*** 1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U101(tt(),M,N) -> U102(isNatKind(activate(M)),activate(M),activate(N))
        U102(tt(),M,N) -> U103(isNat(activate(N)),activate(M),activate(N))
        U103(tt(),M,N) -> U104(isNatKind(activate(N)),activate(M),activate(N))
        U104(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
        U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
        U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
        U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
        U35(tt(),V2) -> U36(isNat(activate(V2)))
        U36(tt()) -> tt()
        U41(tt(),V2) -> U42(isNatKind(activate(V2)))
        U42(tt()) -> tt()
        U51(tt()) -> tt()
        U61(tt(),V2) -> U62(isNatKind(activate(V2)))
        U62(tt()) -> tt()
        U71(tt(),N) -> U72(isNatKind(activate(N)),activate(N))
        U72(tt(),N) -> activate(N)
        U81(tt(),M,N) -> U82(isNatKind(activate(M)),activate(M),activate(N))
        U82(tt(),M,N) -> U83(isNat(activate(N)),activate(M),activate(N))
        U83(tt(),M,N) -> U84(isNatKind(activate(N)),activate(M),activate(N))
        U84(tt(),M,N) -> s(plus(activate(N),activate(M)))
        U91(tt(),N) -> U92(isNatKind(activate(N)))
        U92(tt()) -> 0()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
        isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
        plus(N,0()) -> U71(isNat(N),N)
        plus(N,s(M)) -> U81(isNat(M),M,N)
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(N,0()) -> U91(isNat(N),N)
        x(N,s(M)) -> U101(isNat(M),M,N)
        x(X1,X2) -> n__x(X1,X2)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U101,U102,U103,U104,U11,U12,U13,U14,U15,U16,U21,U22,U23,U31,U32,U33,U34,U35,U36,U41,U42,U51,U61,U62,U71,U72,U81,U82,U83,U84,U91,U92,activate,isNat,isNatKind,plus,s,x}/{n__0,n__plus,n__s,n__x,tt}
    Applied Processor:
      InnermostRuleRemoval
    Proof:
      Arguments of following rules are not normal-forms.
        plus(N,0()) -> U71(isNat(N),N)
        plus(N,s(M)) -> U81(isNat(M),M,N)
        x(N,0()) -> U91(isNat(N),N)
        x(N,s(M)) -> U101(isNat(M),M,N)
      All above mentioned rules can be savely removed.
*** 1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        U101(tt(),M,N) -> U102(isNatKind(activate(M)),activate(M),activate(N))
        U102(tt(),M,N) -> U103(isNat(activate(N)),activate(M),activate(N))
        U103(tt(),M,N) -> U104(isNatKind(activate(N)),activate(M),activate(N))
        U104(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
        U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
        U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
        U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
        U35(tt(),V2) -> U36(isNat(activate(V2)))
        U36(tt()) -> tt()
        U41(tt(),V2) -> U42(isNatKind(activate(V2)))
        U42(tt()) -> tt()
        U51(tt()) -> tt()
        U61(tt(),V2) -> U62(isNatKind(activate(V2)))
        U62(tt()) -> tt()
        U71(tt(),N) -> U72(isNatKind(activate(N)),activate(N))
        U72(tt(),N) -> activate(N)
        U81(tt(),M,N) -> U82(isNatKind(activate(M)),activate(M),activate(N))
        U82(tt(),M,N) -> U83(isNat(activate(N)),activate(M),activate(N))
        U83(tt(),M,N) -> U84(isNatKind(activate(N)),activate(M),activate(N))
        U84(tt(),M,N) -> s(plus(activate(N),activate(M)))
        U91(tt(),N) -> U92(isNatKind(activate(N)))
        U92(tt()) -> 0()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
        isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0}
      Obligation:
        Innermost
        basic terms: {0,U101,U102,U103,U104,U11,U12,U13,U14,U15,U16,U21,U22,U23,U31,U32,U33,U34,U35,U36,U41,U42,U51,U61,U62,U71,U72,U81,U82,U83,U84,U91,U92,activate,isNat,isNatKind,plus,s,x}/{n__0,n__plus,n__s,n__x,tt}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        0#() -> c_1()
        U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N))
        U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U16#(tt()) -> c_11()
        U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U23#(tt()) -> c_14()
        U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U36#(tt()) -> c_20()
        U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U42#(tt()) -> c_22()
        U51#(tt()) -> c_23()
        U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U62#(tt()) -> c_25()
        U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U72#(tt(),N) -> c_27(activate#(N))
        U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
        U92#(tt()) -> c_33(0#())
        activate#(X) -> c_34()
        activate#(n__0()) -> c_35(0#())
        activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2))
        activate#(n__s(X)) -> c_37(s#(X))
        activate#(n__x(X1,X2)) -> c_38(x#(X1,X2))
        isNat#(n__0()) -> c_39()
        isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNatKind#(n__0()) -> c_43()
        isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        plus#(X1,X2) -> c_47()
        s#(X) -> c_48()
        x#(X1,X2) -> c_49()
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        0#() -> c_1()
        U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N))
        U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U16#(tt()) -> c_11()
        U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U23#(tt()) -> c_14()
        U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U36#(tt()) -> c_20()
        U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U42#(tt()) -> c_22()
        U51#(tt()) -> c_23()
        U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U62#(tt()) -> c_25()
        U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U72#(tt(),N) -> c_27(activate#(N))
        U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
        U92#(tt()) -> c_33(0#())
        activate#(X) -> c_34()
        activate#(n__0()) -> c_35(0#())
        activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2))
        activate#(n__s(X)) -> c_37(s#(X))
        activate#(n__x(X1,X2)) -> c_38(x#(X1,X2))
        isNat#(n__0()) -> c_39()
        isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNatKind#(n__0()) -> c_43()
        isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        plus#(X1,X2) -> c_47()
        s#(X) -> c_48()
        x#(X1,X2) -> c_49()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U101(tt(),M,N) -> U102(isNatKind(activate(M)),activate(M),activate(N))
        U102(tt(),M,N) -> U103(isNat(activate(N)),activate(M),activate(N))
        U103(tt(),M,N) -> U104(isNatKind(activate(N)),activate(M),activate(N))
        U104(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
        U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
        U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
        U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
        U35(tt(),V2) -> U36(isNat(activate(V2)))
        U36(tt()) -> tt()
        U41(tt(),V2) -> U42(isNatKind(activate(V2)))
        U42(tt()) -> tt()
        U51(tt()) -> tt()
        U61(tt(),V2) -> U62(isNatKind(activate(V2)))
        U62(tt()) -> tt()
        U71(tt(),N) -> U72(isNatKind(activate(N)),activate(N))
        U72(tt(),N) -> activate(N)
        U81(tt(),M,N) -> U82(isNatKind(activate(M)),activate(M),activate(N))
        U82(tt(),M,N) -> U83(isNat(activate(N)),activate(M),activate(N))
        U83(tt(),M,N) -> U84(isNatKind(activate(N)),activate(M),activate(N))
        U84(tt(),M,N) -> s(plus(activate(N),activate(M)))
        U91(tt(),N) -> U92(isNatKind(activate(N)))
        U92(tt()) -> 0()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
        isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/5,c_6/5,c_7/5,c_8/5,c_9/4,c_10/3,c_11/0,c_12/4,c_13/3,c_14/0,c_15/5,c_16/5,c_17/5,c_18/4,c_19/3,c_20/0,c_21/3,c_22/0,c_23/0,c_24/3,c_25/0,c_26/4,c_27/1,c_28/5,c_29/5,c_30/5,c_31/4,c_32/3,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/5,c_41/4,c_42/5,c_43/0,c_44/4,c_45/3,c_46/4,c_47/0,c_48/0,c_49/0}
      Obligation:
        Innermost
        basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
        U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
        U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
        U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
        U35(tt(),V2) -> U36(isNat(activate(V2)))
        U36(tt()) -> tt()
        U41(tt(),V2) -> U42(isNatKind(activate(V2)))
        U42(tt()) -> tt()
        U51(tt()) -> tt()
        U61(tt(),V2) -> U62(isNatKind(activate(V2)))
        U62(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
        isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
        0#() -> c_1()
        U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N))
        U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U16#(tt()) -> c_11()
        U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U23#(tt()) -> c_14()
        U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U36#(tt()) -> c_20()
        U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U42#(tt()) -> c_22()
        U51#(tt()) -> c_23()
        U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U62#(tt()) -> c_25()
        U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U72#(tt(),N) -> c_27(activate#(N))
        U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
        U92#(tt()) -> c_33(0#())
        activate#(X) -> c_34()
        activate#(n__0()) -> c_35(0#())
        activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2))
        activate#(n__s(X)) -> c_37(s#(X))
        activate#(n__x(X1,X2)) -> c_38(x#(X1,X2))
        isNat#(n__0()) -> c_39()
        isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNatKind#(n__0()) -> c_43()
        isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        plus#(X1,X2) -> c_47()
        s#(X) -> c_48()
        x#(X1,X2) -> c_49()
*** 1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        0#() -> c_1()
        U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N))
        U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U16#(tt()) -> c_11()
        U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U23#(tt()) -> c_14()
        U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U36#(tt()) -> c_20()
        U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U42#(tt()) -> c_22()
        U51#(tt()) -> c_23()
        U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U62#(tt()) -> c_25()
        U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U72#(tt(),N) -> c_27(activate#(N))
        U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
        U92#(tt()) -> c_33(0#())
        activate#(X) -> c_34()
        activate#(n__0()) -> c_35(0#())
        activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2))
        activate#(n__s(X)) -> c_37(s#(X))
        activate#(n__x(X1,X2)) -> c_38(x#(X1,X2))
        isNat#(n__0()) -> c_39()
        isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNatKind#(n__0()) -> c_43()
        isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        plus#(X1,X2) -> c_47()
        s#(X) -> c_48()
        x#(X1,X2) -> c_49()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
        U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
        U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
        U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
        U35(tt(),V2) -> U36(isNat(activate(V2)))
        U36(tt()) -> tt()
        U41(tt(),V2) -> U42(isNatKind(activate(V2)))
        U42(tt()) -> tt()
        U51(tt()) -> tt()
        U61(tt(),V2) -> U62(isNatKind(activate(V2)))
        U62(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
        isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/5,c_6/5,c_7/5,c_8/5,c_9/4,c_10/3,c_11/0,c_12/4,c_13/3,c_14/0,c_15/5,c_16/5,c_17/5,c_18/4,c_19/3,c_20/0,c_21/3,c_22/0,c_23/0,c_24/3,c_25/0,c_26/4,c_27/1,c_28/5,c_29/5,c_30/5,c_31/4,c_32/3,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/5,c_41/4,c_42/5,c_43/0,c_44/4,c_45/3,c_46/4,c_47/0,c_48/0,c_49/0}
      Obligation:
        Innermost
        basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,11,14,20,22,23,25,34,39,43,47,48,49}
      by application of
        Pre({1,11,14,20,22,23,25,34,39,43,47,48,49}) = {2,3,4,5,6,7,8,9,10,12,13,15,16,17,18,19,21,24,26,27,28,29,30,31,32,33,35,36,37,38,40,41,42,44,45,46}.
      Here rules are labelled as follows:
        1:  0#() -> c_1()                        
        2:  U101#(tt(),M,N) ->                   
              c_2(U102#(isNatKind(activate(M))   
                       ,activate(M)              
                       ,activate(N))             
                 ,isNatKind#(activate(M))        
                 ,activate#(M)                   
                 ,activate#(M)                   
                 ,activate#(N))                  
        3:  U102#(tt(),M,N) ->                   
              c_3(U103#(isNat(activate(N))       
                       ,activate(M)              
                       ,activate(N))             
                 ,isNat#(activate(N))            
                 ,activate#(N)                   
                 ,activate#(M)                   
                 ,activate#(N))                  
        4:  U103#(tt(),M,N) ->                   
              c_4(U104#(isNatKind(activate(N))   
                       ,activate(M)              
                       ,activate(N))             
                 ,isNatKind#(activate(N))        
                 ,activate#(N)                   
                 ,activate#(M)                   
                 ,activate#(N))                  
        5:  U104#(tt(),M,N) ->                   
              c_5(plus#(x(activate(N)            
                         ,activate(M))           
                       ,activate(N))             
                 ,x#(activate(N),activate(M))    
                 ,activate#(N)                   
                 ,activate#(M)                   
                 ,activate#(N))                  
        6:  U11#(tt(),V1,V2) ->                  
              c_6(U12#(isNatKind(activate(V1))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V1))       
                 ,activate#(V1)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        7:  U12#(tt(),V1,V2) ->                  
              c_7(U13#(isNatKind(activate(V2))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V2))       
                 ,activate#(V2)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        8:  U13#(tt(),V1,V2) ->                  
              c_8(U14#(isNatKind(activate(V2))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V2))       
                 ,activate#(V2)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        9:  U14#(tt(),V1,V2) ->                  
              c_9(U15#(isNat(activate(V1))       
                      ,activate(V2))             
                 ,isNat#(activate(V1))           
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        10: U15#(tt(),V2) ->                     
              c_10(U16#(isNat(activate(V2)))     
                  ,isNat#(activate(V2))          
                  ,activate#(V2))                
        11: U16#(tt()) -> c_11()                 
        12: U21#(tt(),V1) ->                     
              c_12(U22#(isNatKind(activate(V1))  
                       ,activate(V1))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1))                
        13: U22#(tt(),V1) ->                     
              c_13(U23#(isNat(activate(V1)))     
                  ,isNat#(activate(V1))          
                  ,activate#(V1))                
        14: U23#(tt()) -> c_14()                 
        15: U31#(tt(),V1,V2) ->                  
              c_15(U32#(isNatKind(activate(V1))  
                       ,activate(V1)             
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1)                 
                  ,activate#(V2))                
        16: U32#(tt(),V1,V2) ->                  
              c_16(U33#(isNatKind(activate(V2))  
                       ,activate(V1)             
                       ,activate(V2))            
                  ,isNatKind#(activate(V2))      
                  ,activate#(V2)                 
                  ,activate#(V1)                 
                  ,activate#(V2))                
        17: U33#(tt(),V1,V2) ->                  
              c_17(U34#(isNatKind(activate(V2))  
                       ,activate(V1)             
                       ,activate(V2))            
                  ,isNatKind#(activate(V2))      
                  ,activate#(V2)                 
                  ,activate#(V1)                 
                  ,activate#(V2))                
        18: U34#(tt(),V1,V2) ->                  
              c_18(U35#(isNat(activate(V1))      
                       ,activate(V2))            
                  ,isNat#(activate(V1))          
                  ,activate#(V1)                 
                  ,activate#(V2))                
        19: U35#(tt(),V2) ->                     
              c_19(U36#(isNat(activate(V2)))     
                  ,isNat#(activate(V2))          
                  ,activate#(V2))                
        20: U36#(tt()) -> c_20()                 
        21: U41#(tt(),V2) ->                     
              c_21(U42#(isNatKind(activate(V2))) 
                  ,isNatKind#(activate(V2))      
                  ,activate#(V2))                
        22: U42#(tt()) -> c_22()                 
        23: U51#(tt()) -> c_23()                 
        24: U61#(tt(),V2) ->                     
              c_24(U62#(isNatKind(activate(V2))) 
                  ,isNatKind#(activate(V2))      
                  ,activate#(V2))                
        25: U62#(tt()) -> c_25()                 
        26: U71#(tt(),N) ->                      
              c_26(U72#(isNatKind(activate(N))   
                       ,activate(N))             
                  ,isNatKind#(activate(N))       
                  ,activate#(N)                  
                  ,activate#(N))                 
        27: U72#(tt(),N) ->                      
              c_27(activate#(N))                 
        28: U81#(tt(),M,N) ->                    
              c_28(U82#(isNatKind(activate(M))   
                       ,activate(M)              
                       ,activate(N))             
                  ,isNatKind#(activate(M))       
                  ,activate#(M)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        29: U82#(tt(),M,N) ->                    
              c_29(U83#(isNat(activate(N))       
                       ,activate(M)              
                       ,activate(N))             
                  ,isNat#(activate(N))           
                  ,activate#(N)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        30: U83#(tt(),M,N) ->                    
              c_30(U84#(isNatKind(activate(N))   
                       ,activate(M)              
                       ,activate(N))             
                  ,isNatKind#(activate(N))       
                  ,activate#(N)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        31: U84#(tt(),M,N) ->                    
              c_31(s#(plus(activate(N)           
                          ,activate(M)))         
                  ,plus#(activate(N),activate(M))
                  ,activate#(N)                  
                  ,activate#(M))                 
        32: U91#(tt(),N) ->                      
              c_32(U92#(isNatKind(activate(N)))  
                  ,isNatKind#(activate(N))       
                  ,activate#(N))                 
        33: U92#(tt()) -> c_33(0#())             
        34: activate#(X) -> c_34()               
        35: activate#(n__0()) -> c_35(0#())      
        36: activate#(n__plus(X1,X2)) ->         
              c_36(plus#(X1,X2))                 
        37: activate#(n__s(X)) ->                
              c_37(s#(X))                        
        38: activate#(n__x(X1,X2)) ->            
              c_38(x#(X1,X2))                    
        39: isNat#(n__0()) -> c_39()             
        40: isNat#(n__plus(V1,V2)) ->            
              c_40(U11#(isNatKind(activate(V1))  
                       ,activate(V1)             
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1)                 
                  ,activate#(V2))                
        41: isNat#(n__s(V1)) ->                  
              c_41(U21#(isNatKind(activate(V1))  
                       ,activate(V1))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1))                
        42: isNat#(n__x(V1,V2)) ->               
              c_42(U31#(isNatKind(activate(V1))  
                       ,activate(V1)             
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1)                 
                  ,activate#(V2))                
        43: isNatKind#(n__0()) -> c_43()         
        44: isNatKind#(n__plus(V1,V2)) ->        
              c_44(U41#(isNatKind(activate(V1))  
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V2))                
        45: isNatKind#(n__s(V1)) ->              
              c_45(U51#(isNatKind(activate(V1))) 
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1))                
        46: isNatKind#(n__x(V1,V2)) ->           
              c_46(U61#(isNatKind(activate(V1))  
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V2))                
        47: plus#(X1,X2) -> c_47()               
        48: s#(X) -> c_48()                      
        49: x#(X1,X2) -> c_49()                  
*** 1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N))
        U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U72#(tt(),N) -> c_27(activate#(N))
        U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
        U92#(tt()) -> c_33(0#())
        activate#(n__0()) -> c_35(0#())
        activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2))
        activate#(n__s(X)) -> c_37(s#(X))
        activate#(n__x(X1,X2)) -> c_38(x#(X1,X2))
        isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
      Strict TRS Rules:
        
