*** 1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(X1,X2)
        activate(n__terms(X)) -> terms(X)
        add(0(),X) -> X
        add(s(X),Y) -> s(add(X,Y))
        dbl(0()) -> 0()
        dbl(s(X)) -> s(s(dbl(X)))
        first(X1,X2) -> n__first(X1,X2)
        first(0(),X) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        half(0()) -> 0()
        half(dbl(X)) -> X
        half(s(0())) -> 0()
        half(s(s(X))) -> s(half(X))
        sqr(0()) -> 0()
        sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        terms(N) -> cons(recip(sqr(N)),n__terms(s(N)))
        terms(X) -> n__terms(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1}
      Obligation:
        Innermost
        basic terms: {activate,add,dbl,first,half,sqr,terms}/{0,cons,n__first,n__terms,nil,recip,s}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        activate#(X) -> c_1()
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__terms(X)) -> c_3(terms#(X))
        add#(0(),X) -> c_4()
        add#(s(X),Y) -> c_5(add#(X,Y))
        dbl#(0()) -> c_6()
        dbl#(s(X)) -> c_7(dbl#(X))
        first#(X1,X2) -> c_8()
        first#(0(),X) -> c_9()
        first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
        half#(0()) -> c_11()
        half#(dbl(X)) -> c_12()
        half#(s(0())) -> c_13()
        half#(s(s(X))) -> c_14(half#(X))
        sqr#(0()) -> c_15()
        sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
        terms#(N) -> c_17(sqr#(N))
        terms#(X) -> c_18()
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1()
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__terms(X)) -> c_3(terms#(X))
        add#(0(),X) -> c_4()
        add#(s(X),Y) -> c_5(add#(X,Y))
        dbl#(0()) -> c_6()
        dbl#(s(X)) -> c_7(dbl#(X))
        first#(X1,X2) -> c_8()
        first#(0(),X) -> c_9()
        first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
        half#(0()) -> c_11()
        half#(dbl(X)) -> c_12()
        half#(s(0())) -> c_13()
        half#(s(s(X))) -> c_14(half#(X))
        sqr#(0()) -> c_15()
        sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
        terms#(N) -> c_17(sqr#(N))
        terms#(X) -> c_18()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(X1,X2)
        activate(n__terms(X)) -> terms(X)
        add(0(),X) -> X
        add(s(X),Y) -> s(add(X,Y))
        dbl(0()) -> 0()
        dbl(s(X)) -> s(s(dbl(X)))
        first(X1,X2) -> n__first(X1,X2)
        first(0(),X) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        half(0()) -> 0()
        half(dbl(X)) -> X
        half(s(0())) -> 0()
        half(s(s(X))) -> s(half(X))
        sqr(0()) -> 0()
        sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        terms(N) -> cons(recip(sqr(N)),n__terms(s(N)))
        terms(X) -> n__terms(X)
      Signature:
        {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/3,c_17/1,c_18/0}
      Obligation:
        Innermost
        basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        add(0(),X) -> X
        add(s(X),Y) -> s(add(X,Y))
        dbl(0()) -> 0()
        dbl(s(X)) -> s(s(dbl(X)))
        sqr(0()) -> 0()
        sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        activate#(X) -> c_1()
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__terms(X)) -> c_3(terms#(X))
        add#(0(),X) -> c_4()
        add#(s(X),Y) -> c_5(add#(X,Y))
        dbl#(0()) -> c_6()
        dbl#(s(X)) -> c_7(dbl#(X))
        first#(X1,X2) -> c_8()
        first#(0(),X) -> c_9()
        first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
        half#(0()) -> c_11()
        half#(dbl(X)) -> c_12()
        half#(s(0())) -> c_13()
        half#(s(s(X))) -> c_14(half#(X))
        sqr#(0()) -> c_15()
        sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
        terms#(N) -> c_17(sqr#(N))
        terms#(X) -> c_18()
*** 1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1()
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__terms(X)) -> c_3(terms#(X))
        add#(0(),X) -> c_4()
        add#(s(X),Y) -> c_5(add#(X,Y))
        dbl#(0()) -> c_6()
        dbl#(s(X)) -> c_7(dbl#(X))
        first#(X1,X2) -> c_8()
        first#(0(),X) -> c_9()
        first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
        half#(0()) -> c_11()
        half#(dbl(X)) -> c_12()
        half#(s(0())) -> c_13()
        half#(s(s(X))) -> c_14(half#(X))
        sqr#(0()) -> c_15()
        sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
        terms#(N) -> c_17(sqr#(N))
        terms#(X) -> c_18()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        add(0(),X) -> X
        add(s(X),Y) -> s(add(X,Y))
        dbl(0()) -> 0()
        dbl(s(X)) -> s(s(dbl(X)))
        sqr(0()) -> 0()
        sqr(s(X)) -> s(add(sqr(X),dbl(X)))
      Signature:
        {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/3,c_17/1,c_18/0}
      Obligation:
        Innermost
        basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,4,6,8,9,11,12,13,15,18}
      by application of
        Pre({1,4,6,8,9,11,12,13,15,18}) = {2,3,5,7,10,14,16,17}.
      Here rules are labelled as follows:
        1:  activate#(X) -> c_1()           
        2:  activate#(n__first(X1,X2)) ->   
              c_2(first#(X1,X2))            
        3:  activate#(n__terms(X)) ->       
              c_3(terms#(X))                
        4:  add#(0(),X) -> c_4()            
        5:  add#(s(X),Y) -> c_5(add#(X,Y))  
        6:  dbl#(0()) -> c_6()              
        7:  dbl#(s(X)) -> c_7(dbl#(X))      
        8:  first#(X1,X2) -> c_8()          
        9:  first#(0(),X) -> c_9()          
        10: first#(s(X),cons(Y,Z)) ->       
              c_10(activate#(Z))            
        11: half#(0()) -> c_11()            
        12: half#(dbl(X)) -> c_12()         
        13: half#(s(0())) -> c_13()         
        14: half#(s(s(X))) -> c_14(half#(X))
        15: sqr#(0()) -> c_15()             
        16: sqr#(s(X)) -> c_16(add#(sqr(X)  
                                   ,dbl(X)) 
                              ,sqr#(X)      
                              ,dbl#(X))     
        17: terms#(N) -> c_17(sqr#(N))      
        18: terms#(X) -> c_18()             
*** 1.1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__terms(X)) -> c_3(terms#(X))
        add#(s(X),Y) -> c_5(add#(X,Y))
        dbl#(s(X)) -> c_7(dbl#(X))
        first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
        half#(s(s(X))) -> c_14(half#(X))
        sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
        terms#(N) -> c_17(sqr#(N))
      Strict TRS Rules:
        
