(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0'
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0') → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0') → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

S is empty.
Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Innermost TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0'
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0') → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0') → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s:n__x → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s:n__x → tt
activate :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s:n__x → tt
U32 :: tt → tt
U41 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U51 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U52 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U61 :: tt → n__0:n__plus:n__s:n__x
0' :: n__0:n__plus:n__s:n__x
U71 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U72 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__0 :: n__0:n__plus:n__s:n__x
n__plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s:n__x2_3 :: n__0:n__plus:n__s:n__x
gen_n__0:n__plus:n__s:n__x3_3 :: Nat → n__0:n__plus:n__s:n__x

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
isNat, activate, U41, plus, x

They will be analysed ascendingly in the following order:
isNat = activate
isNat = U41
isNat = plus
isNat = x
activate = U41
activate = plus
activate = x
U41 = plus
U41 = x
plus = x

(6) Obligation:

Innermost TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0'
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0') → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0') → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s:n__x → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s:n__x → tt
activate :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s:n__x → tt
U32 :: tt → tt
U41 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U51 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U52 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U61 :: tt → n__0:n__plus:n__s:n__x
0' :: n__0:n__plus:n__s:n__x
U71 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U72 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__0 :: n__0:n__plus:n__s:n__x
n__plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s:n__x2_3 :: n__0:n__plus:n__s:n__x
gen_n__0:n__plus:n__s:n__x3_3 :: Nat → n__0:n__plus:n__s:n__x

Generator Equations:
gen_n__0:n__plus:n__s:n__x3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s:n__x3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s:n__x3_3(x), n__0)

The following defined symbols remain to be analysed:
activate, isNat, U41, plus, x

They will be analysed ascendingly in the following order:
isNat = activate
isNat = U41
isNat = plus
isNat = x
activate = U41
activate = plus
activate = x
U41 = plus
U41 = x
plus = x

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
activate(gen_n__0:n__plus:n__s:n__x3_3(n5_3)) → gen_n__0:n__plus:n__s:n__x3_3(n5_3), rt ∈ Ω(1 + n53)

Induction Base:
activate(gen_n__0:n__plus:n__s:n__x3_3(0)) →RΩ(1)
gen_n__0:n__plus:n__s:n__x3_3(0)

Induction Step:
activate(gen_n__0:n__plus:n__s:n__x3_3(+(n5_3, 1))) →RΩ(1)
plus(activate(gen_n__0:n__plus:n__s:n__x3_3(n5_3)), activate(n__0)) →IH
plus(gen_n__0:n__plus:n__s:n__x3_3(c6_3), activate(n__0)) →RΩ(1)
plus(gen_n__0:n__plus:n__s:n__x3_3(n5_3), n__0) →RΩ(1)
n__plus(gen_n__0:n__plus:n__s:n__x3_3(n5_3), n__0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

Innermost TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0'
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0') → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0') → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s:n__x → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s:n__x → tt
activate :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s:n__x → tt
U32 :: tt → tt
U41 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U51 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U52 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U61 :: tt → n__0:n__plus:n__s:n__x
0' :: n__0:n__plus:n__s:n__x
U71 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U72 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__0 :: n__0:n__plus:n__s:n__x
n__plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s:n__x2_3 :: n__0:n__plus:n__s:n__x
gen_n__0:n__plus:n__s:n__x3_3 :: Nat → n__0:n__plus:n__s:n__x

Lemmas:
activate(gen_n__0:n__plus:n__s:n__x3_3(n5_3)) → gen_n__0:n__plus:n__s:n__x3_3(n5_3), rt ∈ Ω(1 + n53)

Generator Equations:
gen_n__0:n__plus:n__s:n__x3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s:n__x3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s:n__x3_3(x), n__0)

The following defined symbols remain to be analysed:
plus, isNat, U41, x

They will be analysed ascendingly in the following order:
isNat = activate
isNat = U41
isNat = plus
isNat = x
activate = U41
activate = plus
activate = x
U41 = plus
U41 = x
plus = x

(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol plus.