      Weak DP Rules:
        0#() -> c_1()
        U16#(tt()) -> c_11()
        U23#(tt()) -> c_14()
        U36#(tt()) -> c_20()
        U42#(tt()) -> c_22()
        U51#(tt()) -> c_23()
        U62#(tt()) -> c_25()
        activate#(X) -> c_34()
        isNat#(n__0()) -> c_39()
        isNatKind#(n__0()) -> c_43()
        plus#(X1,X2) -> c_47()
        s#(X) -> c_48()
        x#(X1,X2) -> c_49()
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
        U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
        U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
        U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
        U35(tt(),V2) -> U36(isNat(activate(V2)))
        U36(tt()) -> tt()
        U41(tt(),V2) -> U42(isNatKind(activate(V2)))
        U42(tt()) -> tt()
        U51(tt()) -> tt()
        U61(tt(),V2) -> U62(isNatKind(activate(V2)))
        U62(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
        isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/5,c_6/5,c_7/5,c_8/5,c_9/4,c_10/3,c_11/0,c_12/4,c_13/3,c_14/0,c_15/5,c_16/5,c_17/5,c_18/4,c_19/3,c_20/0,c_21/3,c_22/0,c_23/0,c_24/3,c_25/0,c_26/4,c_27/1,c_28/5,c_29/5,c_30/5,c_31/4,c_32/3,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/5,c_41/4,c_42/5,c_43/0,c_44/4,c_45/3,c_46/4,c_47/0,c_48/0,c_49/0}
      Obligation:
        Innermost
        basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {26,27,28,29,30}
      by application of
        Pre({26,27,28,29,30}) = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,31,32,33,34,35,36}.
      Here rules are labelled as follows:
        1:  U101#(tt(),M,N) ->                   
              c_2(U102#(isNatKind(activate(M))   
                       ,activate(M)              
                       ,activate(N))             
                 ,isNatKind#(activate(M))        
                 ,activate#(M)                   
                 ,activate#(M)                   
                 ,activate#(N))                  
        2:  U102#(tt(),M,N) ->                   
              c_3(U103#(isNat(activate(N))       
                       ,activate(M)              
                       ,activate(N))             
                 ,isNat#(activate(N))            
                 ,activate#(N)                   
                 ,activate#(M)                   
                 ,activate#(N))                  
        3:  U103#(tt(),M,N) ->                   
              c_4(U104#(isNatKind(activate(N))   
                       ,activate(M)              
                       ,activate(N))             
                 ,isNatKind#(activate(N))        
                 ,activate#(N)                   
                 ,activate#(M)                   
                 ,activate#(N))                  
        4:  U104#(tt(),M,N) ->                   
              c_5(plus#(x(activate(N)            
                         ,activate(M))           
                       ,activate(N))             
                 ,x#(activate(N),activate(M))    
                 ,activate#(N)                   
                 ,activate#(M)                   
                 ,activate#(N))                  
        5:  U11#(tt(),V1,V2) ->                  
              c_6(U12#(isNatKind(activate(V1))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V1))       
                 ,activate#(V1)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        6:  U12#(tt(),V1,V2) ->                  
              c_7(U13#(isNatKind(activate(V2))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V2))       
                 ,activate#(V2)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        7:  U13#(tt(),V1,V2) ->                  
              c_8(U14#(isNatKind(activate(V2))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V2))       
                 ,activate#(V2)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        8:  U14#(tt(),V1,V2) ->                  
              c_9(U15#(isNat(activate(V1))       
                      ,activate(V2))             
                 ,isNat#(activate(V1))           
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        9:  U15#(tt(),V2) ->                     
              c_10(U16#(isNat(activate(V2)))     
                  ,isNat#(activate(V2))          
                  ,activate#(V2))                
        10: U21#(tt(),V1) ->                     
              c_12(U22#(isNatKind(activate(V1))  
                       ,activate(V1))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1))                
        11: U22#(tt(),V1) ->                     
              c_13(U23#(isNat(activate(V1)))     
                  ,isNat#(activate(V1))          
                  ,activate#(V1))                
        12: U31#(tt(),V1,V2) ->                  
              c_15(U32#(isNatKind(activate(V1))  
                       ,activate(V1)             
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1)                 
                  ,activate#(V2))                
        13: U32#(tt(),V1,V2) ->                  
              c_16(U33#(isNatKind(activate(V2))  
                       ,activate(V1)             
                       ,activate(V2))            
                  ,isNatKind#(activate(V2))      
                  ,activate#(V2)                 
                  ,activate#(V1)                 
                  ,activate#(V2))                
        14: U33#(tt(),V1,V2) ->                  
              c_17(U34#(isNatKind(activate(V2))  
                       ,activate(V1)             
                       ,activate(V2))            
                  ,isNatKind#(activate(V2))      
                  ,activate#(V2)                 
                  ,activate#(V1)                 
                  ,activate#(V2))                
        15: U34#(tt(),V1,V2) ->                  
              c_18(U35#(isNat(activate(V1))      
                       ,activate(V2))            
                  ,isNat#(activate(V1))          
                  ,activate#(V1)                 
                  ,activate#(V2))                
        16: U35#(tt(),V2) ->                     
              c_19(U36#(isNat(activate(V2)))     
                  ,isNat#(activate(V2))          
                  ,activate#(V2))                
        17: U41#(tt(),V2) ->                     
              c_21(U42#(isNatKind(activate(V2))) 
                  ,isNatKind#(activate(V2))      
                  ,activate#(V2))                
        18: U61#(tt(),V2) ->                     
              c_24(U62#(isNatKind(activate(V2))) 
                  ,isNatKind#(activate(V2))      
                  ,activate#(V2))                
        19: U71#(tt(),N) ->                      
              c_26(U72#(isNatKind(activate(N))   
                       ,activate(N))             
                  ,isNatKind#(activate(N))       
                  ,activate#(N)                  
                  ,activate#(N))                 
        20: U72#(tt(),N) ->                      
              c_27(activate#(N))                 
        21: U81#(tt(),M,N) ->                    
              c_28(U82#(isNatKind(activate(M))   
                       ,activate(M)              
                       ,activate(N))             
                  ,isNatKind#(activate(M))       
                  ,activate#(M)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        22: U82#(tt(),M,N) ->                    
              c_29(U83#(isNat(activate(N))       
                       ,activate(M)              
                       ,activate(N))             
                  ,isNat#(activate(N))           
                  ,activate#(N)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        23: U83#(tt(),M,N) ->                    
              c_30(U84#(isNatKind(activate(N))   
                       ,activate(M)              
                       ,activate(N))             
                  ,isNatKind#(activate(N))       
                  ,activate#(N)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        24: U84#(tt(),M,N) ->                    
              c_31(s#(plus(activate(N)           
                          ,activate(M)))         
                  ,plus#(activate(N),activate(M))
                  ,activate#(N)                  
                  ,activate#(M))                 
        25: U91#(tt(),N) ->                      
              c_32(U92#(isNatKind(activate(N)))  
                  ,isNatKind#(activate(N))       
                  ,activate#(N))                 
        26: U92#(tt()) -> c_33(0#())             
        27: activate#(n__0()) -> c_35(0#())      
        28: activate#(n__plus(X1,X2)) ->         
              c_36(plus#(X1,X2))                 
        29: activate#(n__s(X)) ->                
              c_37(s#(X))                        
        30: activate#(n__x(X1,X2)) ->            
              c_38(x#(X1,X2))                    
        31: isNat#(n__plus(V1,V2)) ->            
              c_40(U11#(isNatKind(activate(V1))  
                       ,activate(V1)             
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1)                 
                  ,activate#(V2))                
        32: isNat#(n__s(V1)) ->                  
              c_41(U21#(isNatKind(activate(V1))  
                       ,activate(V1))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1))                
        33: isNat#(n__x(V1,V2)) ->               
              c_42(U31#(isNatKind(activate(V1))  
                       ,activate(V1)             
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1)                 
                  ,activate#(V2))                
        34: isNatKind#(n__plus(V1,V2)) ->        
              c_44(U41#(isNatKind(activate(V1))  
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V2))                
        35: isNatKind#(n__s(V1)) ->              
              c_45(U51#(isNatKind(activate(V1))) 
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1))                
        36: isNatKind#(n__x(V1,V2)) ->           
              c_46(U61#(isNatKind(activate(V1))  
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V2))                
        37: 0#() -> c_1()                        
        38: U16#(tt()) -> c_11()                 
        39: U23#(tt()) -> c_14()                 
        40: U36#(tt()) -> c_20()                 
        41: U42#(tt()) -> c_22()                 
        42: U51#(tt()) -> c_23()                 
        43: U62#(tt()) -> c_25()                 
        44: activate#(X) -> c_34()               
        45: isNat#(n__0()) -> c_39()             
        46: isNatKind#(n__0()) -> c_43()         
        47: plus#(X1,X2) -> c_47()               
        48: s#(X) -> c_48()                      
        49: x#(X1,X2) -> c_49()                  
*** 1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N))
        U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U72#(tt(),N) -> c_27(activate#(N))
        U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
        isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
      Strict TRS Rules:
        
      Weak DP Rules:
        0#() -> c_1()
        U16#(tt()) -> c_11()
        U23#(tt()) -> c_14()
        U36#(tt()) -> c_20()
        U42#(tt()) -> c_22()
        U51#(tt()) -> c_23()
        U62#(tt()) -> c_25()
        U92#(tt()) -> c_33(0#())
        activate#(X) -> c_34()
        activate#(n__0()) -> c_35(0#())
        activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2))
        activate#(n__s(X)) -> c_37(s#(X))
        activate#(n__x(X1,X2)) -> c_38(x#(X1,X2))
        isNat#(n__0()) -> c_39()
        isNatKind#(n__0()) -> c_43()
        plus#(X1,X2) -> c_47()
        s#(X) -> c_48()
        x#(X1,X2) -> c_49()
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
        U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
        U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
        U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
        U35(tt(),V2) -> U36(isNat(activate(V2)))
        U36(tt()) -> tt()
        U41(tt(),V2) -> U42(isNatKind(activate(V2)))
        U42(tt()) -> tt()
        U51(tt()) -> tt()
        U61(tt(),V2) -> U62(isNatKind(activate(V2)))
        U62(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
        isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/5,c_6/5,c_7/5,c_8/5,c_9/4,c_10/3,c_11/0,c_12/4,c_13/3,c_14/0,c_15/5,c_16/5,c_17/5,c_18/4,c_19/3,c_20/0,c_21/3,c_22/0,c_23/0,c_24/3,c_25/0,c_26/4,c_27/1,c_28/5,c_29/5,c_30/5,c_31/4,c_32/3,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/5,c_41/4,c_42/5,c_43/0,c_44/4,c_45/3,c_46/4,c_47/0,c_48/0,c_49/0}
      Obligation:
        Innermost
        basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {4,20,24}
      by application of
        Pre({4,20,24}) = {3,19,23}.
      Here rules are labelled as follows:
        1:  U101#(tt(),M,N) ->                   
              c_2(U102#(isNatKind(activate(M))   
                       ,activate(M)              
                       ,activate(N))             
                 ,isNatKind#(activate(M))        
                 ,activate#(M)                   
                 ,activate#(M)                   
                 ,activate#(N))                  
        2:  U102#(tt(),M,N) ->                   
              c_3(U103#(isNat(activate(N))       
                       ,activate(M)              
                       ,activate(N))             
                 ,isNat#(activate(N))            
                 ,activate#(N)                   
                 ,activate#(M)                   
                 ,activate#(N))                  
        3:  U103#(tt(),M,N) ->                   
              c_4(U104#(isNatKind(activate(N))   
                       ,activate(M)              
                       ,activate(N))             
                 ,isNatKind#(activate(N))        
                 ,activate#(N)                   
                 ,activate#(M)                   
                 ,activate#(N))                  
        4:  U104#(tt(),M,N) ->                   
              c_5(plus#(x(activate(N)            
                         ,activate(M))           
                       ,activate(N))             
                 ,x#(activate(N),activate(M))    
                 ,activate#(N)                   
                 ,activate#(M)                   
                 ,activate#(N))                  
        5:  U11#(tt(),V1,V2) ->                  
              c_6(U12#(isNatKind(activate(V1))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V1))       
                 ,activate#(V1)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        6:  U12#(tt(),V1,V2) ->                  
              c_7(U13#(isNatKind(activate(V2))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V2))       
                 ,activate#(V2)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        7:  U13#(tt(),V1,V2) ->                  
              c_8(U14#(isNatKind(activate(V2))   
                      ,activate(V1)              
                      ,activate(V2))             
                 ,isNatKind#(activate(V2))       
                 ,activate#(V2)                  
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        8:  U14#(tt(),V1,V2) ->                  
              c_9(U15#(isNat(activate(V1))       
                      ,activate(V2))             
                 ,isNat#(activate(V1))           
                 ,activate#(V1)                  
                 ,activate#(V2))                 
        9:  U15#(tt(),V2) ->                     
              c_10(U16#(isNat(activate(V2)))     
                  ,isNat#(activate(V2))          
                  ,activate#(V2))                
        10: U21#(tt(),V1) ->                     
              c_12(U22#(isNatKind(activate(V1))  
                       ,activate(V1))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1))                
        11: U22#(tt(),V1) ->                     
              c_13(U23#(isNat(activate(V1)))     
                  ,isNat#(activate(V1))          
                  ,activate#(V1))                
        12: U31#(tt(),V1,V2) ->                  
              c_15(U32#(isNatKind(activate(V1))  
                       ,activate(V1)             
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1)                 
                  ,activate#(V2))                
        13: U32#(tt(),V1,V2) ->                  
              c_16(U33#(isNatKind(activate(V2))  
                       ,activate(V1)             
                       ,activate(V2))            
                  ,isNatKind#(activate(V2))      
                  ,activate#(V2)                 
                  ,activate#(V1)                 
                  ,activate#(V2))                
        14: U33#(tt(),V1,V2) ->                  
              c_17(U34#(isNatKind(activate(V2))  
                       ,activate(V1)             
                       ,activate(V2))            
                  ,isNatKind#(activate(V2))      
                  ,activate#(V2)                 
                  ,activate#(V1)                 
                  ,activate#(V2))                
        15: U34#(tt(),V1,V2) ->                  
              c_18(U35#(isNat(activate(V1))      
                       ,activate(V2))            
                  ,isNat#(activate(V1))          
                  ,activate#(V1)                 
                  ,activate#(V2))                
        16: U35#(tt(),V2) ->                     
              c_19(U36#(isNat(activate(V2)))     
                  ,isNat#(activate(V2))          
                  ,activate#(V2))                
        17: U41#(tt(),V2) ->                     
              c_21(U42#(isNatKind(activate(V2))) 
                  ,isNatKind#(activate(V2))      
                  ,activate#(V2))                
        18: U61#(tt(),V2) ->                     
              c_24(U62#(isNatKind(activate(V2))) 
                  ,isNatKind#(activate(V2))      
                  ,activate#(V2))                
        19: U71#(tt(),N) ->                      
              c_26(U72#(isNatKind(activate(N))   
                       ,activate(N))             
                  ,isNatKind#(activate(N))       
                  ,activate#(N)                  
                  ,activate#(N))                 
        20: U72#(tt(),N) ->                      
              c_27(activate#(N))                 
        21: U81#(tt(),M,N) ->                    
              c_28(U82#(isNatKind(activate(M))   
                       ,activate(M)              
                       ,activate(N))             
                  ,isNatKind#(activate(M))       
                  ,activate#(M)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        22: U82#(tt(),M,N) ->                    
              c_29(U83#(isNat(activate(N))       
                       ,activate(M)              
                       ,activate(N))             
                  ,isNat#(activate(N))           
                  ,activate#(N)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        23: U83#(tt(),M,N) ->                    
              c_30(U84#(isNatKind(activate(N))   
                       ,activate(M)              
                       ,activate(N))             
                  ,isNatKind#(activate(N))       
                  ,activate#(N)                  
                  ,activate#(M)                  
                  ,activate#(N))                 
        24: U84#(tt(),M,N) ->                    
              c_31(s#(plus(activate(N)           
                          ,activate(M)))         
                  ,plus#(activate(N),activate(M))
                  ,activate#(N)                  
                  ,activate#(M))                 
        25: U91#(tt(),N) ->                      
              c_32(U92#(isNatKind(activate(N)))  
                  ,isNatKind#(activate(N))       
                  ,activate#(N))                 
        26: isNat#(n__plus(V1,V2)) ->            
              c_40(U11#(isNatKind(activate(V1))  
                       ,activate(V1)             
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1)                 
                  ,activate#(V2))                
        27: isNat#(n__s(V1)) ->                  
              c_41(U21#(isNatKind(activate(V1))  
                       ,activate(V1))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1))                
        28: isNat#(n__x(V1,V2)) ->               
              c_42(U31#(isNatKind(activate(V1))  
                       ,activate(V1)             
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V1)                 
                  ,activate#(V2))                
        29: isNatKind#(n__plus(V1,V2)) ->        
              c_44(U41#(isNatKind(activate(V1))  
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V2))                
        30: isNatKind#(n__s(V1)) ->              
              c_45(U51#(isNatKind(activate(V1))) 
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1))                
        31: isNatKind#(n__x(V1,V2)) ->           
              c_46(U61#(isNatKind(activate(V1))  
                       ,activate(V2))            
                  ,isNatKind#(activate(V1))      
                  ,activate#(V1)                 
                  ,activate#(V2))                
        32: 0#() -> c_1()                        
        33: U16#(tt()) -> c_11()                 
        34: U23#(tt()) -> c_14()                 
        35: U36#(tt()) -> c_20()                 
        36: U42#(tt()) -> c_22()                 
        37: U51#(tt()) -> c_23()                 
        38: U62#(tt()) -> c_25()                 
        39: U92#(tt()) -> c_33(0#())             
        40: activate#(X) -> c_34()               
        41: activate#(n__0()) -> c_35(0#())      
        42: activate#(n__plus(X1,X2)) ->         
              c_36(plus#(X1,X2))                 
        43: activate#(n__s(X)) ->                
              c_37(s#(X))                        
        44: activate#(n__x(X1,X2)) ->            
              c_38(x#(X1,X2))                    
        45: isNat#(n__0()) -> c_39()             
        46: isNatKind#(n__0()) -> c_43()         
        47: plus#(X1,X2) -> c_47()               
        48: s#(X) -> c_48()                      
        49: x#(X1,X2) -> c_49()                  
*** 1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
        isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
      Strict TRS Rules:
        
      Weak DP Rules:
        0#() -> c_1()
        U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N))
        U16#(tt()) -> c_11()
        U23#(tt()) -> c_14()
        U36#(tt()) -> c_20()
        U42#(tt()) -> c_22()
        U51#(tt()) -> c_23()
        U62#(tt()) -> c_25()
        U72#(tt(),N) -> c_27(activate#(N))
        U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
        U92#(tt()) -> c_33(0#())
        activate#(X) -> c_34()
        activate#(n__0()) -> c_35(0#())
        activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2))
        activate#(n__s(X)) -> c_37(s#(X))
        activate#(n__x(X1,X2)) -> c_38(x#(X1,X2))
        isNat#(n__0()) -> c_39()
        isNatKind#(n__0()) -> c_43()
        plus#(X1,X2) -> c_47()
        s#(X) -> c_48()
        x#(X1,X2) -> c_49()
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
        U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
        U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
        U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
        U35(tt(),V2) -> U36(isNat(activate(V2)))
        U36(tt()) -> tt()
        U41(tt(),V2) -> U42(isNatKind(activate(V2)))
        U42(tt()) -> tt()
        U51(tt()) -> tt()
        U61(tt(),V2) -> U62(isNatKind(activate(V2)))
        U62(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
        isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/5,c_6/5,c_7/5,c_8/5,c_9/4,c_10/3,c_11/0,c_12/4,c_13/3,c_14/0,c_15/5,c_16/5,c_17/5,c_18/4,c_19/3,c_20/0,c_21/3,c_22/0,c_23/0,c_24/3,c_25/0,c_26/4,c_27/1,c_28/5,c_29/5,c_30/5,c_31/4,c_32/3,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/5,c_41/4,c_42/5,c_43/0,c_44/4,c_45/3,c_46/4,c_47/0,c_48/0,c_49/0}
      Obligation:
        Innermost
        basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
           -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_5 activate#(n__0()) -> c_35(0#()):41
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)):2
           -->_2 isNatKind#(n__0()) -> c_43():46
           -->_5 activate#(X) -> c_34():40
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
        
        2:S:U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
           -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_5 activate#(n__0()) -> c_35(0#()):41
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):25
           -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):24
           -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):23
           -->_1 U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N)):3
           -->_2 isNat#(n__0()) -> c_39():45
           -->_5 activate#(X) -> c_34():40
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
        
        3:S:U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
           -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_5 activate#(n__0()) -> c_35(0#()):41
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_1 U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N)):30
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_2 isNatKind#(n__0()) -> c_43():46
           -->_5 activate#(X) -> c_34():40
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
        
        4:S:U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
           -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_5 activate#(n__0()) -> c_35(0#()):41
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):5
           -->_2 isNatKind#(n__0()) -> c_43():46
           -->_5 activate#(X) -> c_34():40
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
        
        5:S:U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
           -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_5 activate#(n__0()) -> c_35(0#()):41
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):6
           -->_2 isNatKind#(n__0()) -> c_43():46
           -->_5 activate#(X) -> c_34():40
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
        
        6:S:U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
           -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_5 activate#(n__0()) -> c_35(0#()):41
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7
           -->_2 isNatKind#(n__0()) -> c_43():46
           -->_5 activate#(X) -> c_34():40
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
        
        7:S:U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):25
           -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):24
           -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):23
           -->_1 U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):8
           -->_2 isNat#(n__0()) -> c_39():45
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
        
        8:S:U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):25
           -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):24
           -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):23
           -->_2 isNat#(n__0()) -> c_39():45
           -->_3 activate#(X) -> c_34():40
           -->_1 U16#(tt()) -> c_11():31
        
        9:S:U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):10
           -->_2 isNatKind#(n__0()) -> c_43():46
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
        
        10:S:U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):25
           -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):24
           -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):23
           -->_2 isNat#(n__0()) -> c_39():45
           -->_3 activate#(X) -> c_34():40
           -->_1 U23#(tt()) -> c_14():32
        
        11:S:U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
           -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_5 activate#(n__0()) -> c_35(0#()):41
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):12
           -->_2 isNatKind#(n__0()) -> c_43():46
           -->_5 activate#(X) -> c_34():40
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
        
        12:S:U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
           -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_5 activate#(n__0()) -> c_35(0#()):41
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):13
           -->_2 isNatKind#(n__0()) -> c_43():46
           -->_5 activate#(X) -> c_34():40
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
        
        13:S:U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
           -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_5 activate#(n__0()) -> c_35(0#()):41
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):14
           -->_2 isNatKind#(n__0()) -> c_43():46
           -->_5 activate#(X) -> c_34():40
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
        
        14:S:U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):25
           -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):24
           -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):23
           -->_1 U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):15
           -->_2 isNat#(n__0()) -> c_39():45
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
        
        15:S:U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):25
           -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):24
           -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):23
           -->_2 isNat#(n__0()) -> c_39():45
           -->_3 activate#(X) -> c_34():40
           -->_1 U36#(tt()) -> c_20():33
        
        16:S:U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_2 isNatKind#(n__0()) -> c_43():46
           -->_3 activate#(X) -> c_34():40
           -->_1 U42#(tt()) -> c_22():34
        
        17:S:U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_2 isNatKind#(n__0()) -> c_43():46
           -->_3 activate#(X) -> c_34():40
           -->_1 U62#(tt()) -> c_25():36
        
        18:S:U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_1 U72#(tt(),N) -> c_27(activate#(N)):37
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_2 isNatKind#(n__0()) -> c_43():46
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
        
        19:S:U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
           -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_5 activate#(n__0()) -> c_35(0#()):41
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)):20
           -->_2 isNatKind#(n__0()) -> c_43():46
           -->_5 activate#(X) -> c_34():40
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
        
        20:S:U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
           -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_5 activate#(n__0()) -> c_35(0#()):41
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):25
           -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):24
           -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):23
           -->_1 U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N)):21
           -->_2 isNat#(n__0()) -> c_39():45
           -->_5 activate#(X) -> c_34():40
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
        
        21:S:U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
           -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_5 activate#(n__0()) -> c_35(0#()):41
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_1 U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M)):38
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_2 isNatKind#(n__0()) -> c_43():46
           -->_5 activate#(X) -> c_34():40
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
        
        22:S:U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_1 U92#(tt()) -> c_33(0#()):39
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_2 isNatKind#(n__0()) -> c_43():46
           -->_3 activate#(X) -> c_34():40
        
        23:S:isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
           -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_5 activate#(n__0()) -> c_35(0#()):41
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_2 isNatKind#(n__0()) -> c_43():46
           -->_5 activate#(X) -> c_34():40
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
           -->_1 U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):4
        
        24:S:isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_2 isNatKind#(n__0()) -> c_43():46
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
           -->_1 U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):9
        
        25:S:isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
           -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_5 activate#(n__0()) -> c_35(0#()):41
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_2 isNatKind#(n__0()) -> c_43():46
           -->_5 activate#(X) -> c_34():40
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
           -->_1 U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):11
        
        26:S:isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__0()) -> c_43():46
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2)):16
        
        27:S:isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__0()) -> c_43():46
           -->_3 activate#(X) -> c_34():40
           -->_1 U51#(tt()) -> c_23():35
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
        
        28:S:isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 isNatKind#(n__0()) -> c_43():46
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2)):17
        
        29:W:0#() -> c_1()
           
        
        30:W:U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N)),x#(activate(N),activate(M)),activate#(N),activate#(M),activate#(N))
           -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_5 activate#(n__0()) -> c_35(0#()):41
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_2 x#(X1,X2) -> c_49():49
           -->_1 plus#(X1,X2) -> c_47():47
           -->_5 activate#(X) -> c_34():40
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
        
        31:W:U16#(tt()) -> c_11()
           
        
        32:W:U23#(tt()) -> c_14()
           
