*** 1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(X)
        afterNth(N,XS) -> snd(splitAt(N,XS))
        fst(pair(XS,YS)) -> XS
        head(cons(N,XS)) -> N
        natsFrom(N) -> cons(N,n__natsFrom(s(N)))
        natsFrom(X) -> n__natsFrom(X)
        sel(N,XS) -> head(afterNth(N,XS))
        snd(pair(XS,YS)) -> YS
        splitAt(0(),XS) -> pair(nil(),XS)
        splitAt(s(N),cons(X,XS)) -> u(splitAt(N,activate(XS)),N,X,activate(XS))
        tail(cons(N,XS)) -> activate(XS)
        take(N,XS) -> fst(splitAt(N,XS))
        u(pair(YS,ZS),N,X,XS) -> pair(cons(activate(X),YS),ZS)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4} / {0/0,cons/2,n__natsFrom/1,nil/0,pair/2,s/1}
      Obligation:
        Innermost
        basic terms: {activate,afterNth,fst,head,natsFrom,sel,snd,splitAt,tail,take,u}/{0,cons,n__natsFrom,nil,pair,s}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        activate#(X) -> c_1()
        activate#(n__natsFrom(X)) -> c_2(natsFrom#(X))
        afterNth#(N,XS) -> c_3(snd#(splitAt(N,XS)),splitAt#(N,XS))
        fst#(pair(XS,YS)) -> c_4()
        head#(cons(N,XS)) -> c_5()
        natsFrom#(N) -> c_6()
        natsFrom#(X) -> c_7()
        sel#(N,XS) -> c_8(head#(afterNth(N,XS)),afterNth#(N,XS))
        snd#(pair(XS,YS)) -> c_9()
        splitAt#(0(),XS) -> c_10()
        splitAt#(s(N),cons(X,XS)) -> c_11(u#(splitAt(N,activate(XS)),N,X,activate(XS)),splitAt#(N,activate(XS)),activate#(XS),activate#(XS))
        tail#(cons(N,XS)) -> c_12(activate#(XS))
        take#(N,XS) -> c_13(fst#(splitAt(N,XS)),splitAt#(N,XS))
        u#(pair(YS,ZS),N,X,XS) -> c_14(activate#(X))
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1()
        activate#(n__natsFrom(X)) -> c_2(natsFrom#(X))
        afterNth#(N,XS) -> c_3(snd#(splitAt(N,XS)),splitAt#(N,XS))
        fst#(pair(XS,YS)) -> c_4()
        head#(cons(N,XS)) -> c_5()
        natsFrom#(N) -> c_6()
        natsFrom#(X) -> c_7()
        sel#(N,XS) -> c_8(head#(afterNth(N,XS)),afterNth#(N,XS))
        snd#(pair(XS,YS)) -> c_9()
        splitAt#(0(),XS) -> c_10()
        splitAt#(s(N),cons(X,XS)) -> c_11(u#(splitAt(N,activate(XS)),N,X,activate(XS)),splitAt#(N,activate(XS)),activate#(XS),activate#(XS))
        tail#(cons(N,XS)) -> c_12(activate#(XS))
        take#(N,XS) -> c_13(fst#(splitAt(N,XS)),splitAt#(N,XS))
        u#(pair(YS,ZS),N,X,XS) -> c_14(activate#(X))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(X)
        afterNth(N,XS) -> snd(splitAt(N,XS))
        fst(pair(XS,YS)) -> XS
        head(cons(N,XS)) -> N
        natsFrom(N) -> cons(N,n__natsFrom(s(N)))
        natsFrom(X) -> n__natsFrom(X)
        sel(N,XS) -> head(afterNth(N,XS))
        snd(pair(XS,YS)) -> YS
        splitAt(0(),XS) -> pair(nil(),XS)
        splitAt(s(N),cons(X,XS)) -> u(splitAt(N,activate(XS)),N,X,activate(XS))
        tail(cons(N,XS)) -> activate(XS)
        take(N,XS) -> fst(splitAt(N,XS))
        u(pair(YS,ZS),N,X,XS) -> pair(cons(activate(X),YS),ZS)
      Signature:
        {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4,activate#/1,afterNth#/2,fst#/1,head#/1,natsFrom#/1,sel#/2,snd#/1,splitAt#/2,tail#/1,take#/2,u#/4} / {0/0,cons/2,n__natsFrom/1,nil/0,pair/2,s/1,c_1/0,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/0,c_8/2,c_9/0,c_10/0,c_11/4,c_12/1,c_13/2,c_14/1}
      Obligation:
        Innermost
        basic terms: {activate#,afterNth#,fst#,head#,natsFrom#,sel#,snd#,splitAt#,tail#,take#,u#}/{0,cons,n__natsFrom,nil,pair,s}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(X)
        afterNth(N,XS) -> snd(splitAt(N,XS))
        natsFrom(N) -> cons(N,n__natsFrom(s(N)))
        natsFrom(X) -> n__natsFrom(X)
        snd(pair(XS,YS)) -> YS
        splitAt(0(),XS) -> pair(nil(),XS)
        splitAt(s(N),cons(X,XS)) -> u(splitAt(N,activate(XS)),N,X,activate(XS))
        u(pair(YS,ZS),N,X,XS) -> pair(cons(activate(X),YS),ZS)
        activate#(X) -> c_1()
        activate#(n__natsFrom(X)) -> c_2(natsFrom#(X))
        afterNth#(N,XS) -> c_3(snd#(splitAt(N,XS)),splitAt#(N,XS))
        fst#(pair(XS,YS)) -> c_4()
        head#(cons(N,XS)) -> c_5()
        natsFrom#(N) -> c_6()
        natsFrom#(X) -> c_7()
        sel#(N,XS) -> c_8(head#(afterNth(N,XS)),afterNth#(N,XS))
        snd#(pair(XS,YS)) -> c_9()
        splitAt#(0(),XS) -> c_10()
        splitAt#(s(N),cons(X,XS)) -> c_11(u#(splitAt(N,activate(XS)),N,X,activate(XS)),splitAt#(N,activate(XS)),activate#(XS),activate#(XS))
        tail#(cons(N,XS)) -> c_12(activate#(XS))
        take#(N,XS) -> c_13(fst#(splitAt(N,XS)),splitAt#(N,XS))
        u#(pair(YS,ZS),N,X,XS) -> c_14(activate#(X))
*** 1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1()
        activate#(n__natsFrom(X)) -> c_2(natsFrom#(X))
        afterNth#(N,XS) -> c_3(snd#(splitAt(N,XS)),splitAt#(N,XS))
        fst#(pair(XS,YS)) -> c_4()
        head#(cons(N,XS)) -> c_5()
        natsFrom#(N) -> c_6()
        natsFrom#(X) -> c_7()
        sel#(N,XS) -> c_8(head#(afterNth(N,XS)),afterNth#(N,XS))
        snd#(pair(XS,YS)) -> c_9()
        splitAt#(0(),XS) -> c_10()
        splitAt#(s(N),cons(X,XS)) -> c_11(u#(splitAt(N,activate(XS)),N,X,activate(XS)),splitAt#(N,activate(XS)),activate#(XS),activate#(XS))
        tail#(cons(N,XS)) -> c_12(activate#(XS))
        take#(N,XS) -> c_13(fst#(splitAt(N,XS)),splitAt#(N,XS))
        u#(pair(YS,ZS),N,X,XS) -> c_14(activate#(X))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(X)
        afterNth(N,XS) -> snd(splitAt(N,XS))
        natsFrom(N) -> cons(N,n__natsFrom(s(N)))
        natsFrom(X) -> n__natsFrom(X)
        snd(pair(XS,YS)) -> YS
        splitAt(0(),XS) -> pair(nil(),XS)
        splitAt(s(N),cons(X,XS)) -> u(splitAt(N,activate(XS)),N,X,activate(XS))
        u(pair(YS,ZS),N,X,XS) -> pair(cons(activate(X),YS),ZS)
      Signature:
        {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4,activate#/1,afterNth#/2,fst#/1,head#/1,natsFrom#/1,sel#/2,snd#/1,splitAt#/2,tail#/1,take#/2,u#/4} / {0/0,cons/2,n__natsFrom/1,nil/0,pair/2,s/1,c_1/0,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/0,c_8/2,c_9/0,c_10/0,c_11/4,c_12/1,c_13/2,c_14/1}
      Obligation:
        Innermost
        basic terms: {activate#,afterNth#,fst#,head#,natsFrom#,sel#,snd#,splitAt#,tail#,take#,u#}/{0,cons,n__natsFrom,nil,pair,s}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,4,5,6,7,9,10}
      by application of
        Pre({1,4,5,6,7,9,10}) = {2,3,8,11,12,13,14}.
      Here rules are labelled as follows:
        1:  activate#(X) -> c_1()            
        2:  activate#(n__natsFrom(X)) ->     
              c_2(natsFrom#(X))              
        3:  afterNth#(N,XS) ->               
              c_3(snd#(splitAt(N,XS))        
                 ,splitAt#(N,XS))            
        4:  fst#(pair(XS,YS)) -> c_4()       
        5:  head#(cons(N,XS)) -> c_5()       
        6:  natsFrom#(N) -> c_6()            
        7:  natsFrom#(X) -> c_7()            
        8:  sel#(N,XS) ->                    
              c_8(head#(afterNth(N,XS))      
                 ,afterNth#(N,XS))           
        9:  snd#(pair(XS,YS)) -> c_9()       
        10: splitAt#(0(),XS) -> c_10()       
        11: splitAt#(s(N),cons(X,XS)) ->     
              c_11(u#(splitAt(N,activate(XS))
                     ,N                      
                     ,X                      
                     ,activate(XS))          
                  ,splitAt#(N,activate(XS))  
                  ,activate#(XS)             
                  ,activate#(XS))            
        12: tail#(cons(N,XS)) ->             
              c_12(activate#(XS))            
        13: take#(N,XS) ->                   
              c_13(fst#(splitAt(N,XS))       
                  ,splitAt#(N,XS))           
        14: u#(pair(YS,ZS),N,X,XS) ->        
              c_14(activate#(X))             
*** 1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(n__natsFrom(X)) -> c_2(natsFrom#(X))
        afterNth#(N,XS) -> c_3(snd#(splitAt(N,XS)),splitAt#(N,XS))
        sel#(N,XS) -> c_8(head#(afterNth(N,XS)),afterNth#(N,XS))
        splitAt#(s(N),cons(X,XS)) -> c_11(u#(splitAt(N,activate(XS)),N,X,activate(XS)),splitAt#(N,activate(XS)),activate#(XS),activate#(XS))
        tail#(cons(N,XS)) -> c_12(activate#(XS))
        take#(N,XS) -> c_13(fst#(splitAt(N,XS)),splitAt#(N,XS))
        u#(pair(YS,ZS),N,X,XS) -> c_14(activate#(X))
      Strict TRS Rules:
        