(11) Obligation:

Innermost TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0'
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0') → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0') → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s:n__x → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s:n__x → tt
activate :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s:n__x → tt
U32 :: tt → tt
U41 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U51 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U52 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U61 :: tt → n__0:n__plus:n__s:n__x
0' :: n__0:n__plus:n__s:n__x
U71 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U72 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__0 :: n__0:n__plus:n__s:n__x
n__plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s:n__x2_3 :: n__0:n__plus:n__s:n__x
gen_n__0:n__plus:n__s:n__x3_3 :: Nat → n__0:n__plus:n__s:n__x

Lemmas:
activate(gen_n__0:n__plus:n__s:n__x3_3(n5_3)) → gen_n__0:n__plus:n__s:n__x3_3(n5_3), rt ∈ Ω(1 + n53)

Generator Equations:
gen_n__0:n__plus:n__s:n__x3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s:n__x3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s:n__x3_3(x), n__0)

The following defined symbols remain to be analysed:
U41, isNat, x

They will be analysed ascendingly in the following order:
isNat = activate
isNat = U41
isNat = plus
isNat = x
activate = U41
activate = plus
activate = x
U41 = plus
U41 = x
plus = x

(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol U41.

(13) Obligation:

Innermost TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0'
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0') → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0') → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s:n__x → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s:n__x → tt
activate :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s:n__x → tt
U32 :: tt → tt
U41 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U51 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U52 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U61 :: tt → n__0:n__plus:n__s:n__x
0' :: n__0:n__plus:n__s:n__x
U71 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U72 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__0 :: n__0:n__plus:n__s:n__x
n__plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s:n__x2_3 :: n__0:n__plus:n__s:n__x
gen_n__0:n__plus:n__s:n__x3_3 :: Nat → n__0:n__plus:n__s:n__x

Lemmas:
activate(gen_n__0:n__plus:n__s:n__x3_3(n5_3)) → gen_n__0:n__plus:n__s:n__x3_3(n5_3), rt ∈ Ω(1 + n53)

Generator Equations:
gen_n__0:n__plus:n__s:n__x3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s:n__x3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s:n__x3_3(x), n__0)

The following defined symbols remain to be analysed:
isNat, x

They will be analysed ascendingly in the following order:
isNat = activate
isNat = U41
isNat = plus
isNat = x
activate = U41
activate = plus
activate = x
U41 = plus
U41 = x
plus = x

(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
isNat(gen_n__0:n__plus:n__s:n__x3_3(n4788_3)) → tt, rt ∈ Ω(1 + n47883 + n478832)

Induction Base:
isNat(gen_n__0:n__plus:n__s:n__x3_3(0)) →RΩ(1)
tt

Induction Step:
isNat(gen_n__0:n__plus:n__s:n__x3_3(+(n4788_3, 1))) →RΩ(1)
U11(isNat(activate(gen_n__0:n__plus:n__s:n__x3_3(n4788_3))), activate(n__0)) →LΩ(1 + n47883)
U11(isNat(gen_n__0:n__plus:n__s:n__x3_3(n4788_3)), activate(n__0)) →IH
U11(tt, activate(n__0)) →LΩ(1)
U11(tt, gen_n__0:n__plus:n__s:n__x3_3(0)) →RΩ(1)
U12(isNat(activate(gen_n__0:n__plus:n__s:n__x3_3(0)))) →LΩ(1)
U12(isNat(gen_n__0:n__plus:n__s:n__x3_3(0))) →RΩ(1)
U12(tt) →RΩ(1)
tt

We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).