        
        33:W:U36#(tt()) -> c_20()
           
        
        34:W:U42#(tt()) -> c_22()
           
        
        35:W:U51#(tt()) -> c_23()
           
        
        36:W:U62#(tt()) -> c_25()
           
        
        37:W:U72#(tt(),N) -> c_27(activate#(N))
           -->_1 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_1 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_1 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_1 activate#(n__0()) -> c_35(0#()):41
           -->_1 activate#(X) -> c_34():40
        
        38:W:U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M))),plus#(activate(N),activate(M)),activate#(N),activate#(M))
           -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
           -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
           -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
           -->_4 activate#(n__0()) -> c_35(0#()):41
           -->_3 activate#(n__0()) -> c_35(0#()):41
           -->_1 s#(X) -> c_48():48
           -->_2 plus#(X1,X2) -> c_47():47
           -->_4 activate#(X) -> c_34():40
           -->_3 activate#(X) -> c_34():40
        
        39:W:U92#(tt()) -> c_33(0#())
           -->_1 0#() -> c_1():29
        
        40:W:activate#(X) -> c_34()
           
        
        41:W:activate#(n__0()) -> c_35(0#())
           -->_1 0#() -> c_1():29
        
        42:W:activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2))
           -->_1 plus#(X1,X2) -> c_47():47
        
        43:W:activate#(n__s(X)) -> c_37(s#(X))
           -->_1 s#(X) -> c_48():48
        
        44:W:activate#(n__x(X1,X2)) -> c_38(x#(X1,X2))
           -->_1 x#(X1,X2) -> c_49():49
        
        45:W:isNat#(n__0()) -> c_39()
           
        
        46:W:isNatKind#(n__0()) -> c_43()
           
        
        47:W:plus#(X1,X2) -> c_47()
           
        
        48:W:s#(X) -> c_48()
           
        
        49:W:x#(X1,X2) -> c_49()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        39: U92#(tt()) -> c_33(0#())             
        38: U84#(tt(),M,N) ->                    
              c_31(s#(plus(activate(N)           
                          ,activate(M)))         
                  ,plus#(activate(N),activate(M))
                  ,activate#(N)                  
                  ,activate#(M))                 
        37: U72#(tt(),N) ->                      
              c_27(activate#(N))                 
        30: U104#(tt(),M,N) ->                   
              c_5(plus#(x(activate(N)            
                         ,activate(M))           
                       ,activate(N))             
                 ,x#(activate(N),activate(M))    
                 ,activate#(N)                   
                 ,activate#(M)                   
                 ,activate#(N))                  
        33: U36#(tt()) -> c_20()                 
        32: U23#(tt()) -> c_14()                 
        31: U16#(tt()) -> c_11()                 
        45: isNat#(n__0()) -> c_39()             
        36: U62#(tt()) -> c_25()                 
        34: U42#(tt()) -> c_22()                 
        35: U51#(tt()) -> c_23()                 
        40: activate#(X) -> c_34()               
        46: isNatKind#(n__0()) -> c_43()         
        41: activate#(n__0()) -> c_35(0#())      
        29: 0#() -> c_1()                        
        42: activate#(n__plus(X1,X2)) ->         
              c_36(plus#(X1,X2))                 
        47: plus#(X1,X2) -> c_47()               
        43: activate#(n__s(X)) ->                
              c_37(s#(X))                        
        48: s#(X) -> c_48()                      
        44: activate#(n__x(X1,X2)) ->            
              c_38(x#(X1,X2))                    
        49: x#(X1,X2) -> c_49()                  
*** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
        U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
        U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
        U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
        U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
        U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
        U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
        U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
        U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
        U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
        isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
        isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
        isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
        isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
        U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
        U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
        U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
        U35(tt(),V2) -> U36(isNat(activate(V2)))
        U36(tt()) -> tt()
        U41(tt(),V2) -> U42(isNatKind(activate(V2)))
        U42(tt()) -> tt()
        U51(tt()) -> tt()
        U61(tt(),V2) -> U62(isNatKind(activate(V2)))
        U62(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
        isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/5,c_6/5,c_7/5,c_8/5,c_9/4,c_10/3,c_11/0,c_12/4,c_13/3,c_14/0,c_15/5,c_16/5,c_17/5,c_18/4,c_19/3,c_20/0,c_21/3,c_22/0,c_23/0,c_24/3,c_25/0,c_26/4,c_27/1,c_28/5,c_29/5,c_30/5,c_31/4,c_32/3,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/5,c_41/4,c_42/5,c_43/0,c_44/4,c_45/3,c_46/4,c_47/0,c_48/0,c_49/0}
      Obligation:
        Innermost
        basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
    Applied Processor:
      SimplifyRHS
    Proof:
      Consider the dependency graph
        1:S:U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)):2
        
        2:S:U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
           -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):25
           -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):24
           -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):23
           -->_1 U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N)):3
        
        3:S:U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
        
        4:S:U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):5
        
        5:S:U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):6
        
        6:S:U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):7
        
        7:S:U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
           -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):25
           -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):24
           -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):23
           -->_1 U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):8
        
        8:S:U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
           -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):25
           -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):24
           -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):23
        
        9:S:U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):10
        
        10:S:U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
           -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):25
           -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):24
           -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):23
        
        11:S:U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):12
        
        12:S:U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2)):13
        
        13:S:U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)),activate#(V2),activate#(V1),activate#(V2))
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2)):14
        
        14:S:U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)),activate#(V1),activate#(V2))
           -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):25
           -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):24
           -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):23
           -->_1 U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):15
        
        15:S:U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
           -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):25
           -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):24
           -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):23
        
        16:S:U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
        
        17:S:U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
        
        18:S:U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(N))
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
        
        19:S:U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)),activate#(M),activate#(M),activate#(N))
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N)):20
        
        20:S:U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)),activate#(N),activate#(M),activate#(N))
           -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):25
           -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):24
           -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):23
           -->_1 U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N)):21
        
        21:S:U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N)),isNatKind#(activate(N)),activate#(N),activate#(M),activate#(N))
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
        
        22:S:U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
        
        23:S:isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):4
        
        24:S:isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1))
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)),activate#(V1),activate#(V1)):9
        
        25:S:isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2))
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V1),activate#(V2)):11
        
        26:S:isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2)):16
        
        27:S:isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
        
        28:S:isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2))
           -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):28
           -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
           -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)),activate#(V1),activate#(V2)):26
           -->_1 U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2)):17
        
      Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
        U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
        U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
        U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
        U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
        U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
        U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
        U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
        U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
        U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
        U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
        U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
        U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
        U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
        U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
        U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
        U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
        U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
        U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
        isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
        isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
        isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
*** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
        U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
        U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
        U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
        U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
        U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
        U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
        U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
        U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
        U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
        U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
        U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
        U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
        U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
        U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
        U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
        U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
        U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
        isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
        isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
        isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
        U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
        U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
        U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
        U15(tt(),V2) -> U16(isNat(activate(V2)))
        U16(tt()) -> tt()
        U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
        U22(tt(),V1) -> U23(isNat(activate(V1)))
        U23(tt()) -> tt()
        U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
        U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
        U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
        U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
        U35(tt(),V2) -> U36(isNat(activate(V2)))
        U36(tt()) -> tt()
        U41(tt(),V2) -> U42(isNatKind(activate(V2)))
        U42(tt()) -> tt()
        U51(tt()) -> tt()
        U61(tt(),V2) -> U62(isNatKind(activate(V2)))
        U62(tt()) -> tt()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__plus(X1,X2)) -> plus(X1,X2)
        activate(n__s(X)) -> s(X)
        activate(n__x(X1,X2)) -> x(X1,X2)
        isNat(n__0()) -> tt()
        isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
        isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
        isNatKind(n__0()) -> tt()
        isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
        isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
        isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
        plus(X1,X2) -> n__plus(X1,X2)
        s(X) -> n__s(X)
        x(X1,X2) -> n__x(X1,X2)
      Signature:
        {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
      Obligation:
        Innermost
        basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
    Applied Processor:
      Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    Proof:
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
      
      Problem (R)
        Strict DP Rules:
          U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
          U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
          isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
          isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        Strict TRS Rules:
          
        Weak DP Rules:
          U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
          U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
          U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
          U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
          U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
          U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
          U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
          isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
          U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
          U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
          U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
          U35(tt(),V2) -> U36(isNat(activate(V2)))
          U36(tt()) -> tt()
          U41(tt(),V2) -> U42(isNatKind(activate(V2)))
          U42(tt()) -> tt()
          U51(tt()) -> tt()
          U61(tt(),V2) -> U62(isNatKind(activate(V2)))
          U62(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(X1,X2)
          activate(n__s(X)) -> s(X)
          activate(n__x(X1,X2)) -> x(X1,X2)
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
          isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
          x(X1,X2) -> n__x(X1,X2)
        Signature:
          {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        Obligation:
          Innermost
          basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
      
      Problem (S)
        Strict DP Rules:
          U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
          U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
          U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
          U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
          U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
          U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
          U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
          isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        Strict TRS Rules:
          
        Weak DP Rules:
          U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
          U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
          isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
          isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
          U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
          U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
          U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
          U35(tt(),V2) -> U36(isNat(activate(V2)))
          U36(tt()) -> tt()
          U41(tt(),V2) -> U42(isNatKind(activate(V2)))
          U42(tt()) -> tt()
          U51(tt()) -> tt()
          U61(tt(),V2) -> U62(isNatKind(activate(V2)))
          U62(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(X1,X2)
          activate(n__s(X)) -> s(X)
          activate(n__x(X1,X2)) -> x(X1,X2)
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
          isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
          x(X1,X2) -> n__x(X1,X2)
        Signature:
          {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        Obligation:
          Innermost
          basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
  *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
          U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
          isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
          isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        Strict TRS Rules:
          
        Weak DP Rules:
          U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
          U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
          U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
          U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
          U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
          U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
          U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
          isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
          U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
          U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
          U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
          U35(tt(),V2) -> U36(isNat(activate(V2)))
          U36(tt()) -> tt()
          U41(tt(),V2) -> U42(isNatKind(activate(V2)))
          U42(tt()) -> tt()
          U51(tt()) -> tt()
          U61(tt(),V2) -> U62(isNatKind(activate(V2)))
          U62(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(X1,X2)
          activate(n__s(X)) -> s(X)
          activate(n__x(X1,X2)) -> x(X1,X2)
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
          isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
          x(X1,X2) -> n__x(X1,X2)
        Signature:
          {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        Obligation:
          Innermost
          basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1:  U101#(tt(),M,N) ->                 
                c_2(U102#(isNatKind(activate(M)) 
                         ,activate(M)            
                         ,activate(N))           
                   ,isNatKind#(activate(M)))     
          26: isNatKind#(n__plus(V1,V2)) ->      
                c_44(U41#(isNatKind(activate(V1))
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          28: isNatKind#(n__x(V1,V2)) ->         
                c_46(U61#(isNatKind(activate(V1))
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          
        Consider the set of all dependency pairs
          1:  U101#(tt(),M,N) ->                 
                c_2(U102#(isNatKind(activate(M)) 
                         ,activate(M)            
                         ,activate(N))           
                   ,isNatKind#(activate(M)))     
          2:  U102#(tt(),M,N) ->                 
                c_3(U103#(isNat(activate(N))     
                         ,activate(M)            
                         ,activate(N))           
                   ,isNat#(activate(N)))         
          3:  U103#(tt(),M,N) ->                 
                c_4(isNatKind#(activate(N)))     
          4:  U11#(tt(),V1,V2) ->                
                c_6(U12#(isNatKind(activate(V1)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V1)))    
          5:  U12#(tt(),V1,V2) ->                
                c_7(U13#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2)))    
          6:  U13#(tt(),V1,V2) ->                
                c_8(U14#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2)))    
          7:  U14#(tt(),V1,V2) ->                
                c_9(U15#(isNat(activate(V1))     
                        ,activate(V2))           
                   ,isNat#(activate(V1)))        
          8:  U15#(tt(),V2) ->                   
                c_10(isNat#(activate(V2)))       
          9:  U21#(tt(),V1) ->                   
                c_12(U22#(isNatKind(activate(V1))
                         ,activate(V1))          
                    ,isNatKind#(activate(V1)))   
          10: U22#(tt(),V1) ->                   
                c_13(isNat#(activate(V1)))       
          11: U31#(tt(),V1,V2) ->                
                c_15(U32#(isNatKind(activate(V1))
                         ,activate(V1)           
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          12: U32#(tt(),V1,V2) ->                
                c_16(U33#(isNatKind(activate(V2))
                         ,activate(V1)           
                         ,activate(V2))          
                    ,isNatKind#(activate(V2)))   
          13: U33#(tt(),V1,V2) ->                
                c_17(U34#(isNatKind(activate(V2))
                         ,activate(V1)           
                         ,activate(V2))          
                    ,isNatKind#(activate(V2)))   
          14: U34#(tt(),V1,V2) ->                
                c_18(U35#(isNat(activate(V1))    
                         ,activate(V2))          
                    ,isNat#(activate(V1)))       
          15: U35#(tt(),V2) ->                   
                c_19(isNat#(activate(V2)))       
          16: U41#(tt(),V2) ->                   
                c_21(isNatKind#(activate(V2)))   
          17: U61#(tt(),V2) ->                   
                c_24(isNatKind#(activate(V2)))   
          18: U71#(tt(),N) ->                    
                c_26(isNatKind#(activate(N)))    
          19: U81#(tt(),M,N) ->                  
                c_28(U82#(isNatKind(activate(M)) 
                         ,activate(M)            
                         ,activate(N))           
                    ,isNatKind#(activate(M)))    
          20: U82#(tt(),M,N) ->                  
                c_29(U83#(isNat(activate(N))     
                         ,activate(M)            
                         ,activate(N))           
                    ,isNat#(activate(N)))        
          21: U83#(tt(),M,N) ->                  
                c_30(isNatKind#(activate(N)))    
          22: U91#(tt(),N) ->                    
                c_32(isNatKind#(activate(N)))    
          23: isNat#(n__plus(V1,V2)) ->          
                c_40(U11#(isNatKind(activate(V1))
                         ,activate(V1)           
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          24: isNat#(n__s(V1)) ->                
                c_41(U21#(isNatKind(activate(V1))
                         ,activate(V1))          
                    ,isNatKind#(activate(V1)))   
          25: isNat#(n__x(V1,V2)) ->             
                c_42(U31#(isNatKind(activate(V1))
                         ,activate(V1)           
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          26: isNatKind#(n__plus(V1,V2)) ->      
                c_44(U41#(isNatKind(activate(V1))
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          27: isNatKind#(n__s(V1)) ->            
                c_45(isNatKind#(activate(V1)))   
          28: isNatKind#(n__x(V1,V2)) ->         
                c_46(U61#(isNatKind(activate(V1))
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
        Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {1,26,28}
        These cover all (indirect) predecessors of dependency pairs
          {1,2,3,16,17,18,19,20,21,22,26,28}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
    *** 1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
            U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
            isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
            isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          Strict TRS Rules:
            
          Weak DP Rules:
            U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
            U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
          Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
          Obligation:
            Innermost
            basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
        Applied Processor:
          NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a polynomial interpretation of kind constructor-based(mixed(2)):
          The following argument positions are considered usable:
            uargs(c_2) = {1,2},
            uargs(c_3) = {1,2},
            uargs(c_4) = {1},
            uargs(c_6) = {1,2},
            uargs(c_7) = {1,2},
            uargs(c_8) = {1,2},
            uargs(c_9) = {1,2},
            uargs(c_10) = {1},
            uargs(c_12) = {1,2},
            uargs(c_13) = {1},
            uargs(c_15) = {1,2},
            uargs(c_16) = {1,2},
            uargs(c_17) = {1,2},
            uargs(c_18) = {1,2},
            uargs(c_19) = {1},
            uargs(c_21) = {1},
            uargs(c_24) = {1},
            uargs(c_26) = {1},
            uargs(c_28) = {1,2},
            uargs(c_29) = {1,2},
            uargs(c_30) = {1},
            uargs(c_32) = {1},
            uargs(c_40) = {1,2},
            uargs(c_41) = {1,2},
            uargs(c_42) = {1,2},
            uargs(c_44) = {1,2},
            uargs(c_45) = {1},
            uargs(c_46) = {1,2}
          
          Following symbols are considered usable:
            {0,U41,U42,U51,U61,U62,activate,isNatKind,plus,s,x,0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}
          TcT has computed the following interpretation:
                     p(0) = 1                                            
                  p(U101) = 0                                            
                  p(U102) = 0                                            
                  p(U103) = 0                                            
                  p(U104) = 0                                            
                   p(U11) = 1                                            
                   p(U12) = x1 + x1^2 + x2^2 + x3^2                      
                   p(U13) = x2*x3                                        
                   p(U14) = x1 + x1*x2 + x1^2 + x2                       
                   p(U15) = 0                                            
                   p(U16) = 0                                            
                   p(U21) = x1 + x1^2 + x2^2                             
                   p(U22) = x1 + x2 + x2^2                               
                   p(U23) = 0                                            
                   p(U31) = x1*x2 + x2*x3                                
                   p(U32) = 1 + x1 + x1^2 + x2^2                         
                   p(U33) = x1*x3 + x2 + x3^2                            
                   p(U34) = x2*x3                                        
                   p(U35) = x1*x2 + x2                                   
                   p(U36) = 1 + x1 + x1^2                                
                   p(U41) = 1 + x2                                       
                   p(U42) = x1                                           
                   p(U51) = 1 + x1                                       
                   p(U61) = 1 + x1 + x2                                  
                   p(U62) = 1                                            
                   p(U71) = 0                                            
                   p(U72) = 0                                            
                   p(U81) = 0                                            
                   p(U82) = 0                                            
                   p(U83) = 0                                            
                   p(U84) = 0                                            
                   p(U91) = 0                                            
                   p(U92) = 0                                            
              p(activate) = x1                                           
                 p(isNat) = 0                                            
             p(isNatKind) = x1                                           
                  p(n__0) = 1                                            
               p(n__plus) = 1 + x1 + x2                                  
                  p(n__s) = 1 + x1                                       
                  p(n__x) = 1 + x1 + x2                                  
                  p(plus) = 1 + x1 + x2                                  
                     p(s) = 1 + x1                                       
                    p(tt) = 1                                            
                     p(x) = 1 + x1 + x2                                  
                    p(0#) = 0                                            
                 p(U101#) = x1 + x1*x2 + x1^2 + x2*x3 + x3^2             
                 p(U102#) = x1*x3 + x3^2                                 
                 p(U103#) = x3                                           
                 p(U104#) = 0                                            
                  p(U11#) = 1 + x2 + x2*x3 + x2^2 + x3 + x3^2            
                  p(U12#) = 1 + x1*x3 + x2^2 + x3 + x3^2                 
                  p(U13#) = 1 + x2^2 + x3 + x3^2                         
                  p(U14#) = 1 + x2^2 + x3^2                              
                  p(U15#) = x2^2                                         
                  p(U16#) = 0                                            
                  p(U21#) = x2 + x2^2                                    
                  p(U22#) = x2^2                                         
                  p(U23#) = 0                                            
                  p(U31#) = x2 + x2*x3 + x2^2 + x3 + x3^2                
                  p(U32#) = x1*x3 + x2^2 + x3 + x3^2                     
                  p(U33#) = x2^2 + x3 + x3^2                             
                  p(U34#) = x2^2 + x3^2                                  
                  p(U35#) = x2^2                                         
                  p(U36#) = 0                                            
                  p(U41#) = x2                                           
                  p(U42#) = 0                                            
                  p(U51#) = 0                                            
                  p(U61#) = x2                                           
                  p(U62#) = 0                                            
                  p(U71#) = 1 + x1*x2 + x2                               
                  p(U72#) = 0                                            
                  p(U81#) = x1*x2 + x1*x3 + x2 + x2*x3 + x2^2 + x3 + x3^2
                  p(U82#) = x1 + x1*x2 + x1*x3 + x3^2                    
                  p(U83#) = 1 + x2 + x3                                  
                  p(U84#) = 0                                            
                  p(U91#) = x1*x2 + x2                                   
                  p(U92#) = 0                                            
             p(activate#) = 0                                            
                p(isNat#) = x1^2                                         
            p(isNatKind#) = x1                                           
                 p(plus#) = 0                                            
                    p(s#) = 0                                            
                    p(x#) = 0                                            
                   p(c_1) = 0                                            
                   p(c_2) = 1 + x1 + x2                                  
                   p(c_3) = x1 + x2                                      
                   p(c_4) = x1                                           
                   p(c_5) = 0                                            
                   p(c_6) = x1 + x2                                      
                   p(c_7) = x1 + x2                                      
                   p(c_8) = x1 + x2                                      
                   p(c_9) = x1 + x2                                      
                  p(c_10) = x1                                           
                  p(c_11) = 0                                            
                  p(c_12) = x1 + x2                                      
                  p(c_13) = x1                                           
                  p(c_14) = 0                                            
                  p(c_15) = x1 + x2                                      
                  p(c_16) = x1 + x2                                      
                  p(c_17) = x1 + x2                                      
                  p(c_18) = x1 + x2                                      
                  p(c_19) = x1                                           
                  p(c_20) = 0                                            
                  p(c_21) = x1                                           
                  p(c_22) = 0                                            
                  p(c_23) = 0                                            
                  p(c_24) = x1                                           
                  p(c_25) = 0                                            
                  p(c_26) = 1 + x1                                       
                  p(c_27) = 0                                            
                  p(c_28) = x1 + x2                                      
                  p(c_29) = x1 + x2                                      
                  p(c_30) = 1 + x1                                       
                  p(c_31) = 0                                            
                  p(c_32) = x1                                           
                  p(c_33) = 0                                            
                  p(c_34) = 0                                            
                  p(c_35) = 0                                            
                  p(c_36) = 0                                            
                  p(c_37) = 0                                            
                  p(c_38) = 0                                            
                  p(c_39) = 0                                            
                  p(c_40) = x1 + x2                                      
                  p(c_41) = x1 + x2                                      
                  p(c_42) = 1 + x1 + x2                                  
                  p(c_43) = 0                                            
                  p(c_44) = x1 + x2                                      
                  p(c_45) = 1 + x1                                       
                  p(c_46) = x1 + x2                                      
                  p(c_47) = 0                                            
                  p(c_48) = 0                                            
                  p(c_49) = 0                                            
          
