We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^5)).

Strict Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
  , U21(tt()) -> tt()
  , U31(tt(), V2) -> U32(isNat(activate(V2)))
  , U32(tt()) -> tt()
  , U41(tt(), N) -> activate(N)
  , U51(tt(), M, N) ->
    U52(isNat(activate(N)), activate(M), activate(N))
  , U52(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , plus(N, s(M)) -> U51(isNat(M), M, N)
  , plus(N, 0()) -> U41(isNat(N), N)
  , U61(tt()) -> 0()
  , 0() -> n__0()
  , U71(tt(), M, N) ->
    U72(isNat(activate(N)), activate(M), activate(N))
  , U72(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2)
  , x(N, s(M)) -> U71(isNat(M), M, N)
  , x(N, 0()) -> U61(isNat(N)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^5))

Arguments of following rules are not normal-forms:

{ plus(N, s(M)) -> U51(isNat(M), M, N)
, plus(N, 0()) -> U41(isNat(N), N)
, x(N, s(M)) -> U71(isNat(M), M, N)
, x(N, 0()) -> U61(isNat(N)) }

All above mentioned rules can be savely removed.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^5)).

Strict Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
  , U21(tt()) -> tt()
  , U31(tt(), V2) -> U32(isNat(activate(V2)))
  , U32(tt()) -> tt()
  , U41(tt(), N) -> activate(N)
  , U51(tt(), M, N) ->
    U52(isNat(activate(N)), activate(M), activate(N))
  , U52(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , U61(tt()) -> 0()
  , 0() -> n__0()
  , U71(tt(), M, N) ->
    U72(isNat(activate(N)), activate(M), activate(N))
  , U72(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^5))

We add the following dependency tuples:

Strict DPs:
  { U11^#(tt(), V2) ->
    c_1(U12^#(isNat(activate(V2))),
        isNat^#(activate(V2)),
        activate^#(V2))
  , U12^#(tt()) -> c_2()
  , isNat^#(n__0()) -> c_3()
  , isNat^#(n__plus(V1, V2)) ->
    c_4(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) ->
    c_5(U21^#(isNat(activate(V1))),
        isNat^#(activate(V1)),
        activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_6(U31^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , activate^#(X) -> c_7()
  , activate^#(n__0()) -> c_8(0^#())
  , activate^#(n__plus(X1, X2)) ->
    c_9(plus^#(activate(X1), activate(X2)),
        activate^#(X1),
        activate^#(X2))
  , activate^#(n__s(X)) -> c_10(s^#(activate(X)), activate^#(X))
  , activate^#(n__x(X1, X2)) ->
    c_11(x^#(activate(X1), activate(X2)),
         activate^#(X1),
         activate^#(X2))
  , U21^#(tt()) -> c_12()
  , U31^#(tt(), V2) ->
    c_13(U32^#(isNat(activate(V2))),
         isNat^#(activate(V2)),
         activate^#(V2))
  , 0^#() -> c_21()
  , plus^#(X1, X2) -> c_19()
  , s^#(X) -> c_18()
  , x^#(X1, X2) -> c_24()
  , U32^#(tt()) -> c_14()
  , U41^#(tt(), N) -> c_15(activate^#(N))
  , U51^#(tt(), M, N) ->
    c_16(U52^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U52^#(tt(), M, N) ->
    c_17(s^#(plus(activate(N), activate(M))),
         plus^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M))
  , U61^#(tt()) -> c_20(0^#())
  , U71^#(tt(), M, N) ->
    c_22(U72^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U72^#(tt(), M, N) ->
    c_23(plus^#(x(activate(N), activate(M)), activate(N)),
         x^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M),
         activate^#(N)) }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^5)).

Strict DPs:
  { U11^#(tt(), V2) ->
    c_1(U12^#(isNat(activate(V2))),
        isNat^#(activate(V2)),
        activate^#(V2))
  , U12^#(tt()) -> c_2()
  , isNat^#(n__0()) -> c_3()
  , isNat^#(n__plus(V1, V2)) ->
    c_4(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) ->
    c_5(U21^#(isNat(activate(V1))),
        isNat^#(activate(V1)),
        activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_6(U31^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , activate^#(X) -> c_7()
  , activate^#(n__0()) -> c_8(0^#())
  , activate^#(n__plus(X1, X2)) ->
    c_9(plus^#(activate(X1), activate(X2)),
        activate^#(X1),
        activate^#(X2))
  , activate^#(n__s(X)) -> c_10(s^#(activate(X)), activate^#(X))
  , activate^#(n__x(X1, X2)) ->
    c_11(x^#(activate(X1), activate(X2)),
         activate^#(X1),
         activate^#(X2))
  , U21^#(tt()) -> c_12()
  , U31^#(tt(), V2) ->
    c_13(U32^#(isNat(activate(V2))),
         isNat^#(activate(V2)),
         activate^#(V2))
  , 0^#() -> c_21()
  , plus^#(X1, X2) -> c_19()
  , s^#(X) -> c_18()
  , x^#(X1, X2) -> c_24()
  , U32^#(tt()) -> c_14()
  , U41^#(tt(), N) -> c_15(activate^#(N))
  , U51^#(tt(), M, N) ->
    c_16(U52^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U52^#(tt(), M, N) ->
    c_17(s^#(plus(activate(N), activate(M))),
         plus^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M))
  , U61^#(tt()) -> c_20(0^#())
  , U71^#(tt(), M, N) ->
    c_22(U72^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U72^#(tt(), M, N) ->
    c_23(plus^#(x(activate(N), activate(M)), activate(N)),
         x^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M),
         activate^#(N)) }
Weak Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
  , U21(tt()) -> tt()
  , U31(tt(), V2) -> U32(isNat(activate(V2)))
  , U32(tt()) -> tt()
  , U41(tt(), N) -> activate(N)
  , U51(tt(), M, N) ->
    U52(isNat(activate(N)), activate(M), activate(N))
  , U52(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , U61(tt()) -> 0()
  , 0() -> n__0()
  , U71(tt(), M, N) ->
    U72(isNat(activate(N)), activate(M), activate(N))
  , U72(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^5))

We estimate the number of application of {2,3,7,12,14,15,16,17,18}
by applications of Pre({2,3,7,12,14,15,16,17,18}) =
{1,4,5,6,8,9,10,11,13,19,20,21,22,23,24}. Here rules are labeled as
follows:

  DPs:
    { 1: U11^#(tt(), V2) ->
         c_1(U12^#(isNat(activate(V2))),
             isNat^#(activate(V2)),
             activate^#(V2))
    , 2: U12^#(tt()) -> c_2()
    , 3: isNat^#(n__0()) -> c_3()
    , 4: isNat^#(n__plus(V1, V2)) ->
         c_4(U11^#(isNat(activate(V1)), activate(V2)),
             isNat^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
    , 5: isNat^#(n__s(V1)) ->
         c_5(U21^#(isNat(activate(V1))),
             isNat^#(activate(V1)),
             activate^#(V1))
    , 6: isNat^#(n__x(V1, V2)) ->
         c_6(U31^#(isNat(activate(V1)), activate(V2)),
             isNat^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
    , 7: activate^#(X) -> c_7()
    , 8: activate^#(n__0()) -> c_8(0^#())
    , 9: activate^#(n__plus(X1, X2)) ->
         c_9(plus^#(activate(X1), activate(X2)),
             activate^#(X1),
             activate^#(X2))
    , 10: activate^#(n__s(X)) -> c_10(s^#(activate(X)), activate^#(X))
    , 11: activate^#(n__x(X1, X2)) ->
          c_11(x^#(activate(X1), activate(X2)),
               activate^#(X1),
               activate^#(X2))
    , 12: U21^#(tt()) -> c_12()
    , 13: U31^#(tt(), V2) ->
          c_13(U32^#(isNat(activate(V2))),
               isNat^#(activate(V2)),
               activate^#(V2))
    , 14: 0^#() -> c_21()
    , 15: plus^#(X1, X2) -> c_19()
    , 16: s^#(X) -> c_18()
    , 17: x^#(X1, X2) -> c_24()
    , 18: U32^#(tt()) -> c_14()
    , 19: U41^#(tt(), N) -> c_15(activate^#(N))
    , 20: U51^#(tt(), M, N) ->
          c_16(U52^#(isNat(activate(N)), activate(M), activate(N)),
               isNat^#(activate(N)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
    , 21: U52^#(tt(), M, N) ->
          c_17(s^#(plus(activate(N), activate(M))),
               plus^#(activate(N), activate(M)),
               activate^#(N),
               activate^#(M))
    , 22: U61^#(tt()) -> c_20(0^#())
    , 23: U71^#(tt(), M, N) ->
          c_22(U72^#(isNat(activate(N)), activate(M), activate(N)),
               isNat^#(activate(N)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
    , 24: U72^#(tt(), M, N) ->
          c_23(plus^#(x(activate(N), activate(M)), activate(N)),
               x^#(activate(N), activate(M)),
               activate^#(N),
               activate^#(M),
               activate^#(N)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^5)).

Strict DPs:
  { U11^#(tt(), V2) ->
    c_1(U12^#(isNat(activate(V2))),
        isNat^#(activate(V2)),
        activate^#(V2))
  , isNat^#(n__plus(V1, V2)) ->
    c_4(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) ->
    c_5(U21^#(isNat(activate(V1))),
        isNat^#(activate(V1)),
        activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_6(U31^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , activate^#(n__0()) -> c_8(0^#())
  , activate^#(n__plus(X1, X2)) ->
    c_9(plus^#(activate(X1), activate(X2)),
        activate^#(X1),
        activate^#(X2))
  , activate^#(n__s(X)) -> c_10(s^#(activate(X)), activate^#(X))
  , activate^#(n__x(X1, X2)) ->
    c_11(x^#(activate(X1), activate(X2)),
         activate^#(X1),
         activate^#(X2))
  , U31^#(tt(), V2) ->
    c_13(U32^#(isNat(activate(V2))),
         isNat^#(activate(V2)),
         activate^#(V2))
  , U41^#(tt(), N) -> c_15(activate^#(N))
  , U51^#(tt(), M, N) ->
    c_16(U52^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U52^#(tt(), M, N) ->
    c_17(s^#(plus(activate(N), activate(M))),
         plus^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M))
  , U61^#(tt()) -> c_20(0^#())
  , U71^#(tt(), M, N) ->
    c_22(U72^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U72^#(tt(), M, N) ->
    c_23(plus^#(x(activate(N), activate(M)), activate(N)),
         x^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M),
         activate^#(N)) }
Weak DPs:
  { U12^#(tt()) -> c_2()
  , isNat^#(n__0()) -> c_3()
  , activate^#(X) -> c_7()
  , U21^#(tt()) -> c_12()
  , 0^#() -> c_21()
  , plus^#(X1, X2) -> c_19()
  , s^#(X) -> c_18()
  , x^#(X1, X2) -> c_24()
  , U32^#(tt()) -> c_14() }
Weak Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
  , U21(tt()) -> tt()
  , U31(tt(), V2) -> U32(isNat(activate(V2)))
  , U32(tt()) -> tt()
  , U41(tt(), N) -> activate(N)
  , U51(tt(), M, N) ->
    U52(isNat(activate(N)), activate(M), activate(N))
  , U52(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , U61(tt()) -> 0()
  , 0() -> n__0()
  , U71(tt(), M, N) ->
    U72(isNat(activate(N)), activate(M), activate(N))
  , U72(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^5))

We estimate the number of application of {5,13} by applications of
Pre({5,13}) = {1,2,3,4,6,7,8,9,10,11,12,14,15}. Here rules are
labeled as follows:

  DPs:
    { 1: U11^#(tt(), V2) ->
         c_1(U12^#(isNat(activate(V2))),
             isNat^#(activate(V2)),
             activate^#(V2))
    , 2: isNat^#(n__plus(V1, V2)) ->
         c_4(U11^#(isNat(activate(V1)), activate(V2)),
             isNat^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
    , 3: isNat^#(n__s(V1)) ->
         c_5(U21^#(isNat(activate(V1))),
             isNat^#(activate(V1)),
             activate^#(V1))
    , 4: isNat^#(n__x(V1, V2)) ->
         c_6(U31^#(isNat(activate(V1)), activate(V2)),
             isNat^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
    , 5: activate^#(n__0()) -> c_8(0^#())
    , 6: activate^#(n__plus(X1, X2)) ->
         c_9(plus^#(activate(X1), activate(X2)),
             activate^#(X1),
             activate^#(X2))
    , 7: activate^#(n__s(X)) -> c_10(s^#(activate(X)), activate^#(X))
    , 8: activate^#(n__x(X1, X2)) ->
         c_11(x^#(activate(X1), activate(X2)),
              activate^#(X1),
              activate^#(X2))
    , 9: U31^#(tt(), V2) ->
         c_13(U32^#(isNat(activate(V2))),
              isNat^#(activate(V2)),
              activate^#(V2))
    , 10: U41^#(tt(), N) -> c_15(activate^#(N))
    , 11: U51^#(tt(), M, N) ->
          c_16(U52^#(isNat(activate(N)), activate(M), activate(N)),
               isNat^#(activate(N)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
    , 12: U52^#(tt(), M, N) ->
          c_17(s^#(plus(activate(N), activate(M))),
               plus^#(activate(N), activate(M)),
               activate^#(N),
               activate^#(M))
    , 13: U61^#(tt()) -> c_20(0^#())
    , 14: U71^#(tt(), M, N) ->
          c_22(U72^#(isNat(activate(N)), activate(M), activate(N)),
               isNat^#(activate(N)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
    , 15: U72^#(tt(), M, N) ->
          c_23(plus^#(x(activate(N), activate(M)), activate(N)),
               x^#(activate(N), activate(M)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
    , 16: U12^#(tt()) -> c_2()
    , 17: isNat^#(n__0()) -> c_3()
    , 18: activate^#(X) -> c_7()
    , 19: U21^#(tt()) -> c_12()
    , 20: 0^#() -> c_21()
    , 21: plus^#(X1, X2) -> c_19()
    , 22: s^#(X) -> c_18()
    , 23: x^#(X1, X2) -> c_24()
    , 24: U32^#(tt()) -> c_14() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^5)).

Strict DPs:
  { U11^#(tt(), V2) ->
    c_1(U12^#(isNat(activate(V2))),
        isNat^#(activate(V2)),
        activate^#(V2))
  , isNat^#(n__plus(V1, V2)) ->
    c_4(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) ->
    c_5(U21^#(isNat(activate(V1))),
        isNat^#(activate(V1)),
        activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_6(U31^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , activate^#(n__plus(X1, X2)) ->
    c_9(plus^#(activate(X1), activate(X2)),
        activate^#(X1),
        activate^#(X2))
  , activate^#(n__s(X)) -> c_10(s^#(activate(X)), activate^#(X))
  , activate^#(n__x(X1, X2)) ->
    c_11(x^#(activate(X1), activate(X2)),
         activate^#(X1),
         activate^#(X2))
  , U31^#(tt(), V2) ->
    c_13(U32^#(isNat(activate(V2))),
         isNat^#(activate(V2)),
         activate^#(V2))
  , U41^#(tt(), N) -> c_15(activate^#(N))
  , U51^#(tt(), M, N) ->
    c_16(U52^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U52^#(tt(), M, N) ->
    c_17(s^#(plus(activate(N), activate(M))),
         plus^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M))
  , U71^#(tt(), M, N) ->
    c_22(U72^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U72^#(tt(), M, N) ->
    c_23(plus^#(x(activate(N), activate(M)), activate(N)),
         x^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M),
         activate^#(N)) }
Weak DPs:
  { U12^#(tt()) -> c_2()
  , isNat^#(n__0()) -> c_3()
  , activate^#(X) -> c_7()
  , activate^#(n__0()) -> c_8(0^#())
  , U21^#(tt()) -> c_12()
  , 0^#() -> c_21()
  , plus^#(X1, X2) -> c_19()
  , s^#(X) -> c_18()
  , x^#(X1, X2) -> c_24()
  , U32^#(tt()) -> c_14()
  , U61^#(tt()) -> c_20(0^#()) }
Weak Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
  , U21(tt()) -> tt()
  , U31(tt(), V2) -> U32(isNat(activate(V2)))
  , U32(tt()) -> tt()
  , U41(tt(), N) -> activate(N)
  , U51(tt(), M, N) ->
    U52(isNat(activate(N)), activate(M), activate(N))
  , U52(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , U61(tt()) -> 0()
  , 0() -> n__0()
  , U71(tt(), M, N) ->
    U72(isNat(activate(N)), activate(M), activate(N))
  , U72(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^5))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ U12^#(tt()) -> c_2()
, isNat^#(n__0()) -> c_3()
, activate^#(X) -> c_7()
, activate^#(n__0()) -> c_8(0^#())
, U21^#(tt()) -> c_12()
, 0^#() -> c_21()
, plus^#(X1, X2) -> c_19()
, s^#(X) -> c_18()
, x^#(X1, X2) -> c_24()
, U32^#(tt()) -> c_14()
, U61^#(tt()) -> c_20(0^#()) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^5)).

Strict DPs:
  { U11^#(tt(), V2) ->
    c_1(U12^#(isNat(activate(V2))),
        isNat^#(activate(V2)),
        activate^#(V2))
  , isNat^#(n__plus(V1, V2)) ->
    c_4(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) ->
    c_5(U21^#(isNat(activate(V1))),
        isNat^#(activate(V1)),
        activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_6(U31^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , activate^#(n__plus(X1, X2)) ->
    c_9(plus^#(activate(X1), activate(X2)),
        activate^#(X1),
        activate^#(X2))
  , activate^#(n__s(X)) -> c_10(s^#(activate(X)), activate^#(X))
  , activate^#(n__x(X1, X2)) ->
    c_11(x^#(activate(X1), activate(X2)),
         activate^#(X1),
         activate^#(X2))
  , U31^#(tt(), V2) ->
    c_13(U32^#(isNat(activate(V2))),
         isNat^#(activate(V2)),
         activate^#(V2))
  , U41^#(tt(), N) -> c_15(activate^#(N))
  , U51^#(tt(), M, N) ->
    c_16(U52^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U52^#(tt(), M, N) ->
    c_17(s^#(plus(activate(N), activate(M))),
         plus^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M))
  , U71^#(tt(), M, N) ->
    c_22(U72^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U72^#(tt(), M, N) ->
    c_23(plus^#(x(activate(N), activate(M)), activate(N)),
         x^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M),
         activate^#(N)) }
Weak Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
  , U21(tt()) -> tt()
  , U31(tt(), V2) -> U32(isNat(activate(V2)))
  , U32(tt()) -> tt()
  , U41(tt(), N) -> activate(N)
  , U51(tt(), M, N) ->
    U52(isNat(activate(N)), activate(M), activate(N))
  , U52(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , U61(tt()) -> 0()
  , 0() -> n__0()
  , U71(tt(), M, N) ->
    U72(isNat(activate(N)), activate(M), activate(N))
  , U72(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^5))

Due to missing edges in the dependency-graph, the right-hand sides
of following rules could be simplified:

  { U11^#(tt(), V2) ->
    c_1(U12^#(isNat(activate(V2))),
        isNat^#(activate(V2)),
        activate^#(V2))
  , isNat^#(n__s(V1)) ->
    c_5(U21^#(isNat(activate(V1))),
        isNat^#(activate(V1)),
        activate^#(V1))
  , activate^#(n__plus(X1, X2)) ->
    c_9(plus^#(activate(X1), activate(X2)),
        activate^#(X1),
        activate^#(X2))
  , activate^#(n__s(X)) -> c_10(s^#(activate(X)), activate^#(X))
  , activate^#(n__x(X1, X2)) ->
    c_11(x^#(activate(X1), activate(X2)),
         activate^#(X1),
         activate^#(X2))
  , U31^#(tt(), V2) ->
    c_13(U32^#(isNat(activate(V2))),
         isNat^#(activate(V2)),
         activate^#(V2))
  , U52^#(tt(), M, N) ->
    c_17(s^#(plus(activate(N), activate(M))),
         plus^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M))
  , U72^#(tt(), M, N) ->
    c_23(plus^#(x(activate(N), activate(M)), activate(N)),
         x^#(activate(N), activate(M)),
         activate^#(N),
         activate^#(M),
         activate^#(N)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^5)).

Strict DPs:
  { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
  , isNat^#(n__plus(V1, V2)) ->
    c_2(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_4(U31^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , activate^#(n__plus(X1, X2)) ->
    c_5(activate^#(X1), activate^#(X2))
  , activate^#(n__s(X)) -> c_6(activate^#(X))
  , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2))
  , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
  , U41^#(tt(), N) -> c_9(activate^#(N))
  , U51^#(tt(), M, N) ->
    c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M))
  , U71^#(tt(), M, N) ->
    c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U72^#(tt(), M, N) ->
    c_13(activate^#(N), activate^#(M), activate^#(N)) }
Weak Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
  , U21(tt()) -> tt()
  , U31(tt(), V2) -> U32(isNat(activate(V2)))
  , U32(tt()) -> tt()
  , U41(tt(), N) -> activate(N)
  , U51(tt(), M, N) ->
    U52(isNat(activate(N)), activate(M), activate(N))
  , U52(tt(), M, N) -> s(plus(activate(N), activate(M)))
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , U61(tt()) -> 0()
  , 0() -> n__0()
  , U71(tt(), M, N) ->
    U72(isNat(activate(N)), activate(M), activate(N))
  , U72(tt(), M, N) -> plus(x(activate(N), activate(M)), activate(N))
  , x(X1, X2) -> n__x(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^5))

We replace rewrite rules by usable rules:

  Weak Usable Rules:
    { U11(tt(), V2) -> U12(isNat(activate(V2)))
    , U12(tt()) -> tt()
    , isNat(n__0()) -> tt()
    , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
    , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
    , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
    , activate(X) -> X
    , activate(n__0()) -> 0()
    , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
    , activate(n__s(X)) -> s(activate(X))
    , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
    , U21(tt()) -> tt()
    , U31(tt(), V2) -> U32(isNat(activate(V2)))
    , U32(tt()) -> tt()
    , s(X) -> n__s(X)
    , plus(X1, X2) -> n__plus(X1, X2)
    , 0() -> n__0()
    , x(X1, X2) -> n__x(X1, X2) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^5)).

Strict DPs:
  { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
  , isNat^#(n__plus(V1, V2)) ->
    c_2(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_4(U31^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , activate^#(n__plus(X1, X2)) ->
    c_5(activate^#(X1), activate^#(X2))
  , activate^#(n__s(X)) -> c_6(activate^#(X))
  , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2))
  , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
  , U41^#(tt(), N) -> c_9(activate^#(N))
  , U51^#(tt(), M, N) ->
    c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M))
  , U71^#(tt(), M, N) ->
    c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U72^#(tt(), M, N) ->
    c_13(activate^#(N), activate^#(M), activate^#(N)) }
Weak Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
  , U21(tt()) -> tt()
  , U31(tt(), V2) -> U32(isNat(activate(V2)))
  , U32(tt()) -> tt()
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , 0() -> n__0()
  , x(X1, X2) -> n__x(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^5))

Consider the dependency graph

  1: U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
     -->_2 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_2 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_2 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
     -->_1 isNat^#(n__x(V1, V2)) ->
           c_4(U31^#(isNat(activate(V1)), activate(V2)),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :4
     -->_1 isNat^#(n__s(V1)) ->
           c_3(isNat^#(activate(V1)), activate^#(V1)) :3
     -->_1 isNat^#(n__plus(V1, V2)) ->
           c_2(U11^#(isNat(activate(V1)), activate(V2)),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :2
  
  2: isNat^#(n__plus(V1, V2)) ->
     c_2(U11^#(isNat(activate(V1)), activate(V2)),
         isNat^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
     -->_4 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_3 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_4 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_3 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_4 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
     -->_3 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
     -->_2 isNat^#(n__x(V1, V2)) ->
           c_4(U31^#(isNat(activate(V1)), activate(V2)),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :4
     -->_2 isNat^#(n__s(V1)) ->
           c_3(isNat^#(activate(V1)), activate^#(V1)) :3
     -->_2 isNat^#(n__plus(V1, V2)) ->
           c_2(U11^#(isNat(activate(V1)), activate(V2)),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :2
     -->_1 U11^#(tt(), V2) ->
           c_1(isNat^#(activate(V2)), activate^#(V2)) :1
  
  3: isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
     -->_2 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_2 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_2 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
     -->_1 isNat^#(n__x(V1, V2)) ->
           c_4(U31^#(isNat(activate(V1)), activate(V2)),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :4
     -->_1 isNat^#(n__s(V1)) ->
           c_3(isNat^#(activate(V1)), activate^#(V1)) :3
     -->_1 isNat^#(n__plus(V1, V2)) ->
           c_2(U11^#(isNat(activate(V1)), activate(V2)),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :2
  
  4: isNat^#(n__x(V1, V2)) ->
     c_4(U31^#(isNat(activate(V1)), activate(V2)),
         isNat^#(activate(V1)),
         activate^#(V1),
         activate^#(V2))
     -->_1 U31^#(tt(), V2) ->
           c_8(isNat^#(activate(V2)), activate^#(V2)) :8
     -->_4 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_3 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_4 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_3 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_4 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
     -->_3 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
     -->_2 isNat^#(n__x(V1, V2)) ->
           c_4(U31^#(isNat(activate(V1)), activate(V2)),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :4
     -->_2 isNat^#(n__s(V1)) ->
           c_3(isNat^#(activate(V1)), activate^#(V1)) :3
     -->_2 isNat^#(n__plus(V1, V2)) ->
           c_2(U11^#(isNat(activate(V1)), activate(V2)),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :2
  
  5: activate^#(n__plus(X1, X2)) ->
     c_5(activate^#(X1), activate^#(X2))
     -->_2 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_1 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_2 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_1 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_2 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
     -->_1 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
  
  6: activate^#(n__s(X)) -> c_6(activate^#(X))
     -->_1 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_1 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_1 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
  
  7: activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2))
     -->_2 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_1 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_2 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_1 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_2 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
     -->_1 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
  
  8: U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
     -->_2 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_2 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_2 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
     -->_1 isNat^#(n__x(V1, V2)) ->
           c_4(U31^#(isNat(activate(V1)), activate(V2)),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :4
     -->_1 isNat^#(n__s(V1)) ->
           c_3(isNat^#(activate(V1)), activate^#(V1)) :3
     -->_1 isNat^#(n__plus(V1, V2)) ->
           c_2(U11^#(isNat(activate(V1)), activate(V2)),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :2
  
  9: U41^#(tt(), N) -> c_9(activate^#(N))
     -->_1 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_1 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_1 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
  
  10: U51^#(tt(), M, N) ->
      c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
           isNat^#(activate(N)),
           activate^#(N),
           activate^#(M),
           activate^#(N))
     -->_1 U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M)) :11
     -->_5 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_4 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_3 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_5 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_4 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_3 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_5 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
     -->_4 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
     -->_3 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
     -->_2 isNat^#(n__x(V1, V2)) ->
           c_4(U31^#(isNat(activate(V1)), activate(V2)),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :4
     -->_2 isNat^#(n__s(V1)) ->
           c_3(isNat^#(activate(V1)), activate^#(V1)) :3
     -->_2 isNat^#(n__plus(V1, V2)) ->
           c_2(U11^#(isNat(activate(V1)), activate(V2)),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :2
  
  11: U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M))
     -->_2 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_1 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_2 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_1 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_2 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
     -->_1 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
  
  12: U71^#(tt(), M, N) ->
      c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
           isNat^#(activate(N)),
           activate^#(N),
           activate^#(M),
           activate^#(N))
     -->_1 U72^#(tt(), M, N) ->
           c_13(activate^#(N), activate^#(M), activate^#(N)) :13
     -->_5 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_4 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_3 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_5 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_4 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_3 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_5 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
     -->_4 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
     -->_3 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
     -->_2 isNat^#(n__x(V1, V2)) ->
           c_4(U31^#(isNat(activate(V1)), activate(V2)),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :4
     -->_2 isNat^#(n__s(V1)) ->
           c_3(isNat^#(activate(V1)), activate^#(V1)) :3
     -->_2 isNat^#(n__plus(V1, V2)) ->
           c_2(U11^#(isNat(activate(V1)), activate(V2)),
               isNat^#(activate(V1)),
               activate^#(V1),
               activate^#(V2)) :2
  
  13: U72^#(tt(), M, N) ->
      c_13(activate^#(N), activate^#(M), activate^#(N))
     -->_3 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_2 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_1 activate^#(n__x(X1, X2)) ->
           c_7(activate^#(X1), activate^#(X2)) :7
     -->_3 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_2 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_1 activate^#(n__s(X)) -> c_6(activate^#(X)) :6
     -->_3 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
     -->_2 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
     -->_1 activate^#(n__plus(X1, X2)) ->
           c_5(activate^#(X1), activate^#(X2)) :5
  

Following roots of the dependency graph are removed, as the
considered set of starting terms is closed under reduction with
respect to these rules (modulo compound contexts).