(15) Complex Obligation (BEST)

(16) Obligation:

Innermost TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0'
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0') → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0') → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s:n__x → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s:n__x → tt
activate :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s:n__x → tt
U32 :: tt → tt
U41 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U51 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U52 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U61 :: tt → n__0:n__plus:n__s:n__x
0' :: n__0:n__plus:n__s:n__x
U71 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U72 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__0 :: n__0:n__plus:n__s:n__x
n__plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s:n__x2_3 :: n__0:n__plus:n__s:n__x
gen_n__0:n__plus:n__s:n__x3_3 :: Nat → n__0:n__plus:n__s:n__x

Lemmas:
activate(gen_n__0:n__plus:n__s:n__x3_3(n5_3)) → gen_n__0:n__plus:n__s:n__x3_3(n5_3), rt ∈ Ω(1 + n53)
isNat(gen_n__0:n__plus:n__s:n__x3_3(n4788_3)) → tt, rt ∈ Ω(1 + n47883 + n478832)

Generator Equations:
gen_n__0:n__plus:n__s:n__x3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s:n__x3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s:n__x3_3(x), n__0)

The following defined symbols remain to be analysed:
x, activate, U41, plus

They will be analysed ascendingly in the following order:
isNat = activate
isNat = U41
isNat = plus
isNat = x
activate = U41
activate = plus
activate = x
U41 = plus
U41 = x
plus = x

(17) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol x.

(18) Obligation:

Innermost TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0'
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0') → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0') → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s:n__x → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s:n__x → tt
activate :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s:n__x → tt
U32 :: tt → tt
U41 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U51 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U52 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U61 :: tt → n__0:n__plus:n__s:n__x
0' :: n__0:n__plus:n__s:n__x
U71 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U72 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__0 :: n__0:n__plus:n__s:n__x
n__plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s:n__x2_3 :: n__0:n__plus:n__s:n__x
gen_n__0:n__plus:n__s:n__x3_3 :: Nat → n__0:n__plus:n__s:n__x

Lemmas:
activate(gen_n__0:n__plus:n__s:n__x3_3(n5_3)) → gen_n__0:n__plus:n__s:n__x3_3(n5_3), rt ∈ Ω(1 + n53)
isNat(gen_n__0:n__plus:n__s:n__x3_3(n4788_3)) → tt, rt ∈ Ω(1 + n47883 + n478832)

Generator Equations:
gen_n__0:n__plus:n__s:n__x3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s:n__x3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s:n__x3_3(x), n__0)

The following defined symbols remain to be analysed:
activate, U41, plus

They will be analysed ascendingly in the following order:
isNat = activate
isNat = U41
isNat = plus
isNat = x
activate = U41
activate = plus
activate = x
U41 = plus
U41 = x
plus = x

(19) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
activate(gen_n__0:n__plus:n__s:n__x3_3(n7827_3)) → gen_n__0:n__plus:n__s:n__x3_3(n7827_3), rt ∈ Ω(1 + n78273)

Induction Base:
activate(gen_n__0:n__plus:n__s:n__x3_3(0)) →RΩ(1)
gen_n__0:n__plus:n__s:n__x3_3(0)

Induction Step:
activate(gen_n__0:n__plus:n__s:n__x3_3(+(n7827_3, 1))) →RΩ(1)
plus(activate(gen_n__0:n__plus:n__s:n__x3_3(n7827_3)), activate(n__0)) →IH
plus(gen_n__0:n__plus:n__s:n__x3_3(c7828_3), activate(n__0)) →RΩ(1)
plus(gen_n__0:n__plus:n__s:n__x3_3(n7827_3), n__0) →RΩ(1)
n__plus(gen_n__0:n__plus:n__s:n__x3_3(n7827_3), n__0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(20) Complex Obligation (BEST)

(21) Obligation:

Innermost TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0'
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0') → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0') → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s:n__x → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s:n__x → tt
activate :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s:n__x → tt
U32 :: tt → tt
U41 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U51 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U52 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U61 :: tt → n__0:n__plus:n__s:n__x
0' :: n__0:n__plus:n__s:n__x
U71 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U72 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__0 :: n__0:n__plus:n__s:n__x
n__plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s:n__x2_3 :: n__0:n__plus:n__s:n__x
gen_n__0:n__plus:n__s:n__x3_3 :: Nat → n__0:n__plus:n__s:n__x