      Weak DP Rules:
        activate#(X) -> c_1()
        add#(0(),X) -> c_4()
        dbl#(0()) -> c_6()
        first#(X1,X2) -> c_8()
        first#(0(),X) -> c_9()
        half#(0()) -> c_11()
        half#(dbl(X)) -> c_12()
        half#(s(0())) -> c_13()
        sqr#(0()) -> c_15()
        terms#(X) -> c_18()
      Weak TRS Rules:
        add(0(),X) -> X
        add(s(X),Y) -> s(add(X,Y))
        dbl(0()) -> 0()
        dbl(s(X)) -> s(s(dbl(X)))
        sqr(0()) -> 0()
        sqr(s(X)) -> s(add(sqr(X),dbl(X)))
      Signature:
        {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/3,c_17/1,c_18/0}
      Obligation:
        Innermost
        basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
           -->_1 first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)):5
           -->_1 first#(0(),X) -> c_9():13
           -->_1 first#(X1,X2) -> c_8():12
        
        2:S:activate#(n__terms(X)) -> c_3(terms#(X))
           -->_1 terms#(N) -> c_17(sqr#(N)):8
           -->_1 terms#(X) -> c_18():18
        
        3:S:add#(s(X),Y) -> c_5(add#(X,Y))
           -->_1 add#(0(),X) -> c_4():10
           -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):3
        
        4:S:dbl#(s(X)) -> c_7(dbl#(X))
           -->_1 dbl#(0()) -> c_6():11
           -->_1 dbl#(s(X)) -> c_7(dbl#(X)):4
        
        5:S:first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
           -->_1 activate#(X) -> c_1():9
           -->_1 activate#(n__terms(X)) -> c_3(terms#(X)):2
           -->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):1
        
        6:S:half#(s(s(X))) -> c_14(half#(X))
           -->_1 half#(s(0())) -> c_13():16
           -->_1 half#(dbl(X)) -> c_12():15
           -->_1 half#(0()) -> c_11():14
           -->_1 half#(s(s(X))) -> c_14(half#(X)):6
        
        7:S:sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
           -->_2 sqr#(0()) -> c_15():17
           -->_3 dbl#(0()) -> c_6():11
           -->_1 add#(0(),X) -> c_4():10
           -->_2 sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):7
           -->_3 dbl#(s(X)) -> c_7(dbl#(X)):4
           -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):3
        
        8:S:terms#(N) -> c_17(sqr#(N))
           -->_1 sqr#(0()) -> c_15():17
           -->_1 sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):7
        
        9:W:activate#(X) -> c_1()
           
        
        10:W:add#(0(),X) -> c_4()
           
        
        11:W:dbl#(0()) -> c_6()
           
        
        12:W:first#(X1,X2) -> c_8()
           
        
        13:W:first#(0(),X) -> c_9()
           
        
        14:W:half#(0()) -> c_11()
           
        
        15:W:half#(dbl(X)) -> c_12()
           
        
        16:W:half#(s(0())) -> c_13()
           
        
        17:W:sqr#(0()) -> c_15()
           
        
        18:W:terms#(X) -> c_18()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        14: half#(0()) -> c_11()   
        15: half#(dbl(X)) -> c_12()
        16: half#(s(0())) -> c_13()
        12: first#(X1,X2) -> c_8() 
        13: first#(0(),X) -> c_9() 
        18: terms#(X) -> c_18()    
        10: add#(0(),X) -> c_4()   
        11: dbl#(0()) -> c_6()     
        17: sqr#(0()) -> c_15()    
        9:  activate#(X) -> c_1()  
*** 1.1.1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__terms(X)) -> c_3(terms#(X))
        add#(s(X),Y) -> c_5(add#(X,Y))
        dbl#(s(X)) -> c_7(dbl#(X))
        first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
        half#(s(s(X))) -> c_14(half#(X))
        sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
        terms#(N) -> c_17(sqr#(N))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        add(0(),X) -> X
        add(s(X),Y) -> s(add(X,Y))
        dbl(0()) -> 0()
        dbl(s(X)) -> s(s(dbl(X)))
        sqr(0()) -> 0()
        sqr(s(X)) -> s(add(sqr(X),dbl(X)))
      Signature:
        {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/3,c_17/1,c_18/0}
      Obligation:
        Innermost
        basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
    Applied Processor:
      Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    Proof:
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
      
      Problem (R)
        Strict DP Rules:
          activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
          activate#(n__terms(X)) -> c_3(terms#(X))
          add#(s(X),Y) -> c_5(add#(X,Y))
          dbl#(s(X)) -> c_7(dbl#(X))
          first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
          sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
          terms#(N) -> c_17(sqr#(N))
        Strict TRS Rules:
          
        Weak DP Rules:
          half#(s(s(X))) -> c_14(half#(X))
        Weak TRS Rules:
          add(0(),X) -> X
          add(s(X),Y) -> s(add(X,Y))
          dbl(0()) -> 0()
          dbl(s(X)) -> s(s(dbl(X)))
          sqr(0()) -> 0()
          sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        Signature:
          {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/3,c_17/1,c_18/0}
        Obligation:
          Innermost
          basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
      