  { U41^#(tt(), N) -> c_9(activate^#(N)) }


We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^5)).

Strict DPs:
  { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
  , isNat^#(n__plus(V1, V2)) ->
    c_2(U11^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
  , isNat^#(n__x(V1, V2)) ->
    c_4(U31^#(isNat(activate(V1)), activate(V2)),
        isNat^#(activate(V1)),
        activate^#(V1),
        activate^#(V2))
  , activate^#(n__plus(X1, X2)) ->
    c_5(activate^#(X1), activate^#(X2))
  , activate^#(n__s(X)) -> c_6(activate^#(X))
  , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2))
  , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
  , U51^#(tt(), M, N) ->
    c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M))
  , U71^#(tt(), M, N) ->
    c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
         isNat^#(activate(N)),
         activate^#(N),
         activate^#(M),
         activate^#(N))
  , U72^#(tt(), M, N) ->
    c_13(activate^#(N), activate^#(M), activate^#(N)) }
Weak Trs:
  { U11(tt(), V2) -> U12(isNat(activate(V2)))
  , U12(tt()) -> tt()
  , isNat(n__0()) -> tt()
  , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
  , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
  , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
  , activate(X) -> X
  , activate(n__0()) -> 0()
  , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
  , U21(tt()) -> tt()
  , U31(tt(), V2) -> U32(isNat(activate(V2)))
  , U32(tt()) -> tt()
  , s(X) -> n__s(X)
  , plus(X1, X2) -> n__plus(X1, X2)
  , 0() -> n__0()
  , x(X1, X2) -> n__x(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^5))

We analyse the complexity of following sub-problems (R) and (S).
Problem (S) is obtained from the input problem by shifting strict
rules from (R) into the weak component:

Problem (R):
------------
  Strict DPs:
    { activate^#(n__plus(X1, X2)) ->
      c_5(activate^#(X1), activate^#(X2))
    , activate^#(n__s(X)) -> c_6(activate^#(X))
    , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2))
    , U51^#(tt(), M, N) ->
      c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
           isNat^#(activate(N)),
           activate^#(N),
           activate^#(M),
           activate^#(N))
    , U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M)) }
  Weak DPs:
    { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
    , isNat^#(n__plus(V1, V2)) ->
      c_2(U11^#(isNat(activate(V1)), activate(V2)),
          isNat^#(activate(V1)),
          activate^#(V1),
          activate^#(V2))
    , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
    , isNat^#(n__x(V1, V2)) ->
      c_4(U31^#(isNat(activate(V1)), activate(V2)),
          isNat^#(activate(V1)),
          activate^#(V1),
          activate^#(V2))
    , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
    , U71^#(tt(), M, N) ->
      c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
           isNat^#(activate(N)),
           activate^#(N),
           activate^#(M),
           activate^#(N))
    , U72^#(tt(), M, N) ->
      c_13(activate^#(N), activate^#(M), activate^#(N)) }
  Weak Trs:
    { U11(tt(), V2) -> U12(isNat(activate(V2)))
    , U12(tt()) -> tt()
    , isNat(n__0()) -> tt()
    , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
    , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
    , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
    , activate(X) -> X
    , activate(n__0()) -> 0()
    , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
    , activate(n__s(X)) -> s(activate(X))
    , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
    , U21(tt()) -> tt()
    , U31(tt(), V2) -> U32(isNat(activate(V2)))
    , U32(tt()) -> tt()
    , s(X) -> n__s(X)
    , plus(X1, X2) -> n__plus(X1, X2)
    , 0() -> n__0()
    , x(X1, X2) -> n__x(X1, X2) }
  StartTerms: basic terms
  Strategy: innermost

Problem (S):
------------
  Strict DPs:
    { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
    , isNat^#(n__plus(V1, V2)) ->
      c_2(U11^#(isNat(activate(V1)), activate(V2)),
          isNat^#(activate(V1)),
          activate^#(V1),
          activate^#(V2))
    , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
    , isNat^#(n__x(V1, V2)) ->
      c_4(U31^#(isNat(activate(V1)), activate(V2)),
          isNat^#(activate(V1)),
          activate^#(V1),
          activate^#(V2))
    , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
    , U71^#(tt(), M, N) ->
      c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
           isNat^#(activate(N)),
           activate^#(N),
           activate^#(M),
           activate^#(N))
    , U72^#(tt(), M, N) ->
      c_13(activate^#(N), activate^#(M), activate^#(N)) }
  Weak DPs:
    { activate^#(n__plus(X1, X2)) ->
      c_5(activate^#(X1), activate^#(X2))
    , activate^#(n__s(X)) -> c_6(activate^#(X))
    , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2))
    , U51^#(tt(), M, N) ->
      c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
           isNat^#(activate(N)),
           activate^#(N),
           activate^#(M),
           activate^#(N))
    , U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M)) }
  Weak Trs:
    { U11(tt(), V2) -> U12(isNat(activate(V2)))
    , U12(tt()) -> tt()
    , isNat(n__0()) -> tt()
    , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
    , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
    , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
    , activate(X) -> X
    , activate(n__0()) -> 0()
    , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
    , activate(n__s(X)) -> s(activate(X))
    , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
    , U21(tt()) -> tt()
    , U31(tt(), V2) -> U32(isNat(activate(V2)))
    , U32(tt()) -> tt()
    , s(X) -> n__s(X)
    , plus(X1, X2) -> n__plus(X1, X2)
    , 0() -> n__0()
    , x(X1, X2) -> n__x(X1, X2) }
  StartTerms: basic terms
  Strategy: innermost

Overall, the transformation results in the following sub-problem(s):

Generated new problems:
-----------------------
R) Strict DPs:
     { activate^#(n__plus(X1, X2)) ->
       c_5(activate^#(X1), activate^#(X2))
     , activate^#(n__s(X)) -> c_6(activate^#(X))
     , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2))
     , U51^#(tt(), M, N) ->
       c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
            isNat^#(activate(N)),
            activate^#(N),
            activate^#(M),
            activate^#(N))
     , U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M)) }
   Weak DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
     , isNat^#(n__x(V1, V2)) ->
       c_4(U31^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
     , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
     , U71^#(tt(), M, N) ->
       c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
            isNat^#(activate(N)),
            activate^#(N),
            activate^#(M),
            activate^#(N))
     , U72^#(tt(), M, N) ->
       c_13(activate^#(N), activate^#(M), activate^#(N)) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   StartTerms: basic terms
   Strategy: innermost
   
   This problem was proven YES(O(1),O(n^5)).

S) Strict DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
     , isNat^#(n__x(V1, V2)) ->
       c_4(U31^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
     , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
     , U71^#(tt(), M, N) ->
       c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
            isNat^#(activate(N)),
            activate^#(N),
            activate^#(M),
            activate^#(N))
     , U72^#(tt(), M, N) ->
       c_13(activate^#(N), activate^#(M), activate^#(N)) }
   Weak DPs:
     { activate^#(n__plus(X1, X2)) ->
       c_5(activate^#(X1), activate^#(X2))
     , activate^#(n__s(X)) -> c_6(activate^#(X))
     , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2))
     , U51^#(tt(), M, N) ->
       c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
            isNat^#(activate(N)),
            activate^#(N),
            activate^#(M),
            activate^#(N))
     , U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M)) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   StartTerms: basic terms
   Strategy: innermost
   
   This problem was proven YES(O(1),O(n^1)).


Proofs for generated problems:
------------------------------
R) We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(n^5)).
   
   Strict DPs:
     { activate^#(n__plus(X1, X2)) ->
       c_5(activate^#(X1), activate^#(X2))
     , activate^#(n__s(X)) -> c_6(activate^#(X))
     , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2))
     , U51^#(tt(), M, N) ->
       c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
            isNat^#(activate(N)),
            activate^#(N),
            activate^#(M),
            activate^#(N))
     , U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M)) }
   Weak DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
     , isNat^#(n__x(V1, V2)) ->
       c_4(U31^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
     , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
     , U71^#(tt(), M, N) ->
       c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
            isNat^#(activate(N)),
            activate^#(N),
            activate^#(M),
            activate^#(N))
     , U72^#(tt(), M, N) ->
       c_13(activate^#(N), activate^#(M), activate^#(N)) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(n^5))
   
   We analyse the complexity of following sub-problems (R) and (S).
   Problem (S) is obtained from the input problem by shifting strict
   rules from (R) into the weak component:
   
   Problem (R):
   ------------
     Strict DPs:
       { activate^#(n__plus(X1, X2)) ->
         c_5(activate^#(X1), activate^#(X2))
       , activate^#(n__s(X)) -> c_6(activate^#(X))
       , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2))
       , U51^#(tt(), M, N) ->
         c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
              isNat^#(activate(N)),
              activate^#(N),
              activate^#(M),
              activate^#(N)) }
     Weak DPs:
       { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
       , isNat^#(n__plus(V1, V2)) ->
         c_2(U11^#(isNat(activate(V1)), activate(V2)),
             isNat^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
       , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
       , isNat^#(n__x(V1, V2)) ->
         c_4(U31^#(isNat(activate(V1)), activate(V2)),
             isNat^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
       , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
       , U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M))
       , U71^#(tt(), M, N) ->
         c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
              isNat^#(activate(N)),
              activate^#(N),
              activate^#(M),
              activate^#(N))
       , U72^#(tt(), M, N) ->
         c_13(activate^#(N), activate^#(M), activate^#(N)) }
     Weak Trs:
       { U11(tt(), V2) -> U12(isNat(activate(V2)))
       , U12(tt()) -> tt()
       , isNat(n__0()) -> tt()
       , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
       , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
       , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
       , activate(X) -> X
       , activate(n__0()) -> 0()
       , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
       , activate(n__s(X)) -> s(activate(X))
       , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
       , U21(tt()) -> tt()
       , U31(tt(), V2) -> U32(isNat(activate(V2)))
       , U32(tt()) -> tt()
       , s(X) -> n__s(X)
       , plus(X1, X2) -> n__plus(X1, X2)
       , 0() -> n__0()
       , x(X1, X2) -> n__x(X1, X2) }
     StartTerms: basic terms
     Strategy: innermost
   
   Problem (S):
   ------------
     Strict DPs:
       { U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M)) }
     Weak DPs:
       { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
       , isNat^#(n__plus(V1, V2)) ->
         c_2(U11^#(isNat(activate(V1)), activate(V2)),
             isNat^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
       , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
       , isNat^#(n__x(V1, V2)) ->
         c_4(U31^#(isNat(activate(V1)), activate(V2)),
             isNat^#(activate(V1)),
             activate^#(V1),
             activate^#(V2))
       , activate^#(n__plus(X1, X2)) ->
         c_5(activate^#(X1), activate^#(X2))
       , activate^#(n__s(X)) -> c_6(activate^#(X))
       , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2))
       , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
       , U51^#(tt(), M, N) ->
         c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
              isNat^#(activate(N)),
              activate^#(N),
              activate^#(M),
              activate^#(N))
       , U71^#(tt(), M, N) ->
         c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
              isNat^#(activate(N)),
              activate^#(N),
              activate^#(M),
              activate^#(N))
       , U72^#(tt(), M, N) ->
         c_13(activate^#(N), activate^#(M), activate^#(N)) }
     Weak Trs:
       { U11(tt(), V2) -> U12(isNat(activate(V2)))
       , U12(tt()) -> tt()
       , isNat(n__0()) -> tt()
       , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
       , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
       , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
       , activate(X) -> X
       , activate(n__0()) -> 0()
       , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
       , activate(n__s(X)) -> s(activate(X))
       , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
       , U21(tt()) -> tt()
       , U31(tt(), V2) -> U32(isNat(activate(V2)))
       , U32(tt()) -> tt()
       , s(X) -> n__s(X)
       , plus(X1, X2) -> n__plus(X1, X2)
       , 0() -> n__0()
       , x(X1, X2) -> n__x(X1, X2) }
     StartTerms: basic terms
     Strategy: innermost
   
   Overall, the transformation results in the following sub-problem(s):
   
   Generated new problems:
   -----------------------
   R) Strict DPs:
        { activate^#(n__plus(X1, X2)) ->
          c_5(activate^#(X1), activate^#(X2))
        , activate^#(n__s(X)) -> c_6(activate^#(X))
        , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2))
        , U51^#(tt(), M, N) ->
          c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
               isNat^#(activate(N)),
               activate^#(N),
               activate^#(M),
               activate^#(N)) }
      Weak DPs:
        { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
        , isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)),
              activate^#(V1),
              activate^#(V2))
        , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
        , isNat^#(n__x(V1, V2)) ->
          c_4(U31^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)),
              activate^#(V1),
              activate^#(V2))
        , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
        , U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M))
        , U71^#(tt(), M, N) ->
          c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
               isNat^#(activate(N)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
        , U72^#(tt(), M, N) ->
          c_13(activate^#(N), activate^#(M), activate^#(N)) }
      Weak Trs:
        { U11(tt(), V2) -> U12(isNat(activate(V2)))
        , U12(tt()) -> tt()
        , isNat(n__0()) -> tt()
        , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
        , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
        , activate(X) -> X
        , activate(n__0()) -> 0()
        , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
        , U21(tt()) -> tt()
        , U31(tt(), V2) -> U32(isNat(activate(V2)))
        , U32(tt()) -> tt()
        , s(X) -> n__s(X)
        , plus(X1, X2) -> n__plus(X1, X2)
        , 0() -> n__0()
        , x(X1, X2) -> n__x(X1, X2) }
      StartTerms: basic terms
      Strategy: innermost
      
      This problem was proven YES(O(1),O(n^5)).
   
   S) Strict DPs:
        { U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M)) }
      Weak DPs:
        { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
        , isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)),
              activate^#(V1),
              activate^#(V2))
        , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
        , isNat^#(n__x(V1, V2)) ->
          c_4(U31^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)),
              activate^#(V1),
              activate^#(V2))
        , activate^#(n__plus(X1, X2)) ->
          c_5(activate^#(X1), activate^#(X2))
        , activate^#(n__s(X)) -> c_6(activate^#(X))
        , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2))
        , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
        , U51^#(tt(), M, N) ->
          c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
               isNat^#(activate(N)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
        , U71^#(tt(), M, N) ->
          c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
               isNat^#(activate(N)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
        , U72^#(tt(), M, N) ->
          c_13(activate^#(N), activate^#(M), activate^#(N)) }
      Weak Trs:
        { U11(tt(), V2) -> U12(isNat(activate(V2)))
        , U12(tt()) -> tt()
        , isNat(n__0()) -> tt()
        , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
        , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
        , activate(X) -> X
        , activate(n__0()) -> 0()
        , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
        , U21(tt()) -> tt()
        , U31(tt(), V2) -> U32(isNat(activate(V2)))
        , U32(tt()) -> tt()
        , s(X) -> n__s(X)
        , plus(X1, X2) -> n__plus(X1, X2)
        , 0() -> n__0()
        , x(X1, X2) -> n__x(X1, X2) }
      StartTerms: basic terms
      Strategy: innermost
      
      This problem was proven YES(O(1),O(1)).
   
   
   Proofs for generated problems:
   ------------------------------
   R) We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(n^5)).
      
      Strict DPs:
        { activate^#(n__plus(X1, X2)) ->
          c_5(activate^#(X1), activate^#(X2))
        , activate^#(n__s(X)) -> c_6(activate^#(X))
        , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2))
        , U51^#(tt(), M, N) ->
          c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
               isNat^#(activate(N)),
               activate^#(N),
               activate^#(M),
               activate^#(N)) }
      Weak DPs:
        { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
        , isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)),
              activate^#(V1),
              activate^#(V2))
        , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
        , isNat^#(n__x(V1, V2)) ->
          c_4(U31^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)),
              activate^#(V1),
              activate^#(V2))
        , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
        , U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M))
        , U71^#(tt(), M, N) ->
          c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
               isNat^#(activate(N)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
        , U72^#(tt(), M, N) ->
          c_13(activate^#(N), activate^#(M), activate^#(N)) }
      Weak Trs:
        { U11(tt(), V2) -> U12(isNat(activate(V2)))
        , U12(tt()) -> tt()
        , isNat(n__0()) -> tt()
        , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
        , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
        , activate(X) -> X
        , activate(n__0()) -> 0()
        , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
        , U21(tt()) -> tt()
        , U31(tt(), V2) -> U32(isNat(activate(V2)))
        , U32(tt()) -> tt()
        , s(X) -> n__s(X)
        , plus(X1, X2) -> n__plus(X1, X2)
        , 0() -> n__0()
        , x(X1, X2) -> n__x(X1, X2) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(n^5))
      
      We decompose the input problem according to the dependency graph
      into the upper component
      
        { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
        , isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)),
              activate^#(V1),
              activate^#(V2))
        , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
        , isNat^#(n__x(V1, V2)) ->
          c_4(U31^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)),
              activate^#(V1),
              activate^#(V2))
        , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
        , U51^#(tt(), M, N) ->
          c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
               isNat^#(activate(N)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
        , U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M))
        , U71^#(tt(), M, N) ->
          c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
               isNat^#(activate(N)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
        , U72^#(tt(), M, N) ->
          c_13(activate^#(N), activate^#(M), activate^#(N)) }
      
      and lower component
      
        { activate^#(n__plus(X1, X2)) ->
          c_5(activate^#(X1), activate^#(X2))
        , activate^#(n__s(X)) -> c_6(activate^#(X))
        , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2)) }
      
      Further, following extension rules are added to the lower
      component.
      
      { U11^#(tt(), V2) -> isNat^#(activate(V2))
      , U11^#(tt(), V2) -> activate^#(V2)
      , isNat^#(n__plus(V1, V2)) ->
        U11^#(isNat(activate(V1)), activate(V2))
      , isNat^#(n__plus(V1, V2)) -> isNat^#(activate(V1))
      , isNat^#(n__plus(V1, V2)) -> activate^#(V1)
      , isNat^#(n__plus(V1, V2)) -> activate^#(V2)
      , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
      , isNat^#(n__s(V1)) -> activate^#(V1)
      , isNat^#(n__x(V1, V2)) -> isNat^#(activate(V1))
      , isNat^#(n__x(V1, V2)) -> activate^#(V1)
      , isNat^#(n__x(V1, V2)) -> activate^#(V2)
      , isNat^#(n__x(V1, V2)) -> U31^#(isNat(activate(V1)), activate(V2))
      , U31^#(tt(), V2) -> isNat^#(activate(V2))
      , U31^#(tt(), V2) -> activate^#(V2)
      , U51^#(tt(), M, N) -> isNat^#(activate(N))
      , U51^#(tt(), M, N) -> activate^#(M)
      , U51^#(tt(), M, N) -> activate^#(N)
      , U51^#(tt(), M, N) ->
        U52^#(isNat(activate(N)), activate(M), activate(N))
      , U52^#(tt(), M, N) -> activate^#(M)
      , U52^#(tt(), M, N) -> activate^#(N)
      , U71^#(tt(), M, N) -> isNat^#(activate(N))
      , U71^#(tt(), M, N) -> activate^#(M)
      , U71^#(tt(), M, N) -> activate^#(N)
      , U71^#(tt(), M, N) ->
        U72^#(isNat(activate(N)), activate(M), activate(N))
      , U72^#(tt(), M, N) -> activate^#(M)
      , U72^#(tt(), M, N) -> activate^#(N) }
      
      TcT solves the upper component with certificate YES(O(1),O(n^1)).
      
      Sub-proof:
      ----------
        We are left with following problem, upon which TcT provides the
        certificate YES(O(1),O(n^1)).
        
        Strict DPs:
          { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
          , isNat^#(n__plus(V1, V2)) ->
            c_2(U11^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)),
                activate^#(V1),
                activate^#(V2))
          , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
          , isNat^#(n__x(V1, V2)) ->
            c_4(U31^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)),
                activate^#(V1),
                activate^#(V2))
          , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
          , U51^#(tt(), M, N) ->
            c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
                 isNat^#(activate(N)),
                 activate^#(N),
                 activate^#(M),
                 activate^#(N))
          , U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M))
          , U71^#(tt(), M, N) ->
            c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
                 isNat^#(activate(N)),
                 activate^#(N),
                 activate^#(M),
                 activate^#(N))
          , U72^#(tt(), M, N) ->
            c_13(activate^#(N), activate^#(M), activate^#(N)) }
        Weak Trs:
          { U11(tt(), V2) -> U12(isNat(activate(V2)))
          , U12(tt()) -> tt()
          , isNat(n__0()) -> tt()
          , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
          , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
          , activate(X) -> X
          , activate(n__0()) -> 0()
          , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
          , activate(n__s(X)) -> s(activate(X))
          , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
          , U21(tt()) -> tt()
          , U31(tt(), V2) -> U32(isNat(activate(V2)))
          , U32(tt()) -> tt()
          , s(X) -> n__s(X)
          , plus(X1, X2) -> n__plus(X1, X2)
          , 0() -> n__0()
          , x(X1, X2) -> n__x(X1, X2) }
        Obligation:
          innermost runtime complexity
        Answer:
          YES(O(1),O(n^1))
        
        We estimate the number of application of {7,9} by applications of
        Pre({7,9}) = {6,8}. Here rules are labeled as follows:
        
          DPs:
            { 1: U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
            , 2: isNat^#(n__plus(V1, V2)) ->
                 c_2(U11^#(isNat(activate(V1)), activate(V2)),
                     isNat^#(activate(V1)),
                     activate^#(V1),
                     activate^#(V2))
            , 3: isNat^#(n__s(V1)) ->
                 c_3(isNat^#(activate(V1)), activate^#(V1))
            , 4: isNat^#(n__x(V1, V2)) ->
                 c_4(U31^#(isNat(activate(V1)), activate(V2)),
                     isNat^#(activate(V1)),
                     activate^#(V1),
                     activate^#(V2))
            , 5: U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
            , 6: U51^#(tt(), M, N) ->
                 c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
                      isNat^#(activate(N)),
                      activate^#(N),
                      activate^#(M),
                      activate^#(N))
            , 7: U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M))
            , 8: U71^#(tt(), M, N) ->
                 c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
                      isNat^#(activate(N)),
                      activate^#(N),
                      activate^#(M),
                      activate^#(N))
            , 9: U72^#(tt(), M, N) ->
                 c_13(activate^#(N), activate^#(M), activate^#(N)) }
        
        We are left with following problem, upon which TcT provides the
        certificate YES(O(1),O(n^1)).
        
        Strict DPs:
          { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
          , isNat^#(n__plus(V1, V2)) ->
            c_2(U11^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)),
                activate^#(V1),
                activate^#(V2))
          , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
          , isNat^#(n__x(V1, V2)) ->
            c_4(U31^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)),
                activate^#(V1),
                activate^#(V2))
          , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
          , U51^#(tt(), M, N) ->
            c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
                 isNat^#(activate(N)),
                 activate^#(N),
                 activate^#(M),
                 activate^#(N))
          , U71^#(tt(), M, N) ->
            c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
                 isNat^#(activate(N)),
                 activate^#(N),
                 activate^#(M),
                 activate^#(N)) }
        Weak DPs:
          { U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M))
          , U72^#(tt(), M, N) ->
            c_13(activate^#(N), activate^#(M), activate^#(N)) }
        Weak Trs:
          { U11(tt(), V2) -> U12(isNat(activate(V2)))
          , U12(tt()) -> tt()
          , isNat(n__0()) -> tt()
          , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
          , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
          , activate(X) -> X
          , activate(n__0()) -> 0()
          , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
          , activate(n__s(X)) -> s(activate(X))
          , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
          , U21(tt()) -> tt()
          , U31(tt(), V2) -> U32(isNat(activate(V2)))
          , U32(tt()) -> tt()
          , s(X) -> n__s(X)
          , plus(X1, X2) -> n__plus(X1, X2)
          , 0() -> n__0()
          , x(X1, X2) -> n__x(X1, X2) }
        Obligation:
          innermost runtime complexity
        Answer:
          YES(O(1),O(n^1))
        
        The following weak DPs constitute a sub-graph of the DG that is
        closed under successors. The DPs are removed.
        
        { U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M))
        , U72^#(tt(), M, N) ->
          c_13(activate^#(N), activate^#(M), activate^#(N)) }
        
        We are left with following problem, upon which TcT provides the
        certificate YES(O(1),O(n^1)).
        
        Strict DPs:
          { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
          , isNat^#(n__plus(V1, V2)) ->
            c_2(U11^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)),
                activate^#(V1),
                activate^#(V2))
          , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
          , isNat^#(n__x(V1, V2)) ->
            c_4(U31^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)),
                activate^#(V1),
                activate^#(V2))
          , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
          , U51^#(tt(), M, N) ->
            c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
                 isNat^#(activate(N)),
                 activate^#(N),
                 activate^#(M),
                 activate^#(N))
          , U71^#(tt(), M, N) ->
            c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
                 isNat^#(activate(N)),
                 activate^#(N),
                 activate^#(M),
                 activate^#(N)) }
        Weak Trs:
          { U11(tt(), V2) -> U12(isNat(activate(V2)))
          , U12(tt()) -> tt()
          , isNat(n__0()) -> tt()
          , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
          , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
          , activate(X) -> X
          , activate(n__0()) -> 0()
          , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
          , activate(n__s(X)) -> s(activate(X))
          , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
          , U21(tt()) -> tt()
          , U31(tt(), V2) -> U32(isNat(activate(V2)))
          , U32(tt()) -> tt()
          , s(X) -> n__s(X)
          , plus(X1, X2) -> n__plus(X1, X2)
          , 0() -> n__0()
          , x(X1, X2) -> n__x(X1, X2) }
        Obligation:
          innermost runtime complexity
        Answer:
          YES(O(1),O(n^1))
        
        Due to missing edges in the dependency-graph, the right-hand sides
        of following rules could be simplified:
        
          { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
          , isNat^#(n__plus(V1, V2)) ->
            c_2(U11^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)),
                activate^#(V1),
                activate^#(V2))
          , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
          , isNat^#(n__x(V1, V2)) ->
            c_4(U31^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)),
                activate^#(V1),
                activate^#(V2))
          , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
          , U51^#(tt(), M, N) ->
            c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
                 isNat^#(activate(N)),
                 activate^#(N),
                 activate^#(M),
                 activate^#(N))
          , U71^#(tt(), M, N) ->
            c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
                 isNat^#(activate(N)),
                 activate^#(N),
                 activate^#(M),
                 activate^#(N)) }
        
        We are left with following problem, upon which TcT provides the
        certificate YES(O(1),O(n^1)).
        