Lemmas:
activate(gen_n__0:n__plus:n__s:n__x3_3(n7827_3)) → gen_n__0:n__plus:n__s:n__x3_3(n7827_3), rt ∈ Ω(1 + n78273)
isNat(gen_n__0:n__plus:n__s:n__x3_3(n4788_3)) → tt, rt ∈ Ω(1 + n47883 + n478832)

Generator Equations:
gen_n__0:n__plus:n__s:n__x3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s:n__x3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s:n__x3_3(x), n__0)

The following defined symbols remain to be analysed:
plus, U41

They will be analysed ascendingly in the following order:
isNat = activate
isNat = U41
isNat = plus
isNat = x
activate = U41
activate = plus
activate = x
U41 = plus
U41 = x
plus = x

(22) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol plus.

(23) Obligation:

Innermost TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0'
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0') → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0') → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s:n__x → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s:n__x → tt
activate :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s:n__x → tt
U32 :: tt → tt
U41 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U51 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U52 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U61 :: tt → n__0:n__plus:n__s:n__x
0' :: n__0:n__plus:n__s:n__x
U71 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U72 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__0 :: n__0:n__plus:n__s:n__x
n__plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s:n__x2_3 :: n__0:n__plus:n__s:n__x
gen_n__0:n__plus:n__s:n__x3_3 :: Nat → n__0:n__plus:n__s:n__x

Lemmas:
activate(gen_n__0:n__plus:n__s:n__x3_3(n7827_3)) → gen_n__0:n__plus:n__s:n__x3_3(n7827_3), rt ∈ Ω(1 + n78273)
isNat(gen_n__0:n__plus:n__s:n__x3_3(n4788_3)) → tt, rt ∈ Ω(1 + n47883 + n478832)

Generator Equations:
gen_n__0:n__plus:n__s:n__x3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s:n__x3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s:n__x3_3(x), n__0)

The following defined symbols remain to be analysed:
U41

They will be analysed ascendingly in the following order:
isNat = activate
isNat = U41
isNat = plus
isNat = x
activate = U41
activate = plus
activate = x
U41 = plus
U41 = x
plus = x

(24) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol U41.

(25) Obligation:

Innermost TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0'
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0') → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0') → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s:n__x → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s:n__x → tt
activate :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s:n__x → tt
U32 :: tt → tt
U41 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U51 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U52 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U61 :: tt → n__0:n__plus:n__s:n__x
0' :: n__0:n__plus:n__s:n__x
U71 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U72 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__0 :: n__0:n__plus:n__s:n__x
n__plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s:n__x2_3 :: n__0:n__plus:n__s:n__x
gen_n__0:n__plus:n__s:n__x3_3 :: Nat → n__0:n__plus:n__s:n__x

Lemmas:
activate(gen_n__0:n__plus:n__s:n__x3_3(n7827_3)) → gen_n__0:n__plus:n__s:n__x3_3(n7827_3), rt ∈ Ω(1 + n78273)
isNat(gen_n__0:n__plus:n__s:n__x3_3(n4788_3)) → tt, rt ∈ Ω(1 + n47883 + n478832)

Generator Equations:
gen_n__0:n__plus:n__s:n__x3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s:n__x3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s:n__x3_3(x), n__0)

No more defined symbols left to analyse.

(26) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
isNat(gen_n__0:n__plus:n__s:n__x3_3(n4788_3)) → tt, rt ∈ Ω(1 + n47883 + n478832)

(27) BOUNDS(n^2, INF)

(28) Obligation:

Innermost TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0'
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0') → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0') → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s:n__x → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s:n__x → tt
activate :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s:n__x → tt
U32 :: tt → tt
U41 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U51 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U52 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U61 :: tt → n__0:n__plus:n__s:n__x
0' :: n__0:n__plus:n__s:n__x
U71 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U72 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__0 :: n__0:n__plus:n__s:n__x
n__plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s:n__x2_3 :: n__0:n__plus:n__s:n__x
gen_n__0:n__plus:n__s:n__x3_3 :: Nat → n__0:n__plus:n__s:n__x

