p(c_17) = [1] x2 + [0]                  
                     p(c_18) = [2]                           
                     p(c_19) = [1] x1 + [1] x2 + [0]         
                     p(c_20) = [1] x1 + [4]                  
                     p(c_21) = [1] x1 + [1] x2 + [1]         
                     p(c_22) = [4]                           
                     p(c_23) = [1]                           
                     p(c_24) = [0]                           
              
              Following rules are strictly oriented:
              U31#(tt(),V2) = [4] V2 + [7]             
                            > [4] V2 + [3]             
                            = c_5(isNat#(activate(V2)))
              
              
              Following rules are (at-least) weakly oriented:
                         U11#(tt(),V2) =  [4] V2 + [0]                   
                                       >= [4] V2 + [0]                   
                                       =  c_2(isNat#(activate(V2)))      
              
                        U51#(tt(),M,N) =  [2] M + [4] N + [1]            
                                       >= [4] N + [0]                    
                                       =  c_8(isNat#(activate(N)))       
              
                        U71#(tt(),M,N) =  [4] N + [5]                    
                                       >= [4] N + [1]                    
                                       =  c_11(isNat#(activate(N)))      
              
                isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [8]          
                                       >= [4] V1 + [4] V2 + [8]          
                                       =  c_19(U11#(isNat(activate(V1))  
                                                   ,activate(V2))        
                                              ,isNat#(activate(V1)))     
              
                      isNat#(n__s(V1)) =  [4] V1 + [4]                   
                                       >= [4] V1 + [4]                   
                                       =  c_20(isNat#(activate(V1)))     
              
                   isNat#(n__x(V1,V2)) =  [4] V1 + [4] V2 + [8]          
                                       >= [4] V1 + [4] V2 + [8]          
                                       =  c_21(U31#(isNat(activate(V1))  
                                                   ,activate(V2))        
                                              ,isNat#(activate(V1)))     
              
                                   0() =  [0]                            
                                       >= [0]                            
                                       =  n__0()                         
              
                          U11(tt(),V2) =  [0]                            
                                       >= [0]                            
                                       =  U12(isNat(activate(V2)))       
              
                             U12(tt()) =  [0]                            
                                       >= [0]                            
                                       =  tt()                           
              
                             U21(tt()) =  [1]                            
                                       >= [0]                            
                                       =  tt()                           
              
                          U31(tt(),V2) =  [3]                            
                                       >= [3]                            
                                       =  U32(isNat(activate(V2)))       
              
                             U32(tt()) =  [3]                            
                                       >= [0]                            
                                       =  tt()                           
              
                           activate(X) =  [1] X + [0]                    
                                       >= [1] X + [0]                    
                                       =  X                              
              
                      activate(n__0()) =  [0]                            
                                       >= [0]                            
                                       =  0()                            
              
              activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [2]          
                                       >= [1] X1 + [1] X2 + [2]          
                                       =  plus(activate(X1),activate(X2))
              
                     activate(n__s(X)) =  [1] X + [1]                    
                                       >= [1] X + [1]                    
                                       =  s(activate(X))                 
              
                 activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [2]          
                                       >= [1] X1 + [1] X2 + [2]          
                                       =  x(activate(X1),activate(X2))   
              
                         isNat(n__0()) =  [4]                            
                                       >= [0]                            
                                       =  tt()                           
              
                 isNat(n__plus(V1,V2)) =  [4]                            
                                       >= [0]                            
                                       =  U11(isNat(activate(V1))        
                                             ,activate(V2))              
              
                       isNat(n__s(V1)) =  [4]                            
                                       >= [1]                            
                                       =  U21(isNat(activate(V1)))       
              
                    isNat(n__x(V1,V2)) =  [4]                            
                                       >= [3]                            
                                       =  U31(isNat(activate(V1))        
                                             ,activate(V2))              
              
                           plus(X1,X2) =  [1] X1 + [1] X2 + [2]          
                                       >= [1] X1 + [1] X2 + [2]          
                                       =  n__plus(X1,X2)                 
              
                                  s(X) =  [1] X + [1]                    
                                       >= [1] X + [1]                    
                                       =  n__s(X)                        
              
                              x(X1,X2) =  [1] X1 + [1] X2 + [2]          
                                       >= [1] X1 + [1] X2 + [2]          
                                       =  n__x(X1,X2)                    
              
        *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
                isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              Strict TRS Rules:
                
              Weak DP Rules:
                U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
                U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
                U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
                isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
              Weak TRS Rules:
                0() -> n__0()
                U11(tt(),V2) -> U12(isNat(activate(V2)))
                U12(tt()) -> tt()
                U21(tt()) -> tt()
                U31(tt(),V2) -> U32(isNat(activate(V2)))
                U32(tt()) -> tt()
                activate(X) -> X
                activate(n__0()) -> 0()
                activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
                activate(n__s(X)) -> s(activate(X))
                activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
                isNat(n__0()) -> tt()
                isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
                isNat(n__s(V1)) -> U21(isNat(activate(V1)))
                isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
                plus(X1,X2) -> n__plus(X1,X2)
                s(X) -> n__s(X)
                x(X1,X2) -> n__x(X1,X2)
              Signature:
                {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0}
              Obligation:
                Innermost
                basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
                isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              Strict TRS Rules:
                
              Weak DP Rules:
                U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
                U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
                U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
                isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
              Weak TRS Rules:
                0() -> n__0()
                U11(tt(),V2) -> U12(isNat(activate(V2)))
                U12(tt()) -> tt()
                U21(tt()) -> tt()
                U31(tt(),V2) -> U32(isNat(activate(V2)))
                U32(tt()) -> tt()
                activate(X) -> X
                activate(n__0()) -> 0()
                activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
                activate(n__s(X)) -> s(activate(X))
                activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
                isNat(n__0()) -> tt()
                isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
                isNat(n__s(V1)) -> U21(isNat(activate(V1)))
                isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
                plus(X1,X2) -> n__plus(X1,X2)
                s(X) -> n__s(X)
                x(X1,X2) -> n__x(X1,X2)
              Signature:
                {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0}
              Obligation:
                Innermost
                basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                3: isNat#(n__x(V1,V2)) ->         
                     c_21(U31#(isNat(activate(V1))
                              ,activate(V2))      
                         ,isNat#(activate(V1)))   
                
              Consider the set of all dependency pairs
                1: U11#(tt(),V2) ->               
                     c_2(isNat#(activate(V2)))    
                2: isNat#(n__plus(V1,V2)) ->      
                     c_19(U11#(isNat(activate(V1))
                              ,activate(V2))      
                         ,isNat#(activate(V1)))   
                3: isNat#(n__x(V1,V2)) ->         
                     c_21(U31#(isNat(activate(V1))
                              ,activate(V2))      
                         ,isNat#(activate(V1)))   
                4: U31#(tt(),V2) ->               
                     c_5(isNat#(activate(V2)))    
                5: U51#(tt(),M,N) ->              
                     c_8(isNat#(activate(N)))     
                6: U71#(tt(),M,N) ->              
                     c_11(isNat#(activate(N)))    
                7: isNat#(n__s(V1)) ->            
                     c_20(isNat#(activate(V1)))   
              Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
              SPACE(?,?)on application of the dependency pairs
                {3}
              These cover all (indirect) predecessors of dependency pairs
                {3,4,5,6}
              their number of applications is equally bounded.
              The dependency pairs are shifted into the weak component.
          *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.1 Progress [(?,O(n^1))]  ***
              Considered Problem:
                Strict DP Rules:
                  U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
                  isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                  isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
                  U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
                  U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
                  isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
                Weak TRS Rules:
                  0() -> n__0()
                  U11(tt(),V2) -> U12(isNat(activate(V2)))
                  U12(tt()) -> tt()
                  U21(tt()) -> tt()
                  U31(tt(),V2) -> U32(isNat(activate(V2)))
                  U32(tt()) -> tt()
                  activate(X) -> X
                  activate(n__0()) -> 0()
                  activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
                  activate(n__s(X)) -> s(activate(X))
                  activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
                  isNat(n__0()) -> tt()
                  isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
                  isNat(n__s(V1)) -> U21(isNat(activate(V1)))
                  isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
                  plus(X1,X2) -> n__plus(X1,X2)
                  s(X) -> n__s(X)
                  x(X1,X2) -> n__x(X1,X2)
                Signature:
                  {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0}
                Obligation:
                  Innermost
                  basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
              Applied Processor:
                NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a matrix interpretation of kind constructor based matrix interpretation:
                The following argument positions are considered usable:
                  uargs(c_2) = {1},
                  uargs(c_5) = {1},
                  uargs(c_8) = {1},
                  uargs(c_11) = {1},
                  uargs(c_19) = {1,2},
                  uargs(c_20) = {1},
                  uargs(c_21) = {1,2}
                
                Following symbols are considered usable:
                  {0,activate,plus,s,x,0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}
                TcT has computed the following interpretation:
                          p(0) = [1]                  
                        p(U11) = [1]                  
                        p(U12) = [2]                  
                        p(U21) = [1] x1 + [4]         
                        p(U31) = [2] x2 + [0]         
                        p(U32) = [2] x1 + [4]         
                        p(U41) = [1] x1 + [0]         
                        p(U51) = [1] x2 + [1] x3 + [2]
                        p(U52) = [1] x2 + [1]         
                        p(U61) = [4] x1 + [1]         
                        p(U71) = [0]                  
                        p(U72) = [1] x1 + [0]         
                   p(activate) = [1] x1 + [0]         
                      p(isNat) = [4]                  
                       p(n__0) = [1]                  
                    p(n__plus) = [1] x1 + [1] x2 + [1]
                       p(n__s) = [1] x1 + [1]         
                       p(n__x) = [1] x1 + [1] x2 + [2]
                       p(plus) = [1] x1 + [1] x2 + [1]
                          p(s) = [1] x1 + [1]         
                         p(tt) = [0]                  
                          p(x) = [1] x1 + [1] x2 + [2]
                         p(0#) = [0]                  
                       p(U11#) = [4] x2 + [0]         
                       p(U12#) = [4] x1 + [4]         
                       p(U21#) = [4]                  
                       p(U31#) = [4] x2 + [4]         
                       p(U32#) = [1] x1 + [1]         
                       p(U41#) = [0]                  
                       p(U51#) = [1] x1 + [4] x3 + [6]
                       p(U52#) = [2]                  
                       p(U61#) = [1] x1 + [4]         
                       p(U71#) = [2] x1 + [4] x3 + [1]
                       p(U72#) = [4] x2 + [2]         
                  p(activate#) = [2] x1 + [0]         
                     p(isNat#) = [4] x1 + [0]         
                      p(plus#) = [4]                  
                         p(s#) = [1] x1 + [0]         
                         p(x#) = [1] x1 + [1]         
                        p(c_1) = [0]                  
                        p(c_2) = [1] x1 + [0]         
                        p(c_3) = [0]                  
                        p(c_4) = [1]                  
                        p(c_5) = [1] x1 + [4]         
                        p(c_6) = [0]                  
                        p(c_7) = [0]                  
                        p(c_8) = [1] x1 + [4]         
                        p(c_9) = [1] x1 + [1]         
                       p(c_10) = [1]                  
                       p(c_11) = [1] x1 + [0]         
                       p(c_12) = [1] x2 + [4]         
                       p(c_13) = [2]                  
                       p(c_14) = [1] x1 + [1]         
                       p(c_15) = [4] x1 + [1]         
                       p(c_16) = [0]                  
                       p(c_17) = [1] x1 + [0]         
                       p(c_18) = [0]                  
                       p(c_19) = [1] x1 + [1] x2 + [4]
                       p(c_20) = [1] x1 + [4]         
                       p(c_21) = [1] x1 + [1] x2 + [0]
                       p(c_22) = [0]                  
                       p(c_23) = [4]                  
                       p(c_24) = [1]                  
                
                Following rules are strictly oriented:
                isNat#(n__x(V1,V2)) = [4] V1 + [4] V2 + [8]        
                                    > [4] V1 + [4] V2 + [4]        
                                    = c_21(U31#(isNat(activate(V1))
                                               ,activate(V2))      
                                          ,isNat#(activate(V1)))   
                
                
                Following rules are (at-least) weakly oriented:
                           U11#(tt(),V2) =  [4] V2 + [0]                   
                                         >= [4] V2 + [0]                   
                                         =  c_2(isNat#(activate(V2)))      
                
                           U31#(tt(),V2) =  [4] V2 + [4]                   
                                         >= [4] V2 + [4]                   
                                         =  c_5(isNat#(activate(V2)))      
                
                          U51#(tt(),M,N) =  [4] N + [6]                    
                                         >= [4] N + [4]                    
                                         =  c_8(isNat#(activate(N)))       
                
                          U71#(tt(),M,N) =  [4] N + [1]                    
                                         >= [4] N + [0]                    
                                         =  c_11(isNat#(activate(N)))      
                
                  isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [4]          
                                         >= [4] V1 + [4] V2 + [4]          
                                         =  c_19(U11#(isNat(activate(V1))  
                                                     ,activate(V2))        
                                                ,isNat#(activate(V1)))     
                
                        isNat#(n__s(V1)) =  [4] V1 + [4]                   
                                         >= [4] V1 + [4]                   
                                         =  c_20(isNat#(activate(V1)))     
                
                                     0() =  [1]                            
                                         >= [1]                            
                                         =  n__0()                         
                
                             activate(X) =  [1] X + [0]                    
                                         >= [1] X + [0]                    
                                         =  X                              
                
                        activate(n__0()) =  [1]                            
                                         >= [1]                            
                                         =  0()                            
                
                activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [1]          
                                         >= [1] X1 + [1] X2 + [1]          
                                         =  plus(activate(X1),activate(X2))
                
                       activate(n__s(X)) =  [1] X + [1]                    
                                         >= [1] X + [1]                    
                                         =  s(activate(X))                 
                
                   activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [2]          
                                         >= [1] X1 + [1] X2 + [2]          
                                         =  x(activate(X1),activate(X2))   
                
