*** 1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(activate(X))
        activate(n__s(X)) -> s(activate(X))
        afterNth(N,XS) -> snd(splitAt(N,XS))
        fst(pair(XS,YS)) -> XS
        head(cons(N,XS)) -> N
        natsFrom(N) -> cons(N,n__natsFrom(n__s(N)))
        natsFrom(X) -> n__natsFrom(X)
        s(X) -> n__s(X)
        sel(N,XS) -> head(afterNth(N,XS))
        snd(pair(XS,YS)) -> YS
        splitAt(0(),XS) -> pair(nil(),XS)
        splitAt(s(N),cons(X,XS)) -> u(splitAt(N,activate(XS)),N,X,activate(XS))
        tail(cons(N,XS)) -> activate(XS)
        take(N,XS) -> fst(splitAt(N,XS))
        u(pair(YS,ZS),N,X,XS) -> pair(cons(activate(X),YS),ZS)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2}
      Obligation:
        Innermost
        basic terms: {activate,afterNth,fst,head,natsFrom,s,sel,snd,splitAt,tail,take,u}/{0,cons,n__natsFrom,n__s,nil,pair}
    Applied Processor:
      InnermostRuleRemoval
    Proof:
      Arguments of following rules are not normal-forms.
        splitAt(s(N),cons(X,XS)) -> u(splitAt(N,activate(XS)),N,X,activate(XS))
      All above mentioned rules can be savely removed.
*** 1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(activate(X))
        activate(n__s(X)) -> s(activate(X))
        afterNth(N,XS) -> snd(splitAt(N,XS))
        fst(pair(XS,YS)) -> XS
        head(cons(N,XS)) -> N
        natsFrom(N) -> cons(N,n__natsFrom(n__s(N)))
        natsFrom(X) -> n__natsFrom(X)
        s(X) -> n__s(X)
        sel(N,XS) -> head(afterNth(N,XS))
        snd(pair(XS,YS)) -> YS
        splitAt(0(),XS) -> pair(nil(),XS)
        tail(cons(N,XS)) -> activate(XS)
        take(N,XS) -> fst(splitAt(N,XS))
        u(pair(YS,ZS),N,X,XS) -> pair(cons(activate(X),YS),ZS)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2}
      Obligation:
        Innermost
        basic terms: {activate,afterNth,fst,head,natsFrom,s,sel,snd,splitAt,tail,take,u}/{0,cons,n__natsFrom,n__s,nil,pair}
    Applied Processor:
      DependencyPairs {dpKind_ = WIDP}
    Proof:
      We add the following weak innermost dependency pairs:
      