          Following rules are strictly oriented:
                     U101#(tt(),M,N) = 2 + M + M*N + N^2                
                                     > 1 + M + M*N + N^2                
                                     = c_2(U102#(isNatKind(activate(M)) 
                                                ,activate(M)            
                                                ,activate(N))           
                                          ,isNatKind#(activate(M)))     
          
          isNatKind#(n__plus(V1,V2)) = 1 + V1 + V2                      
                                     > V1 + V2                          
                                     = c_44(U41#(isNatKind(activate(V1))
                                                ,activate(V2))          
                                           ,isNatKind#(activate(V1)))   
          
             isNatKind#(n__x(V1,V2)) = 1 + V1 + V2                      
                                     > V1 + V2                          
                                     = c_46(U61#(isNatKind(activate(V1))
                                                ,activate(V2))          
                                           ,isNatKind#(activate(V1)))   
          
          
          Following rules are (at-least) weakly oriented:
                    U102#(tt(),M,N) =  N + N^2                                
                                    >= N + N^2                                
                                    =  c_3(U103#(isNat(activate(N))           
                                                ,activate(M)                  
                                                ,activate(N))                 
                                          ,isNat#(activate(N)))               
          
                    U103#(tt(),M,N) =  N                                      
                                    >= N                                      
                                    =  c_4(isNatKind#(activate(N)))           
          
                   U11#(tt(),V1,V2) =  1 + V1 + V1*V2 + V1^2 + V2 + V2^2      
                                    >= 1 + V1 + V1*V2 + V1^2 + V2 + V2^2      
                                    =  c_6(U12#(isNatKind(activate(V1))       
                                               ,activate(V1)                  
                                               ,activate(V2))                 
                                          ,isNatKind#(activate(V1)))          
          
                   U12#(tt(),V1,V2) =  1 + V1^2 + 2*V2 + V2^2                 
                                    >= 1 + V1^2 + 2*V2 + V2^2                 
                                    =  c_7(U13#(isNatKind(activate(V2))       
                                               ,activate(V1)                  
                                               ,activate(V2))                 
                                          ,isNatKind#(activate(V2)))          
          
                   U13#(tt(),V1,V2) =  1 + V1^2 + V2 + V2^2                   
                                    >= 1 + V1^2 + V2 + V2^2                   
                                    =  c_8(U14#(isNatKind(activate(V2))       
                                               ,activate(V1)                  
                                               ,activate(V2))                 
                                          ,isNatKind#(activate(V2)))          
          
                   U14#(tt(),V1,V2) =  1 + V1^2 + V2^2                        
                                    >= V1^2 + V2^2                            
                                    =  c_9(U15#(isNat(activate(V1))           
                                               ,activate(V2))                 
                                          ,isNat#(activate(V1)))              
          
                      U15#(tt(),V2) =  V2^2                                   
                                    >= V2^2                                   
                                    =  c_10(isNat#(activate(V2)))             
          
                      U21#(tt(),V1) =  V1 + V1^2                              
                                    >= V1 + V1^2                              
                                    =  c_12(U22#(isNatKind(activate(V1))      
                                                ,activate(V1))                
                                           ,isNatKind#(activate(V1)))         
          
                      U22#(tt(),V1) =  V1^2                                   
                                    >= V1^2                                   
                                    =  c_13(isNat#(activate(V1)))             
          
                   U31#(tt(),V1,V2) =  V1 + V1*V2 + V1^2 + V2 + V2^2          
                                    >= V1 + V1*V2 + V1^2 + V2 + V2^2          
                                    =  c_15(U32#(isNatKind(activate(V1))      
                                                ,activate(V1)                 
                                                ,activate(V2))                
                                           ,isNatKind#(activate(V1)))         
          
                   U32#(tt(),V1,V2) =  V1^2 + 2*V2 + V2^2                     
                                    >= V1^2 + 2*V2 + V2^2                     
                                    =  c_16(U33#(isNatKind(activate(V2))      
                                                ,activate(V1)                 
                                                ,activate(V2))                
                                           ,isNatKind#(activate(V2)))         
          
                   U33#(tt(),V1,V2) =  V1^2 + V2 + V2^2                       
                                    >= V1^2 + V2 + V2^2                       
                                    =  c_17(U34#(isNatKind(activate(V2))      
                                                ,activate(V1)                 
                                                ,activate(V2))                
                                           ,isNatKind#(activate(V2)))         
          
                   U34#(tt(),V1,V2) =  V1^2 + V2^2                            
                                    >= V1^2 + V2^2                            
                                    =  c_18(U35#(isNat(activate(V1))          
                                                ,activate(V2))                
                                           ,isNat#(activate(V1)))             
          
                      U35#(tt(),V2) =  V2^2                                   
                                    >= V2^2                                   
                                    =  c_19(isNat#(activate(V2)))             
          
                      U41#(tt(),V2) =  V2                                     
                                    >= V2                                     
                                    =  c_21(isNatKind#(activate(V2)))         
          
                      U61#(tt(),V2) =  V2                                     
                                    >= V2                                     
                                    =  c_24(isNatKind#(activate(V2)))         
          
                       U71#(tt(),N) =  1 + 2*N                                
                                    >= 1 + N                                  
                                    =  c_26(isNatKind#(activate(N)))          
          
                     U81#(tt(),M,N) =  2*M + M*N + M^2 + 2*N + N^2            
                                    >= 2*M + M*N + M^2 + N^2                  
                                    =  c_28(U82#(isNatKind(activate(M))       
                                                ,activate(M)                  
                                                ,activate(N))                 
                                           ,isNatKind#(activate(M)))          
          
                     U82#(tt(),M,N) =  1 + M + N + N^2                        
                                    >= 1 + M + N + N^2                        
                                    =  c_29(U83#(isNat(activate(N))           
                                                ,activate(M)                  
                                                ,activate(N))                 
                                           ,isNat#(activate(N)))              
          
                     U83#(tt(),M,N) =  1 + M + N                              
                                    >= 1 + N                                  
                                    =  c_30(isNatKind#(activate(N)))          
          
                       U91#(tt(),N) =  2*N                                    
                                    >= N                                      
                                    =  c_32(isNatKind#(activate(N)))          
          
             isNat#(n__plus(V1,V2)) =  1 + 2*V1 + 2*V1*V2 + V1^2 + 2*V2 + V2^2
                                    >= 1 + 2*V1 + V1*V2 + V1^2 + V2 + V2^2    
                                    =  c_40(U11#(isNatKind(activate(V1))      
                                                ,activate(V1)                 
                                                ,activate(V2))                
                                           ,isNatKind#(activate(V1)))         
          
                   isNat#(n__s(V1)) =  1 + 2*V1 + V1^2                        
                                    >= 2*V1 + V1^2                            
                                    =  c_41(U21#(isNatKind(activate(V1))      
                                                ,activate(V1))                
                                           ,isNatKind#(activate(V1)))         
          
                isNat#(n__x(V1,V2)) =  1 + 2*V1 + 2*V1*V2 + V1^2 + 2*V2 + V2^2
                                    >= 1 + 2*V1 + V1*V2 + V1^2 + V2 + V2^2    
                                    =  c_42(U31#(isNatKind(activate(V1))      
                                                ,activate(V1)                 
                                                ,activate(V2))                
                                           ,isNatKind#(activate(V1)))         
          
               isNatKind#(n__s(V1)) =  1 + V1                                 
                                    >= 1 + V1                                 
                                    =  c_45(isNatKind#(activate(V1)))         
          
                                0() =  1                                      
                                    >= 1                                      
                                    =  n__0()                                 
          
                       U41(tt(),V2) =  1 + V2                                 
                                    >= V2                                     
                                    =  U42(isNatKind(activate(V2)))           
          
                          U42(tt()) =  1                                      
                                    >= 1                                      
                                    =  tt()                                   
          
                          U51(tt()) =  2                                      
                                    >= 1                                      
                                    =  tt()                                   
          
                       U61(tt(),V2) =  2 + V2                                 
                                    >= 1                                      
                                    =  U62(isNatKind(activate(V2)))           
          
                          U62(tt()) =  1                                      
                                    >= 1                                      
                                    =  tt()                                   
          
                        activate(X) =  X                                      
                                    >= X                                      
                                    =  X                                      
          
                   activate(n__0()) =  1                                      
                                    >= 1                                      
                                    =  0()                                    
          
           activate(n__plus(X1,X2)) =  1 + X1 + X2                            
                                    >= 1 + X1 + X2                            
                                    =  plus(X1,X2)                            
          
                  activate(n__s(X)) =  1 + X                                  
                                    >= 1 + X                                  
                                    =  s(X)                                   
          
              activate(n__x(X1,X2)) =  1 + X1 + X2                            
                                    >= 1 + X1 + X2                            
                                    =  x(X1,X2)                               
          
                  isNatKind(n__0()) =  1                                      
                                    >= 1                                      
                                    =  tt()                                   
          
          isNatKind(n__plus(V1,V2)) =  1 + V1 + V2                            
                                    >= 1 + V2                                 
                                    =  U41(isNatKind(activate(V1))            
                                          ,activate(V2))                      
          
                isNatKind(n__s(V1)) =  1 + V1                                 
                                    >= 1 + V1                                 
                                    =  U51(isNatKind(activate(V1)))           
          
             isNatKind(n__x(V1,V2)) =  1 + V1 + V2                            
                                    >= 1 + V1 + V2                            
                                    =  U61(isNatKind(activate(V1))            
                                          ,activate(V2))                      
          
                        plus(X1,X2) =  1 + X1 + X2                            
                                    >= 1 + X1 + X2                            
                                    =  n__plus(X1,X2)                         
          
                               s(X) =  1 + X                                  
                                    >= 1 + X                                  
                                    =  n__s(X)                                
          
                           x(X1,X2) =  1 + X1 + X2                            
                                    >= 1 + X1 + X2                            
                                    =  n__x(X1,X2)                            
          
    *** 1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
            U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
            isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
          Strict TRS Rules:
            
          Weak DP Rules:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
            U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
          Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
          Obligation:
            Innermost
            basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.1.1.1.1.2 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
          Strict TRS Rules:
            
          Weak DP Rules:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
            U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
            U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
            U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
          Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
          Obligation:
            Innermost
            basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            1: isNatKind#(n__s(V1)) ->         
                 c_45(isNatKind#(activate(V1)))
            
          Consider the set of all dependency pairs
            1:  isNatKind#(n__s(V1)) ->            
                  c_45(isNatKind#(activate(V1)))   
            2:  U101#(tt(),M,N) ->                 
                  c_2(U102#(isNatKind(activate(M)) 
                           ,activate(M)            
                           ,activate(N))           
                     ,isNatKind#(activate(M)))     
            3:  U102#(tt(),M,N) ->                 
                  c_3(U103#(isNat(activate(N))     
                           ,activate(M)            
                           ,activate(N))           
                     ,isNat#(activate(N)))         
            4:  U103#(tt(),M,N) ->                 
                  c_4(isNatKind#(activate(N)))     
            5:  U11#(tt(),V1,V2) ->                
                  c_6(U12#(isNatKind(activate(V1)) 
                          ,activate(V1)            
                          ,activate(V2))           
                     ,isNatKind#(activate(V1)))    
            6:  U12#(tt(),V1,V2) ->                
                  c_7(U13#(isNatKind(activate(V2)) 
                          ,activate(V1)            
                          ,activate(V2))           
                     ,isNatKind#(activate(V2)))    
            7:  U13#(tt(),V1,V2) ->                
                  c_8(U14#(isNatKind(activate(V2)) 
                          ,activate(V1)            
                          ,activate(V2))           
                     ,isNatKind#(activate(V2)))    
            8:  U14#(tt(),V1,V2) ->                
                  c_9(U15#(isNat(activate(V1))     
                          ,activate(V2))           
                     ,isNat#(activate(V1)))        
            9:  U15#(tt(),V2) ->                   
                  c_10(isNat#(activate(V2)))       
            10: U21#(tt(),V1) ->                   
                  c_12(U22#(isNatKind(activate(V1))
                           ,activate(V1))          
                      ,isNatKind#(activate(V1)))   
            11: U22#(tt(),V1) ->                   
                  c_13(isNat#(activate(V1)))       
            12: U31#(tt(),V1,V2) ->                
                  c_15(U32#(isNatKind(activate(V1))
                           ,activate(V1)           
                           ,activate(V2))          
                      ,isNatKind#(activate(V1)))   
            13: U32#(tt(),V1,V2) ->                
                  c_16(U33#(isNatKind(activate(V2))
                           ,activate(V1)           
                           ,activate(V2))          
                      ,isNatKind#(activate(V2)))   
            14: U33#(tt(),V1,V2) ->                
                  c_17(U34#(isNatKind(activate(V2))
                           ,activate(V1)           
                           ,activate(V2))          
                      ,isNatKind#(activate(V2)))   
            15: U34#(tt(),V1,V2) ->                
                  c_18(U35#(isNat(activate(V1))    
                           ,activate(V2))          
                      ,isNat#(activate(V1)))       
            16: U35#(tt(),V2) ->                   
                  c_19(isNat#(activate(V2)))       
            17: U41#(tt(),V2) ->                   
                  c_21(isNatKind#(activate(V2)))   
            18: U61#(tt(),V2) ->                   
                  c_24(isNatKind#(activate(V2)))   
            19: U71#(tt(),N) ->                    
                  c_26(isNatKind#(activate(N)))    
            20: U81#(tt(),M,N) ->                  
                  c_28(U82#(isNatKind(activate(M)) 
                           ,activate(M)            
                           ,activate(N))           
                      ,isNatKind#(activate(M)))    
            21: U82#(tt(),M,N) ->                  
                  c_29(U83#(isNat(activate(N))     
                           ,activate(M)            
                           ,activate(N))           
                      ,isNat#(activate(N)))        
            22: U83#(tt(),M,N) ->                  
                  c_30(isNatKind#(activate(N)))    
            23: U91#(tt(),N) ->                    
                  c_32(isNatKind#(activate(N)))    
            24: isNat#(n__plus(V1,V2)) ->          
                  c_40(U11#(isNatKind(activate(V1))
                           ,activate(V1)           
                           ,activate(V2))          
                      ,isNatKind#(activate(V1)))   
            25: isNat#(n__s(V1)) ->                
                  c_41(U21#(isNatKind(activate(V1))
                           ,activate(V1))          
                      ,isNatKind#(activate(V1)))   
            26: isNat#(n__x(V1,V2)) ->             
                  c_42(U31#(isNatKind(activate(V1))
                           ,activate(V1)           
                           ,activate(V2))          
                      ,isNatKind#(activate(V1)))   
            27: isNatKind#(n__plus(V1,V2)) ->      
                  c_44(U41#(isNatKind(activate(V1))
                           ,activate(V2))          
                      ,isNatKind#(activate(V1)))   
            28: isNatKind#(n__x(V1,V2)) ->         
                  c_46(U61#(isNatKind(activate(V1))
                           ,activate(V2))          
                      ,isNatKind#(activate(V1)))   
          Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2))
          SPACE(?,?)on application of the dependency pairs
            {1}
          These cover all (indirect) predecessors of dependency pairs
            {1,2,3,4,19,20,21,22,23}
          their number of applications is equally bounded.
          The dependency pairs are shifted into the weak component.
      *** 1.1.1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
            Strict TRS Rules:
              
            Weak DP Rules:
              U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
              U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
              U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
              U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
              U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
              U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
              U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
              U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
              U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
              U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
              U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
              U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
              U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
              U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
              isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
              isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
              isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
              U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
              U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
              U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
              U35(tt(),V2) -> U36(isNat(activate(V2)))
              U36(tt()) -> tt()
              U41(tt(),V2) -> U42(isNatKind(activate(V2)))
              U42(tt()) -> tt()
              U51(tt()) -> tt()
              U61(tt(),V2) -> U62(isNatKind(activate(V2)))
              U62(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(X1,X2)
              activate(n__s(X)) -> s(X)
              activate(n__x(X1,X2)) -> x(X1,X2)
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
              isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
              x(X1,X2) -> n__x(X1,X2)
            Signature:
              {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
            Obligation:
              Innermost
              basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
          Applied Processor:
            NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a polynomial interpretation of kind constructor-based(mixed(2)):
            The following argument positions are considered usable:
              uargs(c_2) = {1,2},
              uargs(c_3) = {1,2},
              uargs(c_4) = {1},
              uargs(c_6) = {1,2},
              uargs(c_7) = {1,2},
              uargs(c_8) = {1,2},
              uargs(c_9) = {1,2},
              uargs(c_10) = {1},
              uargs(c_12) = {1,2},
              uargs(c_13) = {1},
              uargs(c_15) = {1,2},
              uargs(c_16) = {1,2},
              uargs(c_17) = {1,2},
              uargs(c_18) = {1,2},
              uargs(c_19) = {1},
              uargs(c_21) = {1},
              uargs(c_24) = {1},
              uargs(c_26) = {1},
              uargs(c_28) = {1,2},
              uargs(c_29) = {1,2},
              uargs(c_30) = {1},
              uargs(c_32) = {1},
              uargs(c_40) = {1,2},
              uargs(c_41) = {1,2},
              uargs(c_42) = {1,2},
              uargs(c_44) = {1,2},
              uargs(c_45) = {1},
              uargs(c_46) = {1,2}
            
            Following symbols are considered usable:
              {0,U41,U42,U51,U61,U62,activate,isNatKind,plus,s,x,0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}
            TcT has computed the following interpretation:
                       p(0) = 1                                                
                    p(U101) = 0                                                
                    p(U102) = 0                                                
                    p(U103) = 0                                                
                    p(U104) = 0                                                
                     p(U11) = x1*x3                                            
                     p(U12) = x1*x3 + x2^2 + x3^2                              
                     p(U13) = x1*x3 + x2*x3 + x2^2                             
                     p(U14) = 0                                                
                     p(U15) = 0                                                
                     p(U16) = 0                                                
                     p(U21) = 0                                                
                     p(U22) = 0                                                
                     p(U23) = 1                                                
                     p(U31) = 1 + x1^2                                         
                     p(U32) = x1 + x1*x3 + x2*x3 + x2^2                        
                     p(U33) = x3^2                                             
                     p(U34) = x1 + x1*x2 + x1*x3 + x2*x3                       
                     p(U35) = x1*x2 + x2                                       
                     p(U36) = x1                                               
                     p(U41) = x1 + x2                                          
                     p(U42) = 1                                                
                     p(U51) = x1                                               
                     p(U61) = x1                                               
                     p(U62) = 1                                                
                     p(U71) = 0                                                
                     p(U72) = 0                                                
                     p(U81) = 0                                                
                     p(U82) = 0                                                
                     p(U83) = 0                                                
                     p(U84) = 0                                                
                     p(U91) = 0                                                
                     p(U92) = 0                                                
                p(activate) = x1                                               
                   p(isNat) = 0                                                
               p(isNatKind) = x1                                               
                    p(n__0) = 1                                                
                 p(n__plus) = 1 + x1 + x2                                      
                    p(n__s) = 1 + x1                                           
                    p(n__x) = 1 + x1 + x2                                      
                    p(plus) = 1 + x1 + x2                                      
                       p(s) = 1 + x1                                           
                      p(tt) = 1                                                
                       p(x) = 1 + x1 + x2                                      
                      p(0#) = 0                                                
                   p(U101#) = x1^2 + x2 + x2*x3 + x2^2 + x3 + x3^2             
                   p(U102#) = 1 + x1*x3 + x1^2 + x3^2                          
                   p(U103#) = 1 + x3                                           
                   p(U104#) = 0                                                
                    p(U11#) = 1 + x1*x3 + x2 + x2*x3 + x2^2 + x3^2             
                    p(U12#) = x1*x3 + x2^2 + x3 + x3^2                         
                    p(U13#) = x2^2 + x3 + x3^2                                 
                    p(U14#) = x2^2 + x3^2                                      
                    p(U15#) = x2^2                                             
                    p(U16#) = 0                                                
                    p(U21#) = x2 + x2^2                                        
                    p(U22#) = x2^2                                             
                    p(U23#) = 0                                                
                    p(U31#) = x1*x3 + x2 + x2*x3 + x2^2 + x3^2                 
                    p(U32#) = x1*x3 + x2^2 + x3 + x3^2                         
                    p(U33#) = x2^2 + x3 + x3^2                                 
                    p(U34#) = x2^2 + x3^2                                      
                    p(U35#) = x2^2                                             
                    p(U36#) = 0                                                
                    p(U41#) = x2                                               
                    p(U42#) = 0                                                
                    p(U51#) = 0                                                
                    p(U61#) = x2                                               
                    p(U62#) = 0                                                
                    p(U71#) = x2                                               
                    p(U72#) = 0                                                
                    p(U81#) = x1 + x1*x2 + x1^2 + x2 + x2*x3 + x2^2 + x3 + x3^2
                    p(U82#) = 1 + x1 + x1*x2 + x1*x3 + x3 + x3^2               
                    p(U83#) = x3                                               
                    p(U84#) = 0                                                
                    p(U91#) = x1*x2 + x2                                       
                    p(U92#) = 0                                                
               p(activate#) = 0                                                
                  p(isNat#) = x1^2                                             
              p(isNatKind#) = x1                                               
                   p(plus#) = 0                                                
                      p(s#) = 0                                                
                      p(x#) = 0                                                
                     p(c_1) = 0                                                
                     p(c_2) = x1 + x2                                          
                     p(c_3) = 1 + x1 + x2                                      
                     p(c_4) = x1                                               
                     p(c_5) = 0                                                
                     p(c_6) = 1 + x1 + x2                                      
                     p(c_7) = x1 + x2                                          
                     p(c_8) = x1 + x2                                          
                     p(c_9) = x1 + x2                                          
                    p(c_10) = x1                                               
                    p(c_11) = 0                                                
                    p(c_12) = x1 + x2                                          
                    p(c_13) = x1                                               
                    p(c_14) = 0                                                
                    p(c_15) = x1 + x2                                          
                    p(c_16) = x1 + x2                                          
                    p(c_17) = x1 + x2                                          
                    p(c_18) = x1 + x2                                          
                    p(c_19) = x1                                               
                    p(c_20) = 0                                                
                    p(c_21) = x1                                               
                    p(c_22) = 0                                                
                    p(c_23) = 0                                                
                    p(c_24) = x1                                               
                    p(c_25) = 0                                                
                    p(c_26) = x1                                               
                    p(c_27) = 0                                                
                    p(c_28) = x1 + x2                                          
                    p(c_29) = x1 + x2                                          
                    p(c_30) = x1                                               
                    p(c_31) = 0                                                
                    p(c_32) = x1                                               
                    p(c_33) = 0                                                
                    p(c_34) = 0                                                
                    p(c_35) = 0                                                
                    p(c_36) = 0                                                
                    p(c_37) = 0                                                
                    p(c_38) = 0                                                
                    p(c_39) = 0                                                
                    p(c_40) = x1 + x2                                          
                    p(c_41) = x1 + x2                                          
                    p(c_42) = x1 + x2                                          
                    p(c_43) = 0                                                
                    p(c_44) = 1 + x1 + x2                                      
                    p(c_45) = x1                                               
                    p(c_46) = x1 + x2                                          
                    p(c_47) = 0                                                
                    p(c_48) = 0                                                
                    p(c_49) = 0                                                
            