                             plus(X1,X2) =  [1] X1 + [1] X2 + [1]          
                                         >= [1] X1 + [1] X2 + [1]          
                                         =  n__plus(X1,X2)                 
                
                                    s(X) =  [1] X + [1]                    
                                         >= [1] X + [1]                    
                                         =  n__s(X)                        
                
                                x(X1,X2) =  [1] X1 + [1] X2 + [2]          
                                         >= [1] X1 + [1] X2 + [2]          
                                         =  n__x(X1,X2)                    
                
          *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
                  isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
                  U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
                  U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
                  isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
                  isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                Weak TRS Rules:
                  0() -> n__0()
                  U11(tt(),V2) -> U12(isNat(activate(V2)))
                  U12(tt()) -> tt()
                  U21(tt()) -> tt()
                  U31(tt(),V2) -> U32(isNat(activate(V2)))
                  U32(tt()) -> tt()
                  activate(X) -> X
                  activate(n__0()) -> 0()
                  activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
                  activate(n__s(X)) -> s(activate(X))
                  activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
                  isNat(n__0()) -> tt()
                  isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
                  isNat(n__s(V1)) -> U21(isNat(activate(V1)))
                  isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
                  plus(X1,X2) -> n__plus(X1,X2)
                  s(X) -> n__s(X)
                  x(X1,X2) -> n__x(X1,X2)
                Signature:
                  {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0}
                Obligation:
                  Innermost
                  basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.2 Progress [(?,O(n^1))]  ***
              Considered Problem:
                Strict DP Rules:
                  U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
                  isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
                  U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
                  U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
                  isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
                  isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                Weak TRS Rules:
                  0() -> n__0()
                  U11(tt(),V2) -> U12(isNat(activate(V2)))
                  U12(tt()) -> tt()
                  U21(tt()) -> tt()
                  U31(tt(),V2) -> U32(isNat(activate(V2)))
                  U32(tt()) -> tt()
                  activate(X) -> X
                  activate(n__0()) -> 0()
                  activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
                  activate(n__s(X)) -> s(activate(X))
                  activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
                  isNat(n__0()) -> tt()
                  isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
                  isNat(n__s(V1)) -> U21(isNat(activate(V1)))
                  isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
                  plus(X1,X2) -> n__plus(X1,X2)
                  s(X) -> n__s(X)
                  x(X1,X2) -> n__x(X1,X2)
                Signature:
                  {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0}
                Obligation:
                  Innermost
                  basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
              Applied Processor:
                PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
              Proof:
                We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                  2: isNat#(n__plus(V1,V2)) ->      
                       c_19(U11#(isNat(activate(V1))
                                ,activate(V2))      
                           ,isNat#(activate(V1)))   
                  
                Consider the set of all dependency pairs
                  1: U11#(tt(),V2) ->               
                       c_2(isNat#(activate(V2)))    
                  2: isNat#(n__plus(V1,V2)) ->      
                       c_19(U11#(isNat(activate(V1))
                                ,activate(V2))      
                           ,isNat#(activate(V1)))   
                  3: U31#(tt(),V2) ->               
                       c_5(isNat#(activate(V2)))    
                  4: U51#(tt(),M,N) ->              
                       c_8(isNat#(activate(N)))     
                  5: U71#(tt(),M,N) ->              
                       c_11(isNat#(activate(N)))    
                  6: isNat#(n__s(V1)) ->            
                       c_20(isNat#(activate(V1)))   
                  7: isNat#(n__x(V1,V2)) ->         
                       c_21(U31#(isNat(activate(V1))
                                ,activate(V2))      
                           ,isNat#(activate(V1)))   
                Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
                SPACE(?,?)on application of the dependency pairs
                  {2}
                These cover all (indirect) predecessors of dependency pairs
                  {1,2,4,5}
                their number of applications is equally bounded.
                The dependency pairs are shifted into the weak component.
            *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.2.1 Progress [(?,O(n^1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
                    isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
                    U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
                    U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
                    isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
                    isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                  Weak TRS Rules:
                    0() -> n__0()
                    U11(tt(),V2) -> U12(isNat(activate(V2)))
                    U12(tt()) -> tt()
                    U21(tt()) -> tt()
                    U31(tt(),V2) -> U32(isNat(activate(V2)))
                    U32(tt()) -> tt()
                    activate(X) -> X
                    activate(n__0()) -> 0()
                    activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
                    activate(n__s(X)) -> s(activate(X))
                    activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
                    isNat(n__0()) -> tt()
                    isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
                    isNat(n__s(V1)) -> U21(isNat(activate(V1)))
                    isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
                    plus(X1,X2) -> n__plus(X1,X2)
                    s(X) -> n__s(X)
                    x(X1,X2) -> n__x(X1,X2)
                  Signature:
                    {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0}
                  Obligation:
                    Innermost
                    basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
                Applied Processor:
                  NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
                Proof:
                  We apply a matrix interpretation of kind constructor based matrix interpretation:
                  The following argument positions are considered usable:
                    uargs(c_2) = {1},
                    uargs(c_5) = {1},
                    uargs(c_8) = {1},
                    uargs(c_11) = {1},
                    uargs(c_19) = {1,2},
                    uargs(c_20) = {1},
                    uargs(c_21) = {1,2}
                  
                  Following symbols are considered usable:
                    {0,activate,plus,s,x,0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}
                  TcT has computed the following interpretation:
                            p(0) = [0]                  
                          p(U11) = [0]                  
                          p(U12) = [0]                  
                          p(U21) = [0]                  
                          p(U31) = [0]                  
                          p(U32) = [1] x1 + [0]         
                          p(U41) = [0]                  
                          p(U51) = [0]                  
                          p(U52) = [0]                  
                          p(U61) = [0]                  
                          p(U71) = [0]                  
                          p(U72) = [0]                  
                     p(activate) = [1] x1 + [0]         
                        p(isNat) = [0]                  
                         p(n__0) = [0]                  
                      p(n__plus) = [1] x1 + [1] x2 + [3]
                         p(n__s) = [1] x1 + [2]         
                         p(n__x) = [1] x1 + [1] x2 + [3]
                         p(plus) = [1] x1 + [1] x2 + [3]
                            p(s) = [1] x1 + [2]         
                           p(tt) = [0]                  
                            p(x) = [1] x1 + [1] x2 + [3]
                           p(0#) = [0]                  
                         p(U11#) = [4] x2 + [7]         
                         p(U12#) = [0]                  
                         p(U21#) = [0]                  
                         p(U31#) = [4] x2 + [1]         
                         p(U32#) = [0]                  
                         p(U41#) = [0]                  
                         p(U51#) = [4] x3 + [2]         
                         p(U52#) = [0]                  
                         p(U61#) = [0]                  
                         p(U71#) = [4] x3 + [7]         
                         p(U72#) = [0]                  
                    p(activate#) = [0]                  
                       p(isNat#) = [4] x1 + [1]         
                        p(plus#) = [0]                  
                           p(s#) = [0]                  
                           p(x#) = [0]                  
                          p(c_1) = [0]                  
                          p(c_2) = [1] x1 + [6]         
                          p(c_3) = [0]                  
                          p(c_4) = [0]                  
                          p(c_5) = [1] x1 + [0]         
                          p(c_6) = [0]                  
                          p(c_7) = [0]                  
                          p(c_8) = [1] x1 + [1]         
                          p(c_9) = [0]                  
                         p(c_10) = [0]                  
                         p(c_11) = [1] x1 + [6]         
                         p(c_12) = [1] x2 + [0]         
                         p(c_13) = [0]                  
                         p(c_14) = [4] x1 + [0]         
                         p(c_15) = [1] x1 + [0]         
                         p(c_16) = [0]                  
                         p(c_17) = [1] x2 + [0]         
                         p(c_18) = [0]                  
                         p(c_19) = [1] x1 + [1] x2 + [1]
                         p(c_20) = [1] x1 + [1]         
                         p(c_21) = [1] x1 + [1] x2 + [5]
                         p(c_22) = [0]                  
                         p(c_23) = [0]                  
                         p(c_24) = [0]                  
                  
                  Following rules are strictly oriented:
                  isNat#(n__plus(V1,V2)) = [4] V1 + [4] V2 + [13]       
                                         > [4] V1 + [4] V2 + [9]        
                                         = c_19(U11#(isNat(activate(V1))
                                                    ,activate(V2))      
                                               ,isNat#(activate(V1)))   
                  
                  
                  Following rules are (at-least) weakly oriented:
                             U11#(tt(),V2) =  [4] V2 + [7]                   
                                           >= [4] V2 + [7]                   
                                           =  c_2(isNat#(activate(V2)))      
                  
                             U31#(tt(),V2) =  [4] V2 + [1]                   
                                           >= [4] V2 + [1]                   
                                           =  c_5(isNat#(activate(V2)))      
                  
                            U51#(tt(),M,N) =  [4] N + [2]                    
                                           >= [4] N + [2]                    
                                           =  c_8(isNat#(activate(N)))       
                  
                            U71#(tt(),M,N) =  [4] N + [7]                    
                                           >= [4] N + [7]                    
                                           =  c_11(isNat#(activate(N)))      
                  
                          isNat#(n__s(V1)) =  [4] V1 + [9]                   
                                           >= [4] V1 + [2]                   
                                           =  c_20(isNat#(activate(V1)))     
                  
                       isNat#(n__x(V1,V2)) =  [4] V1 + [4] V2 + [13]         
                                           >= [4] V1 + [4] V2 + [7]          
                                           =  c_21(U31#(isNat(activate(V1))  
                                                       ,activate(V2))        
                                                  ,isNat#(activate(V1)))     
                  
                                       0() =  [0]                            
                                           >= [0]                            
                                           =  n__0()                         
                  
                               activate(X) =  [1] X + [0]                    
                                           >= [1] X + [0]                    
                                           =  X                              
                  
                          activate(n__0()) =  [0]                            
                                           >= [0]                            
                                           =  0()                            
                  
                  activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [3]          
                                           >= [1] X1 + [1] X2 + [3]          
                                           =  plus(activate(X1),activate(X2))
                  
                         activate(n__s(X)) =  [1] X + [2]                    
                                           >= [1] X + [2]                    
                                           =  s(activate(X))                 
                  
                     activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [3]          
                                           >= [1] X1 + [1] X2 + [3]          
                                           =  x(activate(X1),activate(X2))   
                  
                               plus(X1,X2) =  [1] X1 + [1] X2 + [3]          
                                           >= [1] X1 + [1] X2 + [3]          
                                           =  n__plus(X1,X2)                 
                  
                                      s(X) =  [1] X + [2]                    
                                           >= [1] X + [2]                    
                                           =  n__s(X)                        
                  
                                  x(X1,X2) =  [1] X1 + [1] X2 + [3]          
                                           >= [1] X1 + [1] X2 + [3]          
                                           =  n__x(X1,X2)                    
                  
            *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.2.1.1 Progress [(?,O(1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
                    U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
                    U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
                    isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                    isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
                    isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                  Weak TRS Rules:
                    0() -> n__0()
                    U11(tt(),V2) -> U12(isNat(activate(V2)))
                    U12(tt()) -> tt()
                    U21(tt()) -> tt()
                    U31(tt(),V2) -> U32(isNat(activate(V2)))
                    U32(tt()) -> tt()
                    activate(X) -> X
                    activate(n__0()) -> 0()
                    activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
                    activate(n__s(X)) -> s(activate(X))
                    activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
                    isNat(n__0()) -> tt()
                    isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
                    isNat(n__s(V1)) -> U21(isNat(activate(V1)))
                    isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
                    plus(X1,X2) -> n__plus(X1,X2)
                    s(X) -> n__s(X)
                    x(X1,X2) -> n__x(X1,X2)
                  Signature:
                    {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0}
                  Obligation:
                    Innermost
                    basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
                Applied Processor:
                  Assumption
                Proof:
                  ()
            
            *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.2.2 Progress [(O(1),O(1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
                    U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
                    U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
                    U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
                    isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                    isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
                    isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                  Weak TRS Rules:
                    0() -> n__0()
                    U11(tt(),V2) -> U12(isNat(activate(V2)))
                    U12(tt()) -> tt()
                    U21(tt()) -> tt()
                    U31(tt(),V2) -> U32(isNat(activate(V2)))
                    U32(tt()) -> tt()
                    activate(X) -> X
                    activate(n__0()) -> 0()
                    activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
                    activate(n__s(X)) -> s(activate(X))
                    activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
                    isNat(n__0()) -> tt()
                    isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
                    isNat(n__s(V1)) -> U21(isNat(activate(V1)))
                    isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
                    plus(X1,X2) -> n__plus(X1,X2)
                    s(X) -> n__s(X)
                    x(X1,X2) -> n__x(X1,X2)
                  Signature:
                    {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0}
                  Obligation:
                    Innermost
                    basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
                Applied Processor:
                  RemoveWeakSuffixes
                Proof:
                  Consider the dependency graph
                    1:W:U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
                       -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7
                       -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))):6
                       -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5
                    
                    2:W:U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
                       -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7
                       -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))):6
                       -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5
                    
                    3:W:U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
                       -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7
                       -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))):6
                       -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5
                    
                    4:W:U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
                       -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7
                       -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))):6
                       -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5
                    
                    5:W:isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                       -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7
                       -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))):6
                       -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5
                       -->_1 U11#(tt(),V2) -> c_2(isNat#(activate(V2))):1
                    
                    6:W:isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
                       -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7
                       -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))):6
                       -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5
                    
                    7:W:isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                       -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7
                       -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))):6
                       -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5
                       -->_1 U31#(tt(),V2) -> c_5(isNat#(activate(V2))):2
                    
                  The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                    4: U71#(tt(),M,N) ->              
                         c_11(isNat#(activate(N)))    
                    3: U51#(tt(),M,N) ->              
                         c_8(isNat#(activate(N)))     
                    1: U11#(tt(),V2) ->               
                         c_2(isNat#(activate(V2)))    
                    5: isNat#(n__plus(V1,V2)) ->      
                         c_19(U11#(isNat(activate(V1))
                                  ,activate(V2))      
                             ,isNat#(activate(V1)))   
                    7: isNat#(n__x(V1,V2)) ->         
                         c_21(U31#(isNat(activate(V1))
                                  ,activate(V2))      
                             ,isNat#(activate(V1)))   
                    6: isNat#(n__s(V1)) ->            
                         c_20(isNat#(activate(V1)))   
                    2: U31#(tt(),V2) ->               
                         c_5(isNat#(activate(V2)))    
            *** 1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.2.2.2.1 Progress [(O(1),O(1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    
                  Weak TRS Rules:
                    0() -> n__0()
                    U11(tt(),V2) -> U12(isNat(activate(V2)))
                    U12(tt()) -> tt()
                    U21(tt()) -> tt()
                    U31(tt(),V2) -> U32(isNat(activate(V2)))
                    U32(tt()) -> tt()
                    activate(X) -> X
                    activate(n__0()) -> 0()
                    activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
                    activate(n__s(X)) -> s(activate(X))
                    activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
                    isNat(n__0()) -> tt()
                    isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
                    isNat(n__s(V1)) -> U21(isNat(activate(V1)))
                    isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
                    plus(X1,X2) -> n__plus(X1,X2)
                    s(X) -> n__s(X)
                    x(X1,X2) -> n__x(X1,X2)
                  Signature:
                    {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0,c_24/0}
                  Obligation:
                    Innermost
                    basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
                Applied Processor:
                  EmptyProcessor
                Proof:
                  The problem is already closed. The intended complexity is O(1).
            