      Strict DPs
        activate#(X) -> c_1()
        activate#(n__natsFrom(X)) -> c_2(natsFrom#(activate(X)))
        activate#(n__s(X)) -> c_3(s#(activate(X)))
        afterNth#(N,XS) -> c_4(snd#(splitAt(N,XS)))
        fst#(pair(XS,YS)) -> c_5()
        head#(cons(N,XS)) -> c_6()
        natsFrom#(N) -> c_7()
        natsFrom#(X) -> c_8()
        s#(X) -> c_9()
        sel#(N,XS) -> c_10(head#(afterNth(N,XS)))
        snd#(pair(XS,YS)) -> c_11()
        splitAt#(0(),XS) -> c_12()
        tail#(cons(N,XS)) -> c_13(activate#(XS))
        take#(N,XS) -> c_14(fst#(splitAt(N,XS)))
        u#(pair(YS,ZS),N,X,XS) -> c_15(activate#(X))
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1()
        activate#(n__natsFrom(X)) -> c_2(natsFrom#(activate(X)))
        activate#(n__s(X)) -> c_3(s#(activate(X)))
        afterNth#(N,XS) -> c_4(snd#(splitAt(N,XS)))
        fst#(pair(XS,YS)) -> c_5()
        head#(cons(N,XS)) -> c_6()
        natsFrom#(N) -> c_7()
        natsFrom#(X) -> c_8()
        s#(X) -> c_9()
        sel#(N,XS) -> c_10(head#(afterNth(N,XS)))
        snd#(pair(XS,YS)) -> c_11()
        splitAt#(0(),XS) -> c_12()
        tail#(cons(N,XS)) -> c_13(activate#(XS))
        take#(N,XS) -> c_14(fst#(splitAt(N,XS)))
        u#(pair(YS,ZS),N,X,XS) -> c_15(activate#(X))
      Strict TRS Rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(activate(X))
        activate(n__s(X)) -> s(activate(X))
        afterNth(N,XS) -> snd(splitAt(N,XS))
        fst(pair(XS,YS)) -> XS
        head(cons(N,XS)) -> N
        natsFrom(N) -> cons(N,n__natsFrom(n__s(N)))
        natsFrom(X) -> n__natsFrom(X)
        s(X) -> n__s(X)
        sel(N,XS) -> head(afterNth(N,XS))
        snd(pair(XS,YS)) -> YS
        splitAt(0(),XS) -> pair(nil(),XS)
        tail(cons(N,XS)) -> activate(XS)
        take(N,XS) -> fst(splitAt(N,XS))
        u(pair(YS,ZS),N,X,XS) -> pair(cons(activate(X),YS),ZS)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4,activate#/1,afterNth#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2,tail#/1,take#/2,u#/4} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/1}
      Obligation:
        Innermost
        basic terms: {activate#,afterNth#,fst#,head#,natsFrom#,s#,sel#,snd#,splitAt#,tail#,take#,u#}/{0,cons,n__natsFrom,n__s,nil,pair}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(activate(X))
        activate(n__s(X)) -> s(activate(X))
        afterNth(N,XS) -> snd(splitAt(N,XS))
        natsFrom(N) -> cons(N,n__natsFrom(n__s(N)))
        natsFrom(X) -> n__natsFrom(X)
        s(X) -> n__s(X)
        snd(pair(XS,YS)) -> YS
        splitAt(0(),XS) -> pair(nil(),XS)
        activate#(X) -> c_1()
        activate#(n__natsFrom(X)) -> c_2(natsFrom#(activate(X)))
        activate#(n__s(X)) -> c_3(s#(activate(X)))
        afterNth#(N,XS) -> c_4(snd#(splitAt(N,XS)))
        fst#(pair(XS,YS)) -> c_5()
        head#(cons(N,XS)) -> c_6()
        natsFrom#(N) -> c_7()
        natsFrom#(X) -> c_8()
        s#(X) -> c_9()
        sel#(N,XS) -> c_10(head#(afterNth(N,XS)))
        snd#(pair(XS,YS)) -> c_11()
        splitAt#(0(),XS) -> c_12()
        tail#(cons(N,XS)) -> c_13(activate#(XS))
        take#(N,XS) -> c_14(fst#(splitAt(N,XS)))
        u#(pair(YS,ZS),N,X,XS) -> c_15(activate#(X))
*** 1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1()
        activate#(n__natsFrom(X)) -> c_2(natsFrom#(activate(X)))
        activate#(n__s(X)) -> c_3(s#(activate(X)))
        afterNth#(N,XS) -> c_4(snd#(splitAt(N,XS)))
        fst#(pair(XS,YS)) -> c_5()
        head#(cons(N,XS)) -> c_6()
        natsFrom#(N) -> c_7()
        natsFrom#(X) -> c_8()
        s#(X) -> c_9()
        sel#(N,XS) -> c_10(head#(afterNth(N,XS)))
        snd#(pair(XS,YS)) -> c_11()
        splitAt#(0(),XS) -> c_12()
        tail#(cons(N,XS)) -> c_13(activate#(XS))
        take#(N,XS) -> c_14(fst#(splitAt(N,XS)))
        u#(pair(YS,ZS),N,X,XS) -> c_15(activate#(X))
      Strict TRS Rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(activate(X))
        activate(n__s(X)) -> s(activate(X))
        afterNth(N,XS) -> snd(splitAt(N,XS))
        natsFrom(N) -> cons(N,n__natsFrom(n__s(N)))
        natsFrom(X) -> n__natsFrom(X)
        s(X) -> n__s(X)
        snd(pair(XS,YS)) -> YS
        splitAt(0(),XS) -> pair(nil(),XS)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4,activate#/1,afterNth#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2,tail#/1,take#/2,u#/4} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/1}
      Obligation:
        Innermost
        basic terms: {activate#,afterNth#,fst#,head#,natsFrom#,s#,sel#,snd#,splitAt#,tail#,take#,u#}/{0,cons,n__natsFrom,n__s,nil,pair}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs}
    Proof:
      The weightgap principle applies using the following constant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(natsFrom) = {1},
          uargs(s) = {1},
          uargs(snd) = {1},
          uargs(fst#) = {1},
          uargs(head#) = {1},
          uargs(natsFrom#) = {1},
          uargs(s#) = {1},
          uargs(snd#) = {1},
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_10) = {1},
          uargs(c_13) = {1},
          uargs(c_14) = {1},
          uargs(c_15) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                    p(0) = [5]                           
             p(activate) = [5] x1 + [1]                  
             p(afterNth) = [3] x1 + [3] x2 + [6]         
                 p(cons) = [1] x2 + [0]                  
                  p(fst) = [0]                           
                 p(head) = [0]                           
          p(n__natsFrom) = [1] x1 + [1]                  
                 p(n__s) = [1] x1 + [1]                  
             p(natsFrom) = [1] x1 + [4]                  
                  p(nil) = [4]                           
                 p(pair) = [1] x1 + [1] x2 + [1]         
                    p(s) = [1] x1 + [4]                  
                  p(sel) = [1] x2 + [1]                  
                  p(snd) = [1] x1 + [2]                  
              p(splitAt) = [2] x1 + [2] x2 + [3]         
                 p(tail) = [0]                           
                 p(take) = [0]                           
                    p(u) = [0]                           
            p(activate#) = [5] x1 + [0]                  
            p(afterNth#) = [2] x1 + [4] x2 + [0]         
                 p(fst#) = [1] x1 + [0]                  
                p(head#) = [1] x1 + [0]                  
            p(natsFrom#) = [1] x1 + [4]                  
                   p(s#) = [1] x1 + [1]                  
                 p(sel#) = [3] x1 + [3] x2 + [0]         
                 p(snd#) = [1] x1 + [0]                  
             p(splitAt#) = [1] x2 + [1]                  
                p(tail#) = [6] x1 + [0]                  
                p(take#) = [5] x1 + [2] x2 + [1]         
                   p(u#) = [1] x2 + [7] x3 + [1] x4 + [0]
                  p(c_1) = [0]                           
                  p(c_2) = [1] x1 + [4]                  
                  p(c_3) = [1] x1 + [4]                  
                  p(c_4) = [1] x1 + [5]                  
                  p(c_5) = [4]                           
                  p(c_6) = [0]                           
                  p(c_7) = [1]                           
                  p(c_8) = [1]                           
                  p(c_9) = [0]                           
                 p(c_10) = [1] x1 + [0]                  
                 p(c_11) = [1]                           
                 p(c_12) = [4]                           
                 p(c_13) = [1] x1 + [1]                  
                 p(c_14) = [1] x1 + [0]                  
                 p(c_15) = [1] x1 + [0]                  
        