      Problem (S)
        Strict DP Rules:
          half#(s(s(X))) -> c_14(half#(X))
        Strict TRS Rules:
          
        Weak DP Rules:
          activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
          activate#(n__terms(X)) -> c_3(terms#(X))
          add#(s(X),Y) -> c_5(add#(X,Y))
          dbl#(s(X)) -> c_7(dbl#(X))
          first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
          sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
          terms#(N) -> c_17(sqr#(N))
        Weak TRS Rules:
          add(0(),X) -> X
          add(s(X),Y) -> s(add(X,Y))
          dbl(0()) -> 0()
          dbl(s(X)) -> s(s(dbl(X)))
          sqr(0()) -> 0()
          sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        Signature:
          {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/3,c_17/1,c_18/0}
        Obligation:
          Innermost
          basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
  *** 1.1.1.1.1.1 Progress [(?,O(n^3))]  ***
      Considered Problem:
        Strict DP Rules:
          activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
          activate#(n__terms(X)) -> c_3(terms#(X))
          add#(s(X),Y) -> c_5(add#(X,Y))
          dbl#(s(X)) -> c_7(dbl#(X))
          first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
          sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
          terms#(N) -> c_17(sqr#(N))
        Strict TRS Rules:
          
        Weak DP Rules:
          half#(s(s(X))) -> c_14(half#(X))
        Weak TRS Rules:
          add(0(),X) -> X
          add(s(X),Y) -> s(add(X,Y))
          dbl(0()) -> 0()
          dbl(s(X)) -> s(s(dbl(X)))
          sqr(0()) -> 0()
          sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        Signature:
          {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/3,c_17/1,c_18/0}
        Obligation:
          Innermost
          basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
             -->_1 first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)):5
          
          2:S:activate#(n__terms(X)) -> c_3(terms#(X))
             -->_1 terms#(N) -> c_17(sqr#(N)):8
          
          3:S:add#(s(X),Y) -> c_5(add#(X,Y))
             -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):3
          
          4:S:dbl#(s(X)) -> c_7(dbl#(X))
             -->_1 dbl#(s(X)) -> c_7(dbl#(X)):4
          
          5:S:first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
             -->_1 activate#(n__terms(X)) -> c_3(terms#(X)):2
             -->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):1
          
          6:W:half#(s(s(X))) -> c_14(half#(X))
             -->_1 half#(s(s(X))) -> c_14(half#(X)):6
          
          7:S:sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
             -->_3 dbl#(s(X)) -> c_7(dbl#(X)):4
             -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):3
             -->_2 sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):7
          
          8:S:terms#(N) -> c_17(sqr#(N))
             -->_1 sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):7
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          6: half#(s(s(X))) -> c_14(half#(X))
  *** 1.1.1.1.1.1.1 Progress [(?,O(n^3))]  ***
      Considered Problem:
        Strict DP Rules:
          activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
          activate#(n__terms(X)) -> c_3(terms#(X))
          add#(s(X),Y) -> c_5(add#(X,Y))
          dbl#(s(X)) -> c_7(dbl#(X))
          first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
          sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
          terms#(N) -> c_17(sqr#(N))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          add(0(),X) -> X
          add(s(X),Y) -> s(add(X,Y))
          dbl(0()) -> 0()
          dbl(s(X)) -> s(s(dbl(X)))
          sqr(0()) -> 0()
          sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        Signature:
          {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/3,c_17/1,c_18/0}
        Obligation:
          Innermost
          basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: activate#(n__first(X1,X2)) ->
               c_2(first#(X1,X2))         
          2: activate#(n__terms(X)) ->    
               c_3(terms#(X))             
          4: dbl#(s(X)) -> c_7(dbl#(X))   
          5: first#(s(X),cons(Y,Z)) ->    
               c_10(activate#(Z))         
          8: terms#(N) -> c_17(sqr#(N))   
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
            activate#(n__terms(X)) -> c_3(terms#(X))
            add#(s(X),Y) -> c_5(add#(X,Y))
            dbl#(s(X)) -> c_7(dbl#(X))
            first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
            sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
            terms#(N) -> c_17(sqr#(N))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
          Signature:
            {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/3,c_17/1,c_18/0}
          Obligation:
            Innermost
            basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
        Applied Processor:
          NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a polynomial interpretation of kind constructor-based(mixed(2)):
          The following argument positions are considered usable:
            uargs(c_2) = {1},
            uargs(c_3) = {1},
            uargs(c_5) = {1},
            uargs(c_7) = {1},
            uargs(c_10) = {1},
            uargs(c_16) = {1,2,3},
            uargs(c_17) = {1}
          
          Following symbols are considered usable:
            {activate#,add#,dbl#,first#,half#,sqr#,terms#}
          TcT has computed the following interpretation:
                    p(0) = 0                          
             p(activate) = 1 + 2*x1 + x1^2            
                  p(add) = 7*x1*x2 + 4*x2 + x2^2      
                 p(cons) = 1 + x1 + x2                
                  p(dbl) = x1                         
                p(first) = 1 + 4*x1                   
                 p(half) = 0                          
             p(n__first) = x1 + x2                    
             p(n__terms) = x1                         
                  p(nil) = 0                          
                p(recip) = 0                          
                    p(s) = 1 + x1                     
                  p(sqr) = 0                          
                p(terms) = 1 + x1 + 2*x1^2            
            p(activate#) = 7 + 2*x1 + 4*x1^2          
                 p(add#) = 2                          
                 p(dbl#) = 2*x1                       
               p(first#) = 4 + x1*x2 + 4*x1^2 + 4*x2^2
                p(half#) = 0                          
                 p(sqr#) = 2*x1^2                     
               p(terms#) = 2 + 2*x1 + 2*x1^2          
                  p(c_1) = 1                          
                  p(c_2) = x1                         
                  p(c_3) = x1                         
                  p(c_4) = 0                          
                  p(c_5) = x1                         
                  p(c_6) = 0                          
                  p(c_7) = x1                         
                  p(c_8) = 1                          
                  p(c_9) = 0                          
                 p(c_10) = x1                         
                 p(c_11) = 0                          
                 p(c_12) = 1                          
                 p(c_13) = 0                          
                 p(c_14) = 0                          
                 p(c_15) = 0                          
                 p(c_16) = x1 + x2 + x3               
                 p(c_17) = 1 + x1                     
                 p(c_18) = 0                          
          