Lemmas:
activate(gen_n__0:n__plus:n__s:n__x3_3(n7827_3)) → gen_n__0:n__plus:n__s:n__x3_3(n7827_3), rt ∈ Ω(1 + n78273)
isNat(gen_n__0:n__plus:n__s:n__x3_3(n4788_3)) → tt, rt ∈ Ω(1 + n47883 + n478832)

Generator Equations:
gen_n__0:n__plus:n__s:n__x3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s:n__x3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s:n__x3_3(x), n__0)

No more defined symbols left to analyse.

(29) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
isNat(gen_n__0:n__plus:n__s:n__x3_3(n4788_3)) → tt, rt ∈ Ω(1 + n47883 + n478832)

(30) BOUNDS(n^2, INF)

(31) Obligation:

Innermost TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0'
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0') → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0') → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s:n__x → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s:n__x → tt
activate :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s:n__x → tt
U32 :: tt → tt
U41 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U51 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U52 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U61 :: tt → n__0:n__plus:n__s:n__x
0' :: n__0:n__plus:n__s:n__x
U71 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U72 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__0 :: n__0:n__plus:n__s:n__x
n__plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s:n__x2_3 :: n__0:n__plus:n__s:n__x
gen_n__0:n__plus:n__s:n__x3_3 :: Nat → n__0:n__plus:n__s:n__x

Lemmas:
activate(gen_n__0:n__plus:n__s:n__x3_3(n5_3)) → gen_n__0:n__plus:n__s:n__x3_3(n5_3), rt ∈ Ω(1 + n53)
isNat(gen_n__0:n__plus:n__s:n__x3_3(n4788_3)) → tt, rt ∈ Ω(1 + n47883 + n478832)

Generator Equations:
gen_n__0:n__plus:n__s:n__x3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s:n__x3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s:n__x3_3(x), n__0)

No more defined symbols left to analyse.

(32) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
isNat(gen_n__0:n__plus:n__s:n__x3_3(n4788_3)) → tt, rt ∈ Ω(1 + n47883 + n478832)

(33) BOUNDS(n^2, INF)

(34) Obligation:

Innermost TRS:
Rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0'
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0') → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0') → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0'n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0'
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Types:
U11 :: tt → n__0:n__plus:n__s:n__x → tt
tt :: tt
U12 :: tt → tt
isNat :: n__0:n__plus:n__s:n__x → tt
activate :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U21 :: tt → tt
U31 :: tt → n__0:n__plus:n__s:n__x → tt
U32 :: tt → tt
U41 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U51 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U52 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U61 :: tt → n__0:n__plus:n__s:n__x
0' :: n__0:n__plus:n__s:n__x
U71 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
U72 :: tt → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__0 :: n__0:n__plus:n__s:n__x
n__plus :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__s :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
n__x :: n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x → n__0:n__plus:n__s:n__x
hole_tt1_3 :: tt
hole_n__0:n__plus:n__s:n__x2_3 :: n__0:n__plus:n__s:n__x
gen_n__0:n__plus:n__s:n__x3_3 :: Nat → n__0:n__plus:n__s:n__x

Lemmas:
activate(gen_n__0:n__plus:n__s:n__x3_3(n5_3)) → gen_n__0:n__plus:n__s:n__x3_3(n5_3), rt ∈ Ω(1 + n53)

Generator Equations:
gen_n__0:n__plus:n__s:n__x3_3(0) ⇔ n__0
gen_n__0:n__plus:n__s:n__x3_3(+(x, 1)) ⇔ n__plus(gen_n__0:n__plus:n__s:n__x3_3(x), n__0)

No more defined symbols left to analyse.

(35) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
activate(gen_n__0:n__plus:n__s:n__x3_3(n5_3)) → gen_n__0:n__plus:n__s:n__x3_3(n5_3), rt ∈ Ω(1 + n53)

(36) BOUNDS(n^1, INF)