        Strict DPs:
          { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
          , isNat^#(n__plus(V1, V2)) ->
            c_2(U11^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)))
          , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
          , isNat^#(n__x(V1, V2)) ->
            c_4(U31^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)))
          , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
          , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
          , U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
        Weak Trs:
          { U11(tt(), V2) -> U12(isNat(activate(V2)))
          , U12(tt()) -> tt()
          , isNat(n__0()) -> tt()
          , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
          , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
          , activate(X) -> X
          , activate(n__0()) -> 0()
          , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
          , activate(n__s(X)) -> s(activate(X))
          , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
          , U21(tt()) -> tt()
          , U31(tt(), V2) -> U32(isNat(activate(V2)))
          , U32(tt()) -> tt()
          , s(X) -> n__s(X)
          , plus(X1, X2) -> n__plus(X1, X2)
          , 0() -> n__0()
          , x(X1, X2) -> n__x(X1, X2) }
        Obligation:
          innermost runtime complexity
        Answer:
          YES(O(1),O(n^1))
        
        We use the processor 'matrix interpretation of dimension 1' to
        orient following rules strictly.
        
        DPs:
          { 3: isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
          , 6: U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
          , 7: U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
        Trs:
          { U21(tt()) -> tt()
          , U31(tt(), V2) -> U32(isNat(activate(V2)))
          , U32(tt()) -> tt() }
        
        Sub-proof:
        ----------
          The following argument positions are usable:
            Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1},
            Uargs(c_4) = {1, 2}, Uargs(c_5) = {1}, Uargs(c_6) = {1},
            Uargs(c_7) = {1}
          
          TcT has computed the following constructor-based matrix
          interpretation satisfying not(EDA).
          
                         [U11](x1, x2) = [1] x1 + [0]         
                                                              
                                  [tt] = [7]                  
                                                              
                             [U12](x1) = [7]                  
                                                              
                           [isNat](x1) = [1] x1 + [1]         
                                                              
                        [activate](x1) = [1] x1 + [0]         
                                                              
                             [U21](x1) = [1] x1 + [1]         
                                                              
                         [U31](x1, x2) = [1] x1 + [1] x2 + [0]
                                                              
                             [U32](x1) = [1] x1 + [4]         
                                                              
                               [s](x1) = [1] x1 + [1]         
                                                              
                        [plus](x1, x2) = [1] x1 + [1] x2 + [0]
                                                              
                                   [0] = [6]                  
                                                              
                           [x](x1, x2) = [1] x1 + [1] x2 + [0]
                                                              
                                [n__0] = [6]                  
                                                              
                     [n__plus](x1, x2) = [1] x1 + [1] x2 + [0]
                                                              
                            [n__s](x1) = [1] x1 + [1]         
                                                              
                        [n__x](x1, x2) = [1] x1 + [1] x2 + [0]
                                                              
                       [U11^#](x1, x2) = [4] x2 + [0]         
                                                              
                         [isNat^#](x1) = [4] x1 + [0]         
                                                              
                      [activate^#](x1) = [0]                  
                                                              
                       [U31^#](x1, x2) = [4] x2 + [0]         
                                                              
                   [U51^#](x1, x2, x3) = [2] x2 + [7] x3 + [5]
                                                              
                   [U52^#](x1, x2, x3) = [0]                  
                                                              
                   [U71^#](x1, x2, x3) = [2] x2 + [7] x3 + [5]
                                                              
                   [U72^#](x1, x2, x3) = [0]                  
                                                              
                         [c_1](x1, x2) = [0]                  
                                                              
                 [c_2](x1, x2, x3, x4) = [0]                  
                                                              
                         [c_3](x1, x2) = [0]                  
                                                              
                 [c_4](x1, x2, x3, x4) = [0]                  
                                                              
                         [c_8](x1, x2) = [0]                  
                                                              
            [c_10](x1, x2, x3, x4, x5) = [0]                  
                                                              
                        [c_11](x1, x2) = [0]                  
                                                              
            [c_12](x1, x2, x3, x4, x5) = [0]                  
                                                              
                    [c_13](x1, x2, x3) = [0]                  
                                                              
                                   [c] = [0]                  
                                                              
                             [c_1](x1) = [1] x1 + [0]         
                                                              
                         [c_2](x1, x2) = [1] x1 + [1] x2 + [0]
                                                              
                             [c_3](x1) = [1] x1 + [1]         
                                                              
                         [c_4](x1, x2) = [1] x1 + [1] x2 + [0]
                                                              
                             [c_5](x1) = [1] x1 + [0]         
                                                              
                             [c_6](x1) = [1] x1 + [0]         
                                                              
                             [c_7](x1) = [1] x1 + [0]         
          
          The order satisfies the following ordering constraints:
          
                        [U11(tt(), V2)] =  [7]                                           
                                        >= [7]                                           
                                        =  [U12(isNat(activate(V2)))]                    
                                                                                         
                            [U12(tt())] =  [7]                                           
                                        >= [7]                                           
                                        =  [tt()]                                        
                                                                                         
                        [isNat(n__0())] =  [7]                                           
                                        >= [7]                                           
                                        =  [tt()]                                        
                                                                                         
               [isNat(n__plus(V1, V2))] =  [1] V2 + [1] V1 + [1]                         
                                        >= [1] V1 + [1]                                  
                                        =  [U11(isNat(activate(V1)), activate(V2))]      
                                                                                         
                      [isNat(n__s(V1))] =  [1] V1 + [2]                                  
                                        >= [1] V1 + [2]                                  
                                        =  [U21(isNat(activate(V1)))]                    
                                                                                         
                  [isNat(n__x(V1, V2))] =  [1] V2 + [1] V1 + [1]                         
                                        >= [1] V2 + [1] V1 + [1]                         
                                        =  [U31(isNat(activate(V1)), activate(V2))]      
                                                                                         
                          [activate(X)] =  [1] X + [0]                                   
                                        >= [1] X + [0]                                   
                                        =  [X]                                           
                                                                                         
                     [activate(n__0())] =  [6]                                           
                                        >= [6]                                           
                                        =  [0()]                                         
                                                                                         
            [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [0]                         
                                        >= [1] X1 + [1] X2 + [0]                         
                                        =  [plus(activate(X1), activate(X2))]            
                                                                                         
                    [activate(n__s(X))] =  [1] X + [1]                                   
                                        >= [1] X + [1]                                   
                                        =  [s(activate(X))]                              
                                                                                         
               [activate(n__x(X1, X2))] =  [1] X1 + [1] X2 + [0]                         
                                        >= [1] X1 + [1] X2 + [0]                         
                                        =  [x(activate(X1), activate(X2))]               
                                                                                         
                            [U21(tt())] =  [8]                                           
                                        >  [7]                                           
                                        =  [tt()]                                        
                                                                                         
                        [U31(tt(), V2)] =  [1] V2 + [7]                                  
                                        >  [1] V2 + [5]                                  
                                        =  [U32(isNat(activate(V2)))]                    
                                                                                         
                            [U32(tt())] =  [11]                                          
                                        >  [7]                                           
                                        =  [tt()]                                        
                                                                                         
                                 [s(X)] =  [1] X + [1]                                   
                                        >= [1] X + [1]                                   
                                        =  [n__s(X)]                                     
                                                                                         
                         [plus(X1, X2)] =  [1] X1 + [1] X2 + [0]                         
                                        >= [1] X1 + [1] X2 + [0]                         
                                        =  [n__plus(X1, X2)]                             
                                                                                         
                                  [0()] =  [6]                                           
                                        >= [6]                                           
                                        =  [n__0()]                                      
                                                                                         
                            [x(X1, X2)] =  [1] X1 + [1] X2 + [0]                         
                                        >= [1] X1 + [1] X2 + [0]                         
                                        =  [n__x(X1, X2)]                                
                                                                                         
                      [U11^#(tt(), V2)] =  [4] V2 + [0]                                  
                                        >= [4] V2 + [0]                                  
                                        =  [c_1(isNat^#(activate(V2)))]                  
                                                                                         
             [isNat^#(n__plus(V1, V2))] =  [4] V2 + [4] V1 + [0]                         
                                        >= [4] V2 + [4] V1 + [0]                         
                                        =  [c_2(U11^#(isNat(activate(V1)), activate(V2)),
                                                isNat^#(activate(V1)))]                  
                                                                                         
                    [isNat^#(n__s(V1))] =  [4] V1 + [4]                                  
                                        >  [4] V1 + [1]                                  
                                        =  [c_3(isNat^#(activate(V1)))]                  
                                                                                         
                [isNat^#(n__x(V1, V2))] =  [4] V2 + [4] V1 + [0]                         
                                        >= [4] V2 + [4] V1 + [0]                         
                                        =  [c_4(U31^#(isNat(activate(V1)), activate(V2)),
                                                isNat^#(activate(V1)))]                  
                                                                                         
                      [U31^#(tt(), V2)] =  [4] V2 + [0]                                  
                                        >= [4] V2 + [0]                                  
                                        =  [c_5(isNat^#(activate(V2)))]                  
                                                                                         
                    [U51^#(tt(), M, N)] =  [7] N + [2] M + [5]                           
                                        >  [4] N + [0]                                   
                                        =  [c_6(isNat^#(activate(N)))]                   
                                                                                         
                    [U71^#(tt(), M, N)] =  [7] N + [2] M + [5]                           
                                        >  [4] N + [0]                                   
                                        =  [c_7(isNat^#(activate(N)))]                   
                                                                                         
        
        The strictly oriented rules are moved into the weak component.
        
        We are left with following problem, upon which TcT provides the
        certificate YES(O(1),O(n^1)).
        
        Strict DPs:
          { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
          , isNat^#(n__plus(V1, V2)) ->
            c_2(U11^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)))
          , isNat^#(n__x(V1, V2)) ->
            c_4(U31^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)))
          , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2))) }
        Weak DPs:
          { isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
          , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
          , U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
        Weak Trs:
          { U11(tt(), V2) -> U12(isNat(activate(V2)))
          , U12(tt()) -> tt()
          , isNat(n__0()) -> tt()
          , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
          , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
          , activate(X) -> X
          , activate(n__0()) -> 0()
          , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
          , activate(n__s(X)) -> s(activate(X))
          , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
          , U21(tt()) -> tt()
          , U31(tt(), V2) -> U32(isNat(activate(V2)))
          , U32(tt()) -> tt()
          , s(X) -> n__s(X)
          , plus(X1, X2) -> n__plus(X1, X2)
          , 0() -> n__0()
          , x(X1, X2) -> n__x(X1, X2) }
        Obligation:
          innermost runtime complexity
        Answer:
          YES(O(1),O(n^1))
        
        We use the processor 'matrix interpretation of dimension 1' to
        orient following rules strictly.
        
        DPs:
          { 4: U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
          , 6: U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
          , 7: U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
        
        Sub-proof:
        ----------
          The following argument positions are usable:
            Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1},
            Uargs(c_4) = {1, 2}, Uargs(c_5) = {1}, Uargs(c_6) = {1},
            Uargs(c_7) = {1}
          
          TcT has computed the following constructor-based matrix
          interpretation satisfying not(EDA).
          
                         [U11](x1, x2) = [0]                  
                                                              
                                  [tt] = [0]                  
                                                              
                             [U12](x1) = [0]                  
                                                              
                           [isNat](x1) = [0]                  
                                                              
                        [activate](x1) = [1] x1 + [0]         
                                                              
                             [U21](x1) = [0]                  
                                                              
                         [U31](x1, x2) = [0]                  
                                                              
                             [U32](x1) = [0]                  
                                                              
                               [s](x1) = [1] x1 + [0]         
                                                              
                        [plus](x1, x2) = [1] x1 + [1] x2 + [0]
                                                              
                                   [0] = [7]                  
                                                              
                           [x](x1, x2) = [1] x1 + [1] x2 + [4]
                                                              
                                [n__0] = [7]                  
                                                              
                     [n__plus](x1, x2) = [1] x1 + [1] x2 + [0]
                                                              
                            [n__s](x1) = [1] x1 + [0]         
                                                              
                        [n__x](x1, x2) = [1] x1 + [1] x2 + [4]
                                                              
                       [U11^#](x1, x2) = [1] x2 + [0]         
                                                              
                         [isNat^#](x1) = [1] x1 + [0]         
                                                              
                      [activate^#](x1) = [0]                  
                                                              
                       [U31^#](x1, x2) = [1] x2 + [4]         
                                                              
                   [U51^#](x1, x2, x3) = [2] x2 + [7] x3 + [4]
                                                              
                   [U52^#](x1, x2, x3) = [0]                  
                                                              
                   [U71^#](x1, x2, x3) = [2] x2 + [7] x3 + [5]
                                                              
                   [U72^#](x1, x2, x3) = [0]                  
                                                              
                         [c_1](x1, x2) = [0]                  
                                                              
                 [c_2](x1, x2, x3, x4) = [0]                  
                                                              
                         [c_3](x1, x2) = [0]                  
                                                              
                 [c_4](x1, x2, x3, x4) = [0]                  
                                                              
                         [c_8](x1, x2) = [0]                  
                                                              
            [c_10](x1, x2, x3, x4, x5) = [0]                  
                                                              
                        [c_11](x1, x2) = [0]                  
                                                              
            [c_12](x1, x2, x3, x4, x5) = [0]                  
                                                              
                    [c_13](x1, x2, x3) = [0]                  
                                                              
                                   [c] = [0]                  
                                                              
                             [c_1](x1) = [1] x1 + [0]         
                                                              
                         [c_2](x1, x2) = [1] x1 + [1] x2 + [0]
                                                              
                             [c_3](x1) = [1] x1 + [0]         
                                                              
                         [c_4](x1, x2) = [1] x1 + [1] x2 + [0]
                                                              
                             [c_5](x1) = [1] x1 + [1]         
                                                              
                             [c_6](x1) = [1] x1 + [0]         
                                                              
                             [c_7](x1) = [4] x1 + [0]         
          
          The order satisfies the following ordering constraints:
          
                        [U11(tt(), V2)] =  [0]                                           
                                        >= [0]                                           
                                        =  [U12(isNat(activate(V2)))]                    
                                                                                         
                            [U12(tt())] =  [0]                                           
                                        >= [0]                                           
                                        =  [tt()]                                        
                                                                                         
                        [isNat(n__0())] =  [0]                                           
                                        >= [0]                                           
                                        =  [tt()]                                        
                                                                                         
               [isNat(n__plus(V1, V2))] =  [0]                                           
                                        >= [0]                                           
                                        =  [U11(isNat(activate(V1)), activate(V2))]      
                                                                                         
                      [isNat(n__s(V1))] =  [0]                                           
                                        >= [0]                                           
                                        =  [U21(isNat(activate(V1)))]                    
                                                                                         
                  [isNat(n__x(V1, V2))] =  [0]                                           
                                        >= [0]                                           
                                        =  [U31(isNat(activate(V1)), activate(V2))]      
                                                                                         
                          [activate(X)] =  [1] X + [0]                                   
                                        >= [1] X + [0]                                   
                                        =  [X]                                           
                                                                                         
                     [activate(n__0())] =  [7]                                           
                                        >= [7]                                           
                                        =  [0()]                                         
                                                                                         
            [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [0]                         
                                        >= [1] X1 + [1] X2 + [0]                         
                                        =  [plus(activate(X1), activate(X2))]            
                                                                                         
                    [activate(n__s(X))] =  [1] X + [0]                                   
                                        >= [1] X + [0]                                   
                                        =  [s(activate(X))]                              
                                                                                         
               [activate(n__x(X1, X2))] =  [1] X1 + [1] X2 + [4]                         
                                        >= [1] X1 + [1] X2 + [4]                         
                                        =  [x(activate(X1), activate(X2))]               
                                                                                         
                            [U21(tt())] =  [0]                                           
                                        >= [0]                                           
                                        =  [tt()]                                        
                                                                                         
                        [U31(tt(), V2)] =  [0]                                           
                                        >= [0]                                           
                                        =  [U32(isNat(activate(V2)))]                    
                                                                                         
                            [U32(tt())] =  [0]                                           
                                        >= [0]                                           
                                        =  [tt()]                                        
                                                                                         
                                 [s(X)] =  [1] X + [0]                                   
                                        >= [1] X + [0]                                   
                                        =  [n__s(X)]                                     
                                                                                         
                         [plus(X1, X2)] =  [1] X1 + [1] X2 + [0]                         
                                        >= [1] X1 + [1] X2 + [0]                         
                                        =  [n__plus(X1, X2)]                             
                                                                                         
                                  [0()] =  [7]                                           
                                        >= [7]                                           
                                        =  [n__0()]                                      
                                                                                         
                            [x(X1, X2)] =  [1] X1 + [1] X2 + [4]                         
                                        >= [1] X1 + [1] X2 + [4]                         
                                        =  [n__x(X1, X2)]                                
                                                                                         
                      [U11^#(tt(), V2)] =  [1] V2 + [0]                                  
                                        >= [1] V2 + [0]                                  
                                        =  [c_1(isNat^#(activate(V2)))]                  
                                                                                         
             [isNat^#(n__plus(V1, V2))] =  [1] V2 + [1] V1 + [0]                         
                                        >= [1] V2 + [1] V1 + [0]                         
                                        =  [c_2(U11^#(isNat(activate(V1)), activate(V2)),
                                                isNat^#(activate(V1)))]                  
                                                                                         
                    [isNat^#(n__s(V1))] =  [1] V1 + [0]                                  
                                        >= [1] V1 + [0]                                  
                                        =  [c_3(isNat^#(activate(V1)))]                  
                                                                                         
                [isNat^#(n__x(V1, V2))] =  [1] V2 + [1] V1 + [4]                         
                                        >= [1] V2 + [1] V1 + [4]                         
                                        =  [c_4(U31^#(isNat(activate(V1)), activate(V2)),
                                                isNat^#(activate(V1)))]                  
                                                                                         
                      [U31^#(tt(), V2)] =  [1] V2 + [4]                                  
                                        >  [1] V2 + [1]                                  
                                        =  [c_5(isNat^#(activate(V2)))]                  
                                                                                         
                    [U51^#(tt(), M, N)] =  [7] N + [2] M + [4]                           
                                        >  [1] N + [0]                                   
                                        =  [c_6(isNat^#(activate(N)))]                   
                                                                                         
                    [U71^#(tt(), M, N)] =  [7] N + [2] M + [5]                           
                                        >  [4] N + [0]                                   
                                        =  [c_7(isNat^#(activate(N)))]                   
                                                                                         
        
        The strictly oriented rules are moved into the weak component.
        
        We are left with following problem, upon which TcT provides the
        certificate YES(O(1),O(n^1)).
        
        Strict DPs:
          { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
          , isNat^#(n__plus(V1, V2)) ->
            c_2(U11^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)))
          , isNat^#(n__x(V1, V2)) ->
            c_4(U31^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1))) }
        Weak DPs:
          { isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
          , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
          , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
          , U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
        Weak Trs:
          { U11(tt(), V2) -> U12(isNat(activate(V2)))
          , U12(tt()) -> tt()
          , isNat(n__0()) -> tt()
          , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
          , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
          , activate(X) -> X
          , activate(n__0()) -> 0()
          , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
          , activate(n__s(X)) -> s(activate(X))
          , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
          , U21(tt()) -> tt()
          , U31(tt(), V2) -> U32(isNat(activate(V2)))
          , U32(tt()) -> tt()
          , s(X) -> n__s(X)
          , plus(X1, X2) -> n__plus(X1, X2)
          , 0() -> n__0()
          , x(X1, X2) -> n__x(X1, X2) }
        Obligation:
          innermost runtime complexity
        Answer:
          YES(O(1),O(n^1))
        
        We use the processor 'matrix interpretation of dimension 1' to
        orient following rules strictly.
        
        DPs:
          { 1: U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
          , 3: isNat^#(n__x(V1, V2)) ->
               c_4(U31^#(isNat(activate(V1)), activate(V2)),
                   isNat^#(activate(V1)))
          , 5: U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
          , 6: U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
          , 7: U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
        Trs:
          { U12(tt()) -> tt()
          , isNat(n__0()) -> tt()
          , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
          , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
          , U21(tt()) -> tt()
          , U32(tt()) -> tt() }
        
        Sub-proof:
        ----------
          The following argument positions are usable:
            Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1},
            Uargs(c_4) = {1, 2}, Uargs(c_5) = {1}, Uargs(c_6) = {1},
            Uargs(c_7) = {1}
          
          TcT has computed the following constructor-based matrix
          interpretation satisfying not(EDA).
          
                         [U11](x1, x2) = [4]                  
                                                              
                                  [tt] = [2]                  
                                                              
                             [U12](x1) = [4]                  
                                                              
                           [isNat](x1) = [5]                  
                                                              
                        [activate](x1) = [1] x1 + [0]         
                                                              
                             [U21](x1) = [4]                  
                                                              
                         [U31](x1, x2) = [4]                  
                                                              
                             [U32](x1) = [4]                  
                                                              
                               [s](x1) = [1] x1 + [0]         
                                                              
                        [plus](x1, x2) = [1] x1 + [1] x2 + [2]
                                                              
                                   [0] = [4]                  
                                                              
                           [x](x1, x2) = [1] x1 + [1] x2 + [2]
                                                              
                                [n__0] = [4]                  
                                                              
                     [n__plus](x1, x2) = [1] x1 + [1] x2 + [2]
                                                              
                            [n__s](x1) = [1] x1 + [0]         
                                                              
                        [n__x](x1, x2) = [1] x1 + [1] x2 + [2]
                                                              
                       [U11^#](x1, x2) = [2] x1 + [6] x2 + [2]
                                                              
                         [isNat^#](x1) = [6] x1 + [3]         
                                                              
                      [activate^#](x1) = [0]                  
                                                              
                       [U31^#](x1, x2) = [1] x1 + [6] x2 + [2]
                                                              
                   [U51^#](x1, x2, x3) = [1] x2 + [7] x3 + [7]
                                                              
                   [U52^#](x1, x2, x3) = [0]                  
                                                              
                   [U71^#](x1, x2, x3) = [4] x2 + [7] x3 + [4]
                                                              
                   [U72^#](x1, x2, x3) = [0]                  
                                                              
                         [c_1](x1, x2) = [0]                  
                                                              
                 [c_2](x1, x2, x3, x4) = [0]                  
                                                              
                         [c_3](x1, x2) = [0]                  
                                                              
                 [c_4](x1, x2, x3, x4) = [0]                  
                                                              
                         [c_8](x1, x2) = [0]                  
                                                              
            [c_10](x1, x2, x3, x4, x5) = [0]                  
                                                              
                        [c_11](x1, x2) = [0]                  
                                                              
            [c_12](x1, x2, x3, x4, x5) = [0]                  
                                                              
                    [c_13](x1, x2, x3) = [0]                  
                                                              
                                   [c] = [0]                  
                                                              
                             [c_1](x1) = [1] x1 + [1]         
                                                              
                         [c_2](x1, x2) = [1] x1 + [1] x2 + [0]
                                                              
                             [c_3](x1) = [1] x1 + [0]         
                                                              
                         [c_4](x1, x2) = [1] x1 + [1] x2 + [0]
                                                              
                             [c_5](x1) = [1] x1 + [0]         
                                                              
                             [c_6](x1) = [1] x1 + [0]         
                                                              
                             [c_7](x1) = [1] x1 + [0]         
          
          The order satisfies the following ordering constraints:
          
                        [U11(tt(), V2)] =  [4]                                           
                                        >= [4]                                           
                                        =  [U12(isNat(activate(V2)))]                    
                                                                                         
                            [U12(tt())] =  [4]                                           
                                        >  [2]                                           
                                        =  [tt()]                                        
                                                                                         
                        [isNat(n__0())] =  [5]                                           
                                        >  [2]                                           
                                        =  [tt()]                                        
                                                                                         
               [isNat(n__plus(V1, V2))] =  [5]                                           
                                        >  [4]                                           
                                        =  [U11(isNat(activate(V1)), activate(V2))]      
                                                                                         
                      [isNat(n__s(V1))] =  [5]                                           
                                        >  [4]                                           
                                        =  [U21(isNat(activate(V1)))]                    
                                                                                         
                  [isNat(n__x(V1, V2))] =  [5]                                           
                                        >  [4]                                           
                                        =  [U31(isNat(activate(V1)), activate(V2))]      
                                                                                         
                          [activate(X)] =  [1] X + [0]                                   
                                        >= [1] X + [0]                                   
                                        =  [X]                                           
                                                                                         
                     [activate(n__0())] =  [4]                                           
                                        >= [4]                                           
                                        =  [0()]                                         
                                                                                         
            [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [2]                         
                                        >= [1] X1 + [1] X2 + [2]                         
                                        =  [plus(activate(X1), activate(X2))]            
                                                                                         
                    [activate(n__s(X))] =  [1] X + [0]                                   
                                        >= [1] X + [0]                                   
                                        =  [s(activate(X))]                              
                                                                                         
               [activate(n__x(X1, X2))] =  [1] X1 + [1] X2 + [2]                         
                                        >= [1] X1 + [1] X2 + [2]                         
                                        =  [x(activate(X1), activate(X2))]               
                                                                                         
                            [U21(tt())] =  [4]                                           
                                        >  [2]                                           
                                        =  [tt()]                                        
                                                                                         
                        [U31(tt(), V2)] =  [4]                                           
                                        >= [4]                                           
                                        =  [U32(isNat(activate(V2)))]                    
                                                                                         
                            [U32(tt())] =  [4]                                           
                                        >  [2]                                           
                                        =  [tt()]                                        
                                                                                         
                                 [s(X)] =  [1] X + [0]                                   
                                        >= [1] X + [0]                                   
                                        =  [n__s(X)]                                     
                                                                                         
                         [plus(X1, X2)] =  [1] X1 + [1] X2 + [2]                         
                                        >= [1] X1 + [1] X2 + [2]                         
                                        =  [n__plus(X1, X2)]                             
                                                                                         
                                  [0()] =  [4]                                           
                                        >= [4]                                           
                                        =  [n__0()]                                      
                                                                                         
                            [x(X1, X2)] =  [1] X1 + [1] X2 + [2]                         
                                        >= [1] X1 + [1] X2 + [2]                         
                                        =  [n__x(X1, X2)]                                
                                                                                         
                      [U11^#(tt(), V2)] =  [6] V2 + [6]                                  
                                        >  [6] V2 + [4]                                  
                                        =  [c_1(isNat^#(activate(V2)))]                  
                                                                                         
             [isNat^#(n__plus(V1, V2))] =  [6] V2 + [6] V1 + [15]                        
                                        >= [6] V2 + [6] V1 + [15]                        
                                        =  [c_2(U11^#(isNat(activate(V1)), activate(V2)),
                                                isNat^#(activate(V1)))]                  
                                                                                         
                    [isNat^#(n__s(V1))] =  [6] V1 + [3]                                  
                                        >= [6] V1 + [3]                                  
                                        =  [c_3(isNat^#(activate(V1)))]                  
                                                                                         
                [isNat^#(n__x(V1, V2))] =  [6] V2 + [6] V1 + [15]                        
                                        >  [6] V2 + [6] V1 + [10]                        
                                        =  [c_4(U31^#(isNat(activate(V1)), activate(V2)),
                                                isNat^#(activate(V1)))]                  
                                                                                         
                      [U31^#(tt(), V2)] =  [6] V2 + [4]                                  
                                        >  [6] V2 + [3]                                  
                                        =  [c_5(isNat^#(activate(V2)))]                  
                                                                                         
                    [U51^#(tt(), M, N)] =  [7] N + [1] M + [7]                           
                                        >  [6] N + [3]                                   
                                        =  [c_6(isNat^#(activate(N)))]                   
                                                                                         
                    [U71^#(tt(), M, N)] =  [7] N + [4] M + [4]                           
                                        >  [6] N + [3]                                   
                                        =  [c_7(isNat^#(activate(N)))]                   
                                                                                         
        
        The strictly oriented rules are moved into the weak component.
        