        Following rules are strictly oriented:
                    natsFrom#(N) = [1] N + [4]                 
                                 > [1]                         
                                 = c_7()                       
        
                    natsFrom#(X) = [1] X + [4]                 
                                 > [1]                         
                                 = c_8()                       
        
                           s#(X) = [1] X + [1]                 
                                 > [0]                         
                                 = c_9()                       
        
                     activate(X) = [5] X + [1]                 
                                 > [1] X + [0]                 
                                 = X                           
        
        activate(n__natsFrom(X)) = [5] X + [6]                 
                                 > [5] X + [5]                 
                                 = natsFrom(activate(X))       
        
               activate(n__s(X)) = [5] X + [6]                 
                                 > [5] X + [5]                 
                                 = s(activate(X))              
        
                  afterNth(N,XS) = [3] N + [3] XS + [6]        
                                 > [2] N + [2] XS + [5]        
                                 = snd(splitAt(N,XS))          
        
                     natsFrom(N) = [1] N + [4]                 
                                 > [1] N + [2]                 
                                 = cons(N,n__natsFrom(n__s(N)))
        
                     natsFrom(X) = [1] X + [4]                 
                                 > [1] X + [1]                 
                                 = n__natsFrom(X)              
        
                            s(X) = [1] X + [4]                 
                                 > [1] X + [1]                 
                                 = n__s(X)                     
        
                snd(pair(XS,YS)) = [1] XS + [1] YS + [3]       
                                 > [1] YS + [0]                
                                 = YS                          
        
                 splitAt(0(),XS) = [2] XS + [13]               
                                 > [1] XS + [5]                
                                 = pair(nil(),XS)              
        