    *** 1.1.1.1.1.1.1.1.1.1.2 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_16(activate#(X))
            activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
          Strict TRS Rules:
            
          Weak DP Rules:
            U11#(tt(),V2) -> activate#(V2)
            U11#(tt(),V2) -> isNat#(activate(V2))
            U31#(tt(),V2) -> activate#(V2)
            U31#(tt(),V2) -> isNat#(activate(V2))
            U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
            U51#(tt(),M,N) -> activate#(M)
            U51#(tt(),M,N) -> activate#(N)
            U51#(tt(),M,N) -> isNat#(activate(N))
            U52#(tt(),M,N) -> activate#(M)
            U52#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
            U71#(tt(),M,N) -> activate#(M)
            U71#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> isNat#(activate(N))
            U72#(tt(),M,N) -> activate#(M)
            U72#(tt(),M,N) -> activate#(N)
            isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
            isNat#(n__s(V1)) -> activate#(V1)
            isNat#(n__s(V1)) -> isNat#(activate(V1))
            isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
            isNat#(n__x(V1,V2)) -> activate#(V1)
            isNat#(n__x(V1,V2)) -> activate#(V2)
            isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
          Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
          Obligation:
            Innermost
            basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            2: activate#(n__s(X)) ->
                 c_16(activate#(X)) 
            
          Consider the set of all dependency pairs
            1:  activate#(n__plus(X1,X2)) ->  
                  c_15(activate#(X1)          
                      ,activate#(X2))         
            2:  activate#(n__s(X)) ->         
                  c_16(activate#(X))          
            3:  activate#(n__x(X1,X2)) ->     
                  c_17(activate#(X1)          
                      ,activate#(X2))         
            4:  U11#(tt(),V2) -> activate#(V2)
            5:  U11#(tt(),V2) ->              
                  isNat#(activate(V2))        
            6:  U31#(tt(),V2) -> activate#(V2)
            7:  U31#(tt(),V2) ->              
                  isNat#(activate(V2))        
            8:  U51#(tt(),M,N) ->             
                  U52#(isNat(activate(N))     
                      ,activate(M)            
                      ,activate(N))           
            9:  U51#(tt(),M,N) -> activate#(M)
            10: U51#(tt(),M,N) -> activate#(N)
            11: U51#(tt(),M,N) ->             
                  isNat#(activate(N))         
            12: U52#(tt(),M,N) -> activate#(M)
            13: U52#(tt(),M,N) -> activate#(N)
            14: U71#(tt(),M,N) ->             
                  U72#(isNat(activate(N))     
                      ,activate(M)            
                      ,activate(N))           
            15: U71#(tt(),M,N) -> activate#(M)
            16: U71#(tt(),M,N) -> activate#(N)
            17: U71#(tt(),M,N) ->             
                  isNat#(activate(N))         
            18: U72#(tt(),M,N) -> activate#(M)
            19: U72#(tt(),M,N) -> activate#(N)
            20: isNat#(n__plus(V1,V2)) ->     
                  U11#(isNat(activate(V1))    
                      ,activate(V2))          
            21: isNat#(n__plus(V1,V2)) ->     
                  activate#(V1)               
            22: isNat#(n__plus(V1,V2)) ->     
                  activate#(V2)               
            23: isNat#(n__plus(V1,V2)) ->     
                  isNat#(activate(V1))        
            24: isNat#(n__s(V1)) ->           
                  activate#(V1)               
            25: isNat#(n__s(V1)) ->           
                  isNat#(activate(V1))        
            26: isNat#(n__x(V1,V2)) ->        
                  U31#(isNat(activate(V1))    
                      ,activate(V2))          
            27: isNat#(n__x(V1,V2)) ->        
                  activate#(V1)               
            28: isNat#(n__x(V1,V2)) ->        
                  activate#(V2)               
            29: isNat#(n__x(V1,V2)) ->        
                  isNat#(activate(V1))        
          Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
          SPACE(?,?)on application of the dependency pairs
            {2}
          These cover all (indirect) predecessors of dependency pairs
            {2,8,9,10,11,12,13,14,15,16,17,18,19}
          their number of applications is equally bounded.
          The dependency pairs are shifted into the weak component.
      *** 1.1.1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
              activate#(n__s(X)) -> c_16(activate#(X))
              activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
            Strict TRS Rules:
              
            Weak DP Rules:
              U11#(tt(),V2) -> activate#(V2)
              U11#(tt(),V2) -> isNat#(activate(V2))
              U31#(tt(),V2) -> activate#(V2)
              U31#(tt(),V2) -> isNat#(activate(V2))
              U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
              U51#(tt(),M,N) -> activate#(M)
              U51#(tt(),M,N) -> activate#(N)
              U51#(tt(),M,N) -> isNat#(activate(N))
              U52#(tt(),M,N) -> activate#(M)
              U52#(tt(),M,N) -> activate#(N)
              U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
              U71#(tt(),M,N) -> activate#(M)
              U71#(tt(),M,N) -> activate#(N)
              U71#(tt(),M,N) -> isNat#(activate(N))
              U72#(tt(),M,N) -> activate#(M)
              U72#(tt(),M,N) -> activate#(N)
              isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
              isNat#(n__plus(V1,V2)) -> activate#(V1)
              isNat#(n__plus(V1,V2)) -> activate#(V2)
              isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
              isNat#(n__s(V1)) -> activate#(V1)
              isNat#(n__s(V1)) -> isNat#(activate(V1))
              isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
              isNat#(n__x(V1,V2)) -> activate#(V1)
              isNat#(n__x(V1,V2)) -> activate#(V2)
              isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V2) -> U12(isNat(activate(V2)))
              U12(tt()) -> tt()
              U21(tt()) -> tt()
              U31(tt(),V2) -> U32(isNat(activate(V2)))
              U32(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
              activate(n__s(X)) -> s(activate(X))
              activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
              isNat(n__s(V1)) -> U21(isNat(activate(V1)))
              isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
              x(X1,X2) -> n__x(X1,X2)
            Signature:
              {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
            Obligation:
              Innermost
              basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
          Applied Processor:
            NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation:
            The following argument positions are considered usable:
              uargs(c_15) = {1,2},
              uargs(c_16) = {1},
              uargs(c_17) = {1,2}
            
            Following symbols are considered usable:
              {0,activate,plus,s,x,0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}
            TcT has computed the following interpretation:
                      p(0) = [0]                           
                    p(U11) = [0]                           
                    p(U12) = [0]                           
                    p(U21) = [0]                           
                    p(U31) = [0]                           
                    p(U32) = [0]                           
                    p(U41) = [0]                           
                    p(U51) = [0]                           
                    p(U52) = [0]                           
                    p(U61) = [4]                           
                    p(U71) = [4] x1 + [0]                  
                    p(U72) = [1] x1 + [4]                  
               p(activate) = [1] x1 + [0]                  
                  p(isNat) = [0]                           
                   p(n__0) = [0]                           
                p(n__plus) = [1] x1 + [1] x2 + [0]         
                   p(n__s) = [1] x1 + [1]                  
                   p(n__x) = [1] x1 + [1] x2 + [0]         
                   p(plus) = [1] x1 + [1] x2 + [0]         
                      p(s) = [1] x1 + [1]                  
                     p(tt) = [0]                           
                      p(x) = [1] x1 + [1] x2 + [0]         
                     p(0#) = [0]                           
                   p(U11#) = [4] x2 + [0]                  
                   p(U12#) = [0]                           
                   p(U21#) = [1] x1 + [4]                  
                   p(U31#) = [4] x2 + [0]                  
                   p(U32#) = [1] x1 + [0]                  
                   p(U41#) = [0]                           
                   p(U51#) = [4] x1 + [3] x2 + [4] x3 + [2]
                   p(U52#) = [3] x2 + [4] x3 + [2]         
                   p(U61#) = [4] x1 + [0]                  
                   p(U71#) = [4] x1 + [4] x2 + [7] x3 + [0]
                   p(U72#) = [4] x2 + [2] x3 + [0]         
              p(activate#) = [2] x1 + [0]                  
                 p(isNat#) = [4] x1 + [0]                  
                  p(plus#) = [1] x1 + [4] x2 + [1]         
                     p(s#) = [1]                           
                     p(x#) = [1] x1 + [2] x2 + [0]         
                    p(c_1) = [1]                           
                    p(c_2) = [1]                           
                    p(c_3) = [1]                           
                    p(c_4) = [0]                           
                    p(c_5) = [0]                           
                    p(c_6) = [0]                           
                    p(c_7) = [1]                           
                    p(c_8) = [1] x1 + [1] x3 + [0]         
                    p(c_9) = [1] x1 + [2] x2 + [1]         
                   p(c_10) = [4] x1 + [0]                  
                   p(c_11) = [1] x1 + [2] x3 + [2] x5 + [1]
                   p(c_12) = [0]                           
                   p(c_13) = [1]                           
                   p(c_14) = [4] x1 + [1]                  
                   p(c_15) = [1] x1 + [1] x2 + [0]         
                   p(c_16) = [1] x1 + [0]                  
                   p(c_17) = [1] x1 + [1] x2 + [0]         
                   p(c_18) = [1]                           
                   p(c_19) = [4]                           
                   p(c_20) = [1] x1 + [0]                  
                   p(c_21) = [4] x1 + [1] x2 + [0]         
                   p(c_22) = [0]                           
                   p(c_23) = [0]                           
                   p(c_24) = [1]                           
            
            Following rules are strictly oriented:
            activate#(n__s(X)) = [2] X + [2]       
                               > [2] X + [0]       
                               = c_16(activate#(X))
            
            
            Following rules are (at-least) weakly oriented:
                        U11#(tt(),V2) =  [4] V2 + [0]                   
                                      >= [2] V2 + [0]                   
                                      =  activate#(V2)                  
            
                        U11#(tt(),V2) =  [4] V2 + [0]                   
                                      >= [4] V2 + [0]                   
                                      =  isNat#(activate(V2))           
            
                        U31#(tt(),V2) =  [4] V2 + [0]                   
                                      >= [2] V2 + [0]                   
                                      =  activate#(V2)                  
            
                        U31#(tt(),V2) =  [4] V2 + [0]                   
                                      >= [4] V2 + [0]                   
                                      =  isNat#(activate(V2))           
            
                       U51#(tt(),M,N) =  [3] M + [4] N + [2]            
                                      >= [3] M + [4] N + [2]            
                                      =  U52#(isNat(activate(N))        
                                             ,activate(M)               
                                             ,activate(N))              
            
                       U51#(tt(),M,N) =  [3] M + [4] N + [2]            
                                      >= [2] M + [0]                    
                                      =  activate#(M)                   
            
                       U51#(tt(),M,N) =  [3] M + [4] N + [2]            
                                      >= [2] N + [0]                    
                                      =  activate#(N)                   
            
                       U51#(tt(),M,N) =  [3] M + [4] N + [2]            
                                      >= [4] N + [0]                    
                                      =  isNat#(activate(N))            
            
                       U52#(tt(),M,N) =  [3] M + [4] N + [2]            
                                      >= [2] M + [0]                    
                                      =  activate#(M)                   
            
                       U52#(tt(),M,N) =  [3] M + [4] N + [2]            
                                      >= [2] N + [0]                    
                                      =  activate#(N)                   
            
                       U71#(tt(),M,N) =  [4] M + [7] N + [0]            
                                      >= [4] M + [2] N + [0]            
                                      =  U72#(isNat(activate(N))        
                                             ,activate(M)               
                                             ,activate(N))              
            
                       U71#(tt(),M,N) =  [4] M + [7] N + [0]            
                                      >= [2] M + [0]                    
                                      =  activate#(M)                   
            
                       U71#(tt(),M,N) =  [4] M + [7] N + [0]            
                                      >= [2] N + [0]                    
                                      =  activate#(N)                   
            
                       U71#(tt(),M,N) =  [4] M + [7] N + [0]            
                                      >= [4] N + [0]                    
                                      =  isNat#(activate(N))            
            
                       U72#(tt(),M,N) =  [4] M + [2] N + [0]            
                                      >= [2] M + [0]                    
                                      =  activate#(M)                   
            