          Following rules are strictly oriented:
          activate#(n__first(X1,X2)) = 7 + 2*X1 + 8*X1*X2 + 4*X1^2 + 2*X2 + 4*X2^2                     
                                     > 4 + X1*X2 + 4*X1^2 + 4*X2^2                                     
                                     = c_2(first#(X1,X2))                                              
          
              activate#(n__terms(X)) = 7 + 2*X + 4*X^2                                                 
                                     > 2 + 2*X + 2*X^2                                                 
                                     = c_3(terms#(X))                                                  
          
                          dbl#(s(X)) = 2 + 2*X                                                         
                                     > 2*X                                                             
                                     = c_7(dbl#(X))                                                    
          
              first#(s(X),cons(Y,Z)) = 13 + 9*X + X*Y + X*Z + 4*X^2 + 9*Y + 8*Y*Z + 4*Y^2 + 9*Z + 4*Z^2
                                     > 7 + 2*Z + 4*Z^2                                                 
                                     = c_10(activate#(Z))                                              
          
                           terms#(N) = 2 + 2*N + 2*N^2                                                 
                                     > 1 + 2*N^2                                                       
                                     = c_17(sqr#(N))                                                   
          
          
          Following rules are (at-least) weakly oriented:
          add#(s(X),Y) =  2                       
                       >= 2                       
                       =  c_5(add#(X,Y))          
          
            sqr#(s(X)) =  2 + 4*X + 2*X^2         
                       >= 2 + 2*X + 2*X^2         
                       =  c_16(add#(sqr(X),dbl(X))
                              ,sqr#(X)            
                              ,dbl#(X))           
          
    *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            add#(s(X),Y) -> c_5(add#(X,Y))
            sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
          Strict TRS Rules:
            
          Weak DP Rules:
            activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
            activate#(n__terms(X)) -> c_3(terms#(X))
            dbl#(s(X)) -> c_7(dbl#(X))
            first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
            terms#(N) -> c_17(sqr#(N))
          Weak TRS Rules:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
          Signature:
            {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/3,c_17/1,c_18/0}
          Obligation:
            Innermost
            basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.1.2 Progress [(?,O(n^3))]  ***
        Considered Problem:
          Strict DP Rules:
            add#(s(X),Y) -> c_5(add#(X,Y))
            sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
          Strict TRS Rules:
            
          Weak DP Rules:
            activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
            activate#(n__terms(X)) -> c_3(terms#(X))
            dbl#(s(X)) -> c_7(dbl#(X))
            first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
            terms#(N) -> c_17(sqr#(N))
          Weak TRS Rules:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
          Signature:
            {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/3,c_17/1,c_18/0}
          Obligation:
            Innermost
            basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:S:add#(s(X),Y) -> c_5(add#(X,Y))
               -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):1
            
            2:S:sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
               -->_3 dbl#(s(X)) -> c_7(dbl#(X)):5
               -->_2 sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):2
               -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):1
            
            3:W:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
               -->_1 first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)):6
            
            4:W:activate#(n__terms(X)) -> c_3(terms#(X))
               -->_1 terms#(N) -> c_17(sqr#(N)):7
            
            5:W:dbl#(s(X)) -> c_7(dbl#(X))
               -->_1 dbl#(s(X)) -> c_7(dbl#(X)):5
            
            6:W:first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
               -->_1 activate#(n__terms(X)) -> c_3(terms#(X)):4
               -->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):3
            
            7:W:terms#(N) -> c_17(sqr#(N))
               -->_1 sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):2
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            5: dbl#(s(X)) -> c_7(dbl#(X))
    *** 1.1.1.1.1.1.1.2.1 Progress [(?,O(n^3))]  ***
        Considered Problem:
          Strict DP Rules:
            add#(s(X),Y) -> c_5(add#(X,Y))
            sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
          Strict TRS Rules:
            
          Weak DP Rules:
            activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
            activate#(n__terms(X)) -> c_3(terms#(X))
            first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
            terms#(N) -> c_17(sqr#(N))
          Weak TRS Rules:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
          Signature:
            {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/3,c_17/1,c_18/0}
          Obligation:
            Innermost
            basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
        Applied Processor:
          SimplifyRHS
        Proof:
          Consider the dependency graph
            1:S:add#(s(X),Y) -> c_5(add#(X,Y))
               -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):1
            
            2:S:sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
               -->_2 sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):2
               -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):1
            
            3:W:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
               -->_1 first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)):6
            
            4:W:activate#(n__terms(X)) -> c_3(terms#(X))
               -->_1 terms#(N) -> c_17(sqr#(N)):7
            
            6:W:first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
               -->_1 activate#(n__terms(X)) -> c_3(terms#(X)):4
               -->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):3
            
            7:W:terms#(N) -> c_17(sqr#(N))
               -->_1 sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):2
            
          Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
            sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X))
    *** 1.1.1.1.1.1.1.2.1.1 Progress [(?,O(n^3))]  ***
        Considered Problem:
          Strict DP Rules:
            add#(s(X),Y) -> c_5(add#(X,Y))
            sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X))
          Strict TRS Rules:
            