        
        Following rules are (at-least) weakly oriented:
                     activate#(X) =  [5] X + [0]                 
                                  >= [0]                         
                                  =  c_1()                       
        
        activate#(n__natsFrom(X)) =  [5] X + [5]                 
                                  >= [5] X + [9]                 
                                  =  c_2(natsFrom#(activate(X))) 
        
               activate#(n__s(X)) =  [5] X + [5]                 
                                  >= [5] X + [6]                 
                                  =  c_3(s#(activate(X)))        
        
                  afterNth#(N,XS) =  [2] N + [4] XS + [0]        
                                  >= [2] N + [2] XS + [8]        
                                  =  c_4(snd#(splitAt(N,XS)))    
        
                fst#(pair(XS,YS)) =  [1] XS + [1] YS + [1]       
                                  >= [4]                         
                                  =  c_5()                       
        
                head#(cons(N,XS)) =  [1] XS + [0]                
                                  >= [0]                         
                                  =  c_6()                       
        
                       sel#(N,XS) =  [3] N + [3] XS + [0]        
                                  >= [3] N + [3] XS + [6]        
                                  =  c_10(head#(afterNth(N,XS))) 
        
                snd#(pair(XS,YS)) =  [1] XS + [1] YS + [1]       
                                  >= [1]                         
                                  =  c_11()                      
        
                 splitAt#(0(),XS) =  [1] XS + [1]                
                                  >= [4]                         
                                  =  c_12()                      
        
                tail#(cons(N,XS)) =  [6] XS + [0]                
                                  >= [5] XS + [1]                
                                  =  c_13(activate#(XS))         
        
                      take#(N,XS) =  [5] N + [2] XS + [1]        
                                  >= [2] N + [2] XS + [3]        
                                  =  c_14(fst#(splitAt(N,XS)))   
        
           u#(pair(YS,ZS),N,X,XS) =  [1] N + [7] X + [1] XS + [0]
                                  >= [5] X + [0]                 
                                  =  c_15(activate#(X))          
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1()
        activate#(n__natsFrom(X)) -> c_2(natsFrom#(activate(X)))
        activate#(n__s(X)) -> c_3(s#(activate(X)))
        afterNth#(N,XS) -> c_4(snd#(splitAt(N,XS)))
        fst#(pair(XS,YS)) -> c_5()
        head#(cons(N,XS)) -> c_6()
        sel#(N,XS) -> c_10(head#(afterNth(N,XS)))
        snd#(pair(XS,YS)) -> c_11()
        splitAt#(0(),XS) -> c_12()
        tail#(cons(N,XS)) -> c_13(activate#(XS))
        take#(N,XS) -> c_14(fst#(splitAt(N,XS)))
        u#(pair(YS,ZS),N,X,XS) -> c_15(activate#(X))
      Strict TRS Rules:
        
      Weak DP Rules:
        natsFrom#(N) -> c_7()
        natsFrom#(X) -> c_8()
        s#(X) -> c_9()
      Weak TRS Rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(activate(X))
        activate(n__s(X)) -> s(activate(X))
        afterNth(N,XS) -> snd(splitAt(N,XS))
        natsFrom(N) -> cons(N,n__natsFrom(n__s(N)))
        natsFrom(X) -> n__natsFrom(X)
        s(X) -> n__s(X)
        snd(pair(XS,YS)) -> YS
        splitAt(0(),XS) -> pair(nil(),XS)
      Signature:
        {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4,activate#/1,afterNth#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2,tail#/1,take#/2,u#/4} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/1}
      Obligation:
        Innermost
        basic terms: {activate#,afterNth#,fst#,head#,natsFrom#,s#,sel#,snd#,splitAt#,tail#,take#,u#}/{0,cons,n__natsFrom,n__s,nil,pair}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,2,3,5,6,8,9}
      by application of
        Pre({1,2,3,5,6,8,9}) = {4,7,10,11,12}.
      Here rules are labelled as follows:
        1:  activate#(X) -> c_1()        
        2:  activate#(n__natsFrom(X)) -> 
              c_2(natsFrom#(activate(X)))
        3:  activate#(n__s(X)) ->        
              c_3(s#(activate(X)))       
        4:  afterNth#(N,XS) ->           
              c_4(snd#(splitAt(N,XS)))   
        5:  fst#(pair(XS,YS)) -> c_5()   
        6:  head#(cons(N,XS)) -> c_6()   
        7:  sel#(N,XS) ->                
              c_10(head#(afterNth(N,XS)))
        8:  snd#(pair(XS,YS)) -> c_11()  
        9:  splitAt#(0(),XS) -> c_12()   
        10: tail#(cons(N,XS)) ->         
              c_13(activate#(XS))        
        11: take#(N,XS) ->               
              c_14(fst#(splitAt(N,XS)))  
        12: u#(pair(YS,ZS),N,X,XS) ->    
              c_15(activate#(X))         
        13: natsFrom#(N) -> c_7()        
        14: natsFrom#(X) -> c_8()        
        15: s#(X) -> c_9()               
*** 1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        afterNth#(N,XS) -> c_4(snd#(splitAt(N,XS)))
        sel#(N,XS) -> c_10(head#(afterNth(N,XS)))
        tail#(cons(N,XS)) -> c_13(activate#(XS))
        take#(N,XS) -> c_14(fst#(splitAt(N,XS)))
        u#(pair(YS,ZS),N,X,XS) -> c_15(activate#(X))
      Strict TRS Rules:
        