        We are left with following problem, upon which TcT provides the
        certificate YES(O(1),O(n^1)).
        
        Strict DPs:
          { isNat^#(n__plus(V1, V2)) ->
            c_2(U11^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1))) }
        Weak DPs:
          { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
          , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
          , isNat^#(n__x(V1, V2)) ->
            c_4(U31^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)))
          , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
          , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
          , U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
        Weak Trs:
          { U11(tt(), V2) -> U12(isNat(activate(V2)))
          , U12(tt()) -> tt()
          , isNat(n__0()) -> tt()
          , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
          , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
          , activate(X) -> X
          , activate(n__0()) -> 0()
          , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
          , activate(n__s(X)) -> s(activate(X))
          , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
          , U21(tt()) -> tt()
          , U31(tt(), V2) -> U32(isNat(activate(V2)))
          , U32(tt()) -> tt()
          , s(X) -> n__s(X)
          , plus(X1, X2) -> n__plus(X1, X2)
          , 0() -> n__0()
          , x(X1, X2) -> n__x(X1, X2) }
        Obligation:
          innermost runtime complexity
        Answer:
          YES(O(1),O(n^1))
        
        We use the processor 'matrix interpretation of dimension 1' to
        orient following rules strictly.
        
        DPs:
          { 1: isNat^#(n__plus(V1, V2)) ->
               c_2(U11^#(isNat(activate(V1)), activate(V2)),
                   isNat^#(activate(V1)))
          , 5: U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
          , 6: U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
          , 7: U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
        
        Sub-proof:
        ----------
          The following argument positions are usable:
            Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1},
            Uargs(c_4) = {1, 2}, Uargs(c_5) = {1}, Uargs(c_6) = {1},
            Uargs(c_7) = {1}
          
          TcT has computed the following constructor-based matrix
          interpretation satisfying not(EDA).
          
                         [U11](x1, x2) = [1]                  
                                                              
                                  [tt] = [1]                  
                                                              
                             [U12](x1) = [1] x1 + [0]         
                                                              
                           [isNat](x1) = [1]                  
                                                              
                        [activate](x1) = [1] x1 + [0]         
                                                              
                             [U21](x1) = [1] x1 + [0]         
                                                              
                         [U31](x1, x2) = [1] x1 + [0]         
                                                              
                             [U32](x1) = [1]                  
                                                              
                               [s](x1) = [1] x1 + [0]         
                                                              
                        [plus](x1, x2) = [1] x1 + [1] x2 + [4]
                                                              
                                   [0] = [0]                  
                                                              
                           [x](x1, x2) = [1] x1 + [1] x2 + [4]
                                                              
                                [n__0] = [0]                  
                                                              
                     [n__plus](x1, x2) = [1] x1 + [1] x2 + [4]
                                                              
                            [n__s](x1) = [1] x1 + [0]         
                                                              
                        [n__x](x1, x2) = [1] x1 + [1] x2 + [4]
                                                              
                       [U11^#](x1, x2) = [1] x1 + [1] x2 + [1]
                                                              
                         [isNat^#](x1) = [1] x1 + [2]         
                                                              
                      [activate^#](x1) = [0]                  
                                                              
                       [U31^#](x1, x2) = [1] x2 + [4]         
                                                              
                   [U51^#](x1, x2, x3) = [4] x2 + [7] x3 + [3]
                                                              
                   [U52^#](x1, x2, x3) = [0]                  
                                                              
                   [U71^#](x1, x2, x3) = [4] x2 + [7] x3 + [5]
                                                              
                   [U72^#](x1, x2, x3) = [0]                  
                                                              
                         [c_1](x1, x2) = [0]                  
                                                              
                 [c_2](x1, x2, x3, x4) = [0]                  
                                                              
                         [c_3](x1, x2) = [0]                  
                                                              
                 [c_4](x1, x2, x3, x4) = [0]                  
                                                              
                         [c_8](x1, x2) = [0]                  
                                                              
            [c_10](x1, x2, x3, x4, x5) = [0]                  
                                                              
                        [c_11](x1, x2) = [0]                  
                                                              
            [c_12](x1, x2, x3, x4, x5) = [0]                  
                                                              
                    [c_13](x1, x2, x3) = [0]                  
                                                              
                                   [c] = [0]                  
                                                              
                             [c_1](x1) = [1] x1 + [0]         
                                                              
                         [c_2](x1, x2) = [1] x1 + [1] x2 + [1]
                                                              
                             [c_3](x1) = [1] x1 + [0]         
                                                              
                         [c_4](x1, x2) = [1] x1 + [1] x2 + [0]
                                                              
                             [c_5](x1) = [1] x1 + [0]         
                                                              
                             [c_6](x1) = [1] x1 + [0]         
                                                              
                             [c_7](x1) = [1] x1 + [0]         
          
          The order satisfies the following ordering constraints:
          
                        [U11(tt(), V2)] =  [1]                                           
                                        >= [1]                                           
                                        =  [U12(isNat(activate(V2)))]                    
                                                                                         
                            [U12(tt())] =  [1]                                           
                                        >= [1]                                           
                                        =  [tt()]                                        
                                                                                         
                        [isNat(n__0())] =  [1]                                           
                                        >= [1]                                           
                                        =  [tt()]                                        
                                                                                         
               [isNat(n__plus(V1, V2))] =  [1]                                           
                                        >= [1]                                           
                                        =  [U11(isNat(activate(V1)), activate(V2))]      
                                                                                         
                      [isNat(n__s(V1))] =  [1]                                           
                                        >= [1]                                           
                                        =  [U21(isNat(activate(V1)))]                    
                                                                                         
                  [isNat(n__x(V1, V2))] =  [1]                                           
                                        >= [1]                                           
                                        =  [U31(isNat(activate(V1)), activate(V2))]      
                                                                                         
                          [activate(X)] =  [1] X + [0]                                   
                                        >= [1] X + [0]                                   
                                        =  [X]                                           
                                                                                         
                     [activate(n__0())] =  [0]                                           
                                        >= [0]                                           
                                        =  [0()]                                         
                                                                                         
            [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [4]                         
                                        >= [1] X1 + [1] X2 + [4]                         
                                        =  [plus(activate(X1), activate(X2))]            
                                                                                         
                    [activate(n__s(X))] =  [1] X + [0]                                   
                                        >= [1] X + [0]                                   
                                        =  [s(activate(X))]                              
                                                                                         
               [activate(n__x(X1, X2))] =  [1] X1 + [1] X2 + [4]                         
                                        >= [1] X1 + [1] X2 + [4]                         
                                        =  [x(activate(X1), activate(X2))]               
                                                                                         
                            [U21(tt())] =  [1]                                           
                                        >= [1]                                           
                                        =  [tt()]                                        
                                                                                         
                        [U31(tt(), V2)] =  [1]                                           
                                        >= [1]                                           
                                        =  [U32(isNat(activate(V2)))]                    
                                                                                         
                            [U32(tt())] =  [1]                                           
                                        >= [1]                                           
                                        =  [tt()]                                        
                                                                                         
                                 [s(X)] =  [1] X + [0]                                   
                                        >= [1] X + [0]                                   
                                        =  [n__s(X)]                                     
                                                                                         
                         [plus(X1, X2)] =  [1] X1 + [1] X2 + [4]                         
                                        >= [1] X1 + [1] X2 + [4]                         
                                        =  [n__plus(X1, X2)]                             
                                                                                         
                                  [0()] =  [0]                                           
                                        >= [0]                                           
                                        =  [n__0()]                                      
                                                                                         
                            [x(X1, X2)] =  [1] X1 + [1] X2 + [4]                         
                                        >= [1] X1 + [1] X2 + [4]                         
                                        =  [n__x(X1, X2)]                                
                                                                                         
                      [U11^#(tt(), V2)] =  [1] V2 + [2]                                  
                                        >= [1] V2 + [2]                                  
                                        =  [c_1(isNat^#(activate(V2)))]                  
                                                                                         
             [isNat^#(n__plus(V1, V2))] =  [1] V2 + [1] V1 + [6]                         
                                        >  [1] V2 + [1] V1 + [5]                         
                                        =  [c_2(U11^#(isNat(activate(V1)), activate(V2)),
                                                isNat^#(activate(V1)))]                  
                                                                                         
                    [isNat^#(n__s(V1))] =  [1] V1 + [2]                                  
                                        >= [1] V1 + [2]                                  
                                        =  [c_3(isNat^#(activate(V1)))]                  
                                                                                         
                [isNat^#(n__x(V1, V2))] =  [1] V2 + [1] V1 + [6]                         
                                        >= [1] V2 + [1] V1 + [6]                         
                                        =  [c_4(U31^#(isNat(activate(V1)), activate(V2)),
                                                isNat^#(activate(V1)))]                  
                                                                                         
                      [U31^#(tt(), V2)] =  [1] V2 + [4]                                  
                                        >  [1] V2 + [2]                                  
                                        =  [c_5(isNat^#(activate(V2)))]                  
                                                                                         
                    [U51^#(tt(), M, N)] =  [7] N + [4] M + [3]                           
                                        >  [1] N + [2]                                   
                                        =  [c_6(isNat^#(activate(N)))]                   
                                                                                         
                    [U71^#(tt(), M, N)] =  [7] N + [4] M + [5]                           
                                        >  [1] N + [2]                                   
                                        =  [c_7(isNat^#(activate(N)))]                   
                                                                                         
        
        We return to the main proof. Consider the set of all dependency
        pairs
        
        :
          { 1: isNat^#(n__plus(V1, V2)) ->
               c_2(U11^#(isNat(activate(V1)), activate(V2)),
                   isNat^#(activate(V1)))
          , 2: U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
          , 3: isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
          , 4: isNat^#(n__x(V1, V2)) ->
               c_4(U31^#(isNat(activate(V1)), activate(V2)),
                   isNat^#(activate(V1)))
          , 5: U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
          , 6: U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
          , 7: U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
        
        Processor 'matrix interpretation of dimension 1' induces the
        complexity certificate YES(?,O(n^1)) on application of dependency
        pairs {1,5,6,7}. These cover all (indirect) predecessors of
        dependency pairs {1,2,5,6,7}, their number of application is
        equally bounded. The dependency pairs are shifted into the weak
        component.
        
        We are left with following problem, upon which TcT provides the
        certificate YES(O(1),O(1)).
        
        Weak DPs:
          { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
          , isNat^#(n__plus(V1, V2)) ->
            c_2(U11^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)))
          , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
          , isNat^#(n__x(V1, V2)) ->
            c_4(U31^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)))
          , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
          , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
          , U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
        Weak Trs:
          { U11(tt(), V2) -> U12(isNat(activate(V2)))
          , U12(tt()) -> tt()
          , isNat(n__0()) -> tt()
          , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
          , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
          , activate(X) -> X
          , activate(n__0()) -> 0()
          , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
          , activate(n__s(X)) -> s(activate(X))
          , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
          , U21(tt()) -> tt()
          , U31(tt(), V2) -> U32(isNat(activate(V2)))
          , U32(tt()) -> tt()
          , s(X) -> n__s(X)
          , plus(X1, X2) -> n__plus(X1, X2)
          , 0() -> n__0()
          , x(X1, X2) -> n__x(X1, X2) }
        Obligation:
          innermost runtime complexity
        Answer:
          YES(O(1),O(1))
        
        The following weak DPs constitute a sub-graph of the DG that is
        closed under successors. The DPs are removed.
        
        { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
        , isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)))
        , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
        , isNat^#(n__x(V1, V2)) ->
          c_4(U31^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)))
        , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
        , U51^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
        , U71^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
        
        We are left with following problem, upon which TcT provides the
        certificate YES(O(1),O(1)).
        
        Weak Trs:
          { U11(tt(), V2) -> U12(isNat(activate(V2)))
          , U12(tt()) -> tt()
          , isNat(n__0()) -> tt()
          , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
          , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
          , activate(X) -> X
          , activate(n__0()) -> 0()
          , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
          , activate(n__s(X)) -> s(activate(X))
          , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
          , U21(tt()) -> tt()
          , U31(tt(), V2) -> U32(isNat(activate(V2)))
          , U32(tt()) -> tt()
          , s(X) -> n__s(X)
          , plus(X1, X2) -> n__plus(X1, X2)
          , 0() -> n__0()
          , x(X1, X2) -> n__x(X1, X2) }
        Obligation:
          innermost runtime complexity
        Answer:
          YES(O(1),O(1))
        
        No rule is usable, rules are removed from the input problem.
        
        We are left with following problem, upon which TcT provides the
        certificate YES(O(1),O(1)).
        
        Rules: Empty
        Obligation:
          innermost runtime complexity
        Answer:
          YES(O(1),O(1))
        
        Empty rules are trivially bounded
      
      We return to the main proof.
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(n^4)).
      
      Strict DPs:
        { activate^#(n__plus(X1, X2)) ->
          c_5(activate^#(X1), activate^#(X2))
        , activate^#(n__s(X)) -> c_6(activate^#(X))
        , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2)) }
      Weak DPs:
        { U11^#(tt(), V2) -> isNat^#(activate(V2))
        , U11^#(tt(), V2) -> activate^#(V2)
        , isNat^#(n__plus(V1, V2)) ->
          U11^#(isNat(activate(V1)), activate(V2))
        , isNat^#(n__plus(V1, V2)) -> isNat^#(activate(V1))
        , isNat^#(n__plus(V1, V2)) -> activate^#(V1)
        , isNat^#(n__plus(V1, V2)) -> activate^#(V2)
        , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
        , isNat^#(n__s(V1)) -> activate^#(V1)
        , isNat^#(n__x(V1, V2)) -> isNat^#(activate(V1))
        , isNat^#(n__x(V1, V2)) -> activate^#(V1)
        , isNat^#(n__x(V1, V2)) -> activate^#(V2)
        , isNat^#(n__x(V1, V2)) -> U31^#(isNat(activate(V1)), activate(V2))
        , U31^#(tt(), V2) -> isNat^#(activate(V2))
        , U31^#(tt(), V2) -> activate^#(V2)
        , U51^#(tt(), M, N) -> isNat^#(activate(N))
        , U51^#(tt(), M, N) -> activate^#(M)
        , U51^#(tt(), M, N) -> activate^#(N)
        , U51^#(tt(), M, N) ->
          U52^#(isNat(activate(N)), activate(M), activate(N))
        , U52^#(tt(), M, N) -> activate^#(M)
        , U52^#(tt(), M, N) -> activate^#(N)
        , U71^#(tt(), M, N) -> isNat^#(activate(N))
        , U71^#(tt(), M, N) -> activate^#(M)
        , U71^#(tt(), M, N) -> activate^#(N)
        , U71^#(tt(), M, N) ->
          U72^#(isNat(activate(N)), activate(M), activate(N))
        , U72^#(tt(), M, N) -> activate^#(M)
        , U72^#(tt(), M, N) -> activate^#(N) }
      Weak Trs:
        { U11(tt(), V2) -> U12(isNat(activate(V2)))
        , U12(tt()) -> tt()
        , isNat(n__0()) -> tt()
        , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
        , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
        , activate(X) -> X
        , activate(n__0()) -> 0()
        , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
        , U21(tt()) -> tt()
        , U31(tt(), V2) -> U32(isNat(activate(V2)))
        , U32(tt()) -> tt()
        , s(X) -> n__s(X)
        , plus(X1, X2) -> n__plus(X1, X2)
        , 0() -> n__0()
        , x(X1, X2) -> n__x(X1, X2) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(n^4))
      
      We use the processor 'matrix interpretation of dimension 4' to
      orient following rules strictly.
      
      DPs:
        { activate^#(n__plus(X1, X2)) ->
          c_5(activate^#(X1), activate^#(X2)) }
      
      The induced complexity on above rules (modulo remaining rules) is
      YES(?,O(n^4)) . These rules are moved into the corresponding weak
      component(s).
      
      Sub-proof:
      ----------
        The following argument positions are usable:
          Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}, Uargs(c_7) = {1, 2}
        
        TcT has computed the following constructor-based matrix
        interpretation satisfying not(EDA).
        
                                [1]                                       
                [U11](x1, x2) = [0]                                       
                                [1]                                       
                                [1]                                       
                                                                          
                                [1]                                       
                         [tt] = [0]                                       
                                [1]                                       
                                [1]                                       
                                                                          
                                [0 0 0 0]      [1]                        
                    [U12](x1) = [0 0 0 0] x1 + [0]                        
                                [0 0 0 0]      [1]                        
                                [1 0 0 0]      [0]                        
                                                                          
                                [0 0 0 0]      [1]                        
                  [isNat](x1) = [0 0 0 0] x1 + [1]                        
                                [0 0 0 0]      [1]                        
                                [0 1 0 0]      [1]                        
                                                                          
                                [1 0 0 0]      [0]                        
               [activate](x1) = [0 1 0 0] x1 + [0]                        
                                [0 1 1 0]      [0]                        
                                [0 0 0 1]      [0]                        
                                                                          
                                [0 0 0 0]      [1]                        
                    [U21](x1) = [0 0 0 0] x1 + [0]                        
                                [1 0 0 0]      [0]                        
                                [0 0 0 0]      [1]                        
                                                                          
                                [0 0 0 0]      [1]                        
                [U31](x1, x2) = [0 0 0 0] x1 + [0]                        
                                [0 0 0 0]      [1]                        
                                [1 1 0 0]      [0]                        
                                                                          
                                [1]                                       
                    [U32](x1) = [0]                                       
                                [1]                                       
                                [1]                                       
                                                                          
                                [0 0 0 0]      [0]                        
                      [s](x1) = [1 1 0 0] x1 + [0]                        
                                [1 0 0 0]      [0]                        
                                [1 0 0 1]      [0]                        
                                                                          
                                [0 1 0 0]      [1 0 0 0]      [0]         
               [plus](x1, x2) = [1 0 0 0] x1 + [0 1 0 0] x2 + [0]         
                                [1 0 0 0]      [0 1 1 0]      [0]         
                                [1 0 0 1]      [0 1 0 1]      [1]         
                                                                          
                                [0]                                       
                          [0] = [0]                                       
                                [0]                                       
                                [0]                                       
                                                                          
                                [0 0 0 0]      [1 1 0 0]      [1]         
                  [x](x1, x2) = [1 1 0 0] x1 + [0 0 0 0] x2 + [1]         
                                [1 1 1 0]      [0 0 0 0]      [1]         
                                [1 0 0 1]      [0 1 0 1]      [0]         
                                                                          
                                [0]                                       
                       [n__0] = [0]                                       
                                [0]                                       
                                [0]                                       
                                                                          
                                [0 1 0 0]      [1 0 0 0]      [0]         
            [n__plus](x1, x2) = [1 0 0 0] x1 + [0 1 0 0] x2 + [0]         
                                [0 0 0 0]      [0 1 1 0]      [0]         
                                [1 0 0 1]      [0 1 0 1]      [1]         
                                                                          
                                [0 0 0 0]      [0]                        
                   [n__s](x1) = [1 1 0 0] x1 + [0]                        
                                [1 0 0 0]      [0]                        
                                [1 0 0 1]      [0]                        
                                                                          
                                [0 0 0 0]      [1 1 0 0]      [1]         
               [n__x](x1, x2) = [1 1 0 0] x1 + [0 0 0 0] x2 + [1]         
                                [0 1 1 0]      [0 0 0 0]      [1]         
                                [1 0 0 1]      [0 1 0 1]      [0]         
                                                                          
                                [0 0 0 0]      [1 1 0 1]      [0]         
              [U11^#](x1, x2) = [1 0 0 0] x1 + [1 1 0 0] x2 + [0]         
                                [0 0 0 0]      [0 0 0 0]      [1]         
                                [0 0 0 0]      [0 0 0 0]      [1]         
                                                                          
                                [1 0 0 1]      [0]                        
                [isNat^#](x1) = [1 1 0 0] x1 + [1]                        
                                [0 0 0 0]      [1]                        
                                [0 0 0 0]      [1]                        
                                                                          
                                [0 0 0 1]      [0]                        
             [activate^#](x1) = [0 0 0 0] x1 + [1]                        
                                [0 0 0 0]      [0]                        
                                [0 0 0 0]      [0]                        
                                                                          
                                [0 0 0 0]      [1 1 0 1]      [0]         
              [U31^#](x1, x2) = [0 0 1 1] x1 + [1 1 0 0] x2 + [0]         
                                [0 0 0 0]      [0 0 0 0]      [1]         
                                [0 0 0 0]      [0 0 0 0]      [1]         
                                                                          
                                [1 0 0 0]      [1 1 1 1]      [1 1 1      
                                                               1]      [1]
          [U51^#](x1, x2, x3) = [0 0 0 0] x1 + [1 1 1 1] x2 + [1 1 1      
                                                               1] x3 + [1]
                                [1 0 0 0]      [1 1 1 1]      [1 1 1      
                                                               1]      [1]
                                [1 0 0 0]      [1 1 1 1]      [1 1 1      
                                                               1]      [0]
                                                                          
                                [0 0 0 0]      [0 0 1 1]      [0 0 1      
                                                               1]      [0]
          [U52^#](x1, x2, x3) = [0 0 0 1] x1 + [0 0 0 0] x2 + [1 0 0      
                                                               1] x3 + [0]
                                [0 0 0 0]      [0 0 0 0]      [0 0 0      
                                                               0]      [0]
                                [0 0 0 0]      [0 0 0 0]      [0 0 0      
                                                               0]      [0]
                                                                          
                                [1 0 0 0]      [1 1 1 1]      [1 1 1      
                                                               1]      [1]
          [U71^#](x1, x2, x3) = [1 0 0 0] x1 + [1 1 1 1] x2 + [1 1 1      
                                                               1] x3 + [1]
                                [1 0 0 0]      [1 1 1 1]      [1 1 1      
                                                               1]      [0]
                                [0 0 0 0]      [1 1 1 1]      [1 1 1      
                                                               1]      [1]
                                                                          
                                [0 0 0 0]      [0 0 1 1]      [0 0 1      
                                                               1]      [0]
          [U72^#](x1, x2, x3) = [0 0 1 1] x1 + [0 0 0 0] x2 + [1 0 0      
                                                               1] x3 + [0]
                                [0 0 0 0]      [0 0 0 0]      [0 0 0      
                                                               0]      [0]
                                [0 0 0 0]      [0 0 0 0]      [0 0 0      
                                                               0]      [0]
                                                                          
                                [1 0 0 0]      [1 0 0 0]      [0]         
                [c_5](x1, x2) = [0 0 0 0] x1 + [0 0 0 0] x2 + [0]         
                                [0 0 0 0]      [0 0 0 0]      [0]         
                                [0 0 0 0]      [0 0 0 0]      [0]         
                                                                          
                                [1 0 0 0]      [0]                        
                    [c_6](x1) = [0 0 0 0] x1 + [0]                        
                                [0 0 0 0]      [0]                        
                                [0 0 0 0]      [0]                        
                                                                          
                                [1 0 0 0]      [1 0 0 0]      [0]         
                [c_7](x1, x2) = [0 0 0 0] x1 + [0 0 0 0] x2 + [0]         
                                [0 0 0 0]      [0 0 0 0]      [0]         
                                [0 0 0 0]      [0 0 0 0]      [0]         
        
        The order satisfies the following ordering constraints:
        
                        [U11(tt(), V2)] =  [1]                                                  
                                           [0]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        >= [1]                                                  
                                           [0]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        =  [U12(isNat(activate(V2)))]                           
                                                                                                
                            [U12(tt())] =  [1]                                                  
                                           [0]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        >= [1]                                                  
                                           [0]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        =  [tt()]                                               
                                                                                                
                        [isNat(n__0())] =  [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        >= [1]                                                  
                                           [0]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        =  [tt()]                                               
                                                                                                
               [isNat(n__plus(V1, V2))] =  [0 0 0 0]      [0 0 0 0]      [1]                    
                                           [0 0 0 0] V2 + [0 0 0 0] V1 + [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [1]                    
                                           [0 1 0 0]      [1 0 0 0]      [1]                    
                                        >= [1]                                                  
                                           [0]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        =  [U11(isNat(activate(V1)), activate(V2))]             
                                                                                                
                      [isNat(n__s(V1))] =  [0 0 0 0]      [1]                                   
                                           [0 0 0 0] V1 + [1]                                   
                                           [0 0 0 0]      [1]                                   
                                           [1 1 0 0]      [1]                                   
                                        >= [1]                                                  
                                           [0]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        =  [U21(isNat(activate(V1)))]                           
                                                                                                
                  [isNat(n__x(V1, V2))] =  [0 0 0 0]      [1]                                   
                                           [0 0 0 0] V1 + [1]                                   
                                           [0 0 0 0]      [1]                                   
                                           [1 1 0 0]      [2]                                   
                                        >= [1]                                                  
                                           [0]                                                  
                                           [1]                                                  
                                           [2]                                                  
                                        =  [U31(isNat(activate(V1)), activate(V2))]             
                                                                                                
                          [activate(X)] =  [1 0 0 0]     [0]                                    
                                           [0 1 0 0] X + [0]                                    
                                           [0 1 1 0]     [0]                                    
                                           [0 0 0 1]     [0]                                    
                                        >= [1 0 0 0]     [0]                                    
                                           [0 1 0 0] X + [0]                                    
                                           [0 0 1 0]     [0]                                    
                                           [0 0 0 1]     [0]                                    
                                        =  [X]                                                  
                                                                                                
                     [activate(n__0())] =  [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        >= [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        =  [0()]                                                
                                                                                                