          Weak DP Rules:
            activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
            activate#(n__terms(X)) -> c_3(terms#(X))
            first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
            terms#(N) -> c_17(sqr#(N))
          Weak TRS Rules:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
          Signature:
            {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/2,c_17/1,c_18/0}
          Obligation:
            Innermost
            basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
        Applied Processor:
          DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
        Proof:
          We decompose the input problem according to the dependency graph into the upper component
            activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
            activate#(n__terms(X)) -> c_3(terms#(X))
            first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
            sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X))
            terms#(N) -> c_17(sqr#(N))
          and a lower component
            add#(s(X),Y) -> c_5(add#(X,Y))
          Further, following extension rules are added to the lower component.
            activate#(n__first(X1,X2)) -> first#(X1,X2)
            activate#(n__terms(X)) -> terms#(X)
            first#(s(X),cons(Y,Z)) -> activate#(Z)
            sqr#(s(X)) -> add#(sqr(X),dbl(X))
            sqr#(s(X)) -> sqr#(X)
            terms#(N) -> sqr#(N)
      *** 1.1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X))
            Strict TRS Rules:
              
            Weak DP Rules:
              activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
              activate#(n__terms(X)) -> c_3(terms#(X))
              first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
              terms#(N) -> c_17(sqr#(N))
            Weak TRS Rules:
              add(0(),X) -> X
              add(s(X),Y) -> s(add(X,Y))
              dbl(0()) -> 0()
              dbl(s(X)) -> s(s(dbl(X)))
              sqr(0()) -> 0()
              sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            Signature:
              {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/2,c_17/1,c_18/0}
            Obligation:
              Innermost
              basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              1: sqr#(s(X)) -> c_16(add#(sqr(X) 
                                        ,dbl(X))
                                   ,sqr#(X))    
              
            The strictly oriented rules are moved into the weak component.
        *** 1.1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X))
              Strict TRS Rules:
                
              Weak DP Rules:
                activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
                activate#(n__terms(X)) -> c_3(terms#(X))
                first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
                terms#(N) -> c_17(sqr#(N))
              Weak TRS Rules:
                add(0(),X) -> X
                add(s(X),Y) -> s(add(X,Y))
                dbl(0()) -> 0()
                dbl(s(X)) -> s(s(dbl(X)))
                sqr(0()) -> 0()
                sqr(s(X)) -> s(add(sqr(X),dbl(X)))
              Signature:
                {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/2,c_17/1,c_18/0}
              Obligation:
                Innermost
                basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
            Applied Processor:
              NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a matrix interpretation of kind constructor based matrix interpretation:
              The following argument positions are considered usable:
                uargs(c_2) = {1},
                uargs(c_3) = {1},
                uargs(c_10) = {1},
                uargs(c_16) = {1,2},
                uargs(c_17) = {1}
              
              Following symbols are considered usable:
                {activate#,add#,dbl#,first#,half#,sqr#,terms#}
              TcT has computed the following interpretation:
                        p(0) = [6]                  
                 p(activate) = [1]                  
                      p(add) = [0]                  
                     p(cons) = [1] x2 + [0]         
                      p(dbl) = [8]                  
                    p(first) = [4] x2 + [0]         
                     p(half) = [1] x1 + [1]         
                 p(n__first) = [1] x1 + [1] x2 + [2]
                 p(n__terms) = [1] x1 + [2]         
                      p(nil) = [0]                  
                    p(recip) = [1]                  
                        p(s) = [1] x1 + [8]         
                      p(sqr) = [2] x1 + [6]         
                    p(terms) = [1] x1 + [1]         
                p(activate#) = [8] x1 + [1]         
                     p(add#) = [0]                  
                     p(dbl#) = [1] x1 + [1]         
                   p(first#) = [8] x2 + [4]         
                    p(half#) = [1] x1 + [0]         
                     p(sqr#) = [1] x1 + [1]         
                   p(terms#) = [1] x1 + [8]         
                      p(c_1) = [0]                  
                      p(c_2) = [1] x1 + [8]         
                      p(c_3) = [2] x1 + [0]         
                      p(c_4) = [1]                  
                      p(c_5) = [1] x1 + [1]         
                      p(c_6) = [0]                  
                      p(c_7) = [1] x1 + [2]         
                      p(c_8) = [1]                  
                      p(c_9) = [1]                  
                     p(c_10) = [1] x1 + [3]         
                     p(c_11) = [1]                  
                     p(c_12) = [1]                  
                     p(c_13) = [1]                  
                     p(c_14) = [1] x1 + [2]         
                     p(c_15) = [2]                  
                     p(c_16) = [1] x1 + [1] x2 + [5]
                     p(c_17) = [1] x1 + [7]         
                     p(c_18) = [1]                  
              
              Following rules are strictly oriented:
              sqr#(s(X)) = [1] X + [9]             
                         > [1] X + [6]             
                         = c_16(add#(sqr(X),dbl(X))
                               ,sqr#(X))           
              
              
              Following rules are (at-least) weakly oriented:
              activate#(n__first(X1,X2)) =  [8] X1 + [8] X2 + [17]
                                         >= [8] X2 + [12]         
                                         =  c_2(first#(X1,X2))    
              
                  activate#(n__terms(X)) =  [8] X + [17]          
                                         >= [2] X + [16]          
                                         =  c_3(terms#(X))        
              
                  first#(s(X),cons(Y,Z)) =  [8] Z + [4]           
                                         >= [8] Z + [4]           
                                         =  c_10(activate#(Z))    
              
                               terms#(N) =  [1] N + [8]           
                                         >= [1] N + [8]           
                                         =  c_17(sqr#(N))         
              