                       U72#(tt(),M,N) =  [4] M + [2] N + [0]            
                                      >= [2] N + [0]                    
                                      =  activate#(N)                   
            
            activate#(n__plus(X1,X2)) =  [2] X1 + [2] X2 + [0]          
                                      >= [2] X1 + [2] X2 + [0]          
                                      =  c_15(activate#(X1)             
                                             ,activate#(X2))            
            
               activate#(n__x(X1,X2)) =  [2] X1 + [2] X2 + [0]          
                                      >= [2] X1 + [2] X2 + [0]          
                                      =  c_17(activate#(X1)             
                                             ,activate#(X2))            
            
               isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [0]          
                                      >= [4] V2 + [0]                   
                                      =  U11#(isNat(activate(V1))       
                                             ,activate(V2))             
            
               isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [0]          
                                      >= [2] V1 + [0]                   
                                      =  activate#(V1)                  
            
               isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [0]          
                                      >= [2] V2 + [0]                   
                                      =  activate#(V2)                  
            
               isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [0]          
                                      >= [4] V1 + [0]                   
                                      =  isNat#(activate(V1))           
            
                     isNat#(n__s(V1)) =  [4] V1 + [4]                   
                                      >= [2] V1 + [0]                   
                                      =  activate#(V1)                  
            
                     isNat#(n__s(V1)) =  [4] V1 + [4]                   
                                      >= [4] V1 + [0]                   
                                      =  isNat#(activate(V1))           
            
                  isNat#(n__x(V1,V2)) =  [4] V1 + [4] V2 + [0]          
                                      >= [4] V2 + [0]                   
                                      =  U31#(isNat(activate(V1))       
                                             ,activate(V2))             
            
                  isNat#(n__x(V1,V2)) =  [4] V1 + [4] V2 + [0]          
                                      >= [2] V1 + [0]                   
                                      =  activate#(V1)                  
            
                  isNat#(n__x(V1,V2)) =  [4] V1 + [4] V2 + [0]          
                                      >= [2] V2 + [0]                   
                                      =  activate#(V2)                  
            
                  isNat#(n__x(V1,V2)) =  [4] V1 + [4] V2 + [0]          
                                      >= [4] V1 + [0]                   
                                      =  isNat#(activate(V1))           
            
                                  0() =  [0]                            
                                      >= [0]                            
                                      =  n__0()                         
            
                          activate(X) =  [1] X + [0]                    
                                      >= [1] X + [0]                    
                                      =  X                              
            
                     activate(n__0()) =  [0]                            
                                      >= [0]                            
                                      =  0()                            
            
             activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]          
                                      >= [1] X1 + [1] X2 + [0]          
                                      =  plus(activate(X1),activate(X2))
            
                    activate(n__s(X)) =  [1] X + [1]                    
                                      >= [1] X + [1]                    
                                      =  s(activate(X))                 
            
                activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [0]          
                                      >= [1] X1 + [1] X2 + [0]          
                                      =  x(activate(X1),activate(X2))   
            
                          plus(X1,X2) =  [1] X1 + [1] X2 + [0]          
                                      >= [1] X1 + [1] X2 + [0]          
                                      =  n__plus(X1,X2)                 
            
                                 s(X) =  [1] X + [1]                    
                                      >= [1] X + [1]                    
                                      =  n__s(X)                        
            
                             x(X1,X2) =  [1] X1 + [1] X2 + [0]          
                                      >= [1] X1 + [1] X2 + [0]          
                                      =  n__x(X1,X2)                    
            
      *** 1.1.1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
              activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
            Strict TRS Rules:
              
            Weak DP Rules:
              U11#(tt(),V2) -> activate#(V2)
              U11#(tt(),V2) -> isNat#(activate(V2))
              U31#(tt(),V2) -> activate#(V2)
              U31#(tt(),V2) -> isNat#(activate(V2))
              U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
              U51#(tt(),M,N) -> activate#(M)
              U51#(tt(),M,N) -> activate#(N)
              U51#(tt(),M,N) -> isNat#(activate(N))
              U52#(tt(),M,N) -> activate#(M)
              U52#(tt(),M,N) -> activate#(N)
              U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
              U71#(tt(),M,N) -> activate#(M)
              U71#(tt(),M,N) -> activate#(N)
              U71#(tt(),M,N) -> isNat#(activate(N))
              U72#(tt(),M,N) -> activate#(M)
              U72#(tt(),M,N) -> activate#(N)
              activate#(n__s(X)) -> c_16(activate#(X))
              isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
              isNat#(n__plus(V1,V2)) -> activate#(V1)
              isNat#(n__plus(V1,V2)) -> activate#(V2)
              isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
              isNat#(n__s(V1)) -> activate#(V1)
              isNat#(n__s(V1)) -> isNat#(activate(V1))
              isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
              isNat#(n__x(V1,V2)) -> activate#(V1)
              isNat#(n__x(V1,V2)) -> activate#(V2)
              isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V2) -> U12(isNat(activate(V2)))
              U12(tt()) -> tt()
              U21(tt()) -> tt()
              U31(tt(),V2) -> U32(isNat(activate(V2)))
              U32(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
              activate(n__s(X)) -> s(activate(X))
              activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
              isNat(n__s(V1)) -> U21(isNat(activate(V1)))
              isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
              x(X1,X2) -> n__x(X1,X2)
            Signature:
              {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
            Obligation:
              Innermost
              basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.1.1.1.2.2 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
              activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
            Strict TRS Rules:
              
            Weak DP Rules:
              U11#(tt(),V2) -> activate#(V2)
              U11#(tt(),V2) -> isNat#(activate(V2))
              U31#(tt(),V2) -> activate#(V2)
              U31#(tt(),V2) -> isNat#(activate(V2))
              U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
              U51#(tt(),M,N) -> activate#(M)
              U51#(tt(),M,N) -> activate#(N)
              U51#(tt(),M,N) -> isNat#(activate(N))
              U52#(tt(),M,N) -> activate#(M)
              U52#(tt(),M,N) -> activate#(N)
              U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
              U71#(tt(),M,N) -> activate#(M)
              U71#(tt(),M,N) -> activate#(N)
              U71#(tt(),M,N) -> isNat#(activate(N))
              U72#(tt(),M,N) -> activate#(M)
              U72#(tt(),M,N) -> activate#(N)
              activate#(n__s(X)) -> c_16(activate#(X))
              isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
              isNat#(n__plus(V1,V2)) -> activate#(V1)
              isNat#(n__plus(V1,V2)) -> activate#(V2)
              isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
              isNat#(n__s(V1)) -> activate#(V1)
              isNat#(n__s(V1)) -> isNat#(activate(V1))
              isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
              isNat#(n__x(V1,V2)) -> activate#(V1)
              isNat#(n__x(V1,V2)) -> activate#(V2)
              isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V2) -> U12(isNat(activate(V2)))
              U12(tt()) -> tt()
              U21(tt()) -> tt()
              U31(tt(),V2) -> U32(isNat(activate(V2)))
              U32(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
              activate(n__s(X)) -> s(activate(X))
              activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
              isNat(n__s(V1)) -> U21(isNat(activate(V1)))
              isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
              x(X1,X2) -> n__x(X1,X2)
            Signature:
              {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
            Obligation:
              Innermost
              basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              2: activate#(n__x(X1,X2)) ->
                   c_17(activate#(X1)     
                       ,activate#(X2))    
              
            Consider the set of all dependency pairs
              1:  activate#(n__plus(X1,X2)) ->  
                    c_15(activate#(X1)          
                        ,activate#(X2))         
              2:  activate#(n__x(X1,X2)) ->     
                    c_17(activate#(X1)          
                        ,activate#(X2))         
              3:  U11#(tt(),V2) -> activate#(V2)
              4:  U11#(tt(),V2) ->              
                    isNat#(activate(V2))        
              5:  U31#(tt(),V2) -> activate#(V2)
              6:  U31#(tt(),V2) ->              
                    isNat#(activate(V2))        
              7:  U51#(tt(),M,N) ->             
                    U52#(isNat(activate(N))     
                        ,activate(M)            
                        ,activate(N))           
              8:  U51#(tt(),M,N) -> activate#(M)
              9:  U51#(tt(),M,N) -> activate#(N)
              10: U51#(tt(),M,N) ->             
                    isNat#(activate(N))         
              11: U52#(tt(),M,N) -> activate#(M)
              12: U52#(tt(),M,N) -> activate#(N)
              13: U71#(tt(),M,N) ->             
                    U72#(isNat(activate(N))     
                        ,activate(M)            
                        ,activate(N))           
              14: U71#(tt(),M,N) -> activate#(M)
              15: U71#(tt(),M,N) -> activate#(N)
              16: U71#(tt(),M,N) ->             
                    isNat#(activate(N))         
              17: U72#(tt(),M,N) -> activate#(M)
              18: U72#(tt(),M,N) -> activate#(N)
              19: activate#(n__s(X)) ->         
                    c_16(activate#(X))          
              20: isNat#(n__plus(V1,V2)) ->     
                    U11#(isNat(activate(V1))    
                        ,activate(V2))          
              21: isNat#(n__plus(V1,V2)) ->     
                    activate#(V1)               
              22: isNat#(n__plus(V1,V2)) ->     
                    activate#(V2)               
              23: isNat#(n__plus(V1,V2)) ->     
                    isNat#(activate(V1))        
              24: isNat#(n__s(V1)) ->           
                    activate#(V1)               
              25: isNat#(n__s(V1)) ->           
                    isNat#(activate(V1))        
              26: isNat#(n__x(V1,V2)) ->        
                    U31#(isNat(activate(V1))    
                        ,activate(V2))          
              27: isNat#(n__x(V1,V2)) ->        
                    activate#(V1)               
              28: isNat#(n__x(V1,V2)) ->        
                    activate#(V2)               
              29: isNat#(n__x(V1,V2)) ->        
                    isNat#(activate(V1))        
            Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
            SPACE(?,?)on application of the dependency pairs
              {2}
            These cover all (indirect) predecessors of dependency pairs
              {2,7,8,9,10,11,12,13,14,15,16,17,18}
            their number of applications is equally bounded.
            The dependency pairs are shifted into the weak component.
        *** 1.1.1.1.1.1.1.1.1.1.2.2.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
                activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
              Strict TRS Rules:
                
              Weak DP Rules:
                U11#(tt(),V2) -> activate#(V2)
                U11#(tt(),V2) -> isNat#(activate(V2))
                U31#(tt(),V2) -> activate#(V2)
                U31#(tt(),V2) -> isNat#(activate(V2))
                U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
                U51#(tt(),M,N) -> activate#(M)
                U51#(tt(),M,N) -> activate#(N)
                U51#(tt(),M,N) -> isNat#(activate(N))
                U52#(tt(),M,N) -> activate#(M)
                U52#(tt(),M,N) -> activate#(N)
                U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
                U71#(tt(),M,N) -> activate#(M)
                U71#(tt(),M,N) -> activate#(N)
                U71#(tt(),M,N) -> isNat#(activate(N))
                U72#(tt(),M,N) -> activate#(M)
                U72#(tt(),M,N) -> activate#(N)
                activate#(n__s(X)) -> c_16(activate#(X))
                isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
                isNat#(n__plus(V1,V2)) -> activate#(V1)
                isNat#(n__plus(V1,V2)) -> activate#(V2)
                isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
                isNat#(n__s(V1)) -> activate#(V1)
                isNat#(n__s(V1)) -> isNat#(activate(V1))
                isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
                isNat#(n__x(V1,V2)) -> activate#(V1)
                isNat#(n__x(V1,V2)) -> activate#(V2)
                isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
              Weak TRS Rules:
                0() -> n__0()
                U11(tt(),V2) -> U12(isNat(activate(V2)))
                U12(tt()) -> tt()
                U21(tt()) -> tt()
                U31(tt(),V2) -> U32(isNat(activate(V2)))
                U32(tt()) -> tt()
                activate(X) -> X
                activate(n__0()) -> 0()
                activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
                activate(n__s(X)) -> s(activate(X))
                activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
                isNat(n__0()) -> tt()
                isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
                isNat(n__s(V1)) -> U21(isNat(activate(V1)))
                isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
                plus(X1,X2) -> n__plus(X1,X2)
                s(X) -> n__s(X)
                x(X1,X2) -> n__x(X1,X2)
              Signature:
                {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
              Obligation:
                Innermost
                basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
            Applied Processor:
              NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a matrix interpretation of kind constructor based matrix interpretation:
              The following argument positions are considered usable:
                uargs(c_15) = {1,2},
                uargs(c_16) = {1},
                uargs(c_17) = {1,2}
              