            Following rules are strictly oriented:
            isNatKind#(n__s(V1)) = 1 + V1                        
                                 > V1                            
                                 = c_45(isNatKind#(activate(V1)))
            
            
            Following rules are (at-least) weakly oriented:
                       U101#(tt(),M,N) =  1 + M + M*N + M^2 + N + N^2            
                                       >= 1 + M + M*N + M^2 + N^2                
                                       =  c_2(U102#(isNatKind(activate(M))       
                                                   ,activate(M)                  
                                                   ,activate(N))                 
                                             ,isNatKind#(activate(M)))           
            
                       U102#(tt(),M,N) =  2 + N + N^2                            
                                       >= 2 + N + N^2                            
                                       =  c_3(U103#(isNat(activate(N))           
                                                   ,activate(M)                  
                                                   ,activate(N))                 
                                             ,isNat#(activate(N)))               
            
                       U103#(tt(),M,N) =  1 + N                                  
                                       >= N                                      
                                       =  c_4(isNatKind#(activate(N)))           
            
                      U11#(tt(),V1,V2) =  1 + V1 + V1*V2 + V1^2 + V2 + V2^2      
                                       >= 1 + V1 + V1*V2 + V1^2 + V2 + V2^2      
                                       =  c_6(U12#(isNatKind(activate(V1))       
                                                  ,activate(V1)                  
                                                  ,activate(V2))                 
                                             ,isNatKind#(activate(V1)))          
            
                      U12#(tt(),V1,V2) =  V1^2 + 2*V2 + V2^2                     
                                       >= V1^2 + 2*V2 + V2^2                     
                                       =  c_7(U13#(isNatKind(activate(V2))       
                                                  ,activate(V1)                  
                                                  ,activate(V2))                 
                                             ,isNatKind#(activate(V2)))          
            
                      U13#(tt(),V1,V2) =  V1^2 + V2 + V2^2                       
                                       >= V1^2 + V2 + V2^2                       
                                       =  c_8(U14#(isNatKind(activate(V2))       
                                                  ,activate(V1)                  
                                                  ,activate(V2))                 
                                             ,isNatKind#(activate(V2)))          
            
                      U14#(tt(),V1,V2) =  V1^2 + V2^2                            
                                       >= V1^2 + V2^2                            
                                       =  c_9(U15#(isNat(activate(V1))           
                                                  ,activate(V2))                 
                                             ,isNat#(activate(V1)))              
            
                         U15#(tt(),V2) =  V2^2                                   
                                       >= V2^2                                   
                                       =  c_10(isNat#(activate(V2)))             
            
                         U21#(tt(),V1) =  V1 + V1^2                              
                                       >= V1 + V1^2                              
                                       =  c_12(U22#(isNatKind(activate(V1))      
                                                   ,activate(V1))                
                                              ,isNatKind#(activate(V1)))         
            
                         U22#(tt(),V1) =  V1^2                                   
                                       >= V1^2                                   
                                       =  c_13(isNat#(activate(V1)))             
            
                      U31#(tt(),V1,V2) =  V1 + V1*V2 + V1^2 + V2 + V2^2          
                                       >= V1 + V1*V2 + V1^2 + V2 + V2^2          
                                       =  c_15(U32#(isNatKind(activate(V1))      
                                                   ,activate(V1)                 
                                                   ,activate(V2))                
                                              ,isNatKind#(activate(V1)))         
            
                      U32#(tt(),V1,V2) =  V1^2 + 2*V2 + V2^2                     
                                       >= V1^2 + 2*V2 + V2^2                     
                                       =  c_16(U33#(isNatKind(activate(V2))      
                                                   ,activate(V1)                 
                                                   ,activate(V2))                
                                              ,isNatKind#(activate(V2)))         
            
                      U33#(tt(),V1,V2) =  V1^2 + V2 + V2^2                       
                                       >= V1^2 + V2 + V2^2                       
                                       =  c_17(U34#(isNatKind(activate(V2))      
                                                   ,activate(V1)                 
                                                   ,activate(V2))                
                                              ,isNatKind#(activate(V2)))         
            
                      U34#(tt(),V1,V2) =  V1^2 + V2^2                            
                                       >= V1^2 + V2^2                            
                                       =  c_18(U35#(isNat(activate(V1))          
                                                   ,activate(V2))                
                                              ,isNat#(activate(V1)))             
            
                         U35#(tt(),V2) =  V2^2                                   
                                       >= V2^2                                   
                                       =  c_19(isNat#(activate(V2)))             
            
                         U41#(tt(),V2) =  V2                                     
                                       >= V2                                     
                                       =  c_21(isNatKind#(activate(V2)))         
            
                         U61#(tt(),V2) =  V2                                     
                                       >= V2                                     
                                       =  c_24(isNatKind#(activate(V2)))         
            
                          U71#(tt(),N) =  N                                      
                                       >= N                                      
                                       =  c_26(isNatKind#(activate(N)))          
            
                        U81#(tt(),M,N) =  2 + 2*M + M*N + M^2 + N + N^2          
                                       >= 1 + 2*M + M*N + M^2 + N + N^2          
                                       =  c_28(U82#(isNatKind(activate(M))       
                                                   ,activate(M)                  
                                                   ,activate(N))                 
                                              ,isNatKind#(activate(M)))          
            
                        U82#(tt(),M,N) =  2 + M + 2*N + N^2                      
                                       >= N + N^2                                
                                       =  c_29(U83#(isNat(activate(N))           
                                                   ,activate(M)                  
                                                   ,activate(N))                 
                                              ,isNat#(activate(N)))              
            
                        U83#(tt(),M,N) =  N                                      
                                       >= N                                      
                                       =  c_30(isNatKind#(activate(N)))          
            
                          U91#(tt(),N) =  2*N                                    
                                       >= N                                      
                                       =  c_32(isNatKind#(activate(N)))          
            
                isNat#(n__plus(V1,V2)) =  1 + 2*V1 + 2*V1*V2 + V1^2 + 2*V2 + V2^2
                                       >= 1 + 2*V1 + 2*V1*V2 + V1^2 + V2^2       
                                       =  c_40(U11#(isNatKind(activate(V1))      
                                                   ,activate(V1)                 
                                                   ,activate(V2))                
                                              ,isNatKind#(activate(V1)))         
            
                      isNat#(n__s(V1)) =  1 + 2*V1 + V1^2                        
                                       >= 2*V1 + V1^2                            
                                       =  c_41(U21#(isNatKind(activate(V1))      
                                                   ,activate(V1))                
                                              ,isNatKind#(activate(V1)))         
            
                   isNat#(n__x(V1,V2)) =  1 + 2*V1 + 2*V1*V2 + V1^2 + 2*V2 + V2^2
                                       >= 2*V1 + 2*V1*V2 + V1^2 + V2^2           
                                       =  c_42(U31#(isNatKind(activate(V1))      
                                                   ,activate(V1)                 
                                                   ,activate(V2))                
                                              ,isNatKind#(activate(V1)))         
            
            isNatKind#(n__plus(V1,V2)) =  1 + V1 + V2                            
                                       >= 1 + V1 + V2                            
                                       =  c_44(U41#(isNatKind(activate(V1))      
                                                   ,activate(V2))                
                                              ,isNatKind#(activate(V1)))         
            
               isNatKind#(n__x(V1,V2)) =  1 + V1 + V2                            
                                       >= V1 + V2                                
                                       =  c_46(U61#(isNatKind(activate(V1))      
                                                   ,activate(V2))                
                                              ,isNatKind#(activate(V1)))         
            
                                   0() =  1                                      
                                       >= 1                                      
                                       =  n__0()                                 
            
                          U41(tt(),V2) =  1 + V2                                 
                                       >= 1                                      
                                       =  U42(isNatKind(activate(V2)))           
            
                             U42(tt()) =  1                                      
                                       >= 1                                      
                                       =  tt()                                   
            
                             U51(tt()) =  1                                      
                                       >= 1                                      
                                       =  tt()                                   
            
                          U61(tt(),V2) =  1                                      
                                       >= 1                                      
                                       =  U62(isNatKind(activate(V2)))           
            
                             U62(tt()) =  1                                      
                                       >= 1                                      
                                       =  tt()                                   
            
                           activate(X) =  X                                      
                                       >= X                                      
                                       =  X                                      
            
                      activate(n__0()) =  1                                      
                                       >= 1                                      
                                       =  0()                                    
            
              activate(n__plus(X1,X2)) =  1 + X1 + X2                            
                                       >= 1 + X1 + X2                            
                                       =  plus(X1,X2)                            
            
                     activate(n__s(X)) =  1 + X                                  
                                       >= 1 + X                                  
                                       =  s(X)                                   
            
                 activate(n__x(X1,X2)) =  1 + X1 + X2                            
                                       >= 1 + X1 + X2                            
                                       =  x(X1,X2)                               
            
                     isNatKind(n__0()) =  1                                      
                                       >= 1                                      
                                       =  tt()                                   
            
             isNatKind(n__plus(V1,V2)) =  1 + V1 + V2                            
                                       >= V1 + V2                                
                                       =  U41(isNatKind(activate(V1))            
                                             ,activate(V2))                      
            
                   isNatKind(n__s(V1)) =  1 + V1                                 
                                       >= V1                                     
                                       =  U51(isNatKind(activate(V1)))           
            
                isNatKind(n__x(V1,V2)) =  1 + V1 + V2                            
                                       >= V1                                     
                                       =  U61(isNatKind(activate(V1))            
                                             ,activate(V2))                      
            
                           plus(X1,X2) =  1 + X1 + X2                            
                                       >= 1 + X1 + X2                            
                                       =  n__plus(X1,X2)                         
            
                                  s(X) =  1 + X                                  
                                       >= 1 + X                                  
                                       =  n__s(X)                                
            
                              x(X1,X2) =  1 + X1 + X2                            
                                       >= 1 + X1 + X2                            
                                       =  n__x(X1,X2)                            
            
      *** 1.1.1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
              U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
              U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
              U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
              U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
              U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
              U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
              U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
              U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
              U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
              U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
              U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
              U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
              U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
              isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
              isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
              isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
              isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
              U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
              U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
              U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
              U35(tt(),V2) -> U36(isNat(activate(V2)))
              U36(tt()) -> tt()
              U41(tt(),V2) -> U42(isNatKind(activate(V2)))
              U42(tt()) -> tt()
              U51(tt()) -> tt()
              U61(tt(),V2) -> U62(isNatKind(activate(V2)))
              U62(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(X1,X2)
              activate(n__s(X)) -> s(X)
              activate(n__x(X1,X2)) -> x(X1,X2)
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
              isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
              x(X1,X2) -> n__x(X1,X2)
            Signature:
              {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
            Obligation:
              Innermost
              basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.1.1.1.2.2 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
              U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
              U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
              U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
              U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
              U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
              U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
              U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
              U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
              U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
              U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
              U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
              U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
              U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
              isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
              isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
              isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
              isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
              U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
              U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
              U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
              U35(tt(),V2) -> U36(isNat(activate(V2)))
              U36(tt()) -> tt()
              U41(tt(),V2) -> U42(isNatKind(activate(V2)))
              U42(tt()) -> tt()
              U51(tt()) -> tt()
              U61(tt(),V2) -> U62(isNatKind(activate(V2)))
              U62(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(X1,X2)
              activate(n__s(X)) -> s(X)
              activate(n__x(X1,X2)) -> x(X1,X2)
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
              isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
              x(X1,X2) -> n__x(X1,X2)
            Signature:
              {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
            Obligation:
              Innermost
              basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:W:U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
                 -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
                 -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
                 -->_1 U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N))):2
              
              2:W:U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
                 -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):25
                 -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):24
                 -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):23
                 -->_1 U103#(tt(),M,N) -> c_4(isNatKind#(activate(N))):3
              
              3:W:U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
                 -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
                 -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
              
              4:W:U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
                 -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
                 -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
                 -->_1 U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2))):5
              
              5:W:U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
                 -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
                 -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
                 -->_1 U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2))):6
              
              6:W:U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
                 -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
                 -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
                 -->_1 U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7
              
              7:W:U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                 -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):25
                 -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):24
                 -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):23
                 -->_1 U15#(tt(),V2) -> c_10(isNat#(activate(V2))):8
              
              8:W:U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
                 -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):25
                 -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):24
                 -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):23
              
              9:W:U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
                 -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
                 -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
                 -->_1 U22#(tt(),V1) -> c_13(isNat#(activate(V1))):10
              
              10:W:U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
                 -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):25
                 -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):24
                 -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):23
              
              11:W:U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
                 -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
                 -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
                 -->_1 U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2))):12
              
              12:W:U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
                 -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
                 -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
                 -->_1 U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2))):13
              
              13:W:U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
                 -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
                 -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
                 -->_1 U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):14
              
              14:W:U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                 -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):25
                 -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):24
                 -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):23
                 -->_1 U35#(tt(),V2) -> c_19(isNat#(activate(V2))):15
              
              15:W:U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
                 -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):25
                 -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):24
                 -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):23
              
              16:W:U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
                 -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
                 -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
              
              17:W:U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
                 -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
                 -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
              
              18:W:U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
                 -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
                 -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
              
              19:W:U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
                 -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
                 -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
                 -->_1 U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N))):20
              
              20:W:U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
                 -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):25
                 -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):24
                 -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):23
                 -->_1 U83#(tt(),M,N) -> c_30(isNatKind#(activate(N))):21
              
              21:W:U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
                 -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
                 -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
              
              22:W:U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
                 -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
                 -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
              
              23:W:isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
                 -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
                 -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
                 -->_1 U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):4
              
              24:W:isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
                 -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
                 -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
                 -->_1 U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):9
              
              25:W:isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
                 -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
                 -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
                 -->_1 U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):11
              
              26:W:isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
                 -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
                 -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
                 -->_1 U41#(tt(),V2) -> c_21(isNatKind#(activate(V2))):16
              
              27:W:isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
                 -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
                 -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
                 -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
              
              28:W:isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
                 -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
                 -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
                 -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
                 -->_1 U61#(tt(),V2) -> c_24(isNatKind#(activate(V2))):17
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              22: U91#(tt(),N) ->                    
                    c_32(isNatKind#(activate(N)))    
              19: U81#(tt(),M,N) ->                  
                    c_28(U82#(isNatKind(activate(M)) 
                             ,activate(M)            
                             ,activate(N))           
                        ,isNatKind#(activate(M)))    
              20: U82#(tt(),M,N) ->                  
                    c_29(U83#(isNat(activate(N))     
                             ,activate(M)            
                             ,activate(N))           
                        ,isNat#(activate(N)))        
              21: U83#(tt(),M,N) ->                  
                    c_30(isNatKind#(activate(N)))    
              18: U71#(tt(),N) ->                    
                    c_26(isNatKind#(activate(N)))    
              1:  U101#(tt(),M,N) ->                 
                    c_2(U102#(isNatKind(activate(M)) 
                             ,activate(M)            
                             ,activate(N))           
                       ,isNatKind#(activate(M)))     
              2:  U102#(tt(),M,N) ->                 
                    c_3(U103#(isNat(activate(N))     
                             ,activate(M)            
                             ,activate(N))           
                       ,isNat#(activate(N)))         
              3:  U103#(tt(),M,N) ->                 
                    c_4(isNatKind#(activate(N)))     
              25: isNat#(n__x(V1,V2)) ->             
                    c_42(U31#(isNatKind(activate(V1))
                             ,activate(V1)           
                             ,activate(V2))          
                        ,isNatKind#(activate(V1)))   
              15: U35#(tt(),V2) ->                   
                    c_19(isNat#(activate(V2)))       
              14: U34#(tt(),V1,V2) ->                
                    c_18(U35#(isNat(activate(V1))    
                             ,activate(V2))          
                        ,isNat#(activate(V1)))       
              13: U33#(tt(),V1,V2) ->                
                    c_17(U34#(isNatKind(activate(V2))
                             ,activate(V1)           
                             ,activate(V2))          
                        ,isNatKind#(activate(V2)))   
              12: U32#(tt(),V1,V2) ->                
                    c_16(U33#(isNatKind(activate(V2))
                             ,activate(V1)           
                             ,activate(V2))          
                        ,isNatKind#(activate(V2)))   
              11: U31#(tt(),V1,V2) ->                
                    c_15(U32#(isNatKind(activate(V1))
                             ,activate(V1)           
                             ,activate(V2))          
                        ,isNatKind#(activate(V1)))   
              10: U22#(tt(),V1) ->                   
                    c_13(isNat#(activate(V1)))       
              9:  U21#(tt(),V1) ->                   
                    c_12(U22#(isNatKind(activate(V1))
                             ,activate(V1))          
                        ,isNatKind#(activate(V1)))   
              24: isNat#(n__s(V1)) ->                
                    c_41(U21#(isNatKind(activate(V1))
                             ,activate(V1))          
                        ,isNatKind#(activate(V1)))   
              8:  U15#(tt(),V2) ->                   
                    c_10(isNat#(activate(V2)))       
              7:  U14#(tt(),V1,V2) ->                
                    c_9(U15#(isNat(activate(V1))     
                            ,activate(V2))           
                       ,isNat#(activate(V1)))        
              6:  U13#(tt(),V1,V2) ->                
                    c_8(U14#(isNatKind(activate(V2)) 
                            ,activate(V1)            
                            ,activate(V2))           
                       ,isNatKind#(activate(V2)))    
              5:  U12#(tt(),V1,V2) ->                
                    c_7(U13#(isNatKind(activate(V2)) 
                            ,activate(V1)            
                            ,activate(V2))           
                       ,isNatKind#(activate(V2)))    
              4:  U11#(tt(),V1,V2) ->                
                    c_6(U12#(isNatKind(activate(V1)) 
                            ,activate(V1)            
                            ,activate(V2))           
                       ,isNatKind#(activate(V1)))    
              23: isNat#(n__plus(V1,V2)) ->          
                    c_40(U11#(isNatKind(activate(V1))
                             ,activate(V1)           
                             ,activate(V2))          
                        ,isNatKind#(activate(V1)))   
              28: isNatKind#(n__x(V1,V2)) ->         
                    c_46(U61#(isNatKind(activate(V1))
                             ,activate(V2))          
                        ,isNatKind#(activate(V1)))   
              27: isNatKind#(n__s(V1)) ->            
                    c_45(isNatKind#(activate(V1)))   
              26: isNatKind#(n__plus(V1,V2)) ->      
                    c_44(U41#(isNatKind(activate(V1))
                             ,activate(V2))          
                        ,isNatKind#(activate(V1)))   
              17: U61#(tt(),V2) ->                   
                    c_24(isNatKind#(activate(V2)))   
              16: U41#(tt(),V2) ->                   
                    c_21(isNatKind#(activate(V2)))   
      *** 1.1.1.1.1.1.1.1.1.1.2.2.1 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
              U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
              U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
              U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
              U35(tt(),V2) -> U36(isNat(activate(V2)))
              U36(tt()) -> tt()
              U41(tt(),V2) -> U42(isNatKind(activate(V2)))
              U42(tt()) -> tt()
              U51(tt()) -> tt()
              U61(tt(),V2) -> U62(isNatKind(activate(V2)))
              U62(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(X1,X2)
              activate(n__s(X)) -> s(X)
              activate(n__x(X1,X2)) -> x(X1,X2)
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
              isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
              x(X1,X2) -> n__x(X1,X2)
            Signature:
              {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
            Obligation:
              Innermost
              basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
          Applied Processor:
            EmptyProcessor
          Proof:
            The problem is already closed. The intended complexity is O(1).
      