            [activate(n__plus(X1, X2))] =  [0 1 0 0]      [1 0 0 0]      [0]                    
                                           [1 0 0 0] X1 + [0 1 0 0] X2 + [0]                    
                                           [1 0 0 0]      [0 2 1 0]      [0]                    
                                           [1 0 0 1]      [0 1 0 1]      [1]                    
                                        >= [0 1 0 0]      [1 0 0 0]      [0]                    
                                           [1 0 0 0] X1 + [0 1 0 0] X2 + [0]                    
                                           [1 0 0 0]      [0 2 1 0]      [0]                    
                                           [1 0 0 1]      [0 1 0 1]      [1]                    
                                        =  [plus(activate(X1), activate(X2))]                   
                                                                                                
                    [activate(n__s(X))] =  [0 0 0 0]     [0]                                    
                                           [1 1 0 0] X + [0]                                    
                                           [2 1 0 0]     [0]                                    
                                           [1 0 0 1]     [0]                                    
                                        >= [0 0 0 0]     [0]                                    
                                           [1 1 0 0] X + [0]                                    
                                           [1 0 0 0]     [0]                                    
                                           [1 0 0 1]     [0]                                    
                                        =  [s(activate(X))]                                     
                                                                                                
               [activate(n__x(X1, X2))] =  [0 0 0 0]      [1 1 0 0]      [1]                    
                                           [1 1 0 0] X1 + [0 0 0 0] X2 + [1]                    
                                           [1 2 1 0]      [0 0 0 0]      [2]                    
                                           [1 0 0 1]      [0 1 0 1]      [0]                    
                                        >= [0 0 0 0]      [1 1 0 0]      [1]                    
                                           [1 1 0 0] X1 + [0 0 0 0] X2 + [1]                    
                                           [1 2 1 0]      [0 0 0 0]      [1]                    
                                           [1 0 0 1]      [0 1 0 1]      [0]                    
                                        =  [x(activate(X1), activate(X2))]                      
                                                                                                
                            [U21(tt())] =  [1]                                                  
                                           [0]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        >= [1]                                                  
                                           [0]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        =  [tt()]                                               
                                                                                                
                        [U31(tt(), V2)] =  [1]                                                  
                                           [0]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        >= [1]                                                  
                                           [0]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        =  [U32(isNat(activate(V2)))]                           
                                                                                                
                            [U32(tt())] =  [1]                                                  
                                           [0]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        >= [1]                                                  
                                           [0]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        =  [tt()]                                               
                                                                                                
                                 [s(X)] =  [0 0 0 0]     [0]                                    
                                           [1 1 0 0] X + [0]                                    
                                           [1 0 0 0]     [0]                                    
                                           [1 0 0 1]     [0]                                    
                                        >= [0 0 0 0]     [0]                                    
                                           [1 1 0 0] X + [0]                                    
                                           [1 0 0 0]     [0]                                    
                                           [1 0 0 1]     [0]                                    
                                        =  [n__s(X)]                                            
                                                                                                
                         [plus(X1, X2)] =  [0 1 0 0]      [1 0 0 0]      [0]                    
                                           [1 0 0 0] X1 + [0 1 0 0] X2 + [0]                    
                                           [1 0 0 0]      [0 1 1 0]      [0]                    
                                           [1 0 0 1]      [0 1 0 1]      [1]                    
                                        >= [0 1 0 0]      [1 0 0 0]      [0]                    
                                           [1 0 0 0] X1 + [0 1 0 0] X2 + [0]                    
                                           [0 0 0 0]      [0 1 1 0]      [0]                    
                                           [1 0 0 1]      [0 1 0 1]      [1]                    
                                        =  [n__plus(X1, X2)]                                    
                                                                                                
                                  [0()] =  [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        >= [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        =  [n__0()]                                             
                                                                                                
                            [x(X1, X2)] =  [0 0 0 0]      [1 1 0 0]      [1]                    
                                           [1 1 0 0] X1 + [0 0 0 0] X2 + [1]                    
                                           [1 1 1 0]      [0 0 0 0]      [1]                    
                                           [1 0 0 1]      [0 1 0 1]      [0]                    
                                        >= [0 0 0 0]      [1 1 0 0]      [1]                    
                                           [1 1 0 0] X1 + [0 0 0 0] X2 + [1]                    
                                           [0 1 1 0]      [0 0 0 0]      [1]                    
                                           [1 0 0 1]      [0 1 0 1]      [0]                    
                                        =  [n__x(X1, X2)]                                       
                                                                                                
                      [U11^#(tt(), V2)] =  [1 1 0 1]      [0]                                   
                                           [1 1 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [1]                                   
                                           [0 0 0 0]      [1]                                   
                                        >= [1 0 0 1]      [0]                                   
                                           [1 1 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [1]                                   
                                           [0 0 0 0]      [1]                                   
                                        =  [isNat^#(activate(V2))]                              
                                                                                                
                      [U11^#(tt(), V2)] =  [1 1 0 1]      [0]                                   
                                           [1 1 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [1]                                   
                                           [0 0 0 0]      [1]                                   
                                        >= [0 0 0 1]      [0]                                   
                                           [0 0 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        =  [activate^#(V2)]                                     
                                                                                                
             [isNat^#(n__plus(V1, V2))] =  [1 1 0 1]      [1 1 0 1]      [1]                    
                                           [1 1 0 0] V2 + [1 1 0 0] V1 + [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [1]                    
                                        >  [1 1 0 1]      [0]                                   
                                           [1 1 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [1]                                   
                                           [0 0 0 0]      [1]                                   
                                        =  [U11^#(isNat(activate(V1)), activate(V2))]           
                                                                                                
             [isNat^#(n__plus(V1, V2))] =  [1 1 0 1]      [1 1 0 1]      [1]                    
                                           [1 1 0 0] V2 + [1 1 0 0] V1 + [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [1]                    
                                        >  [1 0 0 1]      [0]                                   
                                           [1 1 0 0] V1 + [1]                                   
                                           [0 0 0 0]      [1]                                   
                                           [0 0 0 0]      [1]                                   
                                        =  [isNat^#(activate(V1))]                              
                                                                                                
             [isNat^#(n__plus(V1, V2))] =  [1 1 0 1]      [1 1 0 1]      [1]                    
                                           [1 1 0 0] V2 + [1 1 0 0] V1 + [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [1]                    
                                        >  [0 0 0 1]      [0]                                   
                                           [0 0 0 0] V1 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        =  [activate^#(V1)]                                     
                                                                                                
             [isNat^#(n__plus(V1, V2))] =  [1 1 0 1]      [1 1 0 1]      [1]                    
                                           [1 1 0 0] V2 + [1 1 0 0] V1 + [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [1]                    
                                        >  [0 0 0 1]      [0]                                   
                                           [0 0 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        =  [activate^#(V2)]                                     
                                                                                                
                    [isNat^#(n__s(V1))] =  [1 0 0 1]      [0]                                   
                                           [1 1 0 0] V1 + [1]                                   
                                           [0 0 0 0]      [1]                                   
                                           [0 0 0 0]      [1]                                   
                                        >= [1 0 0 1]      [0]                                   
                                           [1 1 0 0] V1 + [1]                                   
                                           [0 0 0 0]      [1]                                   
                                           [0 0 0 0]      [1]                                   
                                        =  [isNat^#(activate(V1))]                              
                                                                                                
                    [isNat^#(n__s(V1))] =  [1 0 0 1]      [0]                                   
                                           [1 1 0 0] V1 + [1]                                   
                                           [0 0 0 0]      [1]                                   
                                           [0 0 0 0]      [1]                                   
                                        >= [0 0 0 1]      [0]                                   
                                           [0 0 0 0] V1 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        =  [activate^#(V1)]                                     
                                                                                                
                [isNat^#(n__x(V1, V2))] =  [1 2 0 1]      [1 0 0 1]      [1]                    
                                           [1 1 0 0] V2 + [1 1 0 0] V1 + [3]                    
                                           [0 0 0 0]      [0 0 0 0]      [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [1]                    
                                        >  [1 0 0 1]      [0]                                   
                                           [1 1 0 0] V1 + [1]                                   
                                           [0 0 0 0]      [1]                                   
                                           [0 0 0 0]      [1]                                   
                                        =  [isNat^#(activate(V1))]                              
                                                                                                
                [isNat^#(n__x(V1, V2))] =  [1 2 0 1]      [1 0 0 1]      [1]                    
                                           [1 1 0 0] V2 + [1 1 0 0] V1 + [3]                    
                                           [0 0 0 0]      [0 0 0 0]      [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [1]                    
                                        >  [0 0 0 1]      [0]                                   
                                           [0 0 0 0] V1 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        =  [activate^#(V1)]                                     
                                                                                                
                [isNat^#(n__x(V1, V2))] =  [1 2 0 1]      [1 0 0 1]      [1]                    
                                           [1 1 0 0] V2 + [1 1 0 0] V1 + [3]                    
                                           [0 0 0 0]      [0 0 0 0]      [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [1]                    
                                        >  [0 0 0 1]      [0]                                   
                                           [0 0 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        =  [activate^#(V2)]                                     
                                                                                                
                [isNat^#(n__x(V1, V2))] =  [1 2 0 1]      [1 0 0 1]      [1]                    
                                           [1 1 0 0] V2 + [1 1 0 0] V1 + [3]                    
                                           [0 0 0 0]      [0 0 0 0]      [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [1]                    
                                        >  [1 1 0 1]      [0 0 0 0]      [0]                    
                                           [1 1 0 0] V2 + [0 1 0 0] V1 + [2]                    
                                           [0 0 0 0]      [0 0 0 0]      [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [1]                    
                                        =  [U31^#(isNat(activate(V1)), activate(V2))]           
                                                                                                
          [activate^#(n__plus(X1, X2))] =  [1 0 0 1]      [0 1 0 1]      [1]                    
                                           [0 0 0 0] X1 + [0 0 0 0] X2 + [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                        >  [0 0 0 1]      [0 0 0 1]      [0]                    
                                           [0 0 0 0] X1 + [0 0 0 0] X2 + [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                        =  [c_5(activate^#(X1), activate^#(X2))]                
                                                                                                
                  [activate^#(n__s(X))] =  [1 0 0 1]     [0]                                    
                                           [0 0 0 0] X + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        >= [0 0 0 1]     [0]                                    
                                           [0 0 0 0] X + [0]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        =  [c_6(activate^#(X))]                                 
                                                                                                
             [activate^#(n__x(X1, X2))] =  [1 0 0 1]      [0 1 0 1]      [0]                    
                                           [0 0 0 0] X1 + [0 0 0 0] X2 + [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                        >= [0 0 0 1]      [0 0 0 1]      [0]                    
                                           [0 0 0 0] X1 + [0 0 0 0] X2 + [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                        =  [c_7(activate^#(X1), activate^#(X2))]                
                                                                                                
                      [U31^#(tt(), V2)] =  [1 1 0 1]      [0]                                   
                                           [1 1 0 0] V2 + [2]                                   
                                           [0 0 0 0]      [1]                                   
                                           [0 0 0 0]      [1]                                   
                                        >= [1 0 0 1]      [0]                                   
                                           [1 1 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [1]                                   
                                           [0 0 0 0]      [1]                                   
                                        =  [isNat^#(activate(V2))]                              
                                                                                                
                      [U31^#(tt(), V2)] =  [1 1 0 1]      [0]                                   
                                           [1 1 0 0] V2 + [2]                                   
                                           [0 0 0 0]      [1]                                   
                                           [0 0 0 0]      [1]                                   
                                        >= [0 0 0 1]      [0]                                   
                                           [0 0 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        =  [activate^#(V2)]                                     
                                                                                                
                    [U51^#(tt(), M, N)] =  [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                        >  [1 0 0 1]     [0]                                    
                                           [1 1 0 0] N + [1]                                    
                                           [0 0 0 0]     [1]                                    
                                           [0 0 0 0]     [1]                                    
                                        =  [isNat^#(activate(N))]                               
                                                                                                
                    [U51^#(tt(), M, N)] =  [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                        >  [0 0 0 1]     [0]                                    
                                           [0 0 0 0] M + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        =  [activate^#(M)]                                      
                                                                                                
                    [U51^#(tt(), M, N)] =  [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                        >  [0 0 0 1]     [0]                                    
                                           [0 0 0 0] N + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        =  [activate^#(N)]                                      
                                                                                                
                    [U51^#(tt(), M, N)] =  [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                        >  [0 1 1 1]     [0 1 1 1]     [0]                      
                                           [1 1 0 1] N + [0 0 0 0] M + [1]                      
                                           [0 0 0 0]     [0 0 0 0]     [0]                      
                                           [0 0 0 0]     [0 0 0 0]     [0]                      
                                        =  [U52^#(isNat(activate(N)), activate(M), activate(N))]
                                                                                                
                    [U52^#(tt(), M, N)] =  [0 0 1 1]     [0 0 1 1]     [0]                      
                                           [1 0 0 1] N + [0 0 0 0] M + [1]                      
                                           [0 0 0 0]     [0 0 0 0]     [0]                      
                                           [0 0 0 0]     [0 0 0 0]     [0]                      
                                        >= [0 0 0 1]     [0]                                    
                                           [0 0 0 0] M + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        =  [activate^#(M)]                                      
                                                                                                
                    [U52^#(tt(), M, N)] =  [0 0 1 1]     [0 0 1 1]     [0]                      
                                           [1 0 0 1] N + [0 0 0 0] M + [1]                      
                                           [0 0 0 0]     [0 0 0 0]     [0]                      
                                           [0 0 0 0]     [0 0 0 0]     [0]                      
                                        >= [0 0 0 1]     [0]                                    
                                           [0 0 0 0] N + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        =  [activate^#(N)]                                      
                                                                                                
                    [U71^#(tt(), M, N)] =  [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [2]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                        >  [1 0 0 1]     [0]                                    
                                           [1 1 0 0] N + [1]                                    
                                           [0 0 0 0]     [1]                                    
                                           [0 0 0 0]     [1]                                    
                                        =  [isNat^#(activate(N))]                               
                                                                                                
                    [U71^#(tt(), M, N)] =  [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [2]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                        >  [0 0 0 1]     [0]                                    
                                           [0 0 0 0] M + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        =  [activate^#(M)]                                      
                                                                                                
                    [U71^#(tt(), M, N)] =  [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [2]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                        >  [0 0 0 1]     [0]                                    
                                           [0 0 0 0] N + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        =  [activate^#(N)]                                      
                                                                                                
                    [U71^#(tt(), M, N)] =  [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [2]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                        >  [0 1 1 1]     [0 1 1 1]     [0]                      
                                           [1 1 0 1] N + [0 0 0 0] M + [2]                      
                                           [0 0 0 0]     [0 0 0 0]     [0]                      
                                           [0 0 0 0]     [0 0 0 0]     [0]                      
                                        =  [U72^#(isNat(activate(N)), activate(M), activate(N))]
                                                                                                
                    [U72^#(tt(), M, N)] =  [0 0 1 1]     [0 0 1 1]     [0]                      
                                           [1 0 0 1] N + [0 0 0 0] M + [2]                      
                                           [0 0 0 0]     [0 0 0 0]     [0]                      
                                           [0 0 0 0]     [0 0 0 0]     [0]                      
                                        >= [0 0 0 1]     [0]                                    
                                           [0 0 0 0] M + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        =  [activate^#(M)]                                      
                                                                                                
                    [U72^#(tt(), M, N)] =  [0 0 1 1]     [0 0 1 1]     [0]                      
                                           [1 0 0 1] N + [0 0 0 0] M + [2]                      
                                           [0 0 0 0]     [0 0 0 0]     [0]                      
                                           [0 0 0 0]     [0 0 0 0]     [0]                      
                                        >= [0 0 0 1]     [0]                                    
                                           [0 0 0 0] N + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        =  [activate^#(N)]                                      
                                                                                                
      
      We return to the main proof.
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(n^4)).
      
      Strict DPs:
        { activate^#(n__s(X)) -> c_6(activate^#(X))
        , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2)) }
      Weak DPs:
        { U11^#(tt(), V2) -> isNat^#(activate(V2))
        , U11^#(tt(), V2) -> activate^#(V2)
        , isNat^#(n__plus(V1, V2)) ->
          U11^#(isNat(activate(V1)), activate(V2))
        , isNat^#(n__plus(V1, V2)) -> isNat^#(activate(V1))
        , isNat^#(n__plus(V1, V2)) -> activate^#(V1)
        , isNat^#(n__plus(V1, V2)) -> activate^#(V2)
        , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
        , isNat^#(n__s(V1)) -> activate^#(V1)
        , isNat^#(n__x(V1, V2)) -> isNat^#(activate(V1))
        , isNat^#(n__x(V1, V2)) -> activate^#(V1)
        , isNat^#(n__x(V1, V2)) -> activate^#(V2)
        , isNat^#(n__x(V1, V2)) -> U31^#(isNat(activate(V1)), activate(V2))
        , activate^#(n__plus(X1, X2)) ->
          c_5(activate^#(X1), activate^#(X2))
        , U31^#(tt(), V2) -> isNat^#(activate(V2))
        , U31^#(tt(), V2) -> activate^#(V2)
        , U51^#(tt(), M, N) -> isNat^#(activate(N))
        , U51^#(tt(), M, N) -> activate^#(M)
        , U51^#(tt(), M, N) -> activate^#(N)
        , U51^#(tt(), M, N) ->
          U52^#(isNat(activate(N)), activate(M), activate(N))
        , U52^#(tt(), M, N) -> activate^#(M)
        , U52^#(tt(), M, N) -> activate^#(N)
        , U71^#(tt(), M, N) -> isNat^#(activate(N))
        , U71^#(tt(), M, N) -> activate^#(M)
        , U71^#(tt(), M, N) -> activate^#(N)
        , U71^#(tt(), M, N) ->
          U72^#(isNat(activate(N)), activate(M), activate(N))
        , U72^#(tt(), M, N) -> activate^#(M)
        , U72^#(tt(), M, N) -> activate^#(N) }
      Weak Trs:
        { U11(tt(), V2) -> U12(isNat(activate(V2)))
        , U12(tt()) -> tt()
        , isNat(n__0()) -> tt()
        , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
        , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
        , activate(X) -> X
        , activate(n__0()) -> 0()
        , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
        , U21(tt()) -> tt()
        , U31(tt(), V2) -> U32(isNat(activate(V2)))
        , U32(tt()) -> tt()
        , s(X) -> n__s(X)
        , plus(X1, X2) -> n__plus(X1, X2)
        , 0() -> n__0()
        , x(X1, X2) -> n__x(X1, X2) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(n^4))
      
      We use the processor 'matrix interpretation of dimension 4' to
      orient following rules strictly.
      
      DPs: { activate^#(n__s(X)) -> c_6(activate^#(X)) }
      
      The induced complexity on above rules (modulo remaining rules) is
      YES(?,O(n^4)) . These rules are moved into the corresponding weak
      component(s).
      
      Sub-proof:
      ----------
        The following argument positions are usable:
          Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}, Uargs(c_7) = {1, 2}
        
        TcT has computed the following constructor-based matrix
        interpretation satisfying not(EDA).
        
                                [1]                                       
                [U11](x1, x2) = [0]                                       
                                [0]                                       
                                [0]                                       
                                                                          
                                [1]                                       
                         [tt] = [0]                                       
                                [0]                                       
                                [0]                                       
                                                                          
                                [1]                                       
                    [U12](x1) = [0]                                       
                                [0]                                       
                                [0]                                       
                                                                          
                                [0 0 0 0]      [1]                        
                  [isNat](x1) = [0 0 0 0] x1 + [0]                        
                                [0 0 0 0]      [0]                        
                                [1 0 0 1]      [1]                        
                                                                          
                                [1 0 0 0]      [0]                        
               [activate](x1) = [0 1 0 0] x1 + [0]                        
                                [0 0 1 0]      [0]                        
                                [1 0 0 1]      [0]                        
                                                                          
                                [1]                                       
                    [U21](x1) = [0]                                       
                                [0]                                       
                                [0]                                       
                                                                          
                                [1]                                       
                [U31](x1, x2) = [0]                                       
                                [0]                                       
                                [0]                                       
                                                                          
                                [1]                                       
                    [U32](x1) = [0]                                       
                                [0]                                       
                                [0]                                       
                                                                          
                                [1 0 0 0]      [1]                        
                      [s](x1) = [0 1 1 0] x1 + [1]                        
                                [0 0 0 0]      [0]                        
                                [1 1 0 1]      [0]                        
                                                                          
                                [1 0 0 0]      [1 0 0 0]      [1]         
               [plus](x1, x2) = [1 0 0 0] x1 + [1 0 1 0] x2 + [1]         
                                [0 0 1 0]      [0 1 0 0]      [0]         
                                [0 1 0 1]      [1 1 1 1]      [0]         
                                                                          
                                [0]                                       
                          [0] = [0]                                       
                                [0]                                       
                                [0]                                       
                                                                          
                                [1 0 0 0]      [1 0 0 0]      [1]         
                  [x](x1, x2) = [1 0 1 0] x1 + [1 0 1 0] x2 + [1]         
                                [0 1 0 0]      [0 0 0 0]      [0]         
                                [0 1 1 1]      [1 1 1 1]      [1]         
                                                                          
                                [0]                                       
                       [n__0] = [0]                                       
                                [0]                                       
                                [0]                                       
                                                                          
                                [1 0 0 0]      [1 0 0 0]      [1]         
            [n__plus](x1, x2) = [1 0 0 0] x1 + [1 0 1 0] x2 + [1]         
                                [0 0 1 0]      [0 1 0 0]      [0]         
                                [0 1 0 1]      [1 1 1 1]      [0]         
                                                                          
                                [1 0 0 0]      [1]                        
                   [n__s](x1) = [0 1 1 0] x1 + [1]                        
                                [0 0 0 0]      [0]                        
                                [1 1 0 1]      [0]                        
                                                                          
                                [1 0 0 0]      [1 0 0 0]      [1]         
               [n__x](x1, x2) = [1 0 1 0] x1 + [1 0 1 0] x2 + [1]         
                                [0 1 0 0]      [0 0 0 0]      [0]         
                                [0 1 1 1]      [1 1 1 1]      [1]         
                                                                          
                                [1 0 0 0]      [1]                        
              [U11^#](x1, x2) = [1 1 0 1] x2 + [1]                        
                                [0 0 0 0]      [0]                        
                                [0 0 0 0]      [0]                        
                                                                          
                                [1 0 0 0]      [1]                        
                [isNat^#](x1) = [0 1 0 1] x1 + [0]                        
                                [0 0 0 0]      [0]                        
                                [0 0 0 0]      [0]                        
                                                                          
                                [1 0 0 0]      [1]                        
             [activate^#](x1) = [0 0 0 0] x1 + [1]                        
                                [0 0 0 0]      [0]                        
                                [0 0 0 0]      [0]                        
                                                                          
                                [1 0 0 0]      [1 0 0 0]      [1]         
              [U31^#](x1, x2) = [0 0 0 0] x1 + [1 1 1 1] x2 + [1]         
                                [0 0 0 0]      [0 0 0 0]      [0]         
                                [0 0 0 0]      [0 0 0 0]      [0]         
                                                                          
                                [1 0 0 0]      [1 1 1 0]      [1 1 1      
                                                               0]      [1]
          [U51^#](x1, x2, x3) = [1 0 0 0] x1 + [1 1 1 1] x2 + [1 1 1      
                                                               1] x3 + [0]
                                [1 0 0 0]      [1 1 1 1]      [1 1 1      
                                                               1]      [1]
                                [1 0 0 0]      [1 1 1 1]      [1 1 1      
                                                               1]      [0]
                                                                          
                                [0 0 0 0]      [1 0 0 0]      [1 0 0      
                                                               0]      [1]
          [U52^#](x1, x2, x3) = [1 0 0 0] x1 + [0 0 0 0] x2 + [0 0 0      
                                                               0] x3 + [0]
                                [0 0 0 0]      [1 1 0 0]      [0 1 0      
                                                               0]      [0]
                                [0 0 0 0]      [1 1 0 0]      [1 0 0      
                                                               0]      [0]
                                                                          
                                [1 0 0 0]      [1 1 1 0]      [1 1 1      
                                                               0]      [1]
          [U71^#](x1, x2, x3) = [1 0 0 0] x1 + [1 1 1 1] x2 + [1 1 1      
                                                               1] x3 + [0]
                                [0 0 0 0]      [1 1 1 1]      [1 1 1      
                                                               1]      [1]
                                [1 0 0 0]      [1 1 1 1]      [1 1 1      
                                                               1]      [1]
                                                                          
                                [0 1 0 0]      [1 0 0 0]      [1 0 0      
                                                               0]      [1]
          [U72^#](x1, x2, x3) = [0 0 0 0] x1 + [0 0 0 0] x2 + [0 0 0      
                                                               0] x3 + [1]
                                [0 0 0 0]      [1 1 0 0]      [0 1 0      
                                                               0]      [0]
                                [0 0 0 0]      [1 1 0 0]      [1 0 0      
                                                               0]      [0]
                                                                          
                                [1 0 0 0]      [1 0 0 0]      [0]         
                [c_5](x1, x2) = [0 0 0 0] x1 + [0 0 0 0] x2 + [0]         
                                [0 0 0 0]      [0 0 0 0]      [0]         
                                [0 0 0 0]      [0 0 0 0]      [0]         
                                                                          
                                [1 0 0 0]      [0]                        
                    [c_6](x1) = [0 0 0 0] x1 + [0]                        
                                [0 0 0 0]      [0]                        
                                [0 0 0 0]      [0]                        
                                                                          
                                [1 0 0 0]      [1 0 0 0]      [0]         
                [c_7](x1, x2) = [0 0 0 0] x1 + [0 0 0 0] x2 + [0]         
                                [0 0 0 0]      [0 0 0 0]      [0]         
                                [0 0 0 0]      [0 0 0 0]      [0]         
        
        The order satisfies the following ordering constraints:
        
                        [U11(tt(), V2)] =  [1]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        >= [1]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        =  [U12(isNat(activate(V2)))]                           
                                                                                                
                            [U12(tt())] =  [1]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        >= [1]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        =  [tt()]                                               
                                                                                                
                        [isNat(n__0())] =  [1]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [1]                                                  
                                        >= [1]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        =  [tt()]                                               
                                                                                                
               [isNat(n__plus(V1, V2))] =  [0 0 0 0]      [0 0 0 0]      [1]                    
                                           [0 0 0 0] V2 + [0 0 0 0] V1 + [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [2 1 1 1]      [1 1 0 1]      [2]                    
                                        >= [1]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        =  [U11(isNat(activate(V1)), activate(V2))]             
                                                                                                
                      [isNat(n__s(V1))] =  [0 0 0 0]      [1]                                   
                                           [0 0 0 0] V1 + [0]                                   
                                           [0 0 0 0]      [0]                                   
                                           [2 1 0 1]      [2]                                   
                                        >= [1]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        =  [U21(isNat(activate(V1)))]                           
                                                                                                
                  [isNat(n__x(V1, V2))] =  [0 0 0 0]      [0 0 0 0]      [1]                    
                                           [0 0 0 0] V2 + [0 0 0 0] V1 + [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [2 1 1 1]      [1 1 1 1]      [3]                    
                                        >= [1]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        =  [U31(isNat(activate(V1)), activate(V2))]             
                                                                                                
                          [activate(X)] =  [1 0 0 0]     [0]                                    
                                           [0 1 0 0] X + [0]                                    
                                           [0 0 1 0]     [0]                                    
                                           [1 0 0 1]     [0]                                    
                                        >= [1 0 0 0]     [0]                                    
                                           [0 1 0 0] X + [0]                                    
                                           [0 0 1 0]     [0]                                    
                                           [0 0 0 1]     [0]                                    
                                        =  [X]                                                  
                                                                                                