              Following symbols are considered usable:
                {0,U11,U12,U21,U31,U32,activate,isNat,plus,s,x,0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}
              TcT has computed the following interpretation:
                        p(0) = [0]                           
                      p(U11) = [0]                           
                      p(U12) = [0]                           
                      p(U21) = [0]                           
                      p(U31) = [2]                           
                      p(U32) = [1]                           
                      p(U41) = [0]                           
                      p(U51) = [0]                           
                      p(U52) = [0]                           
                      p(U61) = [0]                           
                      p(U71) = [0]                           
                      p(U72) = [2] x3 + [0]                  
                 p(activate) = [1] x1 + [0]                  
                    p(isNat) = [2]                           
                     p(n__0) = [0]                           
                  p(n__plus) = [1] x1 + [1] x2 + [0]         
                     p(n__s) = [1] x1 + [1]                  
                     p(n__x) = [1] x1 + [1] x2 + [2]         
                     p(plus) = [1] x1 + [1] x2 + [0]         
                        p(s) = [1] x1 + [1]                  
                       p(tt) = [0]                           
                        p(x) = [1] x1 + [1] x2 + [2]         
                       p(0#) = [0]                           
                     p(U11#) = [4] x2 + [0]                  
                     p(U12#) = [0]                           
                     p(U21#) = [1] x1 + [0]                  
                     p(U31#) = [4] x1 + [4] x2 + [0]         
                     p(U32#) = [0]                           
                     p(U41#) = [0]                           
                     p(U51#) = [6] x2 + [4] x3 + [0]         
                     p(U52#) = [6] x2 + [4] x3 + [0]         
                     p(U61#) = [0]                           
                     p(U71#) = [4] x2 + [4] x3 + [2]         
                     p(U72#) = [1] x1 + [4] x2 + [4] x3 + [0]
                p(activate#) = [4] x1 + [0]                  
                   p(isNat#) = [4] x1 + [0]                  
                    p(plus#) = [2] x1 + [1]                  
                       p(s#) = [1]                           
                       p(x#) = [1] x1 + [1]                  
                      p(c_1) = [0]                           
                      p(c_2) = [2] x2 + [0]                  
                      p(c_3) = [1]                           
                      p(c_4) = [0]                           
                      p(c_5) = [0]                           
                      p(c_6) = [1]                           
                      p(c_7) = [1]                           
                      p(c_8) = [1] x1 + [4] x4 + [1] x5 + [1]
                      p(c_9) = [1]                           
                     p(c_10) = [2]                           
                     p(c_11) = [1] x5 + [4]                  
                     p(c_12) = [1] x2 + [4] x3 + [0]         
                     p(c_13) = [0]                           
                     p(c_14) = [1] x1 + [2]                  
                     p(c_15) = [1] x1 + [1] x2 + [0]         
                     p(c_16) = [1] x1 + [2]                  
                     p(c_17) = [1] x1 + [1] x2 + [3]         
                     p(c_18) = [4]                           
                     p(c_19) = [1]                           
                     p(c_20) = [2] x1 + [1] x2 + [1]         
                     p(c_21) = [1] x2 + [1] x3 + [4] x4 + [2]
                     p(c_22) = [1]                           
                     p(c_23) = [1]                           
                     p(c_24) = [0]                           
              
              Following rules are strictly oriented:
              activate#(n__x(X1,X2)) = [4] X1 + [4] X2 + [8]
                                     > [4] X1 + [4] X2 + [3]
                                     = c_17(activate#(X1)   
                                           ,activate#(X2))  
              
              
              Following rules are (at-least) weakly oriented:
                          U11#(tt(),V2) =  [4] V2 + [0]                   
                                        >= [4] V2 + [0]                   
                                        =  activate#(V2)                  
              
                          U11#(tt(),V2) =  [4] V2 + [0]                   
                                        >= [4] V2 + [0]                   
                                        =  isNat#(activate(V2))           
              
                          U31#(tt(),V2) =  [4] V2 + [0]                   
                                        >= [4] V2 + [0]                   
                                        =  activate#(V2)                  
              
                          U31#(tt(),V2) =  [4] V2 + [0]                   
                                        >= [4] V2 + [0]                   
                                        =  isNat#(activate(V2))           
              
                         U51#(tt(),M,N) =  [6] M + [4] N + [0]            
                                        >= [6] M + [4] N + [0]            
                                        =  U52#(isNat(activate(N))        
                                               ,activate(M)               
                                               ,activate(N))              
              
                         U51#(tt(),M,N) =  [6] M + [4] N + [0]            
                                        >= [4] M + [0]                    
                                        =  activate#(M)                   
              
                         U51#(tt(),M,N) =  [6] M + [4] N + [0]            
                                        >= [4] N + [0]                    
                                        =  activate#(N)                   
              
                         U51#(tt(),M,N) =  [6] M + [4] N + [0]            
                                        >= [4] N + [0]                    
                                        =  isNat#(activate(N))            
              
                         U52#(tt(),M,N) =  [6] M + [4] N + [0]            
                                        >= [4] M + [0]                    
                                        =  activate#(M)                   
              
                         U52#(tt(),M,N) =  [6] M + [4] N + [0]            
                                        >= [4] N + [0]                    
                                        =  activate#(N)                   
              
                         U71#(tt(),M,N) =  [4] M + [4] N + [2]            
                                        >= [4] M + [4] N + [2]            
                                        =  U72#(isNat(activate(N))        
                                               ,activate(M)               
                                               ,activate(N))              
              
                         U71#(tt(),M,N) =  [4] M + [4] N + [2]            
                                        >= [4] M + [0]                    
                                        =  activate#(M)                   
              
                         U71#(tt(),M,N) =  [4] M + [4] N + [2]            
                                        >= [4] N + [0]                    
                                        =  activate#(N)                   
              
                         U71#(tt(),M,N) =  [4] M + [4] N + [2]            
                                        >= [4] N + [0]                    
                                        =  isNat#(activate(N))            
              
                         U72#(tt(),M,N) =  [4] M + [4] N + [0]            
                                        >= [4] M + [0]                    
                                        =  activate#(M)                   
              
                         U72#(tt(),M,N) =  [4] M + [4] N + [0]            
                                        >= [4] N + [0]                    
                                        =  activate#(N)                   
              
              activate#(n__plus(X1,X2)) =  [4] X1 + [4] X2 + [0]          
                                        >= [4] X1 + [4] X2 + [0]          
                                        =  c_15(activate#(X1)             
                                               ,activate#(X2))            
              
                     activate#(n__s(X)) =  [4] X + [4]                    
                                        >= [4] X + [2]                    
                                        =  c_16(activate#(X))             
              
                 isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [0]          
                                        >= [4] V2 + [0]                   
                                        =  U11#(isNat(activate(V1))       
                                               ,activate(V2))             
              
                 isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [0]          
                                        >= [4] V1 + [0]                   
                                        =  activate#(V1)                  
              
                 isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [0]          
                                        >= [4] V2 + [0]                   
                                        =  activate#(V2)                  
              
                 isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [0]          
                                        >= [4] V1 + [0]                   
                                        =  isNat#(activate(V1))           
              
                       isNat#(n__s(V1)) =  [4] V1 + [4]                   
                                        >= [4] V1 + [0]                   
                                        =  activate#(V1)                  
              
                       isNat#(n__s(V1)) =  [4] V1 + [4]                   
                                        >= [4] V1 + [0]                   
                                        =  isNat#(activate(V1))           
              
                    isNat#(n__x(V1,V2)) =  [4] V1 + [4] V2 + [8]          
                                        >= [4] V2 + [8]                   
                                        =  U31#(isNat(activate(V1))       
                                               ,activate(V2))             
              
                    isNat#(n__x(V1,V2)) =  [4] V1 + [4] V2 + [8]          
                                        >= [4] V1 + [0]                   
                                        =  activate#(V1)                  
              
                    isNat#(n__x(V1,V2)) =  [4] V1 + [4] V2 + [8]          
                                        >= [4] V2 + [0]                   
                                        =  activate#(V2)                  
              
                    isNat#(n__x(V1,V2)) =  [4] V1 + [4] V2 + [8]          
                                        >= [4] V1 + [0]                   
                                        =  isNat#(activate(V1))           
              
                                    0() =  [0]                            
                                        >= [0]                            
                                        =  n__0()                         
              
                           U11(tt(),V2) =  [0]                            
                                        >= [0]                            
                                        =  U12(isNat(activate(V2)))       
              
                              U12(tt()) =  [0]                            
                                        >= [0]                            
                                        =  tt()                           
              
                              U21(tt()) =  [0]                            
                                        >= [0]                            
                                        =  tt()                           
              
                           U31(tt(),V2) =  [2]                            
                                        >= [1]                            
                                        =  U32(isNat(activate(V2)))       
              
                              U32(tt()) =  [1]                            
                                        >= [0]                            
                                        =  tt()                           
              
                            activate(X) =  [1] X + [0]                    
                                        >= [1] X + [0]                    
                                        =  X                              
              
                       activate(n__0()) =  [0]                            
                                        >= [0]                            
                                        =  0()                            
              
               activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]          
                                        >= [1] X1 + [1] X2 + [0]          
                                        =  plus(activate(X1),activate(X2))
              
                      activate(n__s(X)) =  [1] X + [1]                    
                                        >= [1] X + [1]                    
                                        =  s(activate(X))                 
              
                  activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [2]          
                                        >= [1] X1 + [1] X2 + [2]          
                                        =  x(activate(X1),activate(X2))   
              
                          isNat(n__0()) =  [2]                            
                                        >= [0]                            
                                        =  tt()                           
              
                  isNat(n__plus(V1,V2)) =  [2]                            
                                        >= [0]                            
                                        =  U11(isNat(activate(V1))        
                                              ,activate(V2))              
              
                        isNat(n__s(V1)) =  [2]                            
                                        >= [0]                            
                                        =  U21(isNat(activate(V1)))       
              
                     isNat(n__x(V1,V2)) =  [2]                            
                                        >= [2]                            
                                        =  U31(isNat(activate(V1))        
                                              ,activate(V2))              
              
                            plus(X1,X2) =  [1] X1 + [1] X2 + [0]          
                                        >= [1] X1 + [1] X2 + [0]          
                                        =  n__plus(X1,X2)                 
              
                                   s(X) =  [1] X + [1]                    
                                        >= [1] X + [1]                    
                                        =  n__s(X)                        
              
                               x(X1,X2) =  [1] X1 + [1] X2 + [2]          
                                        >= [1] X1 + [1] X2 + [2]          
                                        =  n__x(X1,X2)                    
              
        *** 1.1.1.1.1.1.1.1.1.1.2.2.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
              Strict TRS Rules:
                
              Weak DP Rules:
                U11#(tt(),V2) -> activate#(V2)
                U11#(tt(),V2) -> isNat#(activate(V2))
                U31#(tt(),V2) -> activate#(V2)
                U31#(tt(),V2) -> isNat#(activate(V2))
                U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
                U51#(tt(),M,N) -> activate#(M)
                U51#(tt(),M,N) -> activate#(N)
                U51#(tt(),M,N) -> isNat#(activate(N))
                U52#(tt(),M,N) -> activate#(M)
                U52#(tt(),M,N) -> activate#(N)
                U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
                U71#(tt(),M,N) -> activate#(M)
                U71#(tt(),M,N) -> activate#(N)
                U71#(tt(),M,N) -> isNat#(activate(N))
                U72#(tt(),M,N) -> activate#(M)
                U72#(tt(),M,N) -> activate#(N)
                activate#(n__s(X)) -> c_16(activate#(X))
                activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
                isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
                isNat#(n__plus(V1,V2)) -> activate#(V1)
                isNat#(n__plus(V1,V2)) -> activate#(V2)
                isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
                isNat#(n__s(V1)) -> activate#(V1)
                isNat#(n__s(V1)) -> isNat#(activate(V1))
                isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
                isNat#(n__x(V1,V2)) -> activate#(V1)
                isNat#(n__x(V1,V2)) -> activate#(V2)
                isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
              Weak TRS Rules:
                0() -> n__0()
                U11(tt(),V2) -> U12(isNat(activate(V2)))
                U12(tt()) -> tt()
                U21(tt()) -> tt()
                U31(tt(),V2) -> U32(isNat(activate(V2)))
                U32(tt()) -> tt()
                activate(X) -> X
                activate(n__0()) -> 0()
                activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
                activate(n__s(X)) -> s(activate(X))
                activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
                isNat(n__0()) -> tt()
                isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
                isNat(n__s(V1)) -> U21(isNat(activate(V1)))
                isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
                plus(X1,X2) -> n__plus(X1,X2)
                s(X) -> n__s(X)
                x(X1,X2) -> n__x(X1,X2)
              Signature:
                {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
              Obligation:
                Innermost
                basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.1.1.1.1.2.2.2 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
              Strict TRS Rules:
                
              Weak DP Rules:
                U11#(tt(),V2) -> activate#(V2)
                U11#(tt(),V2) -> isNat#(activate(V2))
                U31#(tt(),V2) -> activate#(V2)
                U31#(tt(),V2) -> isNat#(activate(V2))
                U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
                U51#(tt(),M,N) -> activate#(M)
                U51#(tt(),M,N) -> activate#(N)
                U51#(tt(),M,N) -> isNat#(activate(N))
                U52#(tt(),M,N) -> activate#(M)
                U52#(tt(),M,N) -> activate#(N)
                U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
                U71#(tt(),M,N) -> activate#(M)
                U71#(tt(),M,N) -> activate#(N)
                U71#(tt(),M,N) -> isNat#(activate(N))
                U72#(tt(),M,N) -> activate#(M)
                U72#(tt(),M,N) -> activate#(N)
                activate#(n__s(X)) -> c_16(activate#(X))
                activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
                isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
                isNat#(n__plus(V1,V2)) -> activate#(V1)
                isNat#(n__plus(V1,V2)) -> activate#(V2)
                isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
                isNat#(n__s(V1)) -> activate#(V1)
                isNat#(n__s(V1)) -> isNat#(activate(V1))
                isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
                isNat#(n__x(V1,V2)) -> activate#(V1)
                isNat#(n__x(V1,V2)) -> activate#(V2)
                isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
              Weak TRS Rules:
                0() -> n__0()
                U11(tt(),V2) -> U12(isNat(activate(V2)))
                U12(tt()) -> tt()
                U21(tt()) -> tt()
                U31(tt(),V2) -> U32(isNat(activate(V2)))
                U32(tt()) -> tt()
                activate(X) -> X
                activate(n__0()) -> 0()
                activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
                activate(n__s(X)) -> s(activate(X))
                activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
                isNat(n__0()) -> tt()
                isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
                isNat(n__s(V1)) -> U21(isNat(activate(V1)))
                isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
                plus(X1,X2) -> n__plus(X1,X2)
                s(X) -> n__s(X)
                x(X1,X2) -> n__x(X1,X2)
              Signature:
                {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
              Obligation:
                Innermost
                basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                1: activate#(n__plus(X1,X2)) ->
                     c_15(activate#(X1)        
                         ,activate#(X2))       
                