  *** 1.1.1.1.1.1.1.1.1.2 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
          U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
          U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
          U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
          U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
          U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
          U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
          isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        Strict TRS Rules:
          
        Weak DP Rules:
          U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
          U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
          isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
          isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
          U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
          U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
          U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
          U35(tt(),V2) -> U36(isNat(activate(V2)))
          U36(tt()) -> tt()
          U41(tt(),V2) -> U42(isNatKind(activate(V2)))
          U42(tt()) -> tt()
          U51(tt()) -> tt()
          U61(tt(),V2) -> U62(isNatKind(activate(V2)))
          U62(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(X1,X2)
          activate(n__s(X)) -> s(X)
          activate(n__x(X1,X2)) -> x(X1,X2)
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
          isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
          x(X1,X2) -> n__x(X1,X2)
        Signature:
          {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        Obligation:
          Innermost
          basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
      Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
      Proof:
        We estimate the number of application of
          {2,15,18,19}
        by application of
          Pre({2,15,18,19}) = {1,17}.
        Here rules are labelled as follows:
          1:  U102#(tt(),M,N) ->                 
                c_3(U103#(isNat(activate(N))     
                         ,activate(M)            
                         ,activate(N))           
                   ,isNat#(activate(N)))         
          2:  U103#(tt(),M,N) ->                 
                c_4(isNatKind#(activate(N)))     
          3:  U11#(tt(),V1,V2) ->                
                c_6(U12#(isNatKind(activate(V1)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V1)))    
          4:  U12#(tt(),V1,V2) ->                
                c_7(U13#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2)))    
          5:  U13#(tt(),V1,V2) ->                
                c_8(U14#(isNatKind(activate(V2)) 
                        ,activate(V1)            
                        ,activate(V2))           
                   ,isNatKind#(activate(V2)))    
          6:  U14#(tt(),V1,V2) ->                
                c_9(U15#(isNat(activate(V1))     
                        ,activate(V2))           
                   ,isNat#(activate(V1)))        
          7:  U15#(tt(),V2) ->                   
                c_10(isNat#(activate(V2)))       
          8:  U21#(tt(),V1) ->                   
                c_12(U22#(isNatKind(activate(V1))
                         ,activate(V1))          
                    ,isNatKind#(activate(V1)))   
          9:  U22#(tt(),V1) ->                   
                c_13(isNat#(activate(V1)))       
          10: U31#(tt(),V1,V2) ->                
                c_15(U32#(isNatKind(activate(V1))
                         ,activate(V1)           
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          11: U32#(tt(),V1,V2) ->                
                c_16(U33#(isNatKind(activate(V2))
                         ,activate(V1)           
                         ,activate(V2))          
                    ,isNatKind#(activate(V2)))   
          12: U33#(tt(),V1,V2) ->                
                c_17(U34#(isNatKind(activate(V2))
                         ,activate(V1)           
                         ,activate(V2))          
                    ,isNatKind#(activate(V2)))   
          13: U34#(tt(),V1,V2) ->                
                c_18(U35#(isNat(activate(V1))    
                         ,activate(V2))          
                    ,isNat#(activate(V1)))       
          14: U35#(tt(),V2) ->                   
                c_19(isNat#(activate(V2)))       
          15: U71#(tt(),N) ->                    
                c_26(isNatKind#(activate(N)))    
          16: U81#(tt(),M,N) ->                  
                c_28(U82#(isNatKind(activate(M)) 
                         ,activate(M)            
                         ,activate(N))           
                    ,isNatKind#(activate(M)))    
          17: U82#(tt(),M,N) ->                  
                c_29(U83#(isNat(activate(N))     
                         ,activate(M)            
                         ,activate(N))           
                    ,isNat#(activate(N)))        
          18: U83#(tt(),M,N) ->                  
                c_30(isNatKind#(activate(N)))    
          19: U91#(tt(),N) ->                    
                c_32(isNatKind#(activate(N)))    
          20: isNat#(n__plus(V1,V2)) ->          
                c_40(U11#(isNatKind(activate(V1))
                         ,activate(V1)           
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          21: isNat#(n__s(V1)) ->                
                c_41(U21#(isNatKind(activate(V1))
                         ,activate(V1))          
                    ,isNatKind#(activate(V1)))   
          22: isNat#(n__x(V1,V2)) ->             
                c_42(U31#(isNatKind(activate(V1))
                         ,activate(V1)           
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          23: U101#(tt(),M,N) ->                 
                c_2(U102#(isNatKind(activate(M)) 
                         ,activate(M)            
                         ,activate(N))           
                   ,isNatKind#(activate(M)))     
          24: U41#(tt(),V2) ->                   
                c_21(isNatKind#(activate(V2)))   
          25: U61#(tt(),V2) ->                   
                c_24(isNatKind#(activate(V2)))   
          26: isNatKind#(n__plus(V1,V2)) ->      
                c_44(U41#(isNatKind(activate(V1))
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          27: isNatKind#(n__s(V1)) ->            
                c_45(isNatKind#(activate(V1)))   
          28: isNatKind#(n__x(V1,V2)) ->         
                c_46(U61#(isNatKind(activate(V1))
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
  *** 1.1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
          U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
          U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
          U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        Strict TRS Rules:
          
        Weak DP Rules:
          U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
          U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
          U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
          U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
          U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
          U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
          isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
          isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
          U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
          U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
          U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
          U35(tt(),V2) -> U36(isNat(activate(V2)))
          U36(tt()) -> tt()
          U41(tt(),V2) -> U42(isNatKind(activate(V2)))
          U42(tt()) -> tt()
          U51(tt()) -> tt()
          U61(tt(),V2) -> U62(isNatKind(activate(V2)))
          U62(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(X1,X2)
          activate(n__s(X)) -> s(X)
          activate(n__x(X1,X2)) -> x(X1,X2)
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
          isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
          x(X1,X2) -> n__x(X1,X2)
        Signature:
          {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        Obligation:
          Innermost
          basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
             -->_1 U103#(tt(),M,N) -> c_4(isNatKind#(activate(N))):20
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):18
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):16
          
          2:S:U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
             -->_1 U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2))):3
          
          3:S:U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
             -->_1 U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2))):4
          
          4:S:U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
             -->_1 U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5
          
          5:S:U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):18
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):16
             -->_1 U15#(tt(),V2) -> c_10(isNat#(activate(V2))):6
          
          6:S:U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):18
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):16
          
          7:S:U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
             -->_1 U22#(tt(),V1) -> c_13(isNat#(activate(V1))):8
          
          8:S:U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):18
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):16
          
          9:S:U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
             -->_1 U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2))):10
          
          10:S:U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
             -->_1 U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2))):11
          
          11:S:U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
             -->_1 U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):12
          
          12:S:U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):18
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):16
             -->_1 U35#(tt(),V2) -> c_19(isNat#(activate(V2))):13
          
          13:S:U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):18
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):16
          
          14:S:U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
             -->_1 U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N))):15
          
          15:S:U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
             -->_1 U83#(tt(),M,N) -> c_30(isNatKind#(activate(N))):24
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):18
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):16
          
          16:S:isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
             -->_1 U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):2
          
          17:S:isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
             -->_1 U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):7
          
          18:S:isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
             -->_1 U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):9
          
          19:W:U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
             -->_1 U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N))):1
          
          20:W:U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
             -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
             -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
          
          21:W:U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
             -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
             -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
          
          22:W:U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
             -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
             -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
          
          23:W:U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
             -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
             -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
          
          24:W:U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
             -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
             -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
          
          25:W:U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
             -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
             -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
          
          26:W:isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
             -->_1 U41#(tt(),V2) -> c_21(isNatKind#(activate(V2))):21
          
          27:W:isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
             -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
             -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
          
          28:W:isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1))):26
             -->_1 U61#(tt(),V2) -> c_24(isNatKind#(activate(V2))):22
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          25: U91#(tt(),N) ->                    
                c_32(isNatKind#(activate(N)))    
          23: U71#(tt(),N) ->                    
                c_26(isNatKind#(activate(N)))    
          24: U83#(tt(),M,N) ->                  
                c_30(isNatKind#(activate(N)))    
          20: U103#(tt(),M,N) ->                 
                c_4(isNatKind#(activate(N)))     
          28: isNatKind#(n__x(V1,V2)) ->         
                c_46(U61#(isNatKind(activate(V1))
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          27: isNatKind#(n__s(V1)) ->            
                c_45(isNatKind#(activate(V1)))   
          26: isNatKind#(n__plus(V1,V2)) ->      
                c_44(U41#(isNatKind(activate(V1))
                         ,activate(V2))          
                    ,isNatKind#(activate(V1)))   
          22: U61#(tt(),V2) ->                   
                c_24(isNatKind#(activate(V2)))   
          21: U41#(tt(),V2) ->                   
                c_21(isNatKind#(activate(V2)))   
  *** 1.1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
          U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
          U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
          U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        Strict TRS Rules:
          
        Weak DP Rules:
          U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
          U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
          U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
          U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
          U35(tt(),V2) -> U36(isNat(activate(V2)))
          U36(tt()) -> tt()
          U41(tt(),V2) -> U42(isNatKind(activate(V2)))
          U42(tt()) -> tt()
          U51(tt()) -> tt()
          U61(tt(),V2) -> U62(isNatKind(activate(V2)))
          U62(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(X1,X2)
          activate(n__s(X)) -> s(X)
          activate(n__x(X1,X2)) -> x(X1,X2)
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
          isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
          x(X1,X2) -> n__x(X1,X2)
        Signature:
          {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        Obligation:
          Innermost
          basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
      Applied Processor:
        SimplifyRHS
      Proof:
        Consider the dependency graph
          1:S:U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):18
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):16
          
          2:S:U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
             -->_1 U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2))):3
          
          3:S:U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
             -->_1 U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2))):4
          
          4:S:U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
             -->_1 U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5
          
          5:S:U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):18
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):16
             -->_1 U15#(tt(),V2) -> c_10(isNat#(activate(V2))):6
          
          6:S:U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):18
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):16
          
          7:S:U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
             -->_1 U22#(tt(),V1) -> c_13(isNat#(activate(V1))):8
          
          8:S:U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):18
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):16
          
          9:S:U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
             -->_1 U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2))):10
          
          10:S:U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
             -->_1 U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2))):11
          
          11:S:U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
             -->_1 U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):12
          
          12:S:U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):18
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):16
             -->_1 U35#(tt(),V2) -> c_19(isNat#(activate(V2))):13
          
          13:S:U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):18
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):16
          
          14:S:U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
             -->_1 U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N))):15
          
          15:S:U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):18
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):16
          
          16:S:isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
             -->_1 U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):2
          
          17:S:isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
             -->_1 U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):7
          
          18:S:isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
             -->_1 U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))):9
          
          19:W:U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
             -->_1 U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N))):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
          U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
          U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
          U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
          U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
          isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
          isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
  *** 1.1.1.1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
          U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
          U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
          U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
          U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
          U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
          U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
          isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
          isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        Strict TRS Rules:
          
        Weak DP Rules:
          U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
        Weak TRS Rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
          U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
          U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
          U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
          U35(tt(),V2) -> U36(isNat(activate(V2)))
          U36(tt()) -> tt()
          U41(tt(),V2) -> U42(isNatKind(activate(V2)))
          U42(tt()) -> tt()
          U51(tt()) -> tt()
          U61(tt(),V2) -> U62(isNatKind(activate(V2)))
          U62(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(X1,X2)
          activate(n__s(X)) -> s(X)
          activate(n__x(X1,X2)) -> x(X1,X2)
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
          isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
          x(X1,X2) -> n__x(X1,X2)
        Signature:
          {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        Obligation:
          Innermost
          basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
      Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
      Proof:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          Strict DP Rules:
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          Strict TRS Rules:
            
          Weak DP Rules:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
          Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
          Obligation:
            Innermost
            basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
        
        Problem (S)
          Strict DP Rules:
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
          Strict TRS Rules:
            
          Weak DP Rules:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
          Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
          Obligation:
            Innermost
            basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
    *** 1.1.1.1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          Strict TRS Rules:
            
          Weak DP Rules:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
          Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
          Obligation:
            Innermost
            basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            16: isNat#(n__plus(V1,V2)) ->          
                  c_40(U11#(isNatKind(activate(V1))
                           ,activate(V1)           
                           ,activate(V2)))         
            17: isNat#(n__s(V1)) ->                
                  c_41(U21#(isNatKind(activate(V1))
                           ,activate(V1)))         
            
          Consider the set of all dependency pairs
            1:  U102#(tt(),M,N) ->                 
                  c_3(isNat#(activate(N)))         
            2:  U11#(tt(),V1,V2) ->                
                  c_6(U12#(isNatKind(activate(V1)) 
                          ,activate(V1)            
                          ,activate(V2)))          
            3:  U12#(tt(),V1,V2) ->                
                  c_7(U13#(isNatKind(activate(V2)) 
                          ,activate(V1)            
                          ,activate(V2)))          
            4:  U13#(tt(),V1,V2) ->                
                  c_8(U14#(isNatKind(activate(V2)) 
                          ,activate(V1)            
                          ,activate(V2)))          
            5:  U14#(tt(),V1,V2) ->                
                  c_9(U15#(isNat(activate(V1))     
                          ,activate(V2))           
                     ,isNat#(activate(V1)))        
            6:  U15#(tt(),V2) ->                   
                  c_10(isNat#(activate(V2)))       
            7:  U21#(tt(),V1) ->                   
                  c_12(U22#(isNatKind(activate(V1))
                           ,activate(V1)))         
            8:  U22#(tt(),V1) ->                   
                  c_13(isNat#(activate(V1)))       
            9:  U31#(tt(),V1,V2) ->                
                  c_15(U32#(isNatKind(activate(V1))
                           ,activate(V1)           
                           ,activate(V2)))         
            10: U32#(tt(),V1,V2) ->                
                  c_16(U33#(isNatKind(activate(V2))
                           ,activate(V1)           
                           ,activate(V2)))         
            11: U33#(tt(),V1,V2) ->                
                  c_17(U34#(isNatKind(activate(V2))
                           ,activate(V1)           
                           ,activate(V2)))         
            12: U34#(tt(),V1,V2) ->                
                  c_18(U35#(isNat(activate(V1))    
                           ,activate(V2))          
                      ,isNat#(activate(V1)))       
            13: U35#(tt(),V2) ->                   
                  c_19(isNat#(activate(V2)))       
            14: U81#(tt(),M,N) ->                  
                  c_28(U82#(isNatKind(activate(M)) 
                           ,activate(M)            
                           ,activate(N)))          
            15: U82#(tt(),M,N) ->                  
                  c_29(isNat#(activate(N)))        
            16: isNat#(n__plus(V1,V2)) ->          
                  c_40(U11#(isNatKind(activate(V1))
                           ,activate(V1)           
                           ,activate(V2)))         
            17: isNat#(n__s(V1)) ->                
                  c_41(U21#(isNatKind(activate(V1))
                           ,activate(V1)))         
            18: isNat#(n__x(V1,V2)) ->             
                  c_42(U31#(isNatKind(activate(V1))
                           ,activate(V1)           
                           ,activate(V2)))         
            19: U101#(tt(),M,N) ->                 
                  c_2(U102#(isNatKind(activate(M)) 
                           ,activate(M)            
                           ,activate(N)))          
          Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
          SPACE(?,?)on application of the dependency pairs
            {16,17}
          These cover all (indirect) predecessors of dependency pairs
            {1,2,3,4,5,6,7,8,14,15,16,17,19}
          their number of applications is equally bounded.
          The dependency pairs are shifted into the weak component.
      *** 1.1.1.1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
              U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
              U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
              U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
              U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
              isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
              isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            Strict TRS Rules:
              
            Weak DP Rules:
              U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
              U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
              U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
              U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
              U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
              U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
              U35(tt(),V2) -> U36(isNat(activate(V2)))
              U36(tt()) -> tt()
              U41(tt(),V2) -> U42(isNatKind(activate(V2)))
              U42(tt()) -> tt()
              U51(tt()) -> tt()
              U61(tt(),V2) -> U62(isNatKind(activate(V2)))
              U62(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(X1,X2)
              activate(n__s(X)) -> s(X)
              activate(n__x(X1,X2)) -> x(X1,X2)
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
              isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
              x(X1,X2) -> n__x(X1,X2)
            Signature:
              {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
            Obligation:
              Innermost
              basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
          Applied Processor:
            NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation:
            The following argument positions are considered usable:
              uargs(c_2) = {1},
              uargs(c_3) = {1},
              uargs(c_6) = {1},
              uargs(c_7) = {1},
              uargs(c_8) = {1},
              uargs(c_9) = {1,2},
              uargs(c_10) = {1},
              uargs(c_12) = {1},
              uargs(c_13) = {1},
              uargs(c_15) = {1},
              uargs(c_16) = {1},
              uargs(c_17) = {1},
              uargs(c_18) = {1,2},
              uargs(c_19) = {1},
              uargs(c_28) = {1},
              uargs(c_29) = {1},
              uargs(c_40) = {1},
              uargs(c_41) = {1},
              uargs(c_42) = {1}
            
            Following symbols are considered usable:
              {0,activate,plus,s,x,0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}
            TcT has computed the following interpretation:
                       p(0) = [0]                           
                    p(U101) = [0]                           
                    p(U102) = [2] x2 + [0]                  
                    p(U103) = [1] x1 + [1]                  
                    p(U104) = [2] x3 + [1]                  
                     p(U11) = [1] x2 + [4]                  
                     p(U12) = [0]                           
                     p(U13) = [3]                           
                     p(U14) = [1] x2 + [0]                  
                     p(U15) = [4] x1 + [6]                  
                     p(U16) = [2] x1 + [0]                  
                     p(U21) = [0]                           
                     p(U22) = [0]                           
                     p(U23) = [1] x1 + [0]                  
                     p(U31) = [5] x2 + [5] x3 + [0]         
                     p(U32) = [6] x2 + [4] x3 + [2]         
                     p(U33) = [4] x3 + [1]                  
                     p(U34) = [3] x3 + [0]                  
                     p(U35) = [1] x1 + [4] x2 + [5]         
                     p(U36) = [2] x1 + [2]                  
                     p(U41) = [1] x1 + [4]                  
                     p(U42) = [0]                           
                     p(U51) = [4]                           
                     p(U61) = [4]                           
                     p(U62) = [1] x1 + [1]                  
                     p(U71) = [4]                           
                     p(U72) = [1] x1 + [0]                  
                     p(U81) = [1] x1 + [1] x2 + [1] x3 + [4]
                     p(U82) = [4] x1 + [1]                  
                     p(U83) = [1] x1 + [1] x3 + [0]         
                     p(U84) = [1] x2 + [1]                  
                     p(U91) = [2] x2 + [1]                  
                     p(U92) = [0]                           
                p(activate) = [1] x1 + [0]                  
                   p(isNat) = [0]                           
               p(isNatKind) = [0]                           
                    p(n__0) = [0]                           
                 p(n__plus) = [1] x1 + [1] x2 + [2]         
                    p(n__s) = [1] x1 + [2]                  
                    p(n__x) = [1] x1 + [1] x2 + [0]         
                    p(plus) = [1] x1 + [1] x2 + [2]         
                       p(s) = [1] x1 + [2]                  
                      p(tt) = [0]                           
                       p(x) = [1] x1 + [1] x2 + [0]         
                      p(0#) = [0]                           
                   p(U101#) = [1] x1 + [1] x2 + [4] x3 + [0]
                   p(U102#) = [4] x3 + [0]                  
                   p(U103#) = [4] x2 + [2] x3 + [0]         
                   p(U104#) = [1] x2 + [1]                  
                    p(U11#) = [4] x2 + [4] x3 + [4]         
                    p(U12#) = [4] x2 + [4] x3 + [4]         
                    p(U13#) = [4] x2 + [4] x3 + [4]         
                    p(U14#) = [4] x2 + [4] x3 + [4]         
                    p(U15#) = [4] x2 + [4]                  
                    p(U16#) = [1] x1 + [0]                  
                    p(U21#) = [4] x2 + [0]                  
                    p(U22#) = [4] x2 + [0]                  
                    p(U23#) = [0]                           
                    p(U31#) = [4] x2 + [4] x3 + [0]         
                    p(U32#) = [4] x2 + [4] x3 + [0]         
                    p(U33#) = [4] x2 + [4] x3 + [0]         
                    p(U34#) = [4] x2 + [4] x3 + [0]         
                    p(U35#) = [4] x2 + [0]                  
                    p(U36#) = [2]                           
                    p(U41#) = [1] x2 + [0]                  
                    p(U42#) = [1] x1 + [4]                  
                    p(U51#) = [0]                           
                    p(U61#) = [4]                           
                    p(U62#) = [1] x1 + [1]                  
                    p(U71#) = [1]                           
                    p(U72#) = [4]                           
                    p(U81#) = [4] x3 + [6]                  
                    p(U82#) = [4] x3 + [2]                  
                    p(U83#) = [1] x2 + [1]                  
                    p(U84#) = [1] x2 + [2] x3 + [0]         
                    p(U91#) = [1]                           
                    p(U92#) = [1] x1 + [2]                  
               p(activate#) = [1] x1 + [0]                  
                  p(isNat#) = [4] x1 + [0]                  
              p(isNatKind#) = [0]                           
                   p(plus#) = [1] x2 + [1]                  
                      p(s#) = [1]                           
                      p(x#) = [1] x1 + [0]                  
                     p(c_1) = [4]                           
                     p(c_2) = [1] x1 + [0]                  
                     p(c_3) = [1] x1 + [0]                  
                     p(c_4) = [1]                           
                     p(c_5) = [1] x2 + [1] x5 + [0]         
                     p(c_6) = [1] x1 + [0]                  
                     p(c_7) = [1] x1 + [0]                  
                     p(c_8) = [1] x1 + [0]                  
                     p(c_9) = [1] x1 + [1] x2 + [0]         
                    p(c_10) = [1] x1 + [4]                  
                    p(c_11) = [1]                           
                    p(c_12) = [1] x1 + [0]                  
                    p(c_13) = [1] x1 + [0]                  
                    p(c_14) = [0]                           
                    p(c_15) = [1] x1 + [0]                  
                    p(c_16) = [1] x1 + [0]                  
                    p(c_17) = [1] x1 + [0]                  
                    p(c_18) = [1] x1 + [1] x2 + [0]         
                    p(c_19) = [1] x1 + [0]                  
                    p(c_20) = [0]                           
                    p(c_21) = [1] x1 + [0]                  
                    p(c_22) = [4]                           
                    p(c_23) = [0]                           
                    p(c_24) = [2] x1 + [1]                  
                    p(c_25) = [0]                           
                    p(c_26) = [0]                           
                    p(c_27) = [1]                           
                    p(c_28) = [1] x1 + [4]                  
                    p(c_29) = [1] x1 + [2]                  
                    p(c_30) = [0]                           
                    p(c_31) = [1] x1 + [2]                  
                    p(c_32) = [1] x1 + [0]                  
                    p(c_33) = [1] x1 + [4]                  
                    p(c_34) = [1]                           
                    p(c_35) = [2]                           
                    p(c_36) = [1] x1 + [0]                  
                    p(c_37) = [1]                           
                    p(c_38) = [0]                           
                    p(c_39) = [4]                           
                    p(c_40) = [1] x1 + [2]                  
                    p(c_41) = [1] x1 + [7]                  
                    p(c_42) = [1] x1 + [0]                  
                    p(c_43) = [1]                           
                    p(c_44) = [1] x1 + [0]                  
                    p(c_45) = [1]                           
                    p(c_46) = [1] x2 + [4]                  
                    p(c_47) = [4]                           
                    p(c_48) = [0]                           
                    p(c_49) = [1]                           
            
            Following rules are strictly oriented:
            isNat#(n__plus(V1,V2)) = [4] V1 + [4] V2 + [8]            
                                   > [4] V1 + [4] V2 + [6]            
                                   = c_40(U11#(isNatKind(activate(V1))
                                              ,activate(V1)           
                                              ,activate(V2)))         
            
                  isNat#(n__s(V1)) = [4] V1 + [8]                     
                                   > [4] V1 + [7]                     
                                   = c_41(U21#(isNatKind(activate(V1))
                                              ,activate(V1)))         
            
            
            Following rules are (at-least) weakly oriented:
                     U101#(tt(),M,N) =  [1] M + [4] N + [0]              
                                     >= [4] N + [0]                      
                                     =  c_2(U102#(isNatKind(activate(M)) 
                                                 ,activate(M)            
                                                 ,activate(N)))          
            