                     [activate(n__0())] =  [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        >= [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        =  [0()]                                                
                                                                                                
            [activate(n__plus(X1, X2))] =  [1 0 0 0]      [1 0 0 0]      [1]                    
                                           [1 0 0 0] X1 + [1 0 1 0] X2 + [1]                    
                                           [0 0 1 0]      [0 1 0 0]      [0]                    
                                           [1 1 0 1]      [2 1 1 1]      [1]                    
                                        >= [1 0 0 0]      [1 0 0 0]      [1]                    
                                           [1 0 0 0] X1 + [1 0 1 0] X2 + [1]                    
                                           [0 0 1 0]      [0 1 0 0]      [0]                    
                                           [1 1 0 1]      [2 1 1 1]      [0]                    
                                        =  [plus(activate(X1), activate(X2))]                   
                                                                                                
                    [activate(n__s(X))] =  [1 0 0 0]     [1]                                    
                                           [0 1 1 0] X + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [2 1 0 1]     [1]                                    
                                        >= [1 0 0 0]     [1]                                    
                                           [0 1 1 0] X + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [2 1 0 1]     [0]                                    
                                        =  [s(activate(X))]                                     
                                                                                                
               [activate(n__x(X1, X2))] =  [1 0 0 0]      [1 0 0 0]      [1]                    
                                           [1 0 1 0] X1 + [1 0 1 0] X2 + [1]                    
                                           [0 1 0 0]      [0 0 0 0]      [0]                    
                                           [1 1 1 1]      [2 1 1 1]      [2]                    
                                        >= [1 0 0 0]      [1 0 0 0]      [1]                    
                                           [1 0 1 0] X1 + [1 0 1 0] X2 + [1]                    
                                           [0 1 0 0]      [0 0 0 0]      [0]                    
                                           [1 1 1 1]      [2 1 1 1]      [1]                    
                                        =  [x(activate(X1), activate(X2))]                      
                                                                                                
                            [U21(tt())] =  [1]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        >= [1]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        =  [tt()]                                               
                                                                                                
                        [U31(tt(), V2)] =  [1]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        >= [1]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        =  [U32(isNat(activate(V2)))]                           
                                                                                                
                            [U32(tt())] =  [1]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        >= [1]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        =  [tt()]                                               
                                                                                                
                                 [s(X)] =  [1 0 0 0]     [1]                                    
                                           [0 1 1 0] X + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [1 1 0 1]     [0]                                    
                                        >= [1 0 0 0]     [1]                                    
                                           [0 1 1 0] X + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [1 1 0 1]     [0]                                    
                                        =  [n__s(X)]                                            
                                                                                                
                         [plus(X1, X2)] =  [1 0 0 0]      [1 0 0 0]      [1]                    
                                           [1 0 0 0] X1 + [1 0 1 0] X2 + [1]                    
                                           [0 0 1 0]      [0 1 0 0]      [0]                    
                                           [0 1 0 1]      [1 1 1 1]      [0]                    
                                        >= [1 0 0 0]      [1 0 0 0]      [1]                    
                                           [1 0 0 0] X1 + [1 0 1 0] X2 + [1]                    
                                           [0 0 1 0]      [0 1 0 0]      [0]                    
                                           [0 1 0 1]      [1 1 1 1]      [0]                    
                                        =  [n__plus(X1, X2)]                                    
                                                                                                
                                  [0()] =  [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        >= [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                           [0]                                                  
                                        =  [n__0()]                                             
                                                                                                
                            [x(X1, X2)] =  [1 0 0 0]      [1 0 0 0]      [1]                    
                                           [1 0 1 0] X1 + [1 0 1 0] X2 + [1]                    
                                           [0 1 0 0]      [0 0 0 0]      [0]                    
                                           [0 1 1 1]      [1 1 1 1]      [1]                    
                                        >= [1 0 0 0]      [1 0 0 0]      [1]                    
                                           [1 0 1 0] X1 + [1 0 1 0] X2 + [1]                    
                                           [0 1 0 0]      [0 0 0 0]      [0]                    
                                           [0 1 1 1]      [1 1 1 1]      [1]                    
                                        =  [n__x(X1, X2)]                                       
                                                                                                
                      [U11^#(tt(), V2)] =  [1 0 0 0]      [1]                                   
                                           [1 1 0 1] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        >= [1 0 0 0]      [1]                                   
                                           [1 1 0 1] V2 + [0]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        =  [isNat^#(activate(V2))]                              
                                                                                                
                      [U11^#(tt(), V2)] =  [1 0 0 0]      [1]                                   
                                           [1 1 0 1] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        >= [1 0 0 0]      [1]                                   
                                           [0 0 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        =  [activate^#(V2)]                                     
                                                                                                
             [isNat^#(n__plus(V1, V2))] =  [1 0 0 0]      [1 0 0 0]      [2]                    
                                           [2 1 2 1] V2 + [1 1 0 1] V1 + [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                        >  [1 0 0 0]      [1]                                   
                                           [2 1 0 1] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        =  [U11^#(isNat(activate(V1)), activate(V2))]           
                                                                                                
             [isNat^#(n__plus(V1, V2))] =  [1 0 0 0]      [1 0 0 0]      [2]                    
                                           [2 1 2 1] V2 + [1 1 0 1] V1 + [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                        >  [1 0 0 0]      [1]                                   
                                           [1 1 0 1] V1 + [0]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        =  [isNat^#(activate(V1))]                              
                                                                                                
             [isNat^#(n__plus(V1, V2))] =  [1 0 0 0]      [1 0 0 0]      [2]                    
                                           [2 1 2 1] V2 + [1 1 0 1] V1 + [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                        >  [1 0 0 0]      [1]                                   
                                           [0 0 0 0] V1 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        =  [activate^#(V1)]                                     
                                                                                                
             [isNat^#(n__plus(V1, V2))] =  [1 0 0 0]      [1 0 0 0]      [2]                    
                                           [2 1 2 1] V2 + [1 1 0 1] V1 + [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                        >  [1 0 0 0]      [1]                                   
                                           [0 0 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        =  [activate^#(V2)]                                     
                                                                                                
                    [isNat^#(n__s(V1))] =  [1 0 0 0]      [2]                                   
                                           [1 2 1 1] V1 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        >  [1 0 0 0]      [1]                                   
                                           [1 1 0 1] V1 + [0]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        =  [isNat^#(activate(V1))]                              
                                                                                                
                    [isNat^#(n__s(V1))] =  [1 0 0 0]      [2]                                   
                                           [1 2 1 1] V1 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        >  [1 0 0 0]      [1]                                   
                                           [0 0 0 0] V1 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        =  [activate^#(V1)]                                     
                                                                                                
                [isNat^#(n__x(V1, V2))] =  [1 0 0 0]      [1 0 0 0]      [2]                    
                                           [2 1 2 1] V2 + [1 1 2 1] V1 + [2]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                        >  [1 0 0 0]      [1]                                   
                                           [1 1 0 1] V1 + [0]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        =  [isNat^#(activate(V1))]                              
                                                                                                
                [isNat^#(n__x(V1, V2))] =  [1 0 0 0]      [1 0 0 0]      [2]                    
                                           [2 1 2 1] V2 + [1 1 2 1] V1 + [2]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                        >  [1 0 0 0]      [1]                                   
                                           [0 0 0 0] V1 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        =  [activate^#(V1)]                                     
                                                                                                
                [isNat^#(n__x(V1, V2))] =  [1 0 0 0]      [1 0 0 0]      [2]                    
                                           [2 1 2 1] V2 + [1 1 2 1] V1 + [2]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                        >  [1 0 0 0]      [1]                                   
                                           [0 0 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        =  [activate^#(V2)]                                     
                                                                                                
                [isNat^#(n__x(V1, V2))] =  [1 0 0 0]      [1 0 0 0]      [2]                    
                                           [2 1 2 1] V2 + [1 1 2 1] V1 + [2]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                        >= [1 0 0 0]      [2]                                   
                                           [2 1 1 1] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        =  [U31^#(isNat(activate(V1)), activate(V2))]           
                                                                                                
          [activate^#(n__plus(X1, X2))] =  [1 0 0 0]      [1 0 0 0]      [2]                    
                                           [0 0 0 0] X1 + [0 0 0 0] X2 + [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                        >= [1 0 0 0]      [1 0 0 0]      [2]                    
                                           [0 0 0 0] X1 + [0 0 0 0] X2 + [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                        =  [c_5(activate^#(X1), activate^#(X2))]                
                                                                                                
                  [activate^#(n__s(X))] =  [1 0 0 0]     [2]                                    
                                           [0 0 0 0] X + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        >  [1 0 0 0]     [1]                                    
                                           [0 0 0 0] X + [0]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        =  [c_6(activate^#(X))]                                 
                                                                                                
             [activate^#(n__x(X1, X2))] =  [1 0 0 0]      [1 0 0 0]      [2]                    
                                           [0 0 0 0] X1 + [0 0 0 0] X2 + [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                        >= [1 0 0 0]      [1 0 0 0]      [2]                    
                                           [0 0 0 0] X1 + [0 0 0 0] X2 + [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                        =  [c_7(activate^#(X1), activate^#(X2))]                
                                                                                                
                      [U31^#(tt(), V2)] =  [1 0 0 0]      [2]                                   
                                           [1 1 1 1] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        >  [1 0 0 0]      [1]                                   
                                           [1 1 0 1] V2 + [0]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        =  [isNat^#(activate(V2))]                              
                                                                                                
                      [U31^#(tt(), V2)] =  [1 0 0 0]      [2]                                   
                                           [1 1 1 1] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        >  [1 0 0 0]      [1]                                   
                                           [0 0 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [0]                                   
                                        =  [activate^#(V2)]                                     
                                                                                                
                    [U51^#(tt(), M, N)] =  [1 1 1 0]     [1 1 1 0]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                        >  [1 0 0 0]     [1]                                    
                                           [1 1 0 1] N + [0]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        =  [isNat^#(activate(N))]                               
                                                                                                
                    [U51^#(tt(), M, N)] =  [1 1 1 0]     [1 1 1 0]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                        >  [1 0 0 0]     [1]                                    
                                           [0 0 0 0] M + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        =  [activate^#(M)]                                      
                                                                                                
                    [U51^#(tt(), M, N)] =  [1 1 1 0]     [1 1 1 0]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                        >  [1 0 0 0]     [1]                                    
                                           [0 0 0 0] N + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        =  [activate^#(N)]                                      
                                                                                                
                    [U51^#(tt(), M, N)] =  [1 1 1 0]     [1 1 1 0]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                        >  [1 0 0 0]     [1 0 0 0]     [1]                      
                                           [0 0 0 0] N + [0 0 0 0] M + [1]                      
                                           [0 1 0 0]     [1 1 0 0]     [0]                      
                                           [1 0 0 0]     [1 1 0 0]     [0]                      
                                        =  [U52^#(isNat(activate(N)), activate(M), activate(N))]
                                                                                                
                    [U52^#(tt(), M, N)] =  [1 0 0 0]     [1 0 0 0]     [1]                      
                                           [0 0 0 0] N + [0 0 0 0] M + [1]                      
                                           [0 1 0 0]     [1 1 0 0]     [0]                      
                                           [1 0 0 0]     [1 1 0 0]     [0]                      
                                        >= [1 0 0 0]     [1]                                    
                                           [0 0 0 0] M + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        =  [activate^#(M)]                                      
                                                                                                
                    [U52^#(tt(), M, N)] =  [1 0 0 0]     [1 0 0 0]     [1]                      
                                           [0 0 0 0] N + [0 0 0 0] M + [1]                      
                                           [0 1 0 0]     [1 1 0 0]     [0]                      
                                           [1 0 0 0]     [1 1 0 0]     [0]                      
                                        >= [1 0 0 0]     [1]                                    
                                           [0 0 0 0] N + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        =  [activate^#(N)]                                      
                                                                                                
                    [U71^#(tt(), M, N)] =  [1 1 1 0]     [1 1 1 0]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                        >  [1 0 0 0]     [1]                                    
                                           [1 1 0 1] N + [0]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        =  [isNat^#(activate(N))]                               
                                                                                                
                    [U71^#(tt(), M, N)] =  [1 1 1 0]     [1 1 1 0]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                        >  [1 0 0 0]     [1]                                    
                                           [0 0 0 0] M + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        =  [activate^#(M)]                                      
                                                                                                
                    [U71^#(tt(), M, N)] =  [1 1 1 0]     [1 1 1 0]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                        >  [1 0 0 0]     [1]                                    
                                           [0 0 0 0] N + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        =  [activate^#(N)]                                      
                                                                                                
                    [U71^#(tt(), M, N)] =  [1 1 1 0]     [1 1 1 0]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                        >  [1 0 0 0]     [1 0 0 0]     [1]                      
                                           [0 0 0 0] N + [0 0 0 0] M + [1]                      
                                           [0 1 0 0]     [1 1 0 0]     [0]                      
                                           [1 0 0 0]     [1 1 0 0]     [0]                      
                                        =  [U72^#(isNat(activate(N)), activate(M), activate(N))]
                                                                                                
                    [U72^#(tt(), M, N)] =  [1 0 0 0]     [1 0 0 0]     [1]                      
                                           [0 0 0 0] N + [0 0 0 0] M + [1]                      
                                           [0 1 0 0]     [1 1 0 0]     [0]                      
                                           [1 0 0 0]     [1 1 0 0]     [0]                      
                                        >= [1 0 0 0]     [1]                                    
                                           [0 0 0 0] M + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        =  [activate^#(M)]                                      
                                                                                                
                    [U72^#(tt(), M, N)] =  [1 0 0 0]     [1 0 0 0]     [1]                      
                                           [0 0 0 0] N + [0 0 0 0] M + [1]                      
                                           [0 1 0 0]     [1 1 0 0]     [0]                      
                                           [1 0 0 0]     [1 1 0 0]     [0]                      
                                        >= [1 0 0 0]     [1]                                    
                                           [0 0 0 0] N + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        =  [activate^#(N)]                                      
                                                                                                
      
      We return to the main proof.
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(n^4)).
      
      Strict DPs:
        { activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2)) }
      Weak DPs:
        { U11^#(tt(), V2) -> isNat^#(activate(V2))
        , U11^#(tt(), V2) -> activate^#(V2)
        , isNat^#(n__plus(V1, V2)) ->
          U11^#(isNat(activate(V1)), activate(V2))
        , isNat^#(n__plus(V1, V2)) -> isNat^#(activate(V1))
        , isNat^#(n__plus(V1, V2)) -> activate^#(V1)
        , isNat^#(n__plus(V1, V2)) -> activate^#(V2)
        , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
        , isNat^#(n__s(V1)) -> activate^#(V1)
        , isNat^#(n__x(V1, V2)) -> isNat^#(activate(V1))
        , isNat^#(n__x(V1, V2)) -> activate^#(V1)
        , isNat^#(n__x(V1, V2)) -> activate^#(V2)
        , isNat^#(n__x(V1, V2)) -> U31^#(isNat(activate(V1)), activate(V2))
        , activate^#(n__plus(X1, X2)) ->
          c_5(activate^#(X1), activate^#(X2))
        , activate^#(n__s(X)) -> c_6(activate^#(X))
        , U31^#(tt(), V2) -> isNat^#(activate(V2))
        , U31^#(tt(), V2) -> activate^#(V2)
        , U51^#(tt(), M, N) -> isNat^#(activate(N))
        , U51^#(tt(), M, N) -> activate^#(M)
        , U51^#(tt(), M, N) -> activate^#(N)
        , U51^#(tt(), M, N) ->
          U52^#(isNat(activate(N)), activate(M), activate(N))
        , U52^#(tt(), M, N) -> activate^#(M)
        , U52^#(tt(), M, N) -> activate^#(N)
        , U71^#(tt(), M, N) -> isNat^#(activate(N))
        , U71^#(tt(), M, N) -> activate^#(M)
        , U71^#(tt(), M, N) -> activate^#(N)
        , U71^#(tt(), M, N) ->
          U72^#(isNat(activate(N)), activate(M), activate(N))
        , U72^#(tt(), M, N) -> activate^#(M)
        , U72^#(tt(), M, N) -> activate^#(N) }
      Weak Trs:
        { U11(tt(), V2) -> U12(isNat(activate(V2)))
        , U12(tt()) -> tt()
        , isNat(n__0()) -> tt()
        , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
        , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
        , activate(X) -> X
        , activate(n__0()) -> 0()
        , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
        , U21(tt()) -> tt()
        , U31(tt(), V2) -> U32(isNat(activate(V2)))
        , U32(tt()) -> tt()
        , s(X) -> n__s(X)
        , plus(X1, X2) -> n__plus(X1, X2)
        , 0() -> n__0()
        , x(X1, X2) -> n__x(X1, X2) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(n^4))
      
      We use the processor 'matrix interpretation of dimension 4' to
      orient following rules strictly.
      
      DPs:
        { activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2)) }
      
      The induced complexity on above rules (modulo remaining rules) is
      YES(?,O(n^4)) . These rules are moved into the corresponding weak
      component(s).
      
      Sub-proof:
      ----------
        The following argument positions are usable:
          Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}, Uargs(c_7) = {1, 2}
        
        TcT has computed the following constructor-based matrix
        interpretation satisfying not(EDA).
        
                                [1 0 0 0]      [0]                        
                [U11](x1, x2) = [0 1 0 0] x1 + [0]                        
                                [0 1 0 0]      [0]                        
                                [0 0 0 0]      [1]                        
                                                                          
                                [1]                                       
                         [tt] = [1]                                       
                                [1]                                       
                                [1]                                       
                                                                          
                                [0 0 0 0]      [1]                        
                    [U12](x1) = [1 0 0 0] x1 + [0]                        
                                [1 0 0 0]      [0]                        
                                [0 0 0 0]      [1]                        
                                                                          
                                [0 0 0 0]      [1]                        
                  [isNat](x1) = [1 0 0 0] x1 + [0]                        
                                [0 1 0 0]      [1]                        
                                [0 0 0 1]      [1]                        
                                                                          
                                [1 0 0 0]      [0]                        
               [activate](x1) = [0 1 0 0] x1 + [0]                        
                                [0 0 1 0]      [0]                        
                                [0 0 0 1]      [0]                        
                                                                          
                                [0 0 0 0]      [1]                        
                    [U21](x1) = [0 1 0 0] x1 + [0]                        
                                [0 0 0 0]      [1]                        
                                [0 0 0 0]      [1]                        
                                                                          
                                [0 0 0 0]      [1]                        
                [U31](x1, x2) = [0 0 0 0] x1 + [1]                        
                                [0 0 0 0]      [1]                        
                                [1 0 0 0]      [0]                        
                                                                          
                                [0 0 0 0]      [1]                        
                    [U32](x1) = [1 0 0 0] x1 + [0]                        
                                [0 0 0 0]      [1]                        
                                [0 0 0 0]      [1]                        
                                                                          
                                [1 0 0 0]      [0]                        
                      [s](x1) = [0 1 1 0] x1 + [0]                        
                                [0 0 0 0]      [0]                        
                                [0 0 0 1]      [0]                        
                                                                          
                                [1 0 0 0]      [0 0 1 0]      [0]         
               [plus](x1, x2) = [1 1 1 0] x1 + [1 1 1 1] x2 + [0]         
                                [0 0 1 0]      [1 0 0 0]      [0]         
                                [1 0 0 1]      [1 0 0 1]      [0]         
                                                                          
                                [1]                                       
                          [0] = [1]                                       
                                [0]                                       
                                [1]                                       
                                                                          
                                [1 0 0 0]      [1 0 1 0]      [1]         
                  [x](x1, x2) = [0 1 1 1] x1 + [1 1 1 1] x2 + [1]         
                                [0 0 1 0]      [0 0 0 0]      [0]         
                                [1 0 0 1]      [0 0 1 1]      [1]         
                                                                          
                                [1]                                       
                       [n__0] = [1]                                       
                                [0]                                       
                                [1]                                       
                                                                          
                                [1 0 0 0]      [0 0 1 0]      [0]         
            [n__plus](x1, x2) = [1 1 1 0] x1 + [1 1 1 1] x2 + [0]         
                                [0 0 1 0]      [1 0 0 0]      [0]         
                                [1 0 0 1]      [1 0 0 1]      [0]         
                                                                          
                                [1 0 0 0]      [0]                        
                   [n__s](x1) = [0 1 1 0] x1 + [0]                        
                                [0 0 0 0]      [0]                        
                                [0 0 0 1]      [0]                        
                                                                          
                                [1 0 0 0]      [1 0 1 0]      [1]         
               [n__x](x1, x2) = [0 1 1 1] x1 + [1 1 1 1] x2 + [1]         
                                [0 0 1 0]      [0 0 0 0]      [0]         
                                [1 0 0 1]      [0 0 1 1]      [1]         
                                                                          
                                [0 0 0 0]      [1 0 0 1]      [0]         
              [U11^#](x1, x2) = [0 0 0 0] x1 + [1 1 0 0] x2 + [1]         
                                [0 0 0 0]      [0 0 0 0]      [0]         
                                [1 0 0 0]      [1 1 0 1]      [0]         
                                                                          
                                [0 0 0 1]      [0]                        
                [isNat^#](x1) = [1 1 0 0] x1 + [1]                        
                                [0 0 0 0]      [0]                        
                                [0 1 0 0]      [1]                        
                                                                          
                                [0 0 0 1]      [0]                        
             [activate^#](x1) = [0 0 0 0] x1 + [1]                        
                                [0 0 0 0]      [0]                        
                                [0 0 0 0]      [1]                        
                                                                          
                                [0 0 0 0]      [0 0 0 1]      [0]         
              [U31^#](x1, x2) = [1 0 1 0] x1 + [1 1 0 0] x2 + [0]         
                                [0 0 0 0]      [0 0 0 0]      [0]         
                                [0 0 1 1]      [1 1 0 1]      [0]         
                                                                          
                                [1 0 0 0]      [1 1 1 1]      [1 1 1      
                                                               1]      [1]
          [U51^#](x1, x2, x3) = [1 0 0 0] x1 + [1 1 1 1] x2 + [1 1 1      
                                                               1] x3 + [0]
                                [1 0 0 0]      [1 1 1 1]      [1 1 1      
                                                               1]      [1]
                                [1 0 0 0]      [1 1 1 1]      [1 1 1      
                                                               1]      [1]
                                                                          
                                [0 0 0 1]      [0 0 0 1]      [0]         
          [U52^#](x1, x2, x3) = [0 0 0 0] x2 + [0 0 0 0] x3 + [1]         
                                [0 0 0 0]      [0 0 0 0]      [0]         
                                [0 0 0 0]      [0 0 0 0]      [1]         
                                                                          
                                [1 0 0 0]      [1 1 1 1]      [1 1 1      
                                                               1]      [1]
          [U71^#](x1, x2, x3) = [1 0 0 0] x1 + [1 1 1 1] x2 + [1 1 1      
                                                               1] x3 + [0]
                                [1 0 0 0]      [1 1 1 1]      [1 1 1      
                                                               1]      [0]
                                [1 0 0 0]      [1 1 1 1]      [1 1 1      
                                                               1]      [1]
                                                                          
                                [0 0 0 0]      [0 0 0 1]      [0 0 0      
                                                               1]      [0]
          [U72^#](x1, x2, x3) = [0 0 0 0] x1 + [0 0 0 0] x2 + [0 0 0      
                                                               0] x3 + [1]
                                [0 0 0 0]      [0 0 0 0]      [0 0 0      
                                                               0]      [0]
                                [0 1 0 0]      [0 0 0 0]      [0 0 0      
                                                               0]      [0]
                                                                          
                                [1 0 0 0]      [1 0 0 0]      [0]         
                [c_5](x1, x2) = [0 0 0 0] x1 + [0 0 0 0] x2 + [0]         
                                [0 0 0 0]      [0 0 0 0]      [0]         
                                [0 0 0 0]      [0 0 0 0]      [0]         
                                                                          
                                [1 0 0 0]      [0]                        
                    [c_6](x1) = [0 0 0 0] x1 + [0]                        
                                [0 0 0 0]      [0]                        
                                [0 0 0 0]      [0]                        
                                                                          
                                [1 0 1 0]      [1 0 0 0]      [0]         
                [c_7](x1, x2) = [0 0 0 0] x1 + [0 0 0 0] x2 + [0]         
                                [0 0 0 0]      [0 0 0 0]      [0]         
                                [0 0 0 0]      [0 0 0 0]      [0]         
        
        The order satisfies the following ordering constraints:
        
                        [U11(tt(), V2)] =  [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        >= [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        =  [U12(isNat(activate(V2)))]                           
                                                                                                
                            [U12(tt())] =  [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        >= [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        =  [tt()]                                               
                                                                                                
                        [isNat(n__0())] =  [1]                                                  
                                           [1]                                                  
                                           [2]                                                  
                                           [2]                                                  
                                        >= [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        =  [tt()]                                               
                                                                                                
               [isNat(n__plus(V1, V2))] =  [0 0 0 0]      [0 0 0 0]      [1]                    
                                           [0 0 1 0] V2 + [1 0 0 0] V1 + [0]                    
                                           [1 1 1 1]      [1 1 1 0]      [1]                    
                                           [1 0 0 1]      [1 0 0 1]      [1]                    
                                        >= [0 0 0 0]      [1]                                   
                                           [1 0 0 0] V1 + [0]                                   
                                           [1 0 0 0]      [0]                                   
                                           [0 0 0 0]      [1]                                   
                                        =  [U11(isNat(activate(V1)), activate(V2))]             
                                                                                                
                      [isNat(n__s(V1))] =  [0 0 0 0]      [1]                                   
                                           [1 0 0 0] V1 + [0]                                   
                                           [0 1 1 0]      [1]                                   
                                           [0 0 0 1]      [1]                                   
                                        >= [0 0 0 0]      [1]                                   
                                           [1 0 0 0] V1 + [0]                                   
                                           [0 0 0 0]      [1]                                   
                                           [0 0 0 0]      [1]                                   
                                        =  [U21(isNat(activate(V1)))]                           
                                                                                                
                  [isNat(n__x(V1, V2))] =  [0 0 0 0]      [0 0 0 0]      [1]                    
                                           [1 0 1 0] V2 + [1 0 0 0] V1 + [1]                    
                                           [1 1 1 1]      [0 1 1 1]      [2]                    
                                           [0 0 1 1]      [1 0 0 1]      [2]                    
                                        >= [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        =  [U31(isNat(activate(V1)), activate(V2))]             
                                                                                                
                          [activate(X)] =  [1 0 0 0]     [0]                                    
                                           [0 1 0 0] X + [0]                                    
                                           [0 0 1 0]     [0]                                    
                                           [0 0 0 1]     [0]                                    
                                        >= [1 0 0 0]     [0]                                    
                                           [0 1 0 0] X + [0]                                    
                                           [0 0 1 0]     [0]                                    
                                           [0 0 0 1]     [0]                                    
                                        =  [X]                                                  
                                                                                                
                     [activate(n__0())] =  [1]                                                  
                                           [1]                                                  
                                           [0]                                                  
                                           [1]                                                  
                                        >= [1]                                                  
                                           [1]                                                  
                                           [0]                                                  
                                           [1]                                                  
                                        =  [0()]                                                
                                                                                                