              Consider the set of all dependency pairs
                1:  activate#(n__plus(X1,X2)) ->  
                      c_15(activate#(X1)          
                          ,activate#(X2))         
                2:  U11#(tt(),V2) -> activate#(V2)
                3:  U11#(tt(),V2) ->              
                      isNat#(activate(V2))        
                4:  U31#(tt(),V2) -> activate#(V2)
                5:  U31#(tt(),V2) ->              
                      isNat#(activate(V2))        
                6:  U51#(tt(),M,N) ->             
                      U52#(isNat(activate(N))     
                          ,activate(M)            
                          ,activate(N))           
                7:  U51#(tt(),M,N) -> activate#(M)
                8:  U51#(tt(),M,N) -> activate#(N)
                9:  U51#(tt(),M,N) ->             
                      isNat#(activate(N))         
                10: U52#(tt(),M,N) -> activate#(M)
                11: U52#(tt(),M,N) -> activate#(N)
                12: U71#(tt(),M,N) ->             
                      U72#(isNat(activate(N))     
                          ,activate(M)            
                          ,activate(N))           
                13: U71#(tt(),M,N) -> activate#(M)
                14: U71#(tt(),M,N) -> activate#(N)
                15: U71#(tt(),M,N) ->             
                      isNat#(activate(N))         
                16: U72#(tt(),M,N) -> activate#(M)
                17: U72#(tt(),M,N) -> activate#(N)
                18: activate#(n__s(X)) ->         
                      c_16(activate#(X))          
                19: activate#(n__x(X1,X2)) ->     
                      c_17(activate#(X1)          
                          ,activate#(X2))         
                20: isNat#(n__plus(V1,V2)) ->     
                      U11#(isNat(activate(V1))    
                          ,activate(V2))          
                21: isNat#(n__plus(V1,V2)) ->     
                      activate#(V1)               
                22: isNat#(n__plus(V1,V2)) ->     
                      activate#(V2)               
                23: isNat#(n__plus(V1,V2)) ->     
                      isNat#(activate(V1))        
                24: isNat#(n__s(V1)) ->           
                      activate#(V1)               
                25: isNat#(n__s(V1)) ->           
                      isNat#(activate(V1))        
                26: isNat#(n__x(V1,V2)) ->        
                      U31#(isNat(activate(V1))    
                          ,activate(V2))          
                27: isNat#(n__x(V1,V2)) ->        
                      activate#(V1)               
                28: isNat#(n__x(V1,V2)) ->        
                      activate#(V2)               
                29: isNat#(n__x(V1,V2)) ->        
                      isNat#(activate(V1))        
              Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
              SPACE(?,?)on application of the dependency pairs
                {1}
              These cover all (indirect) predecessors of dependency pairs
                {1,6,7,8,9,10,11,12,13,14,15,16,17}
              their number of applications is equally bounded.
              The dependency pairs are shifted into the weak component.
          *** 1.1.1.1.1.1.1.1.1.1.2.2.2.1 Progress [(?,O(n^1))]  ***
              Considered Problem:
                Strict DP Rules:
                  activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  U11#(tt(),V2) -> activate#(V2)
                  U11#(tt(),V2) -> isNat#(activate(V2))
                  U31#(tt(),V2) -> activate#(V2)
                  U31#(tt(),V2) -> isNat#(activate(V2))
                  U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
                  U51#(tt(),M,N) -> activate#(M)
                  U51#(tt(),M,N) -> activate#(N)
                  U51#(tt(),M,N) -> isNat#(activate(N))
                  U52#(tt(),M,N) -> activate#(M)
                  U52#(tt(),M,N) -> activate#(N)
                  U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
                  U71#(tt(),M,N) -> activate#(M)
                  U71#(tt(),M,N) -> activate#(N)
                  U71#(tt(),M,N) -> isNat#(activate(N))
                  U72#(tt(),M,N) -> activate#(M)
                  U72#(tt(),M,N) -> activate#(N)
                  activate#(n__s(X)) -> c_16(activate#(X))
                  activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
                  isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
                  isNat#(n__plus(V1,V2)) -> activate#(V1)
                  isNat#(n__plus(V1,V2)) -> activate#(V2)
                  isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
                  isNat#(n__s(V1)) -> activate#(V1)
                  isNat#(n__s(V1)) -> isNat#(activate(V1))
                  isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
                  isNat#(n__x(V1,V2)) -> activate#(V1)
                  isNat#(n__x(V1,V2)) -> activate#(V2)
                  isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
                Weak TRS Rules:
                  0() -> n__0()
                  U11(tt(),V2) -> U12(isNat(activate(V2)))
                  U12(tt()) -> tt()
                  U21(tt()) -> tt()
                  U31(tt(),V2) -> U32(isNat(activate(V2)))
                  U32(tt()) -> tt()
                  activate(X) -> X
                  activate(n__0()) -> 0()
                  activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
                  activate(n__s(X)) -> s(activate(X))
                  activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
                  isNat(n__0()) -> tt()
                  isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
                  isNat(n__s(V1)) -> U21(isNat(activate(V1)))
                  isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
                  plus(X1,X2) -> n__plus(X1,X2)
                  s(X) -> n__s(X)
                  x(X1,X2) -> n__x(X1,X2)
                Signature:
                  {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
                Obligation:
                  Innermost
                  basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
              Applied Processor:
                NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a matrix interpretation of kind constructor based matrix interpretation:
                The following argument positions are considered usable:
                  uargs(c_15) = {1,2},
                  uargs(c_16) = {1},
                  uargs(c_17) = {1,2}
                
                Following symbols are considered usable:
                  {0,U11,U12,U21,U31,U32,activate,isNat,plus,s,x,0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}
                TcT has computed the following interpretation:
                          p(0) = [7]                           
                        p(U11) = [1] x2 + [7]                  
                        p(U12) = [1] x1 + [0]                  
                        p(U21) = [1] x1 + [4]                  
                        p(U31) = [1] x2 + [2]                  
                        p(U32) = [2]                           
                        p(U41) = [1]                           
                        p(U51) = [1] x2 + [1] x3 + [1]         
                        p(U52) = [1] x3 + [0]                  
                        p(U61) = [0]                           
                        p(U71) = [1] x2 + [1] x3 + [0]         
                        p(U72) = [1] x2 + [0]                  
                   p(activate) = [1] x1 + [0]                  
                      p(isNat) = [1] x1 + [4]                  
                       p(n__0) = [7]                           
                    p(n__plus) = [1] x1 + [1] x2 + [4]         
                       p(n__s) = [1] x1 + [4]                  
                       p(n__x) = [1] x1 + [1] x2 + [1]         
                       p(plus) = [1] x1 + [1] x2 + [4]         
                          p(s) = [1] x1 + [4]                  
                         p(tt) = [2]                           
                          p(x) = [1] x1 + [1] x2 + [1]         
                         p(0#) = [4]                           
                       p(U11#) = [2] x2 + [4]                  
                       p(U12#) = [4] x1 + [1]                  
                       p(U21#) = [4] x1 + [0]                  
                       p(U31#) = [1] x1 + [2] x2 + [0]         
                       p(U32#) = [1] x1 + [1]                  
                       p(U41#) = [4]                           
                       p(U51#) = [4] x1 + [2] x2 + [4] x3 + [0]
                       p(U52#) = [1] x1 + [2] x2 + [2] x3 + [4]
                       p(U61#) = [4]                           
                       p(U71#) = [4] x1 + [2] x2 + [6] x3 + [0]
                       p(U72#) = [2] x1 + [2] x2 + [4] x3 + [0]
                  p(activate#) = [2] x1 + [0]                  
                     p(isNat#) = [2] x1 + [2]                  
                      p(plus#) = [1]                           
                         p(s#) = [1]                           
                         p(x#) = [2] x2 + [2]                  
                        p(c_1) = [0]                           
                        p(c_2) = [1] x1 + [1] x2 + [1]         
                        p(c_3) = [1]                           
                        p(c_4) = [0]                           
                        p(c_5) = [4] x1 + [1]                  
                        p(c_6) = [1]                           
                        p(c_7) = [4] x1 + [0]                  
                        p(c_8) = [4] x2 + [1] x3 + [1] x5 + [1]
                        p(c_9) = [1]                           
                       p(c_10) = [0]                           
                       p(c_11) = [4] x3 + [1]                  
                       p(c_12) = [0]                           
                       p(c_13) = [4]                           
                       p(c_14) = [2]                           
                       p(c_15) = [1] x1 + [1] x2 + [4]         
                       p(c_16) = [1] x1 + [0]                  
                       p(c_17) = [1] x1 + [1] x2 + [2]         
                       p(c_18) = [0]                           
                       p(c_19) = [1] x1 + [2] x2 + [0]         
                       p(c_20) = [2] x2 + [1]                  
                       p(c_21) = [1] x1 + [1] x3 + [1] x4 + [0]
                       p(c_22) = [0]                           
                       p(c_23) = [0]                           
                       p(c_24) = [0]                           
                
                Following rules are strictly oriented:
                activate#(n__plus(X1,X2)) = [2] X1 + [2] X2 + [8]
                                          > [2] X1 + [2] X2 + [4]
                                          = c_15(activate#(X1)   
                                                ,activate#(X2))  
                
                
                Following rules are (at-least) weakly oriented:
                           U11#(tt(),V2) =  [2] V2 + [4]                   
                                         >= [2] V2 + [0]                   
                                         =  activate#(V2)                  
                
                           U11#(tt(),V2) =  [2] V2 + [4]                   
                                         >= [2] V2 + [2]                   
                                         =  isNat#(activate(V2))           
                
                           U31#(tt(),V2) =  [2] V2 + [2]                   
                                         >= [2] V2 + [0]                   
                                         =  activate#(V2)                  
                
                           U31#(tt(),V2) =  [2] V2 + [2]                   
                                         >= [2] V2 + [2]                   
                                         =  isNat#(activate(V2))           
                
                          U51#(tt(),M,N) =  [2] M + [4] N + [8]            
                                         >= [2] M + [3] N + [8]            
                                         =  U52#(isNat(activate(N))        
                                                ,activate(M)               
                                                ,activate(N))              
                
                          U51#(tt(),M,N) =  [2] M + [4] N + [8]            
                                         >= [2] M + [0]                    
                                         =  activate#(M)                   
                
                          U51#(tt(),M,N) =  [2] M + [4] N + [8]            
                                         >= [2] N + [0]                    
                                         =  activate#(N)                   
                
                          U51#(tt(),M,N) =  [2] M + [4] N + [8]            
                                         >= [2] N + [2]                    
                                         =  isNat#(activate(N))            
                
                          U52#(tt(),M,N) =  [2] M + [2] N + [6]            
                                         >= [2] M + [0]                    
                                         =  activate#(M)                   
                
                          U52#(tt(),M,N) =  [2] M + [2] N + [6]            
                                         >= [2] N + [0]                    
                                         =  activate#(N)                   
                
                          U71#(tt(),M,N) =  [2] M + [6] N + [8]            
                                         >= [2] M + [6] N + [8]            
                                         =  U72#(isNat(activate(N))        
                                                ,activate(M)               
                                                ,activate(N))              
                
                          U71#(tt(),M,N) =  [2] M + [6] N + [8]            
                                         >= [2] M + [0]                    
                                         =  activate#(M)                   
                
                          U71#(tt(),M,N) =  [2] M + [6] N + [8]            
                                         >= [2] N + [0]                    
                                         =  activate#(N)                   
                
                          U71#(tt(),M,N) =  [2] M + [6] N + [8]            
                                         >= [2] N + [2]                    
                                         =  isNat#(activate(N))            
                
                          U72#(tt(),M,N) =  [2] M + [4] N + [4]            
                                         >= [2] M + [0]                    
                                         =  activate#(M)                   
                
                          U72#(tt(),M,N) =  [2] M + [4] N + [4]            
                                         >= [2] N + [0]                    
                                         =  activate#(N)                   
                
                      activate#(n__s(X)) =  [2] X + [8]                    
                                         >= [2] X + [0]                    
                                         =  c_16(activate#(X))             
                
                  activate#(n__x(X1,X2)) =  [2] X1 + [2] X2 + [2]          
                                         >= [2] X1 + [2] X2 + [2]          
                                         =  c_17(activate#(X1)             
                                                ,activate#(X2))            
                
                  isNat#(n__plus(V1,V2)) =  [2] V1 + [2] V2 + [10]         
                                         >= [2] V2 + [4]                   
                                         =  U11#(isNat(activate(V1))       
                                                ,activate(V2))             
                
                  isNat#(n__plus(V1,V2)) =  [2] V1 + [2] V2 + [10]         
                                         >= [2] V1 + [0]                   
                                         =  activate#(V1)                  
                
                  isNat#(n__plus(V1,V2)) =  [2] V1 + [2] V2 + [10]         
                                         >= [2] V2 + [0]                   
                                         =  activate#(V2)                  
                
                  isNat#(n__plus(V1,V2)) =  [2] V1 + [2] V2 + [10]         
                                         >= [2] V1 + [2]                   
                                         =  isNat#(activate(V1))           
                
                        isNat#(n__s(V1)) =  [2] V1 + [10]                  
                                         >= [2] V1 + [0]                   
                                         =  activate#(V1)                  
                
                        isNat#(n__s(V1)) =  [2] V1 + [10]                  
                                         >= [2] V1 + [2]                   
                                         =  isNat#(activate(V1))           
                
                     isNat#(n__x(V1,V2)) =  [2] V1 + [2] V2 + [4]          
                                         >= [1] V1 + [2] V2 + [4]          
                                         =  U31#(isNat(activate(V1))       
                                                ,activate(V2))             
                
                     isNat#(n__x(V1,V2)) =  [2] V1 + [2] V2 + [4]          
                                         >= [2] V1 + [0]                   
                                         =  activate#(V1)                  
                
                     isNat#(n__x(V1,V2)) =  [2] V1 + [2] V2 + [4]          
                                         >= [2] V2 + [0]                   
                                         =  activate#(V2)                  
                
                     isNat#(n__x(V1,V2)) =  [2] V1 + [2] V2 + [4]          
                                         >= [2] V1 + [2]                   
                                         =  isNat#(activate(V1))           
                