                     U102#(tt(),M,N) =  [4] N + [0]                      
                                     >= [4] N + [0]                      
                                     =  c_3(isNat#(activate(N)))         
            
                    U11#(tt(),V1,V2) =  [4] V1 + [4] V2 + [4]            
                                     >= [4] V1 + [4] V2 + [4]            
                                     =  c_6(U12#(isNatKind(activate(V1)) 
                                                ,activate(V1)            
                                                ,activate(V2)))          
            
                    U12#(tt(),V1,V2) =  [4] V1 + [4] V2 + [4]            
                                     >= [4] V1 + [4] V2 + [4]            
                                     =  c_7(U13#(isNatKind(activate(V2)) 
                                                ,activate(V1)            
                                                ,activate(V2)))          
            
                    U13#(tt(),V1,V2) =  [4] V1 + [4] V2 + [4]            
                                     >= [4] V1 + [4] V2 + [4]            
                                     =  c_8(U14#(isNatKind(activate(V2)) 
                                                ,activate(V1)            
                                                ,activate(V2)))          
            
                    U14#(tt(),V1,V2) =  [4] V1 + [4] V2 + [4]            
                                     >= [4] V1 + [4] V2 + [4]            
                                     =  c_9(U15#(isNat(activate(V1))     
                                                ,activate(V2))           
                                           ,isNat#(activate(V1)))        
            
                       U15#(tt(),V2) =  [4] V2 + [4]                     
                                     >= [4] V2 + [4]                     
                                     =  c_10(isNat#(activate(V2)))       
            
                       U21#(tt(),V1) =  [4] V1 + [0]                     
                                     >= [4] V1 + [0]                     
                                     =  c_12(U22#(isNatKind(activate(V1))
                                                 ,activate(V1)))         
            
                       U22#(tt(),V1) =  [4] V1 + [0]                     
                                     >= [4] V1 + [0]                     
                                     =  c_13(isNat#(activate(V1)))       
            
                    U31#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]            
                                     >= [4] V1 + [4] V2 + [0]            
                                     =  c_15(U32#(isNatKind(activate(V1))
                                                 ,activate(V1)           
                                                 ,activate(V2)))         
            
                    U32#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]            
                                     >= [4] V1 + [4] V2 + [0]            
                                     =  c_16(U33#(isNatKind(activate(V2))
                                                 ,activate(V1)           
                                                 ,activate(V2)))         
            
                    U33#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]            
                                     >= [4] V1 + [4] V2 + [0]            
                                     =  c_17(U34#(isNatKind(activate(V2))
                                                 ,activate(V1)           
                                                 ,activate(V2)))         
            
                    U34#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]            
                                     >= [4] V1 + [4] V2 + [0]            
                                     =  c_18(U35#(isNat(activate(V1))    
                                                 ,activate(V2))          
                                            ,isNat#(activate(V1)))       
            
                       U35#(tt(),V2) =  [4] V2 + [0]                     
                                     >= [4] V2 + [0]                     
                                     =  c_19(isNat#(activate(V2)))       
            
                      U81#(tt(),M,N) =  [4] N + [6]                      
                                     >= [4] N + [6]                      
                                     =  c_28(U82#(isNatKind(activate(M)) 
                                                 ,activate(M)            
                                                 ,activate(N)))          
            
                      U82#(tt(),M,N) =  [4] N + [2]                      
                                     >= [4] N + [2]                      
                                     =  c_29(isNat#(activate(N)))        
            
                 isNat#(n__x(V1,V2)) =  [4] V1 + [4] V2 + [0]            
                                     >= [4] V1 + [4] V2 + [0]            
                                     =  c_42(U31#(isNatKind(activate(V1))
                                                 ,activate(V1)           
                                                 ,activate(V2)))         
            
                                 0() =  [0]                              
                                     >= [0]                              
                                     =  n__0()                           
            
                         activate(X) =  [1] X + [0]                      
                                     >= [1] X + [0]                      
                                     =  X                                
            
                    activate(n__0()) =  [0]                              
                                     >= [0]                              
                                     =  0()                              
            
            activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [2]            
                                     >= [1] X1 + [1] X2 + [2]            
                                     =  plus(X1,X2)                      
            
                   activate(n__s(X)) =  [1] X + [2]                      
                                     >= [1] X + [2]                      
                                     =  s(X)                             
            
               activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [0]            
                                     >= [1] X1 + [1] X2 + [0]            
                                     =  x(X1,X2)                         
            
                         plus(X1,X2) =  [1] X1 + [1] X2 + [2]            
                                     >= [1] X1 + [1] X2 + [2]            
                                     =  n__plus(X1,X2)                   
            
                                s(X) =  [1] X + [2]                      
                                     >= [1] X + [2]                      
                                     =  n__s(X)                          
            
                            x(X1,X2) =  [1] X1 + [1] X2 + [0]            
                                     >= [1] X1 + [1] X2 + [0]            
                                     =  n__x(X1,X2)                      
            
      *** 1.1.1.1.1.1.1.1.1.2.1.1.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
              U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
              U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
              U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
              U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
              isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            Strict TRS Rules:
              
            Weak DP Rules:
              U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
              U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
              U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
              isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
              U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
              U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
              U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
              U35(tt(),V2) -> U36(isNat(activate(V2)))
              U36(tt()) -> tt()
              U41(tt(),V2) -> U42(isNatKind(activate(V2)))
              U42(tt()) -> tt()
              U51(tt()) -> tt()
              U61(tt(),V2) -> U62(isNatKind(activate(V2)))
              U62(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(X1,X2)
              activate(n__s(X)) -> s(X)
              activate(n__x(X1,X2)) -> x(X1,X2)
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
              isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
              x(X1,X2) -> n__x(X1,X2)
            Signature:
              {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
            Obligation:
              Innermost
              basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.1.1.2.1.1.1.1.2 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
              isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            Strict TRS Rules:
              
            Weak DP Rules:
              U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
              U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
              U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
              U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
              U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
              U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
              U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
              isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            Weak TRS Rules:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
              U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
              U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
              U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
              U35(tt(),V2) -> U36(isNat(activate(V2)))
              U36(tt()) -> tt()
              U41(tt(),V2) -> U42(isNatKind(activate(V2)))
              U42(tt()) -> tt()
              U51(tt()) -> tt()
              U61(tt(),V2) -> U62(isNatKind(activate(V2)))
              U62(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(X1,X2)
              activate(n__s(X)) -> s(X)
              activate(n__x(X1,X2)) -> x(X1,X2)
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
              isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
              x(X1,X2) -> n__x(X1,X2)
            Signature:
              {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
            Obligation:
              Innermost
              basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              6: isNat#(n__x(V1,V2)) ->             
                   c_42(U31#(isNatKind(activate(V1))
                            ,activate(V1)           
                            ,activate(V2)))         
              
            Consider the set of all dependency pairs
              1:  U31#(tt(),V1,V2) ->                
                    c_15(U32#(isNatKind(activate(V1))
                             ,activate(V1)           
                             ,activate(V2)))         
              2:  U32#(tt(),V1,V2) ->                
                    c_16(U33#(isNatKind(activate(V2))
                             ,activate(V1)           
                             ,activate(V2)))         
              3:  U33#(tt(),V1,V2) ->                
                    c_17(U34#(isNatKind(activate(V2))
                             ,activate(V1)           
                             ,activate(V2)))         
              4:  U34#(tt(),V1,V2) ->                
                    c_18(U35#(isNat(activate(V1))    
                             ,activate(V2))          
                        ,isNat#(activate(V1)))       
              5:  U35#(tt(),V2) ->                   
                    c_19(isNat#(activate(V2)))       
              6:  isNat#(n__x(V1,V2)) ->             
                    c_42(U31#(isNatKind(activate(V1))
                             ,activate(V1)           
                             ,activate(V2)))         
              7:  U101#(tt(),M,N) ->                 
                    c_2(U102#(isNatKind(activate(M)) 
                             ,activate(M)            
                             ,activate(N)))          
              8:  U102#(tt(),M,N) ->                 
                    c_3(isNat#(activate(N)))         
              9:  U11#(tt(),V1,V2) ->                
                    c_6(U12#(isNatKind(activate(V1)) 
                            ,activate(V1)            
                            ,activate(V2)))          
              10: U12#(tt(),V1,V2) ->                
                    c_7(U13#(isNatKind(activate(V2)) 
                            ,activate(V1)            
                            ,activate(V2)))          
              11: U13#(tt(),V1,V2) ->                
                    c_8(U14#(isNatKind(activate(V2)) 
                            ,activate(V1)            
                            ,activate(V2)))          
              12: U14#(tt(),V1,V2) ->                
                    c_9(U15#(isNat(activate(V1))     
                            ,activate(V2))           
                       ,isNat#(activate(V1)))        
              13: U15#(tt(),V2) ->                   
                    c_10(isNat#(activate(V2)))       
              14: U21#(tt(),V1) ->                   
                    c_12(U22#(isNatKind(activate(V1))
                             ,activate(V1)))         
              15: U22#(tt(),V1) ->                   
                    c_13(isNat#(activate(V1)))       
              16: U81#(tt(),M,N) ->                  
                    c_28(U82#(isNatKind(activate(M)) 
                             ,activate(M)            
                             ,activate(N)))          
              17: U82#(tt(),M,N) ->                  
                    c_29(isNat#(activate(N)))        
              18: isNat#(n__plus(V1,V2)) ->          
                    c_40(U11#(isNatKind(activate(V1))
                             ,activate(V1)           
                             ,activate(V2)))         
              19: isNat#(n__s(V1)) ->                
                    c_41(U21#(isNatKind(activate(V1))
                             ,activate(V1)))         
            Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
            SPACE(?,?)on application of the dependency pairs
              {6}
            These cover all (indirect) predecessors of dependency pairs
              {1,2,3,4,5,6,7,8,16,17}
            their number of applications is equally bounded.
            The dependency pairs are shifted into the weak component.
        *** 1.1.1.1.1.1.1.1.1.2.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
                U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
                isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              Strict TRS Rules:
                
              Weak DP Rules:
                U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
                U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
                U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
                U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
                U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
                U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
                U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
                U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
                isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
                isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
              Weak TRS Rules:
                0() -> n__0()
                U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
                U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
                U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
                U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
                U15(tt(),V2) -> U16(isNat(activate(V2)))
                U16(tt()) -> tt()
                U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
                U22(tt(),V1) -> U23(isNat(activate(V1)))
                U23(tt()) -> tt()
                U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
                U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
                U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
                U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
                U35(tt(),V2) -> U36(isNat(activate(V2)))
                U36(tt()) -> tt()
                U41(tt(),V2) -> U42(isNatKind(activate(V2)))
                U42(tt()) -> tt()
                U51(tt()) -> tt()
                U61(tt(),V2) -> U62(isNatKind(activate(V2)))
                U62(tt()) -> tt()
                activate(X) -> X
                activate(n__0()) -> 0()
                activate(n__plus(X1,X2)) -> plus(X1,X2)
                activate(n__s(X)) -> s(X)
                activate(n__x(X1,X2)) -> x(X1,X2)
                isNat(n__0()) -> tt()
                isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
                isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
                isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
                isNatKind(n__0()) -> tt()
                isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
                isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
                isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
                plus(X1,X2) -> n__plus(X1,X2)
                s(X) -> n__s(X)
                x(X1,X2) -> n__x(X1,X2)
              Signature:
                {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
              Obligation:
                Innermost
                basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
            Applied Processor:
              NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a matrix interpretation of kind constructor based matrix interpretation:
              The following argument positions are considered usable:
                uargs(c_2) = {1},
                uargs(c_3) = {1},
                uargs(c_6) = {1},
                uargs(c_7) = {1},
                uargs(c_8) = {1},
                uargs(c_9) = {1,2},
                uargs(c_10) = {1},
                uargs(c_12) = {1},
                uargs(c_13) = {1},
                uargs(c_15) = {1},
                uargs(c_16) = {1},
                uargs(c_17) = {1},
                uargs(c_18) = {1,2},
                uargs(c_19) = {1},
                uargs(c_28) = {1},
                uargs(c_29) = {1},
                uargs(c_40) = {1},
                uargs(c_41) = {1},
                uargs(c_42) = {1}
              
              Following symbols are considered usable:
                {0,activate,plus,s,x,0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}
              TcT has computed the following interpretation:
                         p(0) = [0]                           
                      p(U101) = [1] x1 + [2] x2 + [0]         
                      p(U102) = [2] x3 + [0]                  
                      p(U103) = [2] x3 + [1]                  
                      p(U104) = [4] x1 + [1] x3 + [1]         
                       p(U11) = [4] x2 + [6] x3 + [4]         
                       p(U12) = [5] x2 + [4]                  
                       p(U13) = [1] x3 + [0]                  
                       p(U14) = [2] x2 + [4]                  
                       p(U15) = [4] x2 + [5]                  
                       p(U16) = [1] x1 + [1]                  
                       p(U21) = [2] x2 + [6]                  
                       p(U22) = [1] x1 + [4] x2 + [0]         
                       p(U23) = [1] x1 + [1]                  
                       p(U31) = [6] x2 + [4] x3 + [1]         
                       p(U32) = [4] x2 + [7]                  
                       p(U33) = [1] x1 + [6] x2 + [0]         
                       p(U34) = [4] x1 + [4] x2 + [0]         
                       p(U35) = [1] x1 + [3]                  
                       p(U36) = [4]                           
                       p(U41) = [0]                           
                       p(U42) = [4] x1 + [6]                  
                       p(U51) = [1] x1 + [2]                  
                       p(U61) = [6]                           
                       p(U62) = [5]                           
                       p(U71) = [4] x1 + [1] x2 + [1]         
                       p(U72) = [1] x1 + [1] x2 + [1]         
                       p(U81) = [2] x2 + [2]                  
                       p(U82) = [2]                           
                       p(U83) = [1] x1 + [2] x2 + [0]         
                       p(U84) = [0]                           
                       p(U91) = [4] x1 + [0]                  
                       p(U92) = [1]                           
                  p(activate) = [1] x1 + [0]                  
                     p(isNat) = [0]                           
                 p(isNatKind) = [0]                           
                      p(n__0) = [0]                           
                   p(n__plus) = [1] x1 + [1] x2 + [3]         
                      p(n__s) = [1] x1 + [1]                  
                      p(n__x) = [1] x1 + [1] x2 + [1]         
                      p(plus) = [1] x1 + [1] x2 + [3]         
                         p(s) = [1] x1 + [1]                  
                        p(tt) = [0]                           
                         p(x) = [1] x1 + [1] x2 + [1]         
                        p(0#) = [0]                           
                     p(U101#) = [1] x1 + [4] x2 + [4] x3 + [7]
                     p(U102#) = [4] x2 + [1] x3 + [4]         
                     p(U103#) = [1] x1 + [0]                  
                     p(U104#) = [1] x1 + [1] x2 + [1]         
                      p(U11#) = [1] x2 + [1] x3 + [3]         
                      p(U12#) = [1] x2 + [1] x3 + [3]         
                      p(U13#) = [1] x2 + [1] x3 + [3]         
                      p(U14#) = [1] x2 + [1] x3 + [3]         
                      p(U15#) = [1] x2 + [1]                  
                      p(U16#) = [1]                           
                      p(U21#) = [1] x2 + [1]                  
                      p(U22#) = [1] x2 + [1]                  
                      p(U23#) = [1] x1 + [1]                  
                      p(U31#) = [1] x2 + [1] x3 + [0]         
                      p(U32#) = [1] x2 + [1] x3 + [0]         
                      p(U33#) = [1] x2 + [1] x3 + [0]         
                      p(U34#) = [1] x2 + [1] x3 + [0]         
                      p(U35#) = [1] x2 + [0]                  
                      p(U36#) = [1]                           
                      p(U41#) = [2] x2 + [0]                  
                      p(U42#) = [1]                           
                      p(U51#) = [1] x1 + [1]                  
                      p(U61#) = [1]                           
                      p(U62#) = [0]                           
                      p(U71#) = [1] x1 + [0]                  
                      p(U72#) = [1] x1 + [1]                  
                      p(U81#) = [1] x1 + [4] x2 + [1] x3 + [5]
                      p(U82#) = [1] x2 + [1] x3 + [2]         
                      p(U83#) = [1]                           
                      p(U84#) = [1] x1 + [4] x2 + [0]         
                      p(U91#) = [1] x1 + [1]                  
                      p(U92#) = [1] x1 + [4]                  
                 p(activate#) = [2] x1 + [0]                  
                    p(isNat#) = [1] x1 + [0]                  
                p(isNatKind#) = [1] x1 + [1]                  
                     p(plus#) = [1] x1 + [0]                  
                        p(s#) = [1]                           
                        p(x#) = [1]                           
                       p(c_1) = [1]                           
                       p(c_2) = [1] x1 + [3]                  
                       p(c_3) = [1] x1 + [2]                  
                       p(c_4) = [4] x1 + [4]                  
                       p(c_5) = [2] x3 + [1] x4 + [1] x5 + [0]
                       p(c_6) = [1] x1 + [0]                  
                       p(c_7) = [1] x1 + [0]                  
                       p(c_8) = [1] x1 + [0]                  
                       p(c_9) = [1] x1 + [1] x2 + [2]         
                      p(c_10) = [1] x1 + [0]                  
                      p(c_11) = [1]                           
                      p(c_12) = [1] x1 + [0]                  
                      p(c_13) = [1] x1 + [1]                  
                      p(c_14) = [0]                           
                      p(c_15) = [1] x1 + [0]                  
                      p(c_16) = [1] x1 + [0]                  
                      p(c_17) = [1] x1 + [0]                  
                      p(c_18) = [1] x1 + [1] x2 + [0]         
                      p(c_19) = [1] x1 + [0]                  
                      p(c_20) = [1]                           
                      p(c_21) = [4] x1 + [1]                  
                      p(c_22) = [1]                           
                      p(c_23) = [2]                           
                      p(c_24) = [4] x1 + [0]                  
                      p(c_25) = [1]                           
                      p(c_26) = [0]                           
                      p(c_27) = [1] x1 + [4]                  
                      p(c_28) = [1] x1 + [3]                  
                      p(c_29) = [1] x1 + [0]                  
                      p(c_30) = [0]                           
                      p(c_31) = [4] x3 + [0]                  
                      p(c_32) = [2] x1 + [0]                  
                      p(c_33) = [2] x1 + [1]                  
                      p(c_34) = [2]                           
                      p(c_35) = [1]                           
                      p(c_36) = [2] x1 + [0]                  
                      p(c_37) = [1]                           
                      p(c_38) = [0]                           
                      p(c_39) = [0]                           
                      p(c_40) = [1] x1 + [0]                  
                      p(c_41) = [1] x1 + [0]                  
                      p(c_42) = [1] x1 + [0]                  
                      p(c_43) = [1]                           
                      p(c_44) = [2] x1 + [2]                  
                      p(c_45) = [4] x1 + [0]                  
                      p(c_46) = [4] x2 + [1]                  
                      p(c_47) = [1]                           
                      p(c_48) = [0]                           
                      p(c_49) = [1]                           
              
              Following rules are strictly oriented:
              isNat#(n__x(V1,V2)) = [1] V1 + [1] V2 + [1]            
                                  > [1] V1 + [1] V2 + [0]            
                                  = c_42(U31#(isNatKind(activate(V1))
                                             ,activate(V1)           
                                             ,activate(V2)))         
              
              
              Following rules are (at-least) weakly oriented:
                       U101#(tt(),M,N) =  [4] M + [4] N + [7]              
                                       >= [4] M + [1] N + [7]              
                                       =  c_2(U102#(isNatKind(activate(M)) 
                                                   ,activate(M)            
                                                   ,activate(N)))          
              
                       U102#(tt(),M,N) =  [4] M + [1] N + [4]              
                                       >= [1] N + [2]                      
                                       =  c_3(isNat#(activate(N)))         
              
                      U11#(tt(),V1,V2) =  [1] V1 + [1] V2 + [3]            
                                       >= [1] V1 + [1] V2 + [3]            
                                       =  c_6(U12#(isNatKind(activate(V1)) 
                                                  ,activate(V1)            
                                                  ,activate(V2)))          
              
                      U12#(tt(),V1,V2) =  [1] V1 + [1] V2 + [3]            
                                       >= [1] V1 + [1] V2 + [3]            
                                       =  c_7(U13#(isNatKind(activate(V2)) 
                                                  ,activate(V1)            
                                                  ,activate(V2)))          
              
                      U13#(tt(),V1,V2) =  [1] V1 + [1] V2 + [3]            
                                       >= [1] V1 + [1] V2 + [3]            
                                       =  c_8(U14#(isNatKind(activate(V2)) 
                                                  ,activate(V1)            
                                                  ,activate(V2)))          
              
                      U14#(tt(),V1,V2) =  [1] V1 + [1] V2 + [3]            
                                       >= [1] V1 + [1] V2 + [3]            
                                       =  c_9(U15#(isNat(activate(V1))     
                                                  ,activate(V2))           
                                             ,isNat#(activate(V1)))        
              
                         U15#(tt(),V2) =  [1] V2 + [1]                     
                                       >= [1] V2 + [0]                     
                                       =  c_10(isNat#(activate(V2)))       
              
                         U21#(tt(),V1) =  [1] V1 + [1]                     
                                       >= [1] V1 + [1]                     
                                       =  c_12(U22#(isNatKind(activate(V1))
                                                   ,activate(V1)))         
              
                         U22#(tt(),V1) =  [1] V1 + [1]                     
                                       >= [1] V1 + [1]                     
                                       =  c_13(isNat#(activate(V1)))       
              
                      U31#(tt(),V1,V2) =  [1] V1 + [1] V2 + [0]            
                                       >= [1] V1 + [1] V2 + [0]            
                                       =  c_15(U32#(isNatKind(activate(V1))
                                                   ,activate(V1)           
                                                   ,activate(V2)))         
              
                      U32#(tt(),V1,V2) =  [1] V1 + [1] V2 + [0]            
                                       >= [1] V1 + [1] V2 + [0]            
                                       =  c_16(U33#(isNatKind(activate(V2))
                                                   ,activate(V1)           
                                                   ,activate(V2)))         
              
                      U33#(tt(),V1,V2) =  [1] V1 + [1] V2 + [0]            
                                       >= [1] V1 + [1] V2 + [0]            
                                       =  c_17(U34#(isNatKind(activate(V2))
                                                   ,activate(V1)           
                                                   ,activate(V2)))         
              