        *** 1.1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
                activate#(n__terms(X)) -> c_3(terms#(X))
                first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
                sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X))
                terms#(N) -> c_17(sqr#(N))
              Weak TRS Rules:
                add(0(),X) -> X
                add(s(X),Y) -> s(add(X,Y))
                dbl(0()) -> 0()
                dbl(s(X)) -> s(s(dbl(X)))
                sqr(0()) -> 0()
                sqr(s(X)) -> s(add(sqr(X),dbl(X)))
              Signature:
                {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/2,c_17/1,c_18/0}
              Obligation:
                Innermost
                basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
                activate#(n__terms(X)) -> c_3(terms#(X))
                first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
                sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X))
                terms#(N) -> c_17(sqr#(N))
              Weak TRS Rules:
                add(0(),X) -> X
                add(s(X),Y) -> s(add(X,Y))
                dbl(0()) -> 0()
                dbl(s(X)) -> s(s(dbl(X)))
                sqr(0()) -> 0()
                sqr(s(X)) -> s(add(sqr(X),dbl(X)))
              Signature:
                {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/2,c_17/1,c_18/0}
              Obligation:
                Innermost
                basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
            Applied Processor:
              RemoveWeakSuffixes
            Proof:
              Consider the dependency graph
                1:W:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
                   -->_1 first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)):3
                
                2:W:activate#(n__terms(X)) -> c_3(terms#(X))
                   -->_1 terms#(N) -> c_17(sqr#(N)):5
                
                3:W:first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
                   -->_1 activate#(n__terms(X)) -> c_3(terms#(X)):2
                   -->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):1
                
                4:W:sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X))
                   -->_2 sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X)):4
                
                5:W:terms#(N) -> c_17(sqr#(N))
                   -->_1 sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X)):4
                
              The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                1: activate#(n__first(X1,X2)) ->  
                     c_2(first#(X1,X2))           
                3: first#(s(X),cons(Y,Z)) ->      
                     c_10(activate#(Z))           
                2: activate#(n__terms(X)) ->      
                     c_3(terms#(X))               
                5: terms#(N) -> c_17(sqr#(N))     
                4: sqr#(s(X)) -> c_16(add#(sqr(X) 
                                          ,dbl(X))
                                     ,sqr#(X))    
        *** 1.1.1.1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                add(0(),X) -> X
                add(s(X),Y) -> s(add(X,Y))
                dbl(0()) -> 0()
                dbl(s(X)) -> s(s(dbl(X)))
                sqr(0()) -> 0()
                sqr(s(X)) -> s(add(sqr(X),dbl(X)))
              Signature:
                {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/2,c_17/1,c_18/0}
              Obligation:
                Innermost
                basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
            Applied Processor:
              EmptyProcessor
            Proof:
              The problem is already closed. The intended complexity is O(1).
        
      *** 1.1.1.1.1.1.1.2.1.1.2 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              add#(s(X),Y) -> c_5(add#(X,Y))
            Strict TRS Rules:
              
            Weak DP Rules:
              activate#(n__first(X1,X2)) -> first#(X1,X2)
              activate#(n__terms(X)) -> terms#(X)
              first#(s(X),cons(Y,Z)) -> activate#(Z)
              sqr#(s(X)) -> add#(sqr(X),dbl(X))
              sqr#(s(X)) -> sqr#(X)
              terms#(N) -> sqr#(N)
            Weak TRS Rules:
              add(0(),X) -> X
              add(s(X),Y) -> s(add(X,Y))
              dbl(0()) -> 0()
              dbl(s(X)) -> s(s(dbl(X)))
              sqr(0()) -> 0()
              sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            Signature:
              {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/2,c_17/1,c_18/0}
            Obligation:
              Innermost
              basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              1: add#(s(X),Y) -> c_5(add#(X,Y))
              
            The strictly oriented rules are moved into the weak component.
        *** 1.1.1.1.1.1.1.2.1.1.2.1 Progress [(?,O(n^2))]  ***
            Considered Problem:
              Strict DP Rules:
                add#(s(X),Y) -> c_5(add#(X,Y))
              Strict TRS Rules:
                
              Weak DP Rules:
                activate#(n__first(X1,X2)) -> first#(X1,X2)
                activate#(n__terms(X)) -> terms#(X)
                first#(s(X),cons(Y,Z)) -> activate#(Z)
                sqr#(s(X)) -> add#(sqr(X),dbl(X))
                sqr#(s(X)) -> sqr#(X)
                terms#(N) -> sqr#(N)
              Weak TRS Rules:
                add(0(),X) -> X
                add(s(X),Y) -> s(add(X,Y))
                dbl(0()) -> 0()
                dbl(s(X)) -> s(s(dbl(X)))
                sqr(0()) -> 0()
                sqr(s(X)) -> s(add(sqr(X),dbl(X)))
              Signature:
                {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/2,c_17/1,c_18/0}
              Obligation:
                Innermost
                basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
            Applied Processor:
              NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a polynomial interpretation of kind constructor-based(mixed(2)):
              The following argument positions are considered usable:
                uargs(c_5) = {1}
              
              Following symbols are considered usable:
                {add,dbl,sqr,activate#,add#,dbl#,first#,half#,sqr#,terms#}
              TcT has computed the following interpretation:
                        p(0) = 0              
                 p(activate) = 4*x1 + x1^2    
                      p(add) = 1 + x1 + x2    
                     p(cons) = 1 + x1 + x2    
                      p(dbl) = 1 + 2*x1       
                    p(first) = x1 + x1^2      
                     p(half) = 1 + 2*x1 + x1^2
                 p(n__first) = x1 + x2        
                 p(n__terms) = x1             
                      p(nil) = 0              
                    p(recip) = 1              
                        p(s) = 1 + x1         
                      p(sqr) = 1 + 2*x1 + x1^2
                    p(terms) = 1 + x1         
                p(activate#) = 6 + 6*x1^2     
                     p(add#) = 2 + x1         
                     p(dbl#) = 2              
                   p(first#) = 5 + 6*x2^2     
                    p(half#) = 4*x1           
                     p(sqr#) = 4 + 2*x1^2     
                   p(terms#) = 6 + 5*x1^2     
                      p(c_1) = 0              
                      p(c_2) = 1              
                      p(c_3) = 0              
                      p(c_4) = 0              
                      p(c_5) = x1             
                      p(c_6) = 0              
                      p(c_7) = 1 + x1         
                      p(c_8) = 1              
                      p(c_9) = 0              
                     p(c_10) = 0              
                     p(c_11) = 1              
                     p(c_12) = 0              
                     p(c_13) = 0              
                     p(c_14) = x1             
                     p(c_15) = 0              
                     p(c_16) = 1              
                     p(c_17) = 0              
                     p(c_18) = 1              
              