            [activate(n__plus(X1, X2))] =  [1 0 0 0]      [0 0 1 0]      [0]                    
                                           [1 1 1 0] X1 + [1 1 1 1] X2 + [0]                    
                                           [0 0 1 0]      [1 0 0 0]      [0]                    
                                           [1 0 0 1]      [1 0 0 1]      [0]                    
                                        >= [1 0 0 0]      [0 0 1 0]      [0]                    
                                           [1 1 1 0] X1 + [1 1 1 1] X2 + [0]                    
                                           [0 0 1 0]      [1 0 0 0]      [0]                    
                                           [1 0 0 1]      [1 0 0 1]      [0]                    
                                        =  [plus(activate(X1), activate(X2))]                   
                                                                                                
                    [activate(n__s(X))] =  [1 0 0 0]     [0]                                    
                                           [0 1 1 0] X + [0]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 1]     [0]                                    
                                        >= [1 0 0 0]     [0]                                    
                                           [0 1 1 0] X + [0]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 1]     [0]                                    
                                        =  [s(activate(X))]                                     
                                                                                                
               [activate(n__x(X1, X2))] =  [1 0 0 0]      [1 0 1 0]      [1]                    
                                           [0 1 1 1] X1 + [1 1 1 1] X2 + [1]                    
                                           [0 0 1 0]      [0 0 0 0]      [0]                    
                                           [1 0 0 1]      [0 0 1 1]      [1]                    
                                        >= [1 0 0 0]      [1 0 1 0]      [1]                    
                                           [0 1 1 1] X1 + [1 1 1 1] X2 + [1]                    
                                           [0 0 1 0]      [0 0 0 0]      [0]                    
                                           [1 0 0 1]      [0 0 1 1]      [1]                    
                                        =  [x(activate(X1), activate(X2))]                      
                                                                                                
                            [U21(tt())] =  [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        >= [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        =  [tt()]                                               
                                                                                                
                        [U31(tt(), V2)] =  [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        >= [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        =  [U32(isNat(activate(V2)))]                           
                                                                                                
                            [U32(tt())] =  [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        >= [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                           [1]                                                  
                                        =  [tt()]                                               
                                                                                                
                                 [s(X)] =  [1 0 0 0]     [0]                                    
                                           [0 1 1 0] X + [0]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 1]     [0]                                    
                                        >= [1 0 0 0]     [0]                                    
                                           [0 1 1 0] X + [0]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 1]     [0]                                    
                                        =  [n__s(X)]                                            
                                                                                                
                         [plus(X1, X2)] =  [1 0 0 0]      [0 0 1 0]      [0]                    
                                           [1 1 1 0] X1 + [1 1 1 1] X2 + [0]                    
                                           [0 0 1 0]      [1 0 0 0]      [0]                    
                                           [1 0 0 1]      [1 0 0 1]      [0]                    
                                        >= [1 0 0 0]      [0 0 1 0]      [0]                    
                                           [1 1 1 0] X1 + [1 1 1 1] X2 + [0]                    
                                           [0 0 1 0]      [1 0 0 0]      [0]                    
                                           [1 0 0 1]      [1 0 0 1]      [0]                    
                                        =  [n__plus(X1, X2)]                                    
                                                                                                
                                  [0()] =  [1]                                                  
                                           [1]                                                  
                                           [0]                                                  
                                           [1]                                                  
                                        >= [1]                                                  
                                           [1]                                                  
                                           [0]                                                  
                                           [1]                                                  
                                        =  [n__0()]                                             
                                                                                                
                            [x(X1, X2)] =  [1 0 0 0]      [1 0 1 0]      [1]                    
                                           [0 1 1 1] X1 + [1 1 1 1] X2 + [1]                    
                                           [0 0 1 0]      [0 0 0 0]      [0]                    
                                           [1 0 0 1]      [0 0 1 1]      [1]                    
                                        >= [1 0 0 0]      [1 0 1 0]      [1]                    
                                           [0 1 1 1] X1 + [1 1 1 1] X2 + [1]                    
                                           [0 0 1 0]      [0 0 0 0]      [0]                    
                                           [1 0 0 1]      [0 0 1 1]      [1]                    
                                        =  [n__x(X1, X2)]                                       
                                                                                                
                      [U11^#(tt(), V2)] =  [1 0 0 1]      [0]                                   
                                           [1 1 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [1 1 0 1]      [1]                                   
                                        >= [0 0 0 1]      [0]                                   
                                           [1 1 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 1 0 0]      [1]                                   
                                        =  [isNat^#(activate(V2))]                              
                                                                                                
                      [U11^#(tt(), V2)] =  [1 0 0 1]      [0]                                   
                                           [1 1 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [1 1 0 1]      [1]                                   
                                        >= [0 0 0 1]      [0]                                   
                                           [0 0 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [1]                                   
                                        =  [activate^#(V2)]                                     
                                                                                                
             [isNat^#(n__plus(V1, V2))] =  [1 0 0 1]      [1 0 0 1]      [0]                    
                                           [1 1 2 1] V2 + [2 1 1 0] V1 + [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [1 1 1 1]      [1 1 1 0]      [1]                    
                                        >= [1 0 0 1]      [0]                                   
                                           [1 1 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [1 1 0 1]      [1]                                   
                                        =  [U11^#(isNat(activate(V1)), activate(V2))]           
                                                                                                
             [isNat^#(n__plus(V1, V2))] =  [1 0 0 1]      [1 0 0 1]      [0]                    
                                           [1 1 2 1] V2 + [2 1 1 0] V1 + [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [1 1 1 1]      [1 1 1 0]      [1]                    
                                        >= [0 0 0 1]      [0]                                   
                                           [1 1 0 0] V1 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 1 0 0]      [1]                                   
                                        =  [isNat^#(activate(V1))]                              
                                                                                                
             [isNat^#(n__plus(V1, V2))] =  [1 0 0 1]      [1 0 0 1]      [0]                    
                                           [1 1 2 1] V2 + [2 1 1 0] V1 + [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [1 1 1 1]      [1 1 1 0]      [1]                    
                                        >= [0 0 0 1]      [0]                                   
                                           [0 0 0 0] V1 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [1]                                   
                                        =  [activate^#(V1)]                                     
                                                                                                
             [isNat^#(n__plus(V1, V2))] =  [1 0 0 1]      [1 0 0 1]      [0]                    
                                           [1 1 2 1] V2 + [2 1 1 0] V1 + [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [1 1 1 1]      [1 1 1 0]      [1]                    
                                        >= [0 0 0 1]      [0]                                   
                                           [0 0 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [1]                                   
                                        =  [activate^#(V2)]                                     
                                                                                                
                    [isNat^#(n__s(V1))] =  [0 0 0 1]      [0]                                   
                                           [1 1 1 0] V1 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 1 1 0]      [1]                                   
                                        >= [0 0 0 1]      [0]                                   
                                           [1 1 0 0] V1 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 1 0 0]      [1]                                   
                                        =  [isNat^#(activate(V1))]                              
                                                                                                
                    [isNat^#(n__s(V1))] =  [0 0 0 1]      [0]                                   
                                           [1 1 1 0] V1 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 1 1 0]      [1]                                   
                                        >= [0 0 0 1]      [0]                                   
                                           [0 0 0 0] V1 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [1]                                   
                                        =  [activate^#(V1)]                                     
                                                                                                
                [isNat^#(n__x(V1, V2))] =  [0 0 1 1]      [1 0 0 1]      [1]                    
                                           [2 1 2 1] V2 + [1 1 1 1] V1 + [3]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [1 1 1 1]      [0 1 1 1]      [2]                    
                                        >  [0 0 0 1]      [0]                                   
                                           [1 1 0 0] V1 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 1 0 0]      [1]                                   
                                        =  [isNat^#(activate(V1))]                              
                                                                                                
                [isNat^#(n__x(V1, V2))] =  [0 0 1 1]      [1 0 0 1]      [1]                    
                                           [2 1 2 1] V2 + [1 1 1 1] V1 + [3]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [1 1 1 1]      [0 1 1 1]      [2]                    
                                        >  [0 0 0 1]      [0]                                   
                                           [0 0 0 0] V1 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [1]                                   
                                        =  [activate^#(V1)]                                     
                                                                                                
                [isNat^#(n__x(V1, V2))] =  [0 0 1 1]      [1 0 0 1]      [1]                    
                                           [2 1 2 1] V2 + [1 1 1 1] V1 + [3]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [1 1 1 1]      [0 1 1 1]      [2]                    
                                        >  [0 0 0 1]      [0]                                   
                                           [0 0 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [1]                                   
                                        =  [activate^#(V2)]                                     
                                                                                                
                [isNat^#(n__x(V1, V2))] =  [0 0 1 1]      [1 0 0 1]      [1]                    
                                           [2 1 2 1] V2 + [1 1 1 1] V1 + [3]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [1 1 1 1]      [0 1 1 1]      [2]                    
                                        >  [0 0 0 1]      [0 0 0 0]      [0]                    
                                           [1 1 0 0] V2 + [0 1 0 0] V1 + [2]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [1 1 0 1]      [0 1 0 1]      [2]                    
                                        =  [U31^#(isNat(activate(V1)), activate(V2))]           
                                                                                                
          [activate^#(n__plus(X1, X2))] =  [1 0 0 1]      [1 0 0 1]      [0]                    
                                           [0 0 0 0] X1 + [0 0 0 0] X2 + [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [1]                    
                                        >= [0 0 0 1]      [0 0 0 1]      [0]                    
                                           [0 0 0 0] X1 + [0 0 0 0] X2 + [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                        =  [c_5(activate^#(X1), activate^#(X2))]                
                                                                                                
                  [activate^#(n__s(X))] =  [0 0 0 1]     [0]                                    
                                           [0 0 0 0] X + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [1]                                    
                                        >= [0 0 0 1]     [0]                                    
                                           [0 0 0 0] X + [0]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [0]                                    
                                        =  [c_6(activate^#(X))]                                 
                                                                                                
             [activate^#(n__x(X1, X2))] =  [1 0 0 1]      [0 0 1 1]      [1]                    
                                           [0 0 0 0] X1 + [0 0 0 0] X2 + [1]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [1]                    
                                        >  [0 0 0 1]      [0 0 0 1]      [0]                    
                                           [0 0 0 0] X1 + [0 0 0 0] X2 + [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                           [0 0 0 0]      [0 0 0 0]      [0]                    
                                        =  [c_7(activate^#(X1), activate^#(X2))]                
                                                                                                
                      [U31^#(tt(), V2)] =  [0 0 0 1]      [0]                                   
                                           [1 1 0 0] V2 + [2]                                   
                                           [0 0 0 0]      [0]                                   
                                           [1 1 0 1]      [2]                                   
                                        >= [0 0 0 1]      [0]                                   
                                           [1 1 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 1 0 0]      [1]                                   
                                        =  [isNat^#(activate(V2))]                              
                                                                                                
                      [U31^#(tt(), V2)] =  [0 0 0 1]      [0]                                   
                                           [1 1 0 0] V2 + [2]                                   
                                           [0 0 0 0]      [0]                                   
                                           [1 1 0 1]      [2]                                   
                                        >= [0 0 0 1]      [0]                                   
                                           [0 0 0 0] V2 + [1]                                   
                                           [0 0 0 0]      [0]                                   
                                           [0 0 0 0]      [1]                                   
                                        =  [activate^#(V2)]                                     
                                                                                                
                    [U51^#(tt(), M, N)] =  [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                        >  [0 0 0 1]     [0]                                    
                                           [1 1 0 0] N + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 1 0 0]     [1]                                    
                                        =  [isNat^#(activate(N))]                               
                                                                                                
                    [U51^#(tt(), M, N)] =  [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                        >  [0 0 0 1]     [0]                                    
                                           [0 0 0 0] M + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [1]                                    
                                        =  [activate^#(M)]                                      
                                                                                                
                    [U51^#(tt(), M, N)] =  [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                        >  [0 0 0 1]     [0]                                    
                                           [0 0 0 0] N + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [1]                                    
                                        =  [activate^#(N)]                                      
                                                                                                
                    [U51^#(tt(), M, N)] =  [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                        >  [0 0 0 1]     [0 0 0 1]     [0]                      
                                           [0 0 0 0] N + [0 0 0 0] M + [1]                      
                                           [0 0 0 0]     [0 0 0 0]     [0]                      
                                           [0 0 0 0]     [0 0 0 0]     [1]                      
                                        =  [U52^#(isNat(activate(N)), activate(M), activate(N))]
                                                                                                
                    [U52^#(tt(), M, N)] =  [0 0 0 1]     [0 0 0 1]     [0]                      
                                           [0 0 0 0] N + [0 0 0 0] M + [1]                      
                                           [0 0 0 0]     [0 0 0 0]     [0]                      
                                           [0 0 0 0]     [0 0 0 0]     [1]                      
                                        >= [0 0 0 1]     [0]                                    
                                           [0 0 0 0] M + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [1]                                    
                                        =  [activate^#(M)]                                      
                                                                                                
                    [U52^#(tt(), M, N)] =  [0 0 0 1]     [0 0 0 1]     [0]                      
                                           [0 0 0 0] N + [0 0 0 0] M + [1]                      
                                           [0 0 0 0]     [0 0 0 0]     [0]                      
                                           [0 0 0 0]     [0 0 0 0]     [1]                      
                                        >= [0 0 0 1]     [0]                                    
                                           [0 0 0 0] N + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [1]                                    
                                        =  [activate^#(N)]                                      
                                                                                                
                    [U71^#(tt(), M, N)] =  [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                        >  [0 0 0 1]     [0]                                    
                                           [1 1 0 0] N + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 1 0 0]     [1]                                    
                                        =  [isNat^#(activate(N))]                               
                                                                                                
                    [U71^#(tt(), M, N)] =  [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                        >  [0 0 0 1]     [0]                                    
                                           [0 0 0 0] M + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [1]                                    
                                        =  [activate^#(M)]                                      
                                                                                                
                    [U71^#(tt(), M, N)] =  [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                        >  [0 0 0 1]     [0]                                    
                                           [0 0 0 0] N + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [1]                                    
                                        =  [activate^#(N)]                                      
                                                                                                
                    [U71^#(tt(), M, N)] =  [1 1 1 1]     [1 1 1 1]     [2]                      
                                           [1 1 1 1] N + [1 1 1 1] M + [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [1]                      
                                           [1 1 1 1]     [1 1 1 1]     [2]                      
                                        >  [0 0 0 1]     [0 0 0 1]     [0]                      
                                           [0 0 0 0] N + [0 0 0 0] M + [1]                      
                                           [0 0 0 0]     [0 0 0 0]     [0]                      
                                           [1 0 0 0]     [0 0 0 0]     [0]                      
                                        =  [U72^#(isNat(activate(N)), activate(M), activate(N))]
                                                                                                
                    [U72^#(tt(), M, N)] =  [0 0 0 1]     [0 0 0 1]     [0]                      
                                           [0 0 0 0] N + [0 0 0 0] M + [1]                      
                                           [0 0 0 0]     [0 0 0 0]     [0]                      
                                           [0 0 0 0]     [0 0 0 0]     [1]                      
                                        >= [0 0 0 1]     [0]                                    
                                           [0 0 0 0] M + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [1]                                    
                                        =  [activate^#(M)]                                      
                                                                                                
                    [U72^#(tt(), M, N)] =  [0 0 0 1]     [0 0 0 1]     [0]                      
                                           [0 0 0 0] N + [0 0 0 0] M + [1]                      
                                           [0 0 0 0]     [0 0 0 0]     [0]                      
                                           [0 0 0 0]     [0 0 0 0]     [1]                      
                                        >= [0 0 0 1]     [0]                                    
                                           [0 0 0 0] N + [1]                                    
                                           [0 0 0 0]     [0]                                    
                                           [0 0 0 0]     [1]                                    
                                        =  [activate^#(N)]                                      
                                                                                                
      
      We return to the main proof.
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Weak DPs:
        { U11^#(tt(), V2) -> isNat^#(activate(V2))
        , U11^#(tt(), V2) -> activate^#(V2)
        , isNat^#(n__plus(V1, V2)) ->
          U11^#(isNat(activate(V1)), activate(V2))
        , isNat^#(n__plus(V1, V2)) -> isNat^#(activate(V1))
        , isNat^#(n__plus(V1, V2)) -> activate^#(V1)
        , isNat^#(n__plus(V1, V2)) -> activate^#(V2)
        , isNat^#(n__s(V1)) -> isNat^#(activate(V1))
        , isNat^#(n__s(V1)) -> activate^#(V1)
        , isNat^#(n__x(V1, V2)) -> isNat^#(activate(V1))
        , isNat^#(n__x(V1, V2)) -> activate^#(V1)
        , isNat^#(n__x(V1, V2)) -> activate^#(V2)
        , isNat^#(n__x(V1, V2)) -> U31^#(isNat(activate(V1)), activate(V2))
        , activate^#(n__plus(X1, X2)) ->
          c_5(activate^#(X1), activate^#(X2))
        , activate^#(n__s(X)) -> c_6(activate^#(X))
        , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2))
        , U31^#(tt(), V2) -> isNat^#(activate(V2))
        , U31^#(tt(), V2) -> activate^#(V2)
        , U51^#(tt(), M, N) -> isNat^#(activate(N))
        , U51^#(tt(), M, N) -> activate^#(M)
        , U51^#(tt(), M, N) -> activate^#(N)
        , U51^#(tt(), M, N) ->
          U52^#(isNat(activate(N)), activate(M), activate(N))
        , U52^#(tt(), M, N) -> activate^#(M)
        , U52^#(tt(), M, N) -> activate^#(N)
        , U71^#(tt(), M, N) -> isNat^#(activate(N))
        , U71^#(tt(), M, N) -> activate^#(M)
        , U71^#(tt(), M, N) -> activate^#(N)
        , U71^#(tt(), M, N) ->
          U72^#(isNat(activate(N)), activate(M), activate(N))
        , U72^#(tt(), M, N) -> activate^#(M)
        , U72^#(tt(), M, N) -> activate^#(N) }
      Weak Trs:
        { U11(tt(), V2) -> U12(isNat(activate(V2)))
        , U12(tt()) -> tt()
        , isNat(n__0()) -> tt()
        , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
        , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
        , activate(X) -> X
        , activate(n__0()) -> 0()
        , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
        , U21(tt()) -> tt()
        , U31(tt(), V2) -> U32(isNat(activate(V2)))
        , U32(tt()) -> tt()
        , s(X) -> n__s(X)
        , plus(X1, X2) -> n__plus(X1, X2)
        , 0() -> n__0()
        , x(X1, X2) -> n__x(X1, X2) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      Empty rules are trivially bounded
   
   S) We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Strict DPs:
        { U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M)) }
      Weak DPs:
        { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
        , isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)),
              activate^#(V1),
              activate^#(V2))
        , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
        , isNat^#(n__x(V1, V2)) ->
          c_4(U31^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)),
              activate^#(V1),
              activate^#(V2))
        , activate^#(n__plus(X1, X2)) ->
          c_5(activate^#(X1), activate^#(X2))
        , activate^#(n__s(X)) -> c_6(activate^#(X))
        , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2))
        , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
        , U51^#(tt(), M, N) ->
          c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
               isNat^#(activate(N)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
        , U71^#(tt(), M, N) ->
          c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
               isNat^#(activate(N)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
        , U72^#(tt(), M, N) ->
          c_13(activate^#(N), activate^#(M), activate^#(N)) }
      Weak Trs:
        { U11(tt(), V2) -> U12(isNat(activate(V2)))
        , U12(tt()) -> tt()
        , isNat(n__0()) -> tt()
        , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
        , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
        , activate(X) -> X
        , activate(n__0()) -> 0()
        , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
        , U21(tt()) -> tt()
        , U31(tt(), V2) -> U32(isNat(activate(V2)))
        , U32(tt()) -> tt()
        , s(X) -> n__s(X)
        , plus(X1, X2) -> n__plus(X1, X2)
        , 0() -> n__0()
        , x(X1, X2) -> n__x(X1, X2) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      The following weak DPs constitute a sub-graph of the DG that is
      closed under successors. The DPs are removed.
      
      { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
      , isNat^#(n__plus(V1, V2)) ->
        c_2(U11^#(isNat(activate(V1)), activate(V2)),
            isNat^#(activate(V1)),
            activate^#(V1),
            activate^#(V2))
      , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
      , isNat^#(n__x(V1, V2)) ->
        c_4(U31^#(isNat(activate(V1)), activate(V2)),
            isNat^#(activate(V1)),
            activate^#(V1),
            activate^#(V2))
      , activate^#(n__plus(X1, X2)) ->
        c_5(activate^#(X1), activate^#(X2))
      , activate^#(n__s(X)) -> c_6(activate^#(X))
      , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2))
      , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
      , U71^#(tt(), M, N) ->
        c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
             isNat^#(activate(N)),
             activate^#(N),
             activate^#(M),
             activate^#(N))
      , U72^#(tt(), M, N) ->
        c_13(activate^#(N), activate^#(M), activate^#(N)) }
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Strict DPs:
        { U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M)) }
      Weak DPs:
        { U51^#(tt(), M, N) ->
          c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
               isNat^#(activate(N)),
               activate^#(N),
               activate^#(M),
               activate^#(N)) }
      Weak Trs:
        { U11(tt(), V2) -> U12(isNat(activate(V2)))
        , U12(tt()) -> tt()
        , isNat(n__0()) -> tt()
        , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
        , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
        , activate(X) -> X
        , activate(n__0()) -> 0()
        , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
        , U21(tt()) -> tt()
        , U31(tt(), V2) -> U32(isNat(activate(V2)))
        , U32(tt()) -> tt()
        , s(X) -> n__s(X)
        , plus(X1, X2) -> n__plus(X1, X2)
        , 0() -> n__0()
        , x(X1, X2) -> n__x(X1, X2) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      Due to missing edges in the dependency-graph, the right-hand sides
      of following rules could be simplified:
      
        { U51^#(tt(), M, N) ->
          c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
               isNat^#(activate(N)),
               activate^#(N),
               activate^#(M),
               activate^#(N))
        , U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M)) }
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Strict DPs: { U52^#(tt(), M, N) -> c_1() }
      Weak DPs:
        { U51^#(tt(), M, N) ->
          c_2(U52^#(isNat(activate(N)), activate(M), activate(N))) }
      Weak Trs:
        { U11(tt(), V2) -> U12(isNat(activate(V2)))
        , U12(tt()) -> tt()
        , isNat(n__0()) -> tt()
        , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
        , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
        , activate(X) -> X
        , activate(n__0()) -> 0()
        , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
        , U21(tt()) -> tt()
        , U31(tt(), V2) -> U32(isNat(activate(V2)))
        , U32(tt()) -> tt()
        , s(X) -> n__s(X)
        , plus(X1, X2) -> n__plus(X1, X2)
        , 0() -> n__0()
        , x(X1, X2) -> n__x(X1, X2) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      The dependency graph contains no loops, we remove all dependency
      pairs.
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Weak Trs:
        { U11(tt(), V2) -> U12(isNat(activate(V2)))
        , U12(tt()) -> tt()
        , isNat(n__0()) -> tt()
        , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
        , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
        , activate(X) -> X
        , activate(n__0()) -> 0()
        , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
        , U21(tt()) -> tt()
        , U31(tt(), V2) -> U32(isNat(activate(V2)))
        , U32(tt()) -> tt()
        , s(X) -> n__s(X)
        , plus(X1, X2) -> n__plus(X1, X2)
        , 0() -> n__0()
        , x(X1, X2) -> n__x(X1, X2) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      No rule is usable, rules are removed from the input problem.
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Rules: Empty
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      Empty rules are trivially bounded
   

S) We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(n^1)).
   
   Strict DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
     , isNat^#(n__x(V1, V2)) ->
       c_4(U31^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
     , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
     , U71^#(tt(), M, N) ->
       c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
            isNat^#(activate(N)),
            activate^#(N),
            activate^#(M),
            activate^#(N))
     , U72^#(tt(), M, N) ->
       c_13(activate^#(N), activate^#(M), activate^#(N)) }
   Weak DPs:
     { activate^#(n__plus(X1, X2)) ->
       c_5(activate^#(X1), activate^#(X2))
     , activate^#(n__s(X)) -> c_6(activate^#(X))
     , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2))
     , U51^#(tt(), M, N) ->
       c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
            isNat^#(activate(N)),
            activate^#(N),
            activate^#(M),
            activate^#(N))
     , U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M)) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(n^1))
   
   We estimate the number of application of {7} by applications of
   Pre({7}) = {6}. Here rules are labeled as follows:
   
     DPs:
       { 1: U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
       , 2: isNat^#(n__plus(V1, V2)) ->
            c_2(U11^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)),
                activate^#(V1),
                activate^#(V2))
       , 3: isNat^#(n__s(V1)) ->
            c_3(isNat^#(activate(V1)), activate^#(V1))
       , 4: isNat^#(n__x(V1, V2)) ->
            c_4(U31^#(isNat(activate(V1)), activate(V2)),
                isNat^#(activate(V1)),
                activate^#(V1),
                activate^#(V2))
       , 5: U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
       , 6: U71^#(tt(), M, N) ->
            c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
                 isNat^#(activate(N)),
                 activate^#(N),
                 activate^#(M),
                 activate^#(N))
       , 7: U72^#(tt(), M, N) ->
            c_13(activate^#(N), activate^#(M), activate^#(N))
       , 8: activate^#(n__plus(X1, X2)) ->
            c_5(activate^#(X1), activate^#(X2))
       , 9: activate^#(n__s(X)) -> c_6(activate^#(X))
       , 10: activate^#(n__x(X1, X2)) ->
             c_7(activate^#(X1), activate^#(X2))
       , 11: U51^#(tt(), M, N) ->
             c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
                  isNat^#(activate(N)),
                  activate^#(N),
                  activate^#(M),
                  activate^#(N))
       , 12: U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M)) }
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(n^1)).
   
   Strict DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
     , isNat^#(n__x(V1, V2)) ->
       c_4(U31^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
     , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
     , U71^#(tt(), M, N) ->
       c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
            isNat^#(activate(N)),
            activate^#(N),
            activate^#(M),
            activate^#(N)) }
   Weak DPs:
     { activate^#(n__plus(X1, X2)) ->
       c_5(activate^#(X1), activate^#(X2))
     , activate^#(n__s(X)) -> c_6(activate^#(X))
     , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2))
     , U51^#(tt(), M, N) ->
       c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
            isNat^#(activate(N)),
            activate^#(N),
            activate^#(M),
            activate^#(N))
     , U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M))
     , U72^#(tt(), M, N) ->
       c_13(activate^#(N), activate^#(M), activate^#(N)) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(n^1))
   
   The following weak DPs constitute a sub-graph of the DG that is
   closed under successors. The DPs are removed.
   
   { activate^#(n__plus(X1, X2)) ->
     c_5(activate^#(X1), activate^#(X2))
   , activate^#(n__s(X)) -> c_6(activate^#(X))
   , activate^#(n__x(X1, X2)) -> c_7(activate^#(X1), activate^#(X2))
   , U52^#(tt(), M, N) -> c_11(activate^#(N), activate^#(M))
   , U72^#(tt(), M, N) ->
     c_13(activate^#(N), activate^#(M), activate^#(N)) }
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(n^1)).
   