      Weak DP Rules:
        activate#(X) -> c_1()
        activate#(n__natsFrom(X)) -> c_2(natsFrom#(activate(X)))
        activate#(n__s(X)) -> c_3(s#(activate(X)))
        fst#(pair(XS,YS)) -> c_5()
        head#(cons(N,XS)) -> c_6()
        natsFrom#(N) -> c_7()
        natsFrom#(X) -> c_8()
        s#(X) -> c_9()
        snd#(pair(XS,YS)) -> c_11()
        splitAt#(0(),XS) -> c_12()
      Weak TRS Rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(activate(X))
        activate(n__s(X)) -> s(activate(X))
        afterNth(N,XS) -> snd(splitAt(N,XS))
        natsFrom(N) -> cons(N,n__natsFrom(n__s(N)))
        natsFrom(X) -> n__natsFrom(X)
        s(X) -> n__s(X)
        snd(pair(XS,YS)) -> YS
        splitAt(0(),XS) -> pair(nil(),XS)
      Signature:
        {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4,activate#/1,afterNth#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2,tail#/1,take#/2,u#/4} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/1}
      Obligation:
        Innermost
        basic terms: {activate#,afterNth#,fst#,head#,natsFrom#,s#,sel#,snd#,splitAt#,tail#,take#,u#}/{0,cons,n__natsFrom,n__s,nil,pair}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,2,3,4,5}
      by application of
        Pre({1,2,3,4,5}) = {}.
      Here rules are labelled as follows:
        1:  afterNth#(N,XS) ->           
              c_4(snd#(splitAt(N,XS)))   
        2:  sel#(N,XS) ->                
              c_10(head#(afterNth(N,XS)))
        3:  tail#(cons(N,XS)) ->         
              c_13(activate#(XS))        
        4:  take#(N,XS) ->               
              c_14(fst#(splitAt(N,XS)))  
        5:  u#(pair(YS,ZS),N,X,XS) ->    
              c_15(activate#(X))         
        6:  activate#(X) -> c_1()        
        7:  activate#(n__natsFrom(X)) -> 
              c_2(natsFrom#(activate(X)))
        8:  activate#(n__s(X)) ->        
              c_3(s#(activate(X)))       
        9:  fst#(pair(XS,YS)) -> c_5()   
        10: head#(cons(N,XS)) -> c_6()   
        11: natsFrom#(N) -> c_7()        
        12: natsFrom#(X) -> c_8()        
        13: s#(X) -> c_9()               
        14: snd#(pair(XS,YS)) -> c_11()  
        15: splitAt#(0(),XS) -> c_12()   
*** 1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        activate#(X) -> c_1()
        activate#(n__natsFrom(X)) -> c_2(natsFrom#(activate(X)))
        activate#(n__s(X)) -> c_3(s#(activate(X)))
        afterNth#(N,XS) -> c_4(snd#(splitAt(N,XS)))
        fst#(pair(XS,YS)) -> c_5()
        head#(cons(N,XS)) -> c_6()
        natsFrom#(N) -> c_7()
        natsFrom#(X) -> c_8()
        s#(X) -> c_9()
        sel#(N,XS) -> c_10(head#(afterNth(N,XS)))
        snd#(pair(XS,YS)) -> c_11()
        splitAt#(0(),XS) -> c_12()
        tail#(cons(N,XS)) -> c_13(activate#(XS))
        take#(N,XS) -> c_14(fst#(splitAt(N,XS)))
        u#(pair(YS,ZS),N,X,XS) -> c_15(activate#(X))
      Weak TRS Rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(activate(X))
        activate(n__s(X)) -> s(activate(X))
        afterNth(N,XS) -> snd(splitAt(N,XS))
        natsFrom(N) -> cons(N,n__natsFrom(n__s(N)))
        natsFrom(X) -> n__natsFrom(X)
        s(X) -> n__s(X)
        snd(pair(XS,YS)) -> YS
        splitAt(0(),XS) -> pair(nil(),XS)
      Signature:
        {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4,activate#/1,afterNth#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2,tail#/1,take#/2,u#/4} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/1}
      Obligation:
        Innermost
        basic terms: {activate#,afterNth#,fst#,head#,natsFrom#,s#,sel#,snd#,splitAt#,tail#,take#,u#}/{0,cons,n__natsFrom,n__s,nil,pair}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:W:activate#(X) -> c_1()
           