      Weak DP Rules:
        activate#(X) -> c_1()
        fst#(pair(XS,YS)) -> c_4()
        head#(cons(N,XS)) -> c_5()
        natsFrom#(N) -> c_6()
        natsFrom#(X) -> c_7()
        snd#(pair(XS,YS)) -> c_9()
        splitAt#(0(),XS) -> c_10()
      Weak TRS Rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(X)
        afterNth(N,XS) -> snd(splitAt(N,XS))
        natsFrom(N) -> cons(N,n__natsFrom(s(N)))
        natsFrom(X) -> n__natsFrom(X)
        snd(pair(XS,YS)) -> YS
        splitAt(0(),XS) -> pair(nil(),XS)
        splitAt(s(N),cons(X,XS)) -> u(splitAt(N,activate(XS)),N,X,activate(XS))
        u(pair(YS,ZS),N,X,XS) -> pair(cons(activate(X),YS),ZS)
      Signature:
        {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4,activate#/1,afterNth#/2,fst#/1,head#/1,natsFrom#/1,sel#/2,snd#/1,splitAt#/2,tail#/1,take#/2,u#/4} / {0/0,cons/2,n__natsFrom/1,nil/0,pair/2,s/1,c_1/0,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/0,c_8/2,c_9/0,c_10/0,c_11/4,c_12/1,c_13/2,c_14/1}
      Obligation:
        Innermost
        basic terms: {activate#,afterNth#,fst#,head#,natsFrom#,sel#,snd#,splitAt#,tail#,take#,u#}/{0,cons,n__natsFrom,nil,pair,s}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1}
      by application of
        Pre({1}) = {4,5,7}.
      Here rules are labelled as follows:
        1:  activate#(n__natsFrom(X)) ->     
              c_2(natsFrom#(X))              
        2:  afterNth#(N,XS) ->               
              c_3(snd#(splitAt(N,XS))        
                 ,splitAt#(N,XS))            
        3:  sel#(N,XS) ->                    
              c_8(head#(afterNth(N,XS))      
                 ,afterNth#(N,XS))           
        4:  splitAt#(s(N),cons(X,XS)) ->     
              c_11(u#(splitAt(N,activate(XS))
                     ,N                      
                     ,X                      
                     ,activate(XS))          
                  ,splitAt#(N,activate(XS))  
                  ,activate#(XS)             
                  ,activate#(XS))            
        5:  tail#(cons(N,XS)) ->             
              c_12(activate#(XS))            
        6:  take#(N,XS) ->                   
              c_13(fst#(splitAt(N,XS))       
                  ,splitAt#(N,XS))           
        7:  u#(pair(YS,ZS),N,X,XS) ->        
              c_14(activate#(X))             
        8:  activate#(X) -> c_1()            
        9:  fst#(pair(XS,YS)) -> c_4()       
        10: head#(cons(N,XS)) -> c_5()       
        11: natsFrom#(N) -> c_6()            
        12: natsFrom#(X) -> c_7()            
        13: snd#(pair(XS,YS)) -> c_9()       
        14: splitAt#(0(),XS) -> c_10()       
*** 1.1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        afterNth#(N,XS) -> c_3(snd#(splitAt(N,XS)),splitAt#(N,XS))
        sel#(N,XS) -> c_8(head#(afterNth(N,XS)),afterNth#(N,XS))
        splitAt#(s(N),cons(X,XS)) -> c_11(u#(splitAt(N,activate(XS)),N,X,activate(XS)),splitAt#(N,activate(XS)),activate#(XS),activate#(XS))
        tail#(cons(N,XS)) -> c_12(activate#(XS))
        take#(N,XS) -> c_13(fst#(splitAt(N,XS)),splitAt#(N,XS))
        u#(pair(YS,ZS),N,X,XS) -> c_14(activate#(X))
      Strict TRS Rules:
        