                                     0() =  [7]                            
                                         >= [7]                            
                                         =  n__0()                         
                
                            U11(tt(),V2) =  [1] V2 + [7]                   
                                         >= [1] V2 + [4]                   
                                         =  U12(isNat(activate(V2)))       
                
                               U12(tt()) =  [2]                            
                                         >= [2]                            
                                         =  tt()                           
                
                               U21(tt()) =  [6]                            
                                         >= [2]                            
                                         =  tt()                           
                
                            U31(tt(),V2) =  [1] V2 + [2]                   
                                         >= [2]                            
                                         =  U32(isNat(activate(V2)))       
                
                               U32(tt()) =  [2]                            
                                         >= [2]                            
                                         =  tt()                           
                
                             activate(X) =  [1] X + [0]                    
                                         >= [1] X + [0]                    
                                         =  X                              
                
                        activate(n__0()) =  [7]                            
                                         >= [7]                            
                                         =  0()                            
                
                activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [4]          
                                         >= [1] X1 + [1] X2 + [4]          
                                         =  plus(activate(X1),activate(X2))
                
                       activate(n__s(X)) =  [1] X + [4]                    
                                         >= [1] X + [4]                    
                                         =  s(activate(X))                 
                
                   activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [1]          
                                         >= [1] X1 + [1] X2 + [1]          
                                         =  x(activate(X1),activate(X2))   
                
                           isNat(n__0()) =  [11]                           
                                         >= [2]                            
                                         =  tt()                           
                
                   isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [8]          
                                         >= [1] V2 + [7]                   
                                         =  U11(isNat(activate(V1))        
                                               ,activate(V2))              
                
                         isNat(n__s(V1)) =  [1] V1 + [8]                   
                                         >= [1] V1 + [8]                   
                                         =  U21(isNat(activate(V1)))       
                
                      isNat(n__x(V1,V2)) =  [1] V1 + [1] V2 + [5]          
                                         >= [1] V2 + [2]                   
                                         =  U31(isNat(activate(V1))        
                                               ,activate(V2))              
                
                             plus(X1,X2) =  [1] X1 + [1] X2 + [4]          
                                         >= [1] X1 + [1] X2 + [4]          
                                         =  n__plus(X1,X2)                 
                
                                    s(X) =  [1] X + [4]                    
                                         >= [1] X + [4]                    
                                         =  n__s(X)                        
                
                                x(X1,X2) =  [1] X1 + [1] X2 + [1]          
                                         >= [1] X1 + [1] X2 + [1]          
                                         =  n__x(X1,X2)                    
                
          *** 1.1.1.1.1.1.1.1.1.1.2.2.2.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  U11#(tt(),V2) -> activate#(V2)
                  U11#(tt(),V2) -> isNat#(activate(V2))
                  U31#(tt(),V2) -> activate#(V2)
                  U31#(tt(),V2) -> isNat#(activate(V2))
                  U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
                  U51#(tt(),M,N) -> activate#(M)
                  U51#(tt(),M,N) -> activate#(N)
                  U51#(tt(),M,N) -> isNat#(activate(N))
                  U52#(tt(),M,N) -> activate#(M)
                  U52#(tt(),M,N) -> activate#(N)
                  U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
                  U71#(tt(),M,N) -> activate#(M)
                  U71#(tt(),M,N) -> activate#(N)
                  U71#(tt(),M,N) -> isNat#(activate(N))
                  U72#(tt(),M,N) -> activate#(M)
                  U72#(tt(),M,N) -> activate#(N)
                  activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
                  activate#(n__s(X)) -> c_16(activate#(X))
                  activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
                  isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
                  isNat#(n__plus(V1,V2)) -> activate#(V1)
                  isNat#(n__plus(V1,V2)) -> activate#(V2)
                  isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
                  isNat#(n__s(V1)) -> activate#(V1)
                  isNat#(n__s(V1)) -> isNat#(activate(V1))
                  isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
                  isNat#(n__x(V1,V2)) -> activate#(V1)
                  isNat#(n__x(V1,V2)) -> activate#(V2)
                  isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
                Weak TRS Rules:
                  0() -> n__0()
                  U11(tt(),V2) -> U12(isNat(activate(V2)))
                  U12(tt()) -> tt()
                  U21(tt()) -> tt()
                  U31(tt(),V2) -> U32(isNat(activate(V2)))
                  U32(tt()) -> tt()
                  activate(X) -> X
                  activate(n__0()) -> 0()
                  activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
                  activate(n__s(X)) -> s(activate(X))
                  activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
                  isNat(n__0()) -> tt()
                  isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
                  isNat(n__s(V1)) -> U21(isNat(activate(V1)))
                  isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
                  plus(X1,X2) -> n__plus(X1,X2)
                  s(X) -> n__s(X)
                  x(X1,X2) -> n__x(X1,X2)
                Signature:
                  {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
                Obligation:
                  Innermost
                  basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.1.1.1.1.2.2.2.2 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  U11#(tt(),V2) -> activate#(V2)
                  U11#(tt(),V2) -> isNat#(activate(V2))
                  U31#(tt(),V2) -> activate#(V2)
                  U31#(tt(),V2) -> isNat#(activate(V2))
                  U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
                  U51#(tt(),M,N) -> activate#(M)
                  U51#(tt(),M,N) -> activate#(N)
                  U51#(tt(),M,N) -> isNat#(activate(N))
                  U52#(tt(),M,N) -> activate#(M)
                  U52#(tt(),M,N) -> activate#(N)
                  U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
                  U71#(tt(),M,N) -> activate#(M)
                  U71#(tt(),M,N) -> activate#(N)
                  U71#(tt(),M,N) -> isNat#(activate(N))
                  U72#(tt(),M,N) -> activate#(M)
                  U72#(tt(),M,N) -> activate#(N)
                  activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
                  activate#(n__s(X)) -> c_16(activate#(X))
                  activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
                  isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
                  isNat#(n__plus(V1,V2)) -> activate#(V1)
                  isNat#(n__plus(V1,V2)) -> activate#(V2)
                  isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
                  isNat#(n__s(V1)) -> activate#(V1)
                  isNat#(n__s(V1)) -> isNat#(activate(V1))
                  isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
                  isNat#(n__x(V1,V2)) -> activate#(V1)
                  isNat#(n__x(V1,V2)) -> activate#(V2)
                  isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
                Weak TRS Rules:
                  0() -> n__0()
                  U11(tt(),V2) -> U12(isNat(activate(V2)))
                  U12(tt()) -> tt()
                  U21(tt()) -> tt()
                  U31(tt(),V2) -> U32(isNat(activate(V2)))
                  U32(tt()) -> tt()
                  activate(X) -> X
                  activate(n__0()) -> 0()
                  activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
                  activate(n__s(X)) -> s(activate(X))
                  activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
                  isNat(n__0()) -> tt()
                  isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
                  isNat(n__s(V1)) -> U21(isNat(activate(V1)))
                  isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
                  plus(X1,X2) -> n__plus(X1,X2)
                  s(X) -> n__s(X)
                  x(X1,X2) -> n__x(X1,X2)
                Signature:
                  {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
                Obligation:
                  Innermost
                  basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
              Applied Processor:
                RemoveWeakSuffixes
              Proof:
                Consider the dependency graph
                  1:W:U11#(tt(),V2) -> activate#(V2)
                     -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
                     -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
                     -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
                  
                  2:W:U11#(tt(),V2) -> isNat#(activate(V2))
                     -->_1 isNat#(n__x(V1,V2)) -> isNat#(activate(V1)):29
                     -->_1 isNat#(n__x(V1,V2)) -> activate#(V2):28
                     -->_1 isNat#(n__x(V1,V2)) -> activate#(V1):27
                     -->_1 isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)):26
                     -->_1 isNat#(n__s(V1)) -> isNat#(activate(V1)):25
                     -->_1 isNat#(n__s(V1)) -> activate#(V1):24
                     -->_1 isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)):23
                     -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):22
                     -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):21
                     -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)):20
                  
                  3:W:U31#(tt(),V2) -> activate#(V2)
                     -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
                     -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
                     -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
                  
                  4:W:U31#(tt(),V2) -> isNat#(activate(V2))
                     -->_1 isNat#(n__x(V1,V2)) -> isNat#(activate(V1)):29
                     -->_1 isNat#(n__x(V1,V2)) -> activate#(V2):28
                     -->_1 isNat#(n__x(V1,V2)) -> activate#(V1):27
                     -->_1 isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)):26
                     -->_1 isNat#(n__s(V1)) -> isNat#(activate(V1)):25
                     -->_1 isNat#(n__s(V1)) -> activate#(V1):24
                     -->_1 isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)):23
                     -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):22
                     -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):21
                     -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)):20
                  
                  5:W:U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
                     -->_1 U52#(tt(),M,N) -> activate#(N):10
                     -->_1 U52#(tt(),M,N) -> activate#(M):9
                  
                  6:W:U51#(tt(),M,N) -> activate#(M)
                     -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
                     -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
                     -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
                  
                  7:W:U51#(tt(),M,N) -> activate#(N)
                     -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
                     -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
                     -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
                  
                  8:W:U51#(tt(),M,N) -> isNat#(activate(N))
                     -->_1 isNat#(n__x(V1,V2)) -> isNat#(activate(V1)):29
                     -->_1 isNat#(n__x(V1,V2)) -> activate#(V2):28
                     -->_1 isNat#(n__x(V1,V2)) -> activate#(V1):27
                     -->_1 isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)):26
                     -->_1 isNat#(n__s(V1)) -> isNat#(activate(V1)):25
                     -->_1 isNat#(n__s(V1)) -> activate#(V1):24
                     -->_1 isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)):23
                     -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):22
                     -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):21
                     -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)):20
                  
                  9:W:U52#(tt(),M,N) -> activate#(M)
                     -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
                     -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
                     -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
                  
                  10:W:U52#(tt(),M,N) -> activate#(N)
                     -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
                     -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
                     -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
                  
                  11:W:U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
                     -->_1 U72#(tt(),M,N) -> activate#(N):16
                     -->_1 U72#(tt(),M,N) -> activate#(M):15
                  
                  12:W:U71#(tt(),M,N) -> activate#(M)
                     -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
                     -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
                     -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
                  
                  13:W:U71#(tt(),M,N) -> activate#(N)
                     -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
                     -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
                     -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
                  
                  14:W:U71#(tt(),M,N) -> isNat#(activate(N))
                     -->_1 isNat#(n__x(V1,V2)) -> isNat#(activate(V1)):29
                     -->_1 isNat#(n__x(V1,V2)) -> activate#(V2):28
                     -->_1 isNat#(n__x(V1,V2)) -> activate#(V1):27
                     -->_1 isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)):26
                     -->_1 isNat#(n__s(V1)) -> isNat#(activate(V1)):25
                     -->_1 isNat#(n__s(V1)) -> activate#(V1):24
                     -->_1 isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)):23
                     -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):22
                     -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):21
                     -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)):20
                  
                  15:W:U72#(tt(),M,N) -> activate#(M)
                     -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
                     -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
                     -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
                  
                  16:W:U72#(tt(),M,N) -> activate#(N)
                     -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
                     -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
                     -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
                  
                  17:W:activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
                     -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
                     -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
                     -->_2 activate#(n__s(X)) -> c_16(activate#(X)):18
                     -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
                     -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
                     -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
                  
                  18:W:activate#(n__s(X)) -> c_16(activate#(X))
                     -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
                     -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
                     -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
                  
                  19:W:activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
                     -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
                     -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
                     -->_2 activate#(n__s(X)) -> c_16(activate#(X)):18
                     -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
                     -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
                     -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
                  
                  20:W:isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
                     -->_1 U11#(tt(),V2) -> isNat#(activate(V2)):2
                     -->_1 U11#(tt(),V2) -> activate#(V2):1
                  
                  21:W:isNat#(n__plus(V1,V2)) -> activate#(V1)
                     -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
                     -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
                     -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
                  
                  22:W:isNat#(n__plus(V1,V2)) -> activate#(V2)
                     -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
                     -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
                     -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
                  
                  23:W:isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
                     -->_1 isNat#(n__x(V1,V2)) -> isNat#(activate(V1)):29
                     -->_1 isNat#(n__x(V1,V2)) -> activate#(V2):28
                     -->_1 isNat#(n__x(V1,V2)) -> activate#(V1):27
                     -->_1 isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)):26
                     -->_1 isNat#(n__s(V1)) -> isNat#(activate(V1)):25
                     -->_1 isNat#(n__s(V1)) -> activate#(V1):24
                     -->_1 isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)):23
                     -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):22
                     -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):21
                     -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)):20
                  
                  24:W:isNat#(n__s(V1)) -> activate#(V1)
                     -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
                     -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
                     -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
                  
                  25:W:isNat#(n__s(V1)) -> isNat#(activate(V1))
                     -->_1 isNat#(n__x(V1,V2)) -> isNat#(activate(V1)):29
                     -->_1 isNat#(n__x(V1,V2)) -> activate#(V2):28
                     -->_1 isNat#(n__x(V1,V2)) -> activate#(V1):27
                     -->_1 isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)):26
                     -->_1 isNat#(n__s(V1)) -> isNat#(activate(V1)):25
                     -->_1 isNat#(n__s(V1)) -> activate#(V1):24
                     -->_1 isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)):23
                     -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):22
                     -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):21
                     -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)):20
                  
                  26:W:isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
                     -->_1 U31#(tt(),V2) -> isNat#(activate(V2)):4
                     -->_1 U31#(tt(),V2) -> activate#(V2):3
                  
                  27:W:isNat#(n__x(V1,V2)) -> activate#(V1)
                     -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
                     -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
                     -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
                  