   Strict DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
     , isNat^#(n__x(V1, V2)) ->
       c_4(U31^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
     , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
     , U71^#(tt(), M, N) ->
       c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
            isNat^#(activate(N)),
            activate^#(N),
            activate^#(M),
            activate^#(N)) }
   Weak DPs:
     { U51^#(tt(), M, N) ->
       c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
            isNat^#(activate(N)),
            activate^#(N),
            activate^#(M),
            activate^#(N)) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(n^1))
   
   Due to missing edges in the dependency-graph, the right-hand sides
   of following rules could be simplified:
   
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)), activate^#(V2))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)), activate^#(V1))
     , isNat^#(n__x(V1, V2)) ->
       c_4(U31^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)),
           activate^#(V1),
           activate^#(V2))
     , U31^#(tt(), V2) -> c_8(isNat^#(activate(V2)), activate^#(V2))
     , U51^#(tt(), M, N) ->
       c_10(U52^#(isNat(activate(N)), activate(M), activate(N)),
            isNat^#(activate(N)),
            activate^#(N),
            activate^#(M),
            activate^#(N))
     , U71^#(tt(), M, N) ->
       c_12(U72^#(isNat(activate(N)), activate(M), activate(N)),
            isNat^#(activate(N)),
            activate^#(N),
            activate^#(M),
            activate^#(N)) }
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(n^1)).
   
   Strict DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , isNat^#(n__x(V1, V2)) ->
       c_4(U31^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
     , U71^#(tt(), M, N) -> c_6(isNat^#(activate(N))) }
   Weak DPs: { U51^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(n^1))
   
   We use the processor 'matrix interpretation of dimension 1' to
   orient following rules strictly.
   
   DPs:
     { 3: isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , 6: U71^#(tt(), M, N) -> c_6(isNat^#(activate(N)))
     , 7: U51^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
   
   Sub-proof:
   ----------
     The following argument positions are usable:
       Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1},
       Uargs(c_4) = {1, 2}, Uargs(c_5) = {1}, Uargs(c_6) = {1},
       Uargs(c_7) = {1}
     
     TcT has computed the following constructor-based matrix
     interpretation satisfying not(EDA).
     
             [U11](x1, x2) = [0]                           
                                                           
                      [tt] = [0]                           
                                                           
                 [U12](x1) = [0]                           
                                                           
               [isNat](x1) = [0]                           
                                                           
            [activate](x1) = [1] x1 + [0]                  
                                                           
                 [U21](x1) = [0]                           
                                                           
             [U31](x1, x2) = [0]                           
                                                           
                 [U32](x1) = [0]                           
                                                           
                   [s](x1) = [1] x1 + [4]                  
                                                           
            [plus](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                           
                       [0] = [0]                           
                                                           
               [x](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                           
                    [n__0] = [0]                           
                                                           
         [n__plus](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                           
                [n__s](x1) = [1] x1 + [4]                  
                                                           
            [n__x](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                           
           [U11^#](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                           
             [isNat^#](x1) = [1] x1 + [0]                  
                                                           
           [U31^#](x1, x2) = [1] x2 + [0]                  
                                                           
       [U51^#](x1, x2, x3) = [1] x2 + [7] x3 + [5]         
                                                           
       [U71^#](x1, x2, x3) = [1] x1 + [4] x2 + [7] x3 + [4]
                                                           
                 [c_1](x1) = [1] x1 + [0]                  
                                                           
             [c_2](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                           
                 [c_3](x1) = [1] x1 + [1]                  
                                                           
             [c_4](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                           
                 [c_5](x1) = [1] x1 + [0]                  
                                                           
                 [c_6](x1) = [1] x1 + [0]                  
                                                           
                 [c_7](x1) = [1] x1 + [0]                  
     
     The order satisfies the following ordering constraints:
     
                   [U11(tt(), V2)] =  [0]                                           
                                   >= [0]                                           
                                   =  [U12(isNat(activate(V2)))]                    
                                                                                    
                       [U12(tt())] =  [0]                                           
                                   >= [0]                                           
                                   =  [tt()]                                        
                                                                                    
                   [isNat(n__0())] =  [0]                                           
                                   >= [0]                                           
                                   =  [tt()]                                        
                                                                                    
          [isNat(n__plus(V1, V2))] =  [0]                                           
                                   >= [0]                                           
                                   =  [U11(isNat(activate(V1)), activate(V2))]      
                                                                                    
                 [isNat(n__s(V1))] =  [0]                                           
                                   >= [0]                                           
                                   =  [U21(isNat(activate(V1)))]                    
                                                                                    
             [isNat(n__x(V1, V2))] =  [0]                                           
                                   >= [0]                                           
                                   =  [U31(isNat(activate(V1)), activate(V2))]      
                                                                                    
                     [activate(X)] =  [1] X + [0]                                   
                                   >= [1] X + [0]                                   
                                   =  [X]                                           
                                                                                    
                [activate(n__0())] =  [0]                                           
                                   >= [0]                                           
                                   =  [0()]                                         
                                                                                    
       [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [0]                         
                                   >= [1] X1 + [1] X2 + [0]                         
                                   =  [plus(activate(X1), activate(X2))]            
                                                                                    
               [activate(n__s(X))] =  [1] X + [4]                                   
                                   >= [1] X + [4]                                   
                                   =  [s(activate(X))]                              
                                                                                    
          [activate(n__x(X1, X2))] =  [1] X1 + [1] X2 + [0]                         
                                   >= [1] X1 + [1] X2 + [0]                         
                                   =  [x(activate(X1), activate(X2))]               
                                                                                    
                       [U21(tt())] =  [0]                                           
                                   >= [0]                                           
                                   =  [tt()]                                        
                                                                                    
                   [U31(tt(), V2)] =  [0]                                           
                                   >= [0]                                           
                                   =  [U32(isNat(activate(V2)))]                    
                                                                                    
                       [U32(tt())] =  [0]                                           
                                   >= [0]                                           
                                   =  [tt()]                                        
                                                                                    
                            [s(X)] =  [1] X + [4]                                   
                                   >= [1] X + [4]                                   
                                   =  [n__s(X)]                                     
                                                                                    
                    [plus(X1, X2)] =  [1] X1 + [1] X2 + [0]                         
                                   >= [1] X1 + [1] X2 + [0]                         
                                   =  [n__plus(X1, X2)]                             
                                                                                    
                             [0()] =  [0]                                           
                                   >= [0]                                           
                                   =  [n__0()]                                      
                                                                                    
                       [x(X1, X2)] =  [1] X1 + [1] X2 + [0]                         
                                   >= [1] X1 + [1] X2 + [0]                         
                                   =  [n__x(X1, X2)]                                
                                                                                    
                 [U11^#(tt(), V2)] =  [1] V2 + [0]                                  
                                   >= [1] V2 + [0]                                  
                                   =  [c_1(isNat^#(activate(V2)))]                  
                                                                                    
        [isNat^#(n__plus(V1, V2))] =  [1] V2 + [1] V1 + [0]                         
                                   >= [1] V2 + [1] V1 + [0]                         
                                   =  [c_2(U11^#(isNat(activate(V1)), activate(V2)),
                                           isNat^#(activate(V1)))]                  
                                                                                    
               [isNat^#(n__s(V1))] =  [1] V1 + [4]                                  
                                   >  [1] V1 + [1]                                  
                                   =  [c_3(isNat^#(activate(V1)))]                  
                                                                                    
           [isNat^#(n__x(V1, V2))] =  [1] V2 + [1] V1 + [0]                         
                                   >= [1] V2 + [1] V1 + [0]                         
                                   =  [c_4(U31^#(isNat(activate(V1)), activate(V2)),
                                           isNat^#(activate(V1)))]                  
                                                                                    
                 [U31^#(tt(), V2)] =  [1] V2 + [0]                                  
                                   >= [1] V2 + [0]                                  
                                   =  [c_5(isNat^#(activate(V2)))]                  
                                                                                    
               [U51^#(tt(), M, N)] =  [7] N + [1] M + [5]                           
                                   >  [1] N + [0]                                   
                                   =  [c_7(isNat^#(activate(N)))]                   
                                                                                    
               [U71^#(tt(), M, N)] =  [7] N + [4] M + [4]                           
                                   >  [1] N + [0]                                   
                                   =  [c_6(isNat^#(activate(N)))]                   
                                                                                    
   
   The strictly oriented rules are moved into the weak component.
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(n^1)).
   
   Strict DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , isNat^#(n__x(V1, V2)) ->
       c_4(U31^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2))) }
   Weak DPs:
     { isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , U51^#(tt(), M, N) -> c_7(isNat^#(activate(N)))
     , U71^#(tt(), M, N) -> c_6(isNat^#(activate(N))) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(n^1))
   
   We use the processor 'matrix interpretation of dimension 1' to
   orient following rules strictly.
   
   DPs:
     { 1: U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , 2: isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)))
     , 4: U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
     , 6: U51^#(tt(), M, N) -> c_7(isNat^#(activate(N))) }
   Trs:
     { isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) }
   
   Sub-proof:
   ----------
     The following argument positions are usable:
       Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1},
       Uargs(c_4) = {1, 2}, Uargs(c_5) = {1}, Uargs(c_6) = {1},
       Uargs(c_7) = {1}
     
     TcT has computed the following constructor-based matrix
     interpretation satisfying not(EDA).
     
             [U11](x1, x2) = [0]                  
                                                  
                      [tt] = [0]                  
                                                  
                 [U12](x1) = [0]                  
                                                  
               [isNat](x1) = [1] x1 + [4]         
                                                  
            [activate](x1) = [1] x1 + [0]         
                                                  
                 [U21](x1) = [0]                  
                                                  
             [U31](x1, x2) = [0]                  
                                                  
                 [U32](x1) = [0]                  
                                                  
                   [s](x1) = [1] x1 + [0]         
                                                  
            [plus](x1, x2) = [1] x1 + [1] x2 + [3]
                                                  
                       [0] = [6]                  
                                                  
               [x](x1, x2) = [1] x1 + [1] x2 + [3]
                                                  
                    [n__0] = [6]                  
                                                  
         [n__plus](x1, x2) = [1] x1 + [1] x2 + [3]
                                                  
                [n__s](x1) = [1] x1 + [0]         
                                                  
            [n__x](x1, x2) = [1] x1 + [1] x2 + [3]
                                                  
           [U11^#](x1, x2) = [3] x2 + [7]         
                                                  
             [isNat^#](x1) = [3] x1 + [4]         
                                                  
           [U31^#](x1, x2) = [3] x2 + [5]         
                                                  
       [U51^#](x1, x2, x3) = [4] x2 + [7] x3 + [5]
                                                  
       [U71^#](x1, x2, x3) = [4] x2 + [7] x3 + [4]
                                                  
                 [c_1](x1) = [1] x1 + [1]         
                                                  
             [c_2](x1, x2) = [1] x1 + [1] x2 + [0]
                                                  
                 [c_3](x1) = [1] x1 + [0]         
                                                  
             [c_4](x1, x2) = [1] x1 + [1] x2 + [4]
                                                  
                 [c_5](x1) = [1] x1 + [0]         
                                                  
                 [c_6](x1) = [1] x1 + [0]         
                                                  
                 [c_7](x1) = [1] x1 + [0]         
     
     The order satisfies the following ordering constraints:
     
                   [U11(tt(), V2)] =  [0]                                           
                                   >= [0]                                           
                                   =  [U12(isNat(activate(V2)))]                    
                                                                                    
                       [U12(tt())] =  [0]                                           
                                   >= [0]                                           
                                   =  [tt()]                                        
                                                                                    
                   [isNat(n__0())] =  [10]                                          
                                   >  [0]                                           
                                   =  [tt()]                                        
                                                                                    
          [isNat(n__plus(V1, V2))] =  [1] V2 + [1] V1 + [7]                         
                                   >  [0]                                           
                                   =  [U11(isNat(activate(V1)), activate(V2))]      
                                                                                    
                 [isNat(n__s(V1))] =  [1] V1 + [4]                                  
                                   >  [0]                                           
                                   =  [U21(isNat(activate(V1)))]                    
                                                                                    
             [isNat(n__x(V1, V2))] =  [1] V2 + [1] V1 + [7]                         
                                   >  [0]                                           
                                   =  [U31(isNat(activate(V1)), activate(V2))]      
                                                                                    
                     [activate(X)] =  [1] X + [0]                                   
                                   >= [1] X + [0]                                   
                                   =  [X]                                           
                                                                                    
                [activate(n__0())] =  [6]                                           
                                   >= [6]                                           
                                   =  [0()]                                         
                                                                                    
       [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [3]                         
                                   >= [1] X1 + [1] X2 + [3]                         
                                   =  [plus(activate(X1), activate(X2))]            
                                                                                    
               [activate(n__s(X))] =  [1] X + [0]                                   
                                   >= [1] X + [0]                                   
                                   =  [s(activate(X))]                              
                                                                                    
          [activate(n__x(X1, X2))] =  [1] X1 + [1] X2 + [3]                         
                                   >= [1] X1 + [1] X2 + [3]                         
                                   =  [x(activate(X1), activate(X2))]               
                                                                                    
                       [U21(tt())] =  [0]                                           
                                   >= [0]                                           
                                   =  [tt()]                                        
                                                                                    
                   [U31(tt(), V2)] =  [0]                                           
                                   >= [0]                                           
                                   =  [U32(isNat(activate(V2)))]                    
                                                                                    
                       [U32(tt())] =  [0]                                           
                                   >= [0]                                           
                                   =  [tt()]                                        
                                                                                    
                            [s(X)] =  [1] X + [0]                                   
                                   >= [1] X + [0]                                   
                                   =  [n__s(X)]                                     
                                                                                    
                    [plus(X1, X2)] =  [1] X1 + [1] X2 + [3]                         
                                   >= [1] X1 + [1] X2 + [3]                         
                                   =  [n__plus(X1, X2)]                             
                                                                                    
                             [0()] =  [6]                                           
                                   >= [6]                                           
                                   =  [n__0()]                                      
                                                                                    
                       [x(X1, X2)] =  [1] X1 + [1] X2 + [3]                         
                                   >= [1] X1 + [1] X2 + [3]                         
                                   =  [n__x(X1, X2)]                                
                                                                                    
                 [U11^#(tt(), V2)] =  [3] V2 + [7]                                  
                                   >  [3] V2 + [5]                                  
                                   =  [c_1(isNat^#(activate(V2)))]                  
                                                                                    
        [isNat^#(n__plus(V1, V2))] =  [3] V2 + [3] V1 + [13]                        
                                   >  [3] V2 + [3] V1 + [11]                        
                                   =  [c_2(U11^#(isNat(activate(V1)), activate(V2)),
                                           isNat^#(activate(V1)))]                  
                                                                                    
               [isNat^#(n__s(V1))] =  [3] V1 + [4]                                  
                                   >= [3] V1 + [4]                                  
                                   =  [c_3(isNat^#(activate(V1)))]                  
                                                                                    
           [isNat^#(n__x(V1, V2))] =  [3] V2 + [3] V1 + [13]                        
                                   >= [3] V2 + [3] V1 + [13]                        
                                   =  [c_4(U31^#(isNat(activate(V1)), activate(V2)),
                                           isNat^#(activate(V1)))]                  
                                                                                    
                 [U31^#(tt(), V2)] =  [3] V2 + [5]                                  
                                   >  [3] V2 + [4]                                  
                                   =  [c_5(isNat^#(activate(V2)))]                  
                                                                                    
               [U51^#(tt(), M, N)] =  [7] N + [4] M + [5]                           
                                   >  [3] N + [4]                                   
                                   =  [c_7(isNat^#(activate(N)))]                   
                                                                                    
               [U71^#(tt(), M, N)] =  [7] N + [4] M + [4]                           
                                   >= [3] N + [4]                                   
                                   =  [c_6(isNat^#(activate(N)))]                   
                                                                                    
   
   We return to the main proof. Consider the set of all dependency
   pairs
   
   :
     { 1: U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , 2: isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)))
     , 3: isNat^#(n__x(V1, V2)) ->
          c_4(U31^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)))
     , 4: U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
     , 5: isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , 6: U51^#(tt(), M, N) -> c_7(isNat^#(activate(N)))
     , 7: U71^#(tt(), M, N) -> c_6(isNat^#(activate(N))) }
   
   Processor 'matrix interpretation of dimension 1' induces the
   complexity certificate YES(?,O(n^1)) on application of dependency
   pairs {1,2,4,6}. These cover all (indirect) predecessors of
   dependency pairs {1,2,4,6,7}, their number of application is
   equally bounded. The dependency pairs are shifted into the weak
   component.
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(n^1)).
   
   Strict DPs:
     { isNat^#(n__x(V1, V2)) ->
       c_4(U31^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1))) }
   Weak DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
     , U51^#(tt(), M, N) -> c_7(isNat^#(activate(N)))
     , U71^#(tt(), M, N) -> c_6(isNat^#(activate(N))) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(n^1))
   
   We use the processor 'matrix interpretation of dimension 1' to
   orient following rules strictly.
   
   DPs:
     { 1: isNat^#(n__x(V1, V2)) ->
          c_4(U31^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)))
     , 6: U51^#(tt(), M, N) -> c_7(isNat^#(activate(N)))
     , 7: U71^#(tt(), M, N) -> c_6(isNat^#(activate(N))) }
   
   Sub-proof:
   ----------
     The following argument positions are usable:
       Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1},
       Uargs(c_4) = {1, 2}, Uargs(c_5) = {1}, Uargs(c_6) = {1},
       Uargs(c_7) = {1}
     
     TcT has computed the following constructor-based matrix
     interpretation satisfying not(EDA).
     
             [U11](x1, x2) = [0]                  
                                                  
                      [tt] = [0]                  
                                                  
                 [U12](x1) = [0]                  
                                                  
               [isNat](x1) = [0]                  
                                                  
            [activate](x1) = [1] x1 + [0]         
                                                  
                 [U21](x1) = [0]                  
                                                  
             [U31](x1, x2) = [0]                  
                                                  
                 [U32](x1) = [0]                  
                                                  
                   [s](x1) = [1] x1 + [0]         
                                                  
            [plus](x1, x2) = [1] x1 + [1] x2 + [0]
                                                  
                       [0] = [0]                  
                                                  
               [x](x1, x2) = [1] x1 + [1] x2 + [1]
                                                  
                    [n__0] = [0]                  
                                                  
         [n__plus](x1, x2) = [1] x1 + [1] x2 + [0]
                                                  
                [n__s](x1) = [1] x1 + [0]         
                                                  
            [n__x](x1, x2) = [1] x1 + [1] x2 + [1]
                                                  
           [U11^#](x1, x2) = [1] x2 + [0]         
                                                  
             [isNat^#](x1) = [1] x1 + [0]         
                                                  
           [U31^#](x1, x2) = [1] x1 + [1] x2 + [0]
                                                  
       [U51^#](x1, x2, x3) = [4] x2 + [7] x3 + [4]
                                                  
       [U71^#](x1, x2, x3) = [2] x2 + [7] x3 + [4]
                                                  
                 [c_1](x1) = [1] x1 + [0]         
                                                  
             [c_2](x1, x2) = [1] x1 + [1] x2 + [0]
                                                  
                 [c_3](x1) = [1] x1 + [0]         
                                                  
             [c_4](x1, x2) = [1] x1 + [1] x2 + [0]
                                                  
                 [c_5](x1) = [1] x1 + [0]         
                                                  
                 [c_6](x1) = [1] x1 + [0]         
                                                  
                 [c_7](x1) = [1] x1 + [0]         
     
     The order satisfies the following ordering constraints:
     
                   [U11(tt(), V2)] =  [0]                                           
                                   >= [0]                                           
                                   =  [U12(isNat(activate(V2)))]                    
                                                                                    
                       [U12(tt())] =  [0]                                           
                                   >= [0]                                           
                                   =  [tt()]                                        
                                                                                    
                   [isNat(n__0())] =  [0]                                           
                                   >= [0]                                           
                                   =  [tt()]                                        
                                                                                    
          [isNat(n__plus(V1, V2))] =  [0]                                           
                                   >= [0]                                           
                                   =  [U11(isNat(activate(V1)), activate(V2))]      
                                                                                    
                 [isNat(n__s(V1))] =  [0]                                           
                                   >= [0]                                           
                                   =  [U21(isNat(activate(V1)))]                    
                                                                                    
             [isNat(n__x(V1, V2))] =  [0]                                           
                                   >= [0]                                           
                                   =  [U31(isNat(activate(V1)), activate(V2))]      
                                                                                    
                     [activate(X)] =  [1] X + [0]                                   
                                   >= [1] X + [0]                                   
                                   =  [X]                                           
                                                                                    
                [activate(n__0())] =  [0]                                           
                                   >= [0]                                           
                                   =  [0()]                                         
                                                                                    
       [activate(n__plus(X1, X2))] =  [1] X1 + [1] X2 + [0]                         
                                   >= [1] X1 + [1] X2 + [0]                         
                                   =  [plus(activate(X1), activate(X2))]            
                                                                                    
               [activate(n__s(X))] =  [1] X + [0]                                   
                                   >= [1] X + [0]                                   
                                   =  [s(activate(X))]                              
                                                                                    
          [activate(n__x(X1, X2))] =  [1] X1 + [1] X2 + [1]                         
                                   >= [1] X1 + [1] X2 + [1]                         
                                   =  [x(activate(X1), activate(X2))]               
                                                                                    
                       [U21(tt())] =  [0]                                           
                                   >= [0]                                           
                                   =  [tt()]                                        
                                                                                    
                   [U31(tt(), V2)] =  [0]                                           
                                   >= [0]                                           
                                   =  [U32(isNat(activate(V2)))]                    
                                                                                    
                       [U32(tt())] =  [0]                                           
                                   >= [0]                                           
                                   =  [tt()]                                        
                                                                                    
                            [s(X)] =  [1] X + [0]                                   
                                   >= [1] X + [0]                                   
                                   =  [n__s(X)]                                     
                                                                                    
                    [plus(X1, X2)] =  [1] X1 + [1] X2 + [0]                         
                                   >= [1] X1 + [1] X2 + [0]                         
                                   =  [n__plus(X1, X2)]                             
                                                                                    
                             [0()] =  [0]                                           
                                   >= [0]                                           
                                   =  [n__0()]                                      
                                                                                    
                       [x(X1, X2)] =  [1] X1 + [1] X2 + [1]                         
                                   >= [1] X1 + [1] X2 + [1]                         
                                   =  [n__x(X1, X2)]                                
                                                                                    
                 [U11^#(tt(), V2)] =  [1] V2 + [0]                                  
                                   >= [1] V2 + [0]                                  
                                   =  [c_1(isNat^#(activate(V2)))]                  
                                                                                    
        [isNat^#(n__plus(V1, V2))] =  [1] V2 + [1] V1 + [0]                         
                                   >= [1] V2 + [1] V1 + [0]                         
                                   =  [c_2(U11^#(isNat(activate(V1)), activate(V2)),
                                           isNat^#(activate(V1)))]                  
                                                                                    
               [isNat^#(n__s(V1))] =  [1] V1 + [0]                                  
                                   >= [1] V1 + [0]                                  
                                   =  [c_3(isNat^#(activate(V1)))]                  
                                                                                    
           [isNat^#(n__x(V1, V2))] =  [1] V2 + [1] V1 + [1]                         
                                   >  [1] V2 + [1] V1 + [0]                         
                                   =  [c_4(U31^#(isNat(activate(V1)), activate(V2)),
                                           isNat^#(activate(V1)))]                  
                                                                                    
                 [U31^#(tt(), V2)] =  [1] V2 + [0]                                  
                                   >= [1] V2 + [0]                                  
                                   =  [c_5(isNat^#(activate(V2)))]                  
                                                                                    
               [U51^#(tt(), M, N)] =  [7] N + [4] M + [4]                           
                                   >  [1] N + [0]                                   
                                   =  [c_7(isNat^#(activate(N)))]                   
                                                                                    
               [U71^#(tt(), M, N)] =  [7] N + [2] M + [4]                           
                                   >  [1] N + [0]                                   
                                   =  [c_6(isNat^#(activate(N)))]                   
                                                                                    
   
   We return to the main proof. Consider the set of all dependency
   pairs
   
   :
     { 1: isNat^#(n__x(V1, V2)) ->
          c_4(U31^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)))
     , 2: U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , 3: isNat^#(n__plus(V1, V2)) ->
          c_2(U11^#(isNat(activate(V1)), activate(V2)),
              isNat^#(activate(V1)))
     , 4: isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , 5: U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
     , 6: U51^#(tt(), M, N) -> c_7(isNat^#(activate(N)))
     , 7: U71^#(tt(), M, N) -> c_6(isNat^#(activate(N))) }
   
   Processor 'matrix interpretation of dimension 1' induces the
   complexity certificate YES(?,O(n^1)) on application of dependency
   pairs {1,6,7}. These cover all (indirect) predecessors of
   dependency pairs {1,5,6,7}, their number of application is equally
   bounded. The dependency pairs are shifted into the weak component.
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Weak DPs:
     { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
     , isNat^#(n__plus(V1, V2)) ->
       c_2(U11^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
     , isNat^#(n__x(V1, V2)) ->
       c_4(U31^#(isNat(activate(V1)), activate(V2)),
           isNat^#(activate(V1)))
     , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
     , U51^#(tt(), M, N) -> c_7(isNat^#(activate(N)))
     , U71^#(tt(), M, N) -> c_6(isNat^#(activate(N))) }
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   The following weak DPs constitute a sub-graph of the DG that is
   closed under successors. The DPs are removed.
   
   { U11^#(tt(), V2) -> c_1(isNat^#(activate(V2)))
   , isNat^#(n__plus(V1, V2)) ->
     c_2(U11^#(isNat(activate(V1)), activate(V2)),
         isNat^#(activate(V1)))
   , isNat^#(n__s(V1)) -> c_3(isNat^#(activate(V1)))
   , isNat^#(n__x(V1, V2)) ->
     c_4(U31^#(isNat(activate(V1)), activate(V2)),
         isNat^#(activate(V1)))
   , U31^#(tt(), V2) -> c_5(isNat^#(activate(V2)))
   , U51^#(tt(), M, N) -> c_7(isNat^#(activate(N)))
   , U71^#(tt(), M, N) -> c_6(isNat^#(activate(N))) }
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Weak Trs:
     { U11(tt(), V2) -> U12(isNat(activate(V2)))
     , U12(tt()) -> tt()
     , isNat(n__0()) -> tt()
     , isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2))
     , isNat(n__s(V1)) -> U21(isNat(activate(V1)))
     , isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2))
     , activate(X) -> X
     , activate(n__0()) -> 0()
     , activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__x(X1, X2)) -> x(activate(X1), activate(X2))
     , U21(tt()) -> tt()
     , U31(tt(), V2) -> U32(isNat(activate(V2)))
     , U32(tt()) -> tt()
     , s(X) -> n__s(X)
     , plus(X1, X2) -> n__plus(X1, X2)
     , 0() -> n__0()
     , x(X1, X2) -> n__x(X1, X2) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   No rule is usable, rules are removed from the input problem.
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Rules: Empty
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   Empty rules are trivially bounded


Hurray, we answered YES(O(1),O(n^5))