      Weak DP Rules:
        activate#(X) -> c_1()
        activate#(n__natsFrom(X)) -> c_2(natsFrom#(X))
        fst#(pair(XS,YS)) -> c_4()
        head#(cons(N,XS)) -> c_5()
        natsFrom#(N) -> c_6()
        natsFrom#(X) -> c_7()
        snd#(pair(XS,YS)) -> c_9()
        splitAt#(0(),XS) -> c_10()
      Weak TRS Rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(X)
        afterNth(N,XS) -> snd(splitAt(N,XS))
        natsFrom(N) -> cons(N,n__natsFrom(s(N)))
        natsFrom(X) -> n__natsFrom(X)
        snd(pair(XS,YS)) -> YS
        splitAt(0(),XS) -> pair(nil(),XS)
        splitAt(s(N),cons(X,XS)) -> u(splitAt(N,activate(XS)),N,X,activate(XS))
        u(pair(YS,ZS),N,X,XS) -> pair(cons(activate(X),YS),ZS)
      Signature:
        {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4,activate#/1,afterNth#/2,fst#/1,head#/1,natsFrom#/1,sel#/2,snd#/1,splitAt#/2,tail#/1,take#/2,u#/4} / {0/0,cons/2,n__natsFrom/1,nil/0,pair/2,s/1,c_1/0,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/0,c_8/2,c_9/0,c_10/0,c_11/4,c_12/1,c_13/2,c_14/1}
      Obligation:
        Innermost
        basic terms: {activate#,afterNth#,fst#,head#,natsFrom#,sel#,snd#,splitAt#,tail#,take#,u#}/{0,cons,n__natsFrom,nil,pair,s}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {4,6}
      by application of
        Pre({4,6}) = {3}.
      Here rules are labelled as follows:
        1:  afterNth#(N,XS) ->               
              c_3(snd#(splitAt(N,XS))        
                 ,splitAt#(N,XS))            
        2:  sel#(N,XS) ->                    
              c_8(head#(afterNth(N,XS))      
                 ,afterNth#(N,XS))           
        3:  splitAt#(s(N),cons(X,XS)) ->     
              c_11(u#(splitAt(N,activate(XS))
                     ,N                      
                     ,X                      
                     ,activate(XS))          
                  ,splitAt#(N,activate(XS))  
                  ,activate#(XS)             
                  ,activate#(XS))            
        4:  tail#(cons(N,XS)) ->             
              c_12(activate#(XS))            
        5:  take#(N,XS) ->                   
              c_13(fst#(splitAt(N,XS))       
                  ,splitAt#(N,XS))           
        6:  u#(pair(YS,ZS),N,X,XS) ->        
              c_14(activate#(X))             
        7:  activate#(X) -> c_1()            
        8:  activate#(n__natsFrom(X)) ->     
              c_2(natsFrom#(X))              
        9:  fst#(pair(XS,YS)) -> c_4()       
        10: head#(cons(N,XS)) -> c_5()       
        11: natsFrom#(N) -> c_6()            
        12: natsFrom#(X) -> c_7()            
        13: snd#(pair(XS,YS)) -> c_9()       
        14: splitAt#(0(),XS) -> c_10()       
*** 1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        afterNth#(N,XS) -> c_3(snd#(splitAt(N,XS)),splitAt#(N,XS))
        sel#(N,XS) -> c_8(head#(afterNth(N,XS)),afterNth#(N,XS))
        splitAt#(s(N),cons(X,XS)) -> c_11(u#(splitAt(N,activate(XS)),N,X,activate(XS)),splitAt#(N,activate(XS)),activate#(XS),activate#(XS))
        take#(N,XS) -> c_13(fst#(splitAt(N,XS)),splitAt#(N,XS))
      Strict TRS Rules:
        