              Following rules are strictly oriented:
              add#(s(X),Y) = 3 + X         
                           > 2 + X         
                           = c_5(add#(X,Y))
              
              
              Following rules are (at-least) weakly oriented:
              activate#(n__first(X1,X2)) =  6 + 12*X1*X2 + 6*X1^2 + 6*X2^2           
                                         >= 5 + 6*X2^2                               
                                         =  first#(X1,X2)                            
              
                  activate#(n__terms(X)) =  6 + 6*X^2                                
                                         >= 6 + 5*X^2                                
                                         =  terms#(X)                                
              
                  first#(s(X),cons(Y,Z)) =  11 + 12*Y + 12*Y*Z + 6*Y^2 + 12*Z + 6*Z^2
                                         >= 6 + 6*Z^2                                
                                         =  activate#(Z)                             
              
                              sqr#(s(X)) =  6 + 4*X + 2*X^2                          
                                         >= 3 + 2*X + X^2                            
                                         =  add#(sqr(X),dbl(X))                      
              
                              sqr#(s(X)) =  6 + 4*X + 2*X^2                          
                                         >= 4 + 2*X^2                                
                                         =  sqr#(X)                                  
              
                               terms#(N) =  6 + 5*N^2                                
                                         >= 4 + 2*N^2                                
                                         =  sqr#(N)                                  
              
                              add(0(),X) =  1 + X                                    
                                         >= X                                        
                                         =  X                                        
              
                             add(s(X),Y) =  2 + X + Y                                
                                         >= 2 + X + Y                                
                                         =  s(add(X,Y))                              
              
                                dbl(0()) =  1                                        
                                         >= 0                                        
                                         =  0()                                      
              
                               dbl(s(X)) =  3 + 2*X                                  
                                         >= 3 + 2*X                                  
                                         =  s(s(dbl(X)))                             
              
                                sqr(0()) =  1                                        
                                         >= 0                                        
                                         =  0()                                      
              
                               sqr(s(X)) =  4 + 4*X + X^2                            
                                         >= 4 + 4*X + X^2                            
                                         =  s(add(sqr(X),dbl(X)))                    
              
        *** 1.1.1.1.1.1.1.2.1.1.2.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                activate#(n__first(X1,X2)) -> first#(X1,X2)
                activate#(n__terms(X)) -> terms#(X)
                add#(s(X),Y) -> c_5(add#(X,Y))
                first#(s(X),cons(Y,Z)) -> activate#(Z)
                sqr#(s(X)) -> add#(sqr(X),dbl(X))
                sqr#(s(X)) -> sqr#(X)
                terms#(N) -> sqr#(N)
              Weak TRS Rules:
                add(0(),X) -> X
                add(s(X),Y) -> s(add(X,Y))
                dbl(0()) -> 0()
                dbl(s(X)) -> s(s(dbl(X)))
                sqr(0()) -> 0()
                sqr(s(X)) -> s(add(sqr(X),dbl(X)))
              Signature:
                {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/2,c_17/1,c_18/0}
              Obligation:
                Innermost
                basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.1.2.1.1.2.2 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                activate#(n__first(X1,X2)) -> first#(X1,X2)
                activate#(n__terms(X)) -> terms#(X)
                add#(s(X),Y) -> c_5(add#(X,Y))
                first#(s(X),cons(Y,Z)) -> activate#(Z)
                sqr#(s(X)) -> add#(sqr(X),dbl(X))
                sqr#(s(X)) -> sqr#(X)
                terms#(N) -> sqr#(N)
              Weak TRS Rules:
                add(0(),X) -> X
                add(s(X),Y) -> s(add(X,Y))
                dbl(0()) -> 0()
                dbl(s(X)) -> s(s(dbl(X)))
                sqr(0()) -> 0()
                sqr(s(X)) -> s(add(sqr(X),dbl(X)))
              Signature:
                {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/2,c_17/1,c_18/0}
              Obligation:
                Innermost
                basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
            Applied Processor:
              RemoveWeakSuffixes
            Proof:
              Consider the dependency graph
                1:W:activate#(n__first(X1,X2)) -> first#(X1,X2)
                   -->_1 first#(s(X),cons(Y,Z)) -> activate#(Z):4
                
                2:W:activate#(n__terms(X)) -> terms#(X)
                   -->_1 terms#(N) -> sqr#(N):7
                
                3:W:add#(s(X),Y) -> c_5(add#(X,Y))
                   -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):3
                
                4:W:first#(s(X),cons(Y,Z)) -> activate#(Z)
                   -->_1 activate#(n__terms(X)) -> terms#(X):2
                   -->_1 activate#(n__first(X1,X2)) -> first#(X1,X2):1
                
                5:W:sqr#(s(X)) -> add#(sqr(X),dbl(X))
                   -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):3
                
                6:W:sqr#(s(X)) -> sqr#(X)
                   -->_1 sqr#(s(X)) -> sqr#(X):6
                   -->_1 sqr#(s(X)) -> add#(sqr(X),dbl(X)):5
                