        
        2:W:activate#(n__natsFrom(X)) -> c_2(natsFrom#(activate(X)))
           -->_1 natsFrom#(X) -> c_8():8
           -->_1 natsFrom#(N) -> c_7():7
        
        3:W:activate#(n__s(X)) -> c_3(s#(activate(X)))
           -->_1 s#(X) -> c_9():9
        
        4:W:afterNth#(N,XS) -> c_4(snd#(splitAt(N,XS)))
           -->_1 snd#(pair(XS,YS)) -> c_11():11
        
        5:W:fst#(pair(XS,YS)) -> c_5()
           
        
        6:W:head#(cons(N,XS)) -> c_6()
           
        
        7:W:natsFrom#(N) -> c_7()
           
        
        8:W:natsFrom#(X) -> c_8()
           
        
        9:W:s#(X) -> c_9()
           
        
        10:W:sel#(N,XS) -> c_10(head#(afterNth(N,XS)))
           -->_1 head#(cons(N,XS)) -> c_6():6
        
        11:W:snd#(pair(XS,YS)) -> c_11()
           
        
        12:W:splitAt#(0(),XS) -> c_12()
           
        
        13:W:tail#(cons(N,XS)) -> c_13(activate#(XS))
           -->_1 activate#(n__s(X)) -> c_3(s#(activate(X))):3
           -->_1 activate#(n__natsFrom(X)) -> c_2(natsFrom#(activate(X))):2
           -->_1 activate#(X) -> c_1():1
        
        14:W:take#(N,XS) -> c_14(fst#(splitAt(N,XS)))
           -->_1 fst#(pair(XS,YS)) -> c_5():5
        
        15:W:u#(pair(YS,ZS),N,X,XS) -> c_15(activate#(X))
           -->_1 activate#(n__s(X)) -> c_3(s#(activate(X))):3
           -->_1 activate#(n__natsFrom(X)) -> c_2(natsFrom#(activate(X))):2
           -->_1 activate#(X) -> c_1():1
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        15: u#(pair(YS,ZS),N,X,XS) ->    
              c_15(activate#(X))         
        14: take#(N,XS) ->               
              c_14(fst#(splitAt(N,XS)))  
        13: tail#(cons(N,XS)) ->         
              c_13(activate#(XS))        
        12: splitAt#(0(),XS) -> c_12()   
        10: sel#(N,XS) ->                
              c_10(head#(afterNth(N,XS)))
        6:  head#(cons(N,XS)) -> c_6()   
        5:  fst#(pair(XS,YS)) -> c_5()   
        4:  afterNth#(N,XS) ->           
              c_4(snd#(splitAt(N,XS)))   
        11: snd#(pair(XS,YS)) -> c_11()  
        3:  activate#(n__s(X)) ->        
              c_3(s#(activate(X)))       
        9:  s#(X) -> c_9()               
        2:  activate#(n__natsFrom(X)) -> 
              c_2(natsFrom#(activate(X)))
        7:  natsFrom#(N) -> c_7()        
        8:  natsFrom#(X) -> c_8()        
        1:  activate#(X) -> c_1()        
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__natsFrom(X)) -> natsFrom(activate(X))
        activate(n__s(X)) -> s(activate(X))
        afterNth(N,XS) -> snd(splitAt(N,XS))
        natsFrom(N) -> cons(N,n__natsFrom(n__s(N)))
        natsFrom(X) -> n__natsFrom(X)
        s(X) -> n__s(X)
        snd(pair(XS,YS)) -> YS
        splitAt(0(),XS) -> pair(nil(),XS)
      Signature:
        {activate/1,afterNth/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2,u/4,activate#/1,afterNth#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2,tail#/1,take#/2,u#/4} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/1}
      Obligation:
        Innermost
        basic terms: {activate#,afterNth#,fst#,head#,natsFrom#,s#,sel#,snd#,splitAt#,tail#,take#,u#}/{0,cons,n__natsFrom,n__s,nil,pair}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).