      Weak DP Rules:
        activate#(X) -> c_1()
        activate#(n__natsFrom(X)) -> c_2(natsFrom#(X))
        fst#(pair(XS,YS)) -> c_4()
        head#(cons(N,XS)) -> c_5()
        natsFrom#(N) -> c_6()
        natsFrom#(X) -> c_7()
        snd#(pair(XS,YS)) -> c_9()
        splitAt#(0(),XS) -> c_10()
        tail#(cons(N,XS)) -> c_12(activate#(XS))
        u#(pair(YS,ZS),N,X,XS) -> c_14(activate#(X))
      Weak TRS Rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(X)
        afterNth(N,XS) -> snd(splitAt(N,XS))
        natsFrom(N) -> cons(N,n__natsFrom(s(N)))
        natsFrom(X) -> n__natsFrom(X)
        snd(pair(XS,YS)) -> YS
        splitAt(0(),XS) -> pair(nil(),XS)
        splitAt(s(N),cons(X,XS)) -> u(splitAt(N,activate(XS)),N,X,activate(XS))
        u(pair(YS,ZS),N,X,XS) -> pair(cons(activate(X),YS),ZS)
      Signature:
        {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4,activate#/1,afterNth#/2,fst#/1,head#/1,natsFrom#/1,sel#/2,snd#/1,splitAt#/2,tail#/1,take#/2,u#/4} / {0/0,cons/2,n__natsFrom/1,nil/0,pair/2,s/1,c_1/0,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/0,c_8/2,c_9/0,c_10/0,c_11/4,c_12/1,c_13/2,c_14/1}
      Obligation:
        Innermost
        basic terms: {activate#,afterNth#,fst#,head#,natsFrom#,sel#,snd#,splitAt#,tail#,take#,u#}/{0,cons,n__natsFrom,nil,pair,s}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:afterNth#(N,XS) -> c_3(snd#(splitAt(N,XS)),splitAt#(N,XS))
           -->_2 splitAt#(s(N),cons(X,XS)) -> c_11(u#(splitAt(N,activate(XS)),N,X,activate(XS)),splitAt#(N,activate(XS)),activate#(XS),activate#(XS)):3
           -->_2 splitAt#(0(),XS) -> c_10():12
           -->_1 snd#(pair(XS,YS)) -> c_9():11
        