                  28:W:isNat#(n__x(V1,V2)) -> activate#(V2)
                     -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
                     -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
                     -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
                  
                  29:W:isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
                     -->_1 isNat#(n__x(V1,V2)) -> isNat#(activate(V1)):29
                     -->_1 isNat#(n__x(V1,V2)) -> activate#(V2):28
                     -->_1 isNat#(n__x(V1,V2)) -> activate#(V1):27
                     -->_1 isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)):26
                     -->_1 isNat#(n__s(V1)) -> isNat#(activate(V1)):25
                     -->_1 isNat#(n__s(V1)) -> activate#(V1):24
                     -->_1 isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)):23
                     -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):22
                     -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):21
                     -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)):20
                  
                The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                  14: U71#(tt(),M,N) ->             
                        isNat#(activate(N))         
                  13: U71#(tt(),M,N) -> activate#(N)
                  12: U71#(tt(),M,N) -> activate#(M)
                  11: U71#(tt(),M,N) ->             
                        U72#(isNat(activate(N))     
                            ,activate(M)            
                            ,activate(N))           
                  15: U72#(tt(),M,N) -> activate#(M)
                  16: U72#(tt(),M,N) -> activate#(N)
                  8:  U51#(tt(),M,N) ->             
                        isNat#(activate(N))         
                  7:  U51#(tt(),M,N) -> activate#(N)
                  6:  U51#(tt(),M,N) -> activate#(M)
                  5:  U51#(tt(),M,N) ->             
                        U52#(isNat(activate(N))     
                            ,activate(M)            
                            ,activate(N))           
                  9:  U52#(tt(),M,N) -> activate#(M)
                  10: U52#(tt(),M,N) -> activate#(N)
                  2:  U11#(tt(),V2) ->              
                        isNat#(activate(V2))        
                  20: isNat#(n__plus(V1,V2)) ->     
                        U11#(isNat(activate(V1))    
                            ,activate(V2))          
                  29: isNat#(n__x(V1,V2)) ->        
                        isNat#(activate(V1))        
                  25: isNat#(n__s(V1)) ->           
                        isNat#(activate(V1))        
                  23: isNat#(n__plus(V1,V2)) ->     
                        isNat#(activate(V1))        
                  4:  U31#(tt(),V2) ->              
                        isNat#(activate(V2))        
                  26: isNat#(n__x(V1,V2)) ->        
                        U31#(isNat(activate(V1))    
                            ,activate(V2))          
                  3:  U31#(tt(),V2) -> activate#(V2)
                  21: isNat#(n__plus(V1,V2)) ->     
                        activate#(V1)               
                  22: isNat#(n__plus(V1,V2)) ->     
                        activate#(V2)               
                  24: isNat#(n__s(V1)) ->           
                        activate#(V1)               
                  27: isNat#(n__x(V1,V2)) ->        
                        activate#(V1)               
                  28: isNat#(n__x(V1,V2)) ->        
                        activate#(V2)               
                  1:  U11#(tt(),V2) -> activate#(V2)
                  19: activate#(n__x(X1,X2)) ->     
                        c_17(activate#(X1)          
                            ,activate#(X2))         
                  18: activate#(n__s(X)) ->         
                        c_16(activate#(X))          
                  17: activate#(n__plus(X1,X2)) ->  
                        c_15(activate#(X1)          
                            ,activate#(X2))         
          *** 1.1.1.1.1.1.1.1.1.1.2.2.2.2.1 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  
                Weak TRS Rules:
                  0() -> n__0()
                  U11(tt(),V2) -> U12(isNat(activate(V2)))
                  U12(tt()) -> tt()
                  U21(tt()) -> tt()
                  U31(tt(),V2) -> U32(isNat(activate(V2)))
                  U32(tt()) -> tt()
                  activate(X) -> X
                  activate(n__0()) -> 0()
                  activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
                  activate(n__s(X)) -> s(activate(X))
                  activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
                  isNat(n__0()) -> tt()
                  isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
                  isNat(n__s(V1)) -> U21(isNat(activate(V1)))
                  isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
                  plus(X1,X2) -> n__plus(X1,X2)
                  s(X) -> n__s(X)
                  x(X1,X2) -> n__x(X1,X2)
                Signature:
                  {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
                Obligation:
                  Innermost
                  basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
              Applied Processor:
                EmptyProcessor
              Proof:
                The problem is already closed. The intended complexity is O(1).
          
  *** 1.1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
          U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
          U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
          U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
        Strict TRS Rules:
          
        Weak DP Rules:
          U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
          U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
          activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_16(activate#(X))
          activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
          isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
          isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
          isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V2) -> U12(isNat(activate(V2)))
          U12(tt()) -> tt()
          U21(tt()) -> tt()
          U31(tt(),V2) -> U32(isNat(activate(V2)))
          U32(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
          activate(n__s(X)) -> s(activate(X))
          activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
          isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
          x(X1,X2) -> n__x(X1,X2)
        Signature:
          {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
      Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
      Proof:
        We estimate the number of application of
          {2,4}
        by application of
          Pre({2,4}) = {1,3}.
        Here rules are labelled as follows:
          1:  U51#(tt(),M,N) ->               
                c_8(U52#(isNat(activate(N))   
                        ,activate(M)          
                        ,activate(N))         
                   ,isNat#(activate(N))       
                   ,activate#(N)              
                   ,activate#(M)              
                   ,activate#(N))             
          2:  U52#(tt(),M,N) ->               
                c_9(activate#(N),activate#(M))
          3:  U71#(tt(),M,N) ->               
                c_11(U72#(isNat(activate(N))  
                         ,activate(M)         
                         ,activate(N))        
                    ,isNat#(activate(N))      
                    ,activate#(N)             
                    ,activate#(M)             
                    ,activate#(N))            
          4:  U72#(tt(),M,N) ->               
                c_12(activate#(N)             
                    ,activate#(M)             
                    ,activate#(N))            
          5:  U11#(tt(),V2) ->                
                c_2(isNat#(activate(V2))      
                   ,activate#(V2))            
          6:  U31#(tt(),V2) ->                
                c_5(isNat#(activate(V2))      
                   ,activate#(V2))            
          7:  activate#(n__plus(X1,X2)) ->    
                c_15(activate#(X1)            
                    ,activate#(X2))           
          8:  activate#(n__s(X)) ->           
                c_16(activate#(X))            
          9:  activate#(n__x(X1,X2)) ->       
                c_17(activate#(X1)            
                    ,activate#(X2))           
          10: isNat#(n__plus(V1,V2)) ->       
                c_19(U11#(isNat(activate(V1)) 
                         ,activate(V2))       
                    ,isNat#(activate(V1))     
                    ,activate#(V1)            
                    ,activate#(V2))           
          11: isNat#(n__s(V1)) ->             
                c_20(isNat#(activate(V1))     
                    ,activate#(V1))           
          12: isNat#(n__x(V1,V2)) ->          
                c_21(U31#(isNat(activate(V1)) 
                         ,activate(V2))       
                    ,isNat#(activate(V1))     
                    ,activate#(V1)            
                    ,activate#(V2))           
  *** 1.1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
          U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        Strict TRS Rules:
          
        Weak DP Rules:
          U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
          U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
          U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
          U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
          activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_16(activate#(X))
          activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
          isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
          isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
          isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V2) -> U12(isNat(activate(V2)))
          U12(tt()) -> tt()
          U21(tt()) -> tt()
          U31(tt(),V2) -> U32(isNat(activate(V2)))
          U32(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
          activate(n__s(X)) -> s(activate(X))
          activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
          isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
          x(X1,X2) -> n__x(X1,X2)
        Signature:
          {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
      Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
      Proof:
        We estimate the number of application of
          {1,2}
        by application of
          Pre({1,2}) = {}.
        Here rules are labelled as follows:
          1:  U51#(tt(),M,N) ->               
                c_8(U52#(isNat(activate(N))   
                        ,activate(M)          
                        ,activate(N))         
                   ,isNat#(activate(N))       
                   ,activate#(N)              
                   ,activate#(M)              
                   ,activate#(N))             
          2:  U71#(tt(),M,N) ->               
                c_11(U72#(isNat(activate(N))  
                         ,activate(M)         
                         ,activate(N))        
                    ,isNat#(activate(N))      
                    ,activate#(N)             
                    ,activate#(M)             
                    ,activate#(N))            
          3:  U11#(tt(),V2) ->                
                c_2(isNat#(activate(V2))      
                   ,activate#(V2))            
          4:  U31#(tt(),V2) ->                
                c_5(isNat#(activate(V2))      
                   ,activate#(V2))            
          5:  U52#(tt(),M,N) ->               
                c_9(activate#(N),activate#(M))
          6:  U72#(tt(),M,N) ->               
                c_12(activate#(N)             
                    ,activate#(M)             
                    ,activate#(N))            
          7:  activate#(n__plus(X1,X2)) ->    
                c_15(activate#(X1)            
                    ,activate#(X2))           
          8:  activate#(n__s(X)) ->           
                c_16(activate#(X))            
          9:  activate#(n__x(X1,X2)) ->       
                c_17(activate#(X1)            
                    ,activate#(X2))           
          10: isNat#(n__plus(V1,V2)) ->       
                c_19(U11#(isNat(activate(V1)) 
                         ,activate(V2))       
                    ,isNat#(activate(V1))     
                    ,activate#(V1)            
                    ,activate#(V2))           
          11: isNat#(n__s(V1)) ->             
                c_20(isNat#(activate(V1))     
                    ,activate#(V1))           
          12: isNat#(n__x(V1,V2)) ->          
                c_21(U31#(isNat(activate(V1)) 
                         ,activate(V2))       
                    ,isNat#(activate(V1))     
                    ,activate#(V1)            
                    ,activate#(V2))           
  *** 1.1.1.1.1.1.1.1.1.2.1.1 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          
        Strict TRS Rules:
          
        Weak DP Rules:
          U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
          U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
          U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
          U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
          U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
          U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
          activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_16(activate#(X))
          activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
          isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
          isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
          isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V2) -> U12(isNat(activate(V2)))
          U12(tt()) -> tt()
          U21(tt()) -> tt()
          U31(tt(),V2) -> U32(isNat(activate(V2)))
          U32(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
          activate(n__s(X)) -> s(activate(X))
          activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
          isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
          x(X1,X2) -> n__x(X1,X2)
        Signature:
          {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:W:U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
             -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):12
             -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):11
             -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):10
             -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_2 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
          
          2:W:U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
             -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):12
             -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):11
             -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):10
             -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_2 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
          
          3:W:U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):12
             -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):11
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):10
             -->_5 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_5 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_4 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_3 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_5 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_1 U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)):4
          
          4:W:U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
             -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_2 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
          
          5:W:U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):12
             -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):11
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):10
             -->_5 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_5 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_4 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_3 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_5 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_1 U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)):6
          
          6:W:U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
             -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_3 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_2 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
          
          7:W:activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
             -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_2 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
          
          8:W:activate#(n__s(X)) -> c_16(activate#(X))
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
          
          9:W:activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
             -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_2 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
          
          10:W:isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):12
             -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):11
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):10
             -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_4 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_3 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_1 U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)):1
          
          11:W:isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
             -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):12
             -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):11
             -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):10
             -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_2 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
          
          12:W:isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):12
             -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):11
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):10
             -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_4 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_3 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_1 U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5:  U71#(tt(),M,N) ->               
                c_11(U72#(isNat(activate(N))  
                         ,activate(M)         
                         ,activate(N))        
                    ,isNat#(activate(N))      
                    ,activate#(N)             
                    ,activate#(M)             
                    ,activate#(N))            
          6:  U72#(tt(),M,N) ->               
                c_12(activate#(N)             
                    ,activate#(M)             
                    ,activate#(N))            
          3:  U51#(tt(),M,N) ->               
                c_8(U52#(isNat(activate(N))   
                        ,activate(M)          
                        ,activate(N))         
                   ,isNat#(activate(N))       
                   ,activate#(N)              
                   ,activate#(M)              
                   ,activate#(N))             
          4:  U52#(tt(),M,N) ->               
                c_9(activate#(N),activate#(M))
          1:  U11#(tt(),V2) ->                
                c_2(isNat#(activate(V2))      
                   ,activate#(V2))            
          10: isNat#(n__plus(V1,V2)) ->       
                c_19(U11#(isNat(activate(V1)) 
                         ,activate(V2))       
                    ,isNat#(activate(V1))     
                    ,activate#(V1)            
                    ,activate#(V2))           
          12: isNat#(n__x(V1,V2)) ->          
                c_21(U31#(isNat(activate(V1)) 
                         ,activate(V2))       
                    ,isNat#(activate(V1))     
                    ,activate#(V1)            
                    ,activate#(V2))           
          11: isNat#(n__s(V1)) ->             
                c_20(isNat#(activate(V1))     
                    ,activate#(V1))           
          2:  U31#(tt(),V2) ->                
                c_5(isNat#(activate(V2))      
                   ,activate#(V2))            
          9:  activate#(n__x(X1,X2)) ->       
                c_17(activate#(X1)            
                    ,activate#(X2))           
          8:  activate#(n__s(X)) ->           
                c_16(activate#(X))            
          7:  activate#(n__plus(X1,X2)) ->    
                c_15(activate#(X1)            
                    ,activate#(X2))           
  *** 1.1.1.1.1.1.1.1.1.2.1.1.1 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V2) -> U12(isNat(activate(V2)))
          U12(tt()) -> tt()
          U21(tt()) -> tt()
          U31(tt(),V2) -> U32(isNat(activate(V2)))
          U32(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
          activate(n__s(X)) -> s(activate(X))
          activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
          isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
          x(X1,X2) -> n__x(X1,X2)
        Signature:
          {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0,c_24/0}
        Obligation:
          Innermost
          basic terms: {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
      Applied Processor:
        EmptyProcessor
      Proof:
        The problem is already closed. The intended complexity is O(1).