                      U34#(tt(),V1,V2) =  [1] V1 + [1] V2 + [0]            
                                       >= [1] V1 + [1] V2 + [0]            
                                       =  c_18(U35#(isNat(activate(V1))    
                                                   ,activate(V2))          
                                              ,isNat#(activate(V1)))       
              
                         U35#(tt(),V2) =  [1] V2 + [0]                     
                                       >= [1] V2 + [0]                     
                                       =  c_19(isNat#(activate(V2)))       
              
                        U81#(tt(),M,N) =  [4] M + [1] N + [5]              
                                       >= [1] M + [1] N + [5]              
                                       =  c_28(U82#(isNatKind(activate(M)) 
                                                   ,activate(M)            
                                                   ,activate(N)))          
              
                        U82#(tt(),M,N) =  [1] M + [1] N + [2]              
                                       >= [1] N + [0]                      
                                       =  c_29(isNat#(activate(N)))        
              
                isNat#(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [3]            
                                       >= [1] V1 + [1] V2 + [3]            
                                       =  c_40(U11#(isNatKind(activate(V1))
                                                   ,activate(V1)           
                                                   ,activate(V2)))         
              
                      isNat#(n__s(V1)) =  [1] V1 + [1]                     
                                       >= [1] V1 + [1]                     
                                       =  c_41(U21#(isNatKind(activate(V1))
                                                   ,activate(V1)))         
              
                                   0() =  [0]                              
                                       >= [0]                              
                                       =  n__0()                           
              
                           activate(X) =  [1] X + [0]                      
                                       >= [1] X + [0]                      
                                       =  X                                
              
                      activate(n__0()) =  [0]                              
                                       >= [0]                              
                                       =  0()                              
              
              activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [3]            
                                       >= [1] X1 + [1] X2 + [3]            
                                       =  plus(X1,X2)                      
              
                     activate(n__s(X)) =  [1] X + [1]                      
                                       >= [1] X + [1]                      
                                       =  s(X)                             
              
                 activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [1]            
                                       >= [1] X1 + [1] X2 + [1]            
                                       =  x(X1,X2)                         
              
                           plus(X1,X2) =  [1] X1 + [1] X2 + [3]            
                                       >= [1] X1 + [1] X2 + [3]            
                                       =  n__plus(X1,X2)                   
              
                                  s(X) =  [1] X + [1]                      
                                       >= [1] X + [1]                      
                                       =  n__s(X)                          
              
                              x(X1,X2) =  [1] X1 + [1] X2 + [1]            
                                       >= [1] X1 + [1] X2 + [1]            
                                       =  n__x(X1,X2)                      
              
        *** 1.1.1.1.1.1.1.1.1.2.1.1.1.1.2.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
                U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
              Strict TRS Rules:
                
              Weak DP Rules:
                U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
                U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
                U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
                U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
                U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
                U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
                U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
                U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
                isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
                isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
                isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              Weak TRS Rules:
                0() -> n__0()
                U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
                U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
                U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
                U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
                U15(tt(),V2) -> U16(isNat(activate(V2)))
                U16(tt()) -> tt()
                U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
                U22(tt(),V1) -> U23(isNat(activate(V1)))
                U23(tt()) -> tt()
                U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
                U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
                U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
                U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
                U35(tt(),V2) -> U36(isNat(activate(V2)))
                U36(tt()) -> tt()
                U41(tt(),V2) -> U42(isNatKind(activate(V2)))
                U42(tt()) -> tt()
                U51(tt()) -> tt()
                U61(tt(),V2) -> U62(isNatKind(activate(V2)))
                U62(tt()) -> tt()
                activate(X) -> X
                activate(n__0()) -> 0()
                activate(n__plus(X1,X2)) -> plus(X1,X2)
                activate(n__s(X)) -> s(X)
                activate(n__x(X1,X2)) -> x(X1,X2)
                isNat(n__0()) -> tt()
                isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
                isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
                isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
                isNatKind(n__0()) -> tt()
                isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
                isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
                isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
                plus(X1,X2) -> n__plus(X1,X2)
                s(X) -> n__s(X)
                x(X1,X2) -> n__x(X1,X2)
              Signature:
                {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
              Obligation:
                Innermost
                basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.1.1.1.2.1.1.1.1.2.2 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
                U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
                U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
                U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
                U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
                U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
                U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
                U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
                U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
                U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
                isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
                isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
                isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              Weak TRS Rules:
                0() -> n__0()
                U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
                U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
                U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
                U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
                U15(tt(),V2) -> U16(isNat(activate(V2)))
                U16(tt()) -> tt()
                U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
                U22(tt(),V1) -> U23(isNat(activate(V1)))
                U23(tt()) -> tt()
                U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
                U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
                U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
                U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
                U35(tt(),V2) -> U36(isNat(activate(V2)))
                U36(tt()) -> tt()
                U41(tt(),V2) -> U42(isNatKind(activate(V2)))
                U42(tt()) -> tt()
                U51(tt()) -> tt()
                U61(tt(),V2) -> U62(isNatKind(activate(V2)))
                U62(tt()) -> tt()
                activate(X) -> X
                activate(n__0()) -> 0()
                activate(n__plus(X1,X2)) -> plus(X1,X2)
                activate(n__s(X)) -> s(X)
                activate(n__x(X1,X2)) -> x(X1,X2)
                isNat(n__0()) -> tt()
                isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
                isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
                isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
                isNatKind(n__0()) -> tt()
                isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
                isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
                isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
                plus(X1,X2) -> n__plus(X1,X2)
                s(X) -> n__s(X)
                x(X1,X2) -> n__x(X1,X2)
              Signature:
                {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
              Obligation:
                Innermost
                basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
            Applied Processor:
              RemoveWeakSuffixes
            Proof:
              Consider the dependency graph
                1:W:U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
                   -->_1 U102#(tt(),M,N) -> c_3(isNat#(activate(N))):2
                
                2:W:U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
                   -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
                   -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
                   -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
                
                3:W:U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
                   -->_1 U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))):4
                
                4:W:U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                   -->_1 U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))):5
                
                5:W:U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                   -->_1 U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):6
                
                6:W:U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                   -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
                   -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
                   -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
                   -->_1 U15#(tt(),V2) -> c_10(isNat#(activate(V2))):7
                
                7:W:U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
                   -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
                   -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
                   -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
                
                8:W:U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
                   -->_1 U22#(tt(),V1) -> c_13(isNat#(activate(V1))):9
                
                9:W:U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
                   -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
                   -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
                   -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
                
                10:W:U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
                   -->_1 U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))):11
                
                11:W:U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                   -->_1 U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))):12
                
                12:W:U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
                   -->_1 U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):13
                
                13:W:U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
                   -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
                   -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
                   -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
                   -->_1 U35#(tt(),V2) -> c_19(isNat#(activate(V2))):14
                
                14:W:U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
                   -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
                   -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
                   -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
                
                15:W:U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
                   -->_1 U82#(tt(),M,N) -> c_29(isNat#(activate(N))):16
                
                16:W:U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
                   -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
                   -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
                   -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
                
                17:W:isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
                   -->_1 U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))):3
                
                18:W:isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
                   -->_1 U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1))):8
                
                19:W:isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
                   -->_1 U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))):10
                
              The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                15: U81#(tt(),M,N) ->                  
                      c_28(U82#(isNatKind(activate(M)) 
                               ,activate(M)            
                               ,activate(N)))          
                16: U82#(tt(),M,N) ->                  
                      c_29(isNat#(activate(N)))        
                1:  U101#(tt(),M,N) ->                 
                      c_2(U102#(isNatKind(activate(M)) 
                               ,activate(M)            
                               ,activate(N)))          
                2:  U102#(tt(),M,N) ->                 
                      c_3(isNat#(activate(N)))         
                19: isNat#(n__x(V1,V2)) ->             
                      c_42(U31#(isNatKind(activate(V1))
                               ,activate(V1)           
                               ,activate(V2)))         
                14: U35#(tt(),V2) ->                   
                      c_19(isNat#(activate(V2)))       
                13: U34#(tt(),V1,V2) ->                
                      c_18(U35#(isNat(activate(V1))    
                               ,activate(V2))          
                          ,isNat#(activate(V1)))       
                12: U33#(tt(),V1,V2) ->                
                      c_17(U34#(isNatKind(activate(V2))
                               ,activate(V1)           
                               ,activate(V2)))         
                11: U32#(tt(),V1,V2) ->                
                      c_16(U33#(isNatKind(activate(V2))
                               ,activate(V1)           
                               ,activate(V2)))         
                10: U31#(tt(),V1,V2) ->                
                      c_15(U32#(isNatKind(activate(V1))
                               ,activate(V1)           
                               ,activate(V2)))         
                9:  U22#(tt(),V1) ->                   
                      c_13(isNat#(activate(V1)))       
                8:  U21#(tt(),V1) ->                   
                      c_12(U22#(isNatKind(activate(V1))
                               ,activate(V1)))         
                18: isNat#(n__s(V1)) ->                
                      c_41(U21#(isNatKind(activate(V1))
                               ,activate(V1)))         
                7:  U15#(tt(),V2) ->                   
                      c_10(isNat#(activate(V2)))       
                6:  U14#(tt(),V1,V2) ->                
                      c_9(U15#(isNat(activate(V1))     
                              ,activate(V2))           
                         ,isNat#(activate(V1)))        
                5:  U13#(tt(),V1,V2) ->                
                      c_8(U14#(isNatKind(activate(V2)) 
                              ,activate(V1)            
                              ,activate(V2)))          
                4:  U12#(tt(),V1,V2) ->                
                      c_7(U13#(isNatKind(activate(V2)) 
                              ,activate(V1)            
                              ,activate(V2)))          
                3:  U11#(tt(),V1,V2) ->                
                      c_6(U12#(isNatKind(activate(V1)) 
                              ,activate(V1)            
                              ,activate(V2)))          
                17: isNat#(n__plus(V1,V2)) ->          
                      c_40(U11#(isNatKind(activate(V1))
                               ,activate(V1)           
                               ,activate(V2)))         
        *** 1.1.1.1.1.1.1.1.1.2.1.1.1.1.2.2.1 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                0() -> n__0()
                U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
                U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
                U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
                U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
                U15(tt(),V2) -> U16(isNat(activate(V2)))
                U16(tt()) -> tt()
                U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
                U22(tt(),V1) -> U23(isNat(activate(V1)))
                U23(tt()) -> tt()
                U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
                U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
                U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
                U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
                U35(tt(),V2) -> U36(isNat(activate(V2)))
                U36(tt()) -> tt()
                U41(tt(),V2) -> U42(isNatKind(activate(V2)))
                U42(tt()) -> tt()
                U51(tt()) -> tt()
                U61(tt(),V2) -> U62(isNatKind(activate(V2)))
                U62(tt()) -> tt()
                activate(X) -> X
                activate(n__0()) -> 0()
                activate(n__plus(X1,X2)) -> plus(X1,X2)
                activate(n__s(X)) -> s(X)
                activate(n__x(X1,X2)) -> x(X1,X2)
                isNat(n__0()) -> tt()
                isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
                isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
                isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
                isNatKind(n__0()) -> tt()
                isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
                isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
                isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
                plus(X1,X2) -> n__plus(X1,X2)
                s(X) -> n__s(X)
                x(X1,X2) -> n__x(X1,X2)
              Signature:
                {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
              Obligation:
                Innermost
                basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
            Applied Processor:
              EmptyProcessor
            Proof:
              The problem is already closed. The intended complexity is O(1).
        
    *** 1.1.1.1.1.1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
          Strict TRS Rules:
            
          Weak DP Rules:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
          Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
          Obligation:
            Innermost
            basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
        Applied Processor:
          PredecessorEstimation {onSelection = all simple predecessor estimation selector}
        Proof:
          We estimate the number of application of
            {2}
          by application of
            Pre({2}) = {1}.
          Here rules are labelled as follows:
            1:  U81#(tt(),M,N) ->                  
                  c_28(U82#(isNatKind(activate(M)) 
                           ,activate(M)            
                           ,activate(N)))          
            2:  U82#(tt(),M,N) ->                  
                  c_29(isNat#(activate(N)))        
            3:  U101#(tt(),M,N) ->                 
                  c_2(U102#(isNatKind(activate(M)) 
                           ,activate(M)            
                           ,activate(N)))          
            4:  U102#(tt(),M,N) ->                 
                  c_3(isNat#(activate(N)))         
            5:  U11#(tt(),V1,V2) ->                
                  c_6(U12#(isNatKind(activate(V1)) 
                          ,activate(V1)            
                          ,activate(V2)))          
            6:  U12#(tt(),V1,V2) ->                
                  c_7(U13#(isNatKind(activate(V2)) 
                          ,activate(V1)            
                          ,activate(V2)))          
            7:  U13#(tt(),V1,V2) ->                
                  c_8(U14#(isNatKind(activate(V2)) 
                          ,activate(V1)            
                          ,activate(V2)))          
            8:  U14#(tt(),V1,V2) ->                
                  c_9(U15#(isNat(activate(V1))     
                          ,activate(V2))           
                     ,isNat#(activate(V1)))        
            9:  U15#(tt(),V2) ->                   
                  c_10(isNat#(activate(V2)))       
            10: U21#(tt(),V1) ->                   
                  c_12(U22#(isNatKind(activate(V1))
                           ,activate(V1)))         
            11: U22#(tt(),V1) ->                   
                  c_13(isNat#(activate(V1)))       
            12: U31#(tt(),V1,V2) ->                
                  c_15(U32#(isNatKind(activate(V1))
                           ,activate(V1)           
                           ,activate(V2)))         
            13: U32#(tt(),V1,V2) ->                
                  c_16(U33#(isNatKind(activate(V2))
                           ,activate(V1)           
                           ,activate(V2)))         
            14: U33#(tt(),V1,V2) ->                
                  c_17(U34#(isNatKind(activate(V2))
                           ,activate(V1)           
                           ,activate(V2)))         
            15: U34#(tt(),V1,V2) ->                
                  c_18(U35#(isNat(activate(V1))    
                           ,activate(V2))          
                      ,isNat#(activate(V1)))       
            16: U35#(tt(),V2) ->                   
                  c_19(isNat#(activate(V2)))       
            17: isNat#(n__plus(V1,V2)) ->          
                  c_40(U11#(isNatKind(activate(V1))
                           ,activate(V1)           
                           ,activate(V2)))         
            18: isNat#(n__s(V1)) ->                
                  c_41(U21#(isNatKind(activate(V1))
                           ,activate(V1)))         
            19: isNat#(n__x(V1,V2)) ->             
                  c_42(U31#(isNatKind(activate(V1))
                           ,activate(V1)           
                           ,activate(V2)))         
    *** 1.1.1.1.1.1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
          Strict TRS Rules:
            
          Weak DP Rules:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
          Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
          Obligation:
            Innermost
            basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
        Applied Processor:
          PredecessorEstimation {onSelection = all simple predecessor estimation selector}
        Proof:
          We estimate the number of application of
            {1}
          by application of
            Pre({1}) = {}.
          Here rules are labelled as follows:
            1:  U81#(tt(),M,N) ->                  
                  c_28(U82#(isNatKind(activate(M)) 
                           ,activate(M)            
                           ,activate(N)))          
            2:  U101#(tt(),M,N) ->                 
                  c_2(U102#(isNatKind(activate(M)) 
                           ,activate(M)            
                           ,activate(N)))          
            3:  U102#(tt(),M,N) ->                 
                  c_3(isNat#(activate(N)))         
            4:  U11#(tt(),V1,V2) ->                
                  c_6(U12#(isNatKind(activate(V1)) 
                          ,activate(V1)            
                          ,activate(V2)))          
            5:  U12#(tt(),V1,V2) ->                
                  c_7(U13#(isNatKind(activate(V2)) 
                          ,activate(V1)            
                          ,activate(V2)))          
            6:  U13#(tt(),V1,V2) ->                
                  c_8(U14#(isNatKind(activate(V2)) 
                          ,activate(V1)            
                          ,activate(V2)))          
            7:  U14#(tt(),V1,V2) ->                
                  c_9(U15#(isNat(activate(V1))     
                          ,activate(V2))           
                     ,isNat#(activate(V1)))        
            8:  U15#(tt(),V2) ->                   
                  c_10(isNat#(activate(V2)))       
            9:  U21#(tt(),V1) ->                   
                  c_12(U22#(isNatKind(activate(V1))
                           ,activate(V1)))         
            10: U22#(tt(),V1) ->                   
                  c_13(isNat#(activate(V1)))       
            11: U31#(tt(),V1,V2) ->                
                  c_15(U32#(isNatKind(activate(V1))
                           ,activate(V1)           
                           ,activate(V2)))         
            12: U32#(tt(),V1,V2) ->                
                  c_16(U33#(isNatKind(activate(V2))
                           ,activate(V1)           
                           ,activate(V2)))         
            13: U33#(tt(),V1,V2) ->                
                  c_17(U34#(isNatKind(activate(V2))
                           ,activate(V1)           
                           ,activate(V2)))         
            14: U34#(tt(),V1,V2) ->                
                  c_18(U35#(isNat(activate(V1))    
                           ,activate(V2))          
                      ,isNat#(activate(V1)))       
            15: U35#(tt(),V2) ->                   
                  c_19(isNat#(activate(V2)))       
            16: U82#(tt(),M,N) ->                  
                  c_29(isNat#(activate(N)))        
            17: isNat#(n__plus(V1,V2)) ->          
                  c_40(U11#(isNatKind(activate(V1))
                           ,activate(V1)           
                           ,activate(V2)))         
            18: isNat#(n__s(V1)) ->                
                  c_41(U21#(isNatKind(activate(V1))
                           ,activate(V1)))         
            19: isNat#(n__x(V1,V2)) ->             
                  c_42(U31#(isNatKind(activate(V1))
                           ,activate(V1)           
                           ,activate(V2)))         
    *** 1.1.1.1.1.1.1.1.1.2.1.1.1.2.1.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
          Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
          Obligation:
            Innermost
            basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
               -->_1 U102#(tt(),M,N) -> c_3(isNat#(activate(N))):2
            
            2:W:U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
               -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
               -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
               -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
            
            3:W:U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
               -->_1 U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))):4
            
            4:W:U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
               -->_1 U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))):5
            
            5:W:U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
               -->_1 U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):6
            
            6:W:U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
               -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
               -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
               -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
               -->_1 U15#(tt(),V2) -> c_10(isNat#(activate(V2))):7
            
            7:W:U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
               -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
               -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
               -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
            
            8:W:U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
               -->_1 U22#(tt(),V1) -> c_13(isNat#(activate(V1))):9
            
            9:W:U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
               -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
               -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
               -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
            
            10:W:U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
               -->_1 U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))):11
            
            11:W:U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
               -->_1 U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))):12
            
            12:W:U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
               -->_1 U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):13
            
            13:W:U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
               -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
               -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
               -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
               -->_1 U35#(tt(),V2) -> c_19(isNat#(activate(V2))):14
            
            14:W:U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
               -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
               -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
               -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
            
            15:W:U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
               -->_1 U82#(tt(),M,N) -> c_29(isNat#(activate(N))):16
            
            16:W:U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
               -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
               -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
               -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
            
            17:W:isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
               -->_1 U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))):3
            
            18:W:isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
               -->_1 U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1))):8
            
            19:W:isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
               -->_1 U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))):10
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            15: U81#(tt(),M,N) ->                  
                  c_28(U82#(isNatKind(activate(M)) 
                           ,activate(M)            
                           ,activate(N)))          
            16: U82#(tt(),M,N) ->                  
                  c_29(isNat#(activate(N)))        
            1:  U101#(tt(),M,N) ->                 
                  c_2(U102#(isNatKind(activate(M)) 
                           ,activate(M)            
                           ,activate(N)))          
            2:  U102#(tt(),M,N) ->                 
                  c_3(isNat#(activate(N)))         
            19: isNat#(n__x(V1,V2)) ->             
                  c_42(U31#(isNatKind(activate(V1))
                           ,activate(V1)           
                           ,activate(V2)))         
            14: U35#(tt(),V2) ->                   
                  c_19(isNat#(activate(V2)))       
            13: U34#(tt(),V1,V2) ->                
                  c_18(U35#(isNat(activate(V1))    
                           ,activate(V2))          
                      ,isNat#(activate(V1)))       
            12: U33#(tt(),V1,V2) ->                
                  c_17(U34#(isNatKind(activate(V2))
                           ,activate(V1)           
                           ,activate(V2)))         
            11: U32#(tt(),V1,V2) ->                
                  c_16(U33#(isNatKind(activate(V2))
                           ,activate(V1)           
                           ,activate(V2)))         
            10: U31#(tt(),V1,V2) ->                
                  c_15(U32#(isNatKind(activate(V1))
                           ,activate(V1)           
                           ,activate(V2)))         
            9:  U22#(tt(),V1) ->                   
                  c_13(isNat#(activate(V1)))       
            8:  U21#(tt(),V1) ->                   
                  c_12(U22#(isNatKind(activate(V1))
                           ,activate(V1)))         
            18: isNat#(n__s(V1)) ->                
                  c_41(U21#(isNatKind(activate(V1))
                           ,activate(V1)))         
            7:  U15#(tt(),V2) ->                   
                  c_10(isNat#(activate(V2)))       
            6:  U14#(tt(),V1,V2) ->                
                  c_9(U15#(isNat(activate(V1))     
                          ,activate(V2))           
                     ,isNat#(activate(V1)))        
            5:  U13#(tt(),V1,V2) ->                
                  c_8(U14#(isNatKind(activate(V2)) 
                          ,activate(V1)            
                          ,activate(V2)))          
            4:  U12#(tt(),V1,V2) ->                
                  c_7(U13#(isNatKind(activate(V2)) 
                          ,activate(V1)            
                          ,activate(V2)))          
            3:  U11#(tt(),V1,V2) ->                
                  c_6(U12#(isNatKind(activate(V1)) 
                          ,activate(V1)            
                          ,activate(V2)))          
            17: isNat#(n__plus(V1,V2)) ->          
                  c_40(U11#(isNatKind(activate(V1))
                           ,activate(V1)           
                           ,activate(V2)))         
    *** 1.1.1.1.1.1.1.1.1.2.1.1.1.2.1.1.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
          Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
          Obligation:
            Innermost
            basic terms: {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}/{n__0,n__plus,n__s,n__x,tt}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).