        2:S:sel#(N,XS) -> c_8(head#(afterNth(N,XS)),afterNth#(N,XS))
           -->_1 head#(cons(N,XS)) -> c_5():8
           -->_2 afterNth#(N,XS) -> c_3(snd#(splitAt(N,XS)),splitAt#(N,XS)):1
        
        3:S:splitAt#(s(N),cons(X,XS)) -> c_11(u#(splitAt(N,activate(XS)),N,X,activate(XS)),splitAt#(N,activate(XS)),activate#(XS),activate#(XS))
           -->_1 u#(pair(YS,ZS),N,X,XS) -> c_14(activate#(X)):14
           -->_4 activate#(n__natsFrom(X)) -> c_2(natsFrom#(X)):6
           -->_3 activate#(n__natsFrom(X)) -> c_2(natsFrom#(X)):6
           -->_2 splitAt#(0(),XS) -> c_10():12
           -->_4 activate#(X) -> c_1():5
           -->_3 activate#(X) -> c_1():5
           -->_2 splitAt#(s(N),cons(X,XS)) -> c_11(u#(splitAt(N,activate(XS)),N,X,activate(XS)),splitAt#(N,activate(XS)),activate#(XS),activate#(XS)):3
        
        4:S:take#(N,XS) -> c_13(fst#(splitAt(N,XS)),splitAt#(N,XS))
           -->_2 splitAt#(0(),XS) -> c_10():12
           -->_1 fst#(pair(XS,YS)) -> c_4():7
           -->_2 splitAt#(s(N),cons(X,XS)) -> c_11(u#(splitAt(N,activate(XS)),N,X,activate(XS)),splitAt#(N,activate(XS)),activate#(XS),activate#(XS)):3
        
        5:W:activate#(X) -> c_1()
           
        
        6:W:activate#(n__natsFrom(X)) -> c_2(natsFrom#(X))
           -->_1 natsFrom#(X) -> c_7():10
           -->_1 natsFrom#(N) -> c_6():9
        
        7:W:fst#(pair(XS,YS)) -> c_4()
           
        
        8:W:head#(cons(N,XS)) -> c_5()
           
        
        9:W:natsFrom#(N) -> c_6()
           
        
        10:W:natsFrom#(X) -> c_7()
           
        
        11:W:snd#(pair(XS,YS)) -> c_9()
           
        
        12:W:splitAt#(0(),XS) -> c_10()
           
        
        13:W:tail#(cons(N,XS)) -> c_12(activate#(XS))
           -->_1 activate#(n__natsFrom(X)) -> c_2(natsFrom#(X)):6
           -->_1 activate#(X) -> c_1():5
        
        14:W:u#(pair(YS,ZS),N,X,XS) -> c_14(activate#(X))
           -->_1 activate#(n__natsFrom(X)) -> c_2(natsFrom#(X)):6
           -->_1 activate#(X) -> c_1():5
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        13: tail#(cons(N,XS)) ->        
              c_12(activate#(XS))       
        7:  fst#(pair(XS,YS)) -> c_4()  
        8:  head#(cons(N,XS)) -> c_5()  
        11: snd#(pair(XS,YS)) -> c_9()  
        12: splitAt#(0(),XS) -> c_10()  
        14: u#(pair(YS,ZS),N,X,XS) ->   
              c_14(activate#(X))        
        5:  activate#(X) -> c_1()       
        6:  activate#(n__natsFrom(X)) ->
              c_2(natsFrom#(X))         
        9:  natsFrom#(N) -> c_6()       
        10: natsFrom#(X) -> c_7()       
*** 1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        afterNth#(N,XS) -> c_3(snd#(splitAt(N,XS)),splitAt#(N,XS))
        sel#(N,XS) -> c_8(head#(afterNth(N,XS)),afterNth#(N,XS))
        splitAt#(s(N),cons(X,XS)) -> c_11(u#(splitAt(N,activate(XS)),N,X,activate(XS)),splitAt#(N,activate(XS)),activate#(XS),activate#(XS))
        take#(N,XS) -> c_13(fst#(splitAt(N,XS)),splitAt#(N,XS))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(X)
        afterNth(N,XS) -> snd(splitAt(N,XS))
        natsFrom(N) -> cons(N,n__natsFrom(s(N)))
        natsFrom(X) -> n__natsFrom(X)
        snd(pair(XS,YS)) -> YS
        splitAt(0(),XS) -> pair(nil(),XS)
        splitAt(s(N),cons(X,XS)) -> u(splitAt(N,activate(XS)),N,X,activate(XS))
        u(pair(YS,ZS),N,X,XS) -> pair(cons(activate(X),YS),ZS)
      Signature:
        {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4,activate#/1,afterNth#/2,fst#/1,head#/1,natsFrom#/1,sel#/2,snd#/1,splitAt#/2,tail#/1,take#/2,u#/4} / {0/0,cons/2,n__natsFrom/1,nil/0,pair/2,s/1,c_1/0,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/0,c_8/2,c_9/0,c_10/0,c_11/4,c_12/1,c_13/2,c_14/1}
      Obligation:
        Innermost
        basic terms: {activate#,afterNth#,fst#,head#,natsFrom#,sel#,snd#,splitAt#,tail#,take#,u#}/{0,cons,n__natsFrom,nil,pair,s}
    Applied Processor:
      SimplifyRHS
    Proof:
      Consider the dependency graph
        1:S:afterNth#(N,XS) -> c_3(snd#(splitAt(N,XS)),splitAt#(N,XS))
           -->_2 splitAt#(s(N),cons(X,XS)) -> c_11(u#(splitAt(N,activate(XS)),N,X,activate(XS)),splitAt#(N,activate(XS)),activate#(XS),activate#(XS)):3
        
        2:S:sel#(N,XS) -> c_8(head#(afterNth(N,XS)),afterNth#(N,XS))
           -->_2 afterNth#(N,XS) -> c_3(snd#(splitAt(N,XS)),splitAt#(N,XS)):1
        
        3:S:splitAt#(s(N),cons(X,XS)) -> c_11(u#(splitAt(N,activate(XS)),N,X,activate(XS)),splitAt#(N,activate(XS)),activate#(XS),activate#(XS))
           -->_2 splitAt#(s(N),cons(X,XS)) -> c_11(u#(splitAt(N,activate(XS)),N,X,activate(XS)),splitAt#(N,activate(XS)),activate#(XS),activate#(XS)):3
        
        4:S:take#(N,XS) -> c_13(fst#(splitAt(N,XS)),splitAt#(N,XS))
           -->_2 splitAt#(s(N),cons(X,XS)) -> c_11(u#(splitAt(N,activate(XS)),N,X,activate(XS)),splitAt#(N,activate(XS)),activate#(XS),activate#(XS)):3
        
      Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
        afterNth#(N,XS) -> c_3(splitAt#(N,XS))
        sel#(N,XS) -> c_8(afterNth#(N,XS))
        splitAt#(s(N),cons(X,XS)) -> c_11(splitAt#(N,activate(XS)))
        take#(N,XS) -> c_13(splitAt#(N,XS))
*** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        afterNth#(N,XS) -> c_3(splitAt#(N,XS))
        sel#(N,XS) -> c_8(afterNth#(N,XS))
        splitAt#(s(N),cons(X,XS)) -> c_11(splitAt#(N,activate(XS)))
        take#(N,XS) -> c_13(splitAt#(N,XS))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(X)
        afterNth(N,XS) -> snd(splitAt(N,XS))
        natsFrom(N) -> cons(N,n__natsFrom(s(N)))
        natsFrom(X) -> n__natsFrom(X)
        snd(pair(XS,YS)) -> YS
        splitAt(0(),XS) -> pair(nil(),XS)
        splitAt(s(N),cons(X,XS)) -> u(splitAt(N,activate(XS)),N,X,activate(XS))
        u(pair(YS,ZS),N,X,XS) -> pair(cons(activate(X),YS),ZS)
      Signature:
        {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4,activate#/1,afterNth#/2,fst#/1,head#/1,natsFrom#/1,sel#/2,snd#/1,splitAt#/2,tail#/1,take#/2,u#/4} / {0/0,cons/2,n__natsFrom/1,nil/0,pair/2,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/1,c_13/1,c_14/1}
      Obligation:
        Innermost
        basic terms: {activate#,afterNth#,fst#,head#,natsFrom#,sel#,snd#,splitAt#,tail#,take#,u#}/{0,cons,n__natsFrom,nil,pair,s}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(X)
        natsFrom(N) -> cons(N,n__natsFrom(s(N)))
        natsFrom(X) -> n__natsFrom(X)
        afterNth#(N,XS) -> c_3(splitAt#(N,XS))
        sel#(N,XS) -> c_8(afterNth#(N,XS))
        splitAt#(s(N),cons(X,XS)) -> c_11(splitAt#(N,activate(XS)))
        take#(N,XS) -> c_13(splitAt#(N,XS))
*** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        afterNth#(N,XS) -> c_3(splitAt#(N,XS))
        sel#(N,XS) -> c_8(afterNth#(N,XS))
        splitAt#(s(N),cons(X,XS)) -> c_11(splitAt#(N,activate(XS)))
        take#(N,XS) -> c_13(splitAt#(N,XS))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(X)
        natsFrom(N) -> cons(N,n__natsFrom(s(N)))
        natsFrom(X) -> n__natsFrom(X)
      Signature:
        {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4,activate#/1,afterNth#/2,fst#/1,head#/1,natsFrom#/1,sel#/2,snd#/1,splitAt#/2,tail#/1,take#/2,u#/4} / {0/0,cons/2,n__natsFrom/1,nil/0,pair/2,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/1,c_13/1,c_14/1}
      Obligation:
        Innermost
        basic terms: {activate#,afterNth#,fst#,head#,natsFrom#,sel#,snd#,splitAt#,tail#,take#,u#}/{0,cons,n__natsFrom,nil,pair,s}
    Applied Processor:
      RemoveHeads
    Proof:
      Consider the dependency graph
      
      1:S:afterNth#(N,XS) -> c_3(splitAt#(N,XS))
         -->_1 splitAt#(s(N),cons(X,XS)) -> c_11(splitAt#(N,activate(XS))):3
      
      2:S:sel#(N,XS) -> c_8(afterNth#(N,XS))
         -->_1 afterNth#(N,XS) -> c_3(splitAt#(N,XS)):1
      
      3:S:splitAt#(s(N),cons(X,XS)) -> c_11(splitAt#(N,activate(XS)))
         -->_1 splitAt#(s(N),cons(X,XS)) -> c_11(splitAt#(N,activate(XS))):3
      
      4:S:take#(N,XS) -> c_13(splitAt#(N,XS))
         -->_1 splitAt#(s(N),cons(X,XS)) -> c_11(splitAt#(N,activate(XS))):3
      
      
      Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
      
      [(2,sel#(N,XS) -> c_8(afterNth#(N,XS))),(4,take#(N,XS) -> c_13(splitAt#(N,XS)))]
*** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        afterNth#(N,XS) -> c_3(splitAt#(N,XS))
        splitAt#(s(N),cons(X,XS)) -> c_11(splitAt#(N,activate(XS)))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(X)
        natsFrom(N) -> cons(N,n__natsFrom(s(N)))
        natsFrom(X) -> n__natsFrom(X)
      Signature:
        {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4,activate#/1,afterNth#/2,fst#/1,head#/1,natsFrom#/1,sel#/2,snd#/1,splitAt#/2,tail#/1,take#/2,u#/4} / {0/0,cons/2,n__natsFrom/1,nil/0,pair/2,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/1,c_13/1,c_14/1}
      Obligation:
        Innermost
        basic terms: {activate#,afterNth#,fst#,head#,natsFrom#,sel#,snd#,splitAt#,tail#,take#,u#}/{0,cons,n__natsFrom,nil,pair,s}
    Applied Processor:
      RemoveHeads
    Proof:
      Consider the dependency graph
      
      1:S:afterNth#(N,XS) -> c_3(splitAt#(N,XS))
         -->_1 splitAt#(s(N),cons(X,XS)) -> c_11(splitAt#(N,activate(XS))):3
      
      3:S:splitAt#(s(N),cons(X,XS)) -> c_11(splitAt#(N,activate(XS)))
         -->_1 splitAt#(s(N),cons(X,XS)) -> c_11(splitAt#(N,activate(XS))):3
      
      
      Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
      
      [(1,afterNth#(N,XS) -> c_3(splitAt#(N,XS)))]
*** 1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        splitAt#(s(N),cons(X,XS)) -> c_11(splitAt#(N,activate(XS)))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(X)
        natsFrom(N) -> cons(N,n__natsFrom(s(N)))
        natsFrom(X) -> n__natsFrom(X)
      Signature:
        {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4,activate#/1,afterNth#/2,fst#/1,head#/1,natsFrom#/1,sel#/2,snd#/1,splitAt#/2,tail#/1,take#/2,u#/4} / {0/0,cons/2,n__natsFrom/1,nil/0,pair/2,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/1,c_13/1,c_14/1}
      Obligation:
        Innermost
        basic terms: {activate#,afterNth#,fst#,head#,natsFrom#,sel#,snd#,splitAt#,tail#,take#,u#}/{0,cons,n__natsFrom,nil,pair,s}
    Applied Processor:
      PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
    Proof:
      We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
        3: splitAt#(s(N),cons(X,XS)) ->    
             c_11(splitAt#(N,activate(XS)))
        
      The strictly oriented rules are moved into the weak component.
  *** 1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          splitAt#(s(N),cons(X,XS)) -> c_11(splitAt#(N,activate(XS)))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          activate(X) -> X
          activate(n__natsFrom(X)) -> natsFrom(X)
          natsFrom(N) -> cons(N,n__natsFrom(s(N)))
          natsFrom(X) -> n__natsFrom(X)
        Signature:
          {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4,activate#/1,afterNth#/2,fst#/1,head#/1,natsFrom#/1,sel#/2,snd#/1,splitAt#/2,tail#/1,take#/2,u#/4} / {0/0,cons/2,n__natsFrom/1,nil/0,pair/2,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/1,c_13/1,c_14/1}
        Obligation:
          Innermost
          basic terms: {activate#,afterNth#,fst#,head#,natsFrom#,sel#,snd#,splitAt#,tail#,take#,u#}/{0,cons,n__natsFrom,nil,pair,s}
      Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
      Proof:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_11) = {1}
        
        Following symbols are considered usable:
          {activate#,afterNth#,fst#,head#,natsFrom#,sel#,snd#,splitAt#,tail#,take#,u#}
        TcT has computed the following interpretation:
                    p(0) = [1]                  
             p(activate) = [0]                  
             p(afterNth) = [1] x1 + [1] x2 + [0]
                 p(cons) = [1] x1 + [0]         
                  p(fst) = [1] x1 + [1]         
                 p(head) = [2] x1 + [4]         
          p(n__natsFrom) = [0]                  
             p(natsFrom) = [0]                  
                  p(nil) = [2]                  
                 p(pair) = [8]                  
                    p(s) = [1] x1 + [6]         
                  p(sel) = [2] x2 + [0]         
                  p(snd) = [1] x1 + [2]         
              p(splitAt) = [1] x1 + [1] x2 + [2]
                 p(tail) = [1] x1 + [0]         
                 p(take) = [1] x1 + [4]         
                    p(u) = [1] x1 + [8] x3 + [0]
            p(activate#) = [1] x1 + [1]         
            p(afterNth#) = [1] x1 + [4]         
                 p(fst#) = [0]                  
                p(head#) = [4]                  
            p(natsFrom#) = [2] x1 + [1]         
                 p(sel#) = [1] x1 + [0]         
                 p(snd#) = [2]                  
             p(splitAt#) = [1] x1 + [0]         
                p(tail#) = [8]                  
                p(take#) = [1]                  
                   p(u#) = [8] x1 + [1] x2 + [1]
                  p(c_1) = [2]                  
                  p(c_2) = [8] x1 + [1]         
                  p(c_3) = [1]                  
                  p(c_4) = [1]                  
                  p(c_5) = [0]                  
                  p(c_6) = [0]                  
                  p(c_7) = [1]                  
                  p(c_8) = [4]                  
                  p(c_9) = [2]                  
                 p(c_10) = [2]                  
                 p(c_11) = [1] x1 + [0]         
                 p(c_12) = [0]                  
                 p(c_13) = [1]                  
                 p(c_14) = [1] x1 + [1]         
        
        Following rules are strictly oriented:
        splitAt#(s(N),cons(X,XS)) = [1] N + [6]                   
                                  > [1] N + [0]                   
                                  = c_11(splitAt#(N,activate(XS)))
        
        
        Following rules are (at-least) weakly oriented:
        
  *** 1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          
        Strict TRS Rules:
          
        Weak DP Rules:
          splitAt#(s(N),cons(X,XS)) -> c_11(splitAt#(N,activate(XS)))
        Weak TRS Rules:
          activate(X) -> X
          activate(n__natsFrom(X)) -> natsFrom(X)
          natsFrom(N) -> cons(N,n__natsFrom(s(N)))
          natsFrom(X) -> n__natsFrom(X)
        Signature:
          {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4,activate#/1,afterNth#/2,fst#/1,head#/1,natsFrom#/1,sel#/2,snd#/1,splitAt#/2,tail#/1,take#/2,u#/4} / {0/0,cons/2,n__natsFrom/1,nil/0,pair/2,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/1,c_13/1,c_14/1}
        Obligation:
          Innermost
          basic terms: {activate#,afterNth#,fst#,head#,natsFrom#,sel#,snd#,splitAt#,tail#,take#,u#}/{0,cons,n__natsFrom,nil,pair,s}
      Applied Processor:
        Assumption
      Proof:
        ()
  
  *** 1.1.1.1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          
        Strict TRS Rules:
          
        Weak DP Rules:
          splitAt#(s(N),cons(X,XS)) -> c_11(splitAt#(N,activate(XS)))
        Weak TRS Rules:
          activate(X) -> X
          activate(n__natsFrom(X)) -> natsFrom(X)
          natsFrom(N) -> cons(N,n__natsFrom(s(N)))
          natsFrom(X) -> n__natsFrom(X)
        Signature:
          {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4,activate#/1,afterNth#/2,fst#/1,head#/1,natsFrom#/1,sel#/2,snd#/1,splitAt#/2,tail#/1,take#/2,u#/4} / {0/0,cons/2,n__natsFrom/1,nil/0,pair/2,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/1,c_13/1,c_14/1}
        Obligation:
          Innermost
          basic terms: {activate#,afterNth#,fst#,head#,natsFrom#,sel#,snd#,splitAt#,tail#,take#,u#}/{0,cons,n__natsFrom,nil,pair,s}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:W:splitAt#(s(N),cons(X,XS)) -> c_11(splitAt#(N,activate(XS)))
             -->_1 splitAt#(s(N),cons(X,XS)) -> c_11(splitAt#(N,activate(XS))):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: splitAt#(s(N),cons(X,XS)) ->    
               c_11(splitAt#(N,activate(XS)))
  *** 1.1.1.1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          activate(X) -> X
          activate(n__natsFrom(X)) -> natsFrom(X)
          natsFrom(N) -> cons(N,n__natsFrom(s(N)))
          natsFrom(X) -> n__natsFrom(X)
        Signature:
          {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4,activate#/1,afterNth#/2,fst#/1,head#/1,natsFrom#/1,sel#/2,snd#/1,splitAt#/2,tail#/1,take#/2,u#/4} / {0/0,cons/2,n__natsFrom/1,nil/0,pair/2,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/1,c_13/1,c_14/1}
        Obligation:
          Innermost
          basic terms: {activate#,afterNth#,fst#,head#,natsFrom#,sel#,snd#,splitAt#,tail#,take#,u#}/{0,cons,n__natsFrom,nil,pair,s}
      Applied Processor:
        EmptyProcessor
      Proof:
        The problem is already closed. The intended complexity is O(1).