                7:W:terms#(N) -> sqr#(N)
                   -->_1 sqr#(s(X)) -> sqr#(X):6
                   -->_1 sqr#(s(X)) -> add#(sqr(X),dbl(X)):5
                
              The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                1: activate#(n__first(X1,X2)) -> 
                     first#(X1,X2)               
                4: first#(s(X),cons(Y,Z)) ->     
                     activate#(Z)                
                2: activate#(n__terms(X)) ->     
                     terms#(X)                   
                7: terms#(N) -> sqr#(N)          
                6: sqr#(s(X)) -> sqr#(X)         
                5: sqr#(s(X)) -> add#(sqr(X)     
                                     ,dbl(X))    
                3: add#(s(X),Y) -> c_5(add#(X,Y))
        *** 1.1.1.1.1.1.1.2.1.1.2.2.1 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                add(0(),X) -> X
                add(s(X),Y) -> s(add(X,Y))
                dbl(0()) -> 0()
                dbl(s(X)) -> s(s(dbl(X)))
                sqr(0()) -> 0()
                sqr(s(X)) -> s(add(sqr(X),dbl(X)))
              Signature:
                {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/2,c_17/1,c_18/0}
              Obligation:
                Innermost
                basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
            Applied Processor:
              EmptyProcessor
            Proof:
              The problem is already closed. The intended complexity is O(1).
        
  *** 1.1.1.1.1.2 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          half#(s(s(X))) -> c_14(half#(X))
        Strict TRS Rules:
          
        Weak DP Rules:
          activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
          activate#(n__terms(X)) -> c_3(terms#(X))
          add#(s(X),Y) -> c_5(add#(X,Y))
          dbl#(s(X)) -> c_7(dbl#(X))
          first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
          sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
          terms#(N) -> c_17(sqr#(N))
        Weak TRS Rules:
          add(0(),X) -> X
          add(s(X),Y) -> s(add(X,Y))
          dbl(0()) -> 0()
          dbl(s(X)) -> s(s(dbl(X)))
          sqr(0()) -> 0()
          sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        Signature:
          {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/3,c_17/1,c_18/0}
        Obligation:
          Innermost
          basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:half#(s(s(X))) -> c_14(half#(X))
             -->_1 half#(s(s(X))) -> c_14(half#(X)):1
          
          2:W:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
             -->_1 first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)):6
          
          3:W:activate#(n__terms(X)) -> c_3(terms#(X))
             -->_1 terms#(N) -> c_17(sqr#(N)):8
          
          4:W:add#(s(X),Y) -> c_5(add#(X,Y))
             -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):4
          
          5:W:dbl#(s(X)) -> c_7(dbl#(X))
             -->_1 dbl#(s(X)) -> c_7(dbl#(X)):5
          
          6:W:first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
             -->_1 activate#(n__terms(X)) -> c_3(terms#(X)):3
             -->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):2
          
          7:W:sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
             -->_2 sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):7
             -->_3 dbl#(s(X)) -> c_7(dbl#(X)):5
             -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):4
          
          8:W:terms#(N) -> c_17(sqr#(N))
             -->_1 sqr#(s(X)) -> c_16(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):7
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: activate#(n__first(X1,X2)) ->  
               c_2(first#(X1,X2))           
          6: first#(s(X),cons(Y,Z)) ->      
               c_10(activate#(Z))           
          3: activate#(n__terms(X)) ->      
               c_3(terms#(X))               
          8: terms#(N) -> c_17(sqr#(N))     
          7: sqr#(s(X)) -> c_16(add#(sqr(X) 
                                    ,dbl(X))
                               ,sqr#(X)     
                               ,dbl#(X))    
          4: add#(s(X),Y) -> c_5(add#(X,Y)) 
          5: dbl#(s(X)) -> c_7(dbl#(X))     
  *** 1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          half#(s(s(X))) -> c_14(half#(X))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          add(0(),X) -> X
          add(s(X),Y) -> s(add(X,Y))
          dbl(0()) -> 0()
          dbl(s(X)) -> s(s(dbl(X)))
          sqr(0()) -> 0()
          sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        Signature:
          {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/3,c_17/1,c_18/0}
        Obligation:
          Innermost
          basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
      Applied Processor:
        UsableRules
      Proof:
        We replace rewrite rules by usable rules:
          half#(s(s(X))) -> c_14(half#(X))
  *** 1.1.1.1.1.2.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          half#(s(s(X))) -> c_14(half#(X))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          
        Signature:
          {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/3,c_17/1,c_18/0}
        Obligation:
          Innermost
          basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: half#(s(s(X))) -> c_14(half#(X))
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            half#(s(s(X))) -> c_14(half#(X))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/3,c_17/1,c_18/0}
          Obligation:
            Innermost
            basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
        Applied Processor:
          NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(c_14) = {1}
          
          Following symbols are considered usable:
            {activate#,add#,dbl#,first#,half#,sqr#,terms#}
          TcT has computed the following interpretation:
                    p(0) = [0]                  
             p(activate) = [0]                  
                  p(add) = [0]                  
                 p(cons) = [1] x1 + [1] x2 + [0]
                  p(dbl) = [4] x1 + [0]         
                p(first) = [0]                  
                 p(half) = [8] x1 + [2]         
             p(n__first) = [1]                  
             p(n__terms) = [0]                  
                  p(nil) = [1]                  
                p(recip) = [1] x1 + [0]         
                    p(s) = [1] x1 + [4]         
                  p(sqr) = [2]                  
                p(terms) = [1]                  
            p(activate#) = [4] x1 + [1]         
                 p(add#) = [8] x1 + [0]         
                 p(dbl#) = [2] x1 + [1]         
               p(first#) = [1] x1 + [1] x2 + [1]
                p(half#) = [2] x1 + [1]         
                 p(sqr#) = [0]                  
               p(terms#) = [4] x1 + [1]         
                  p(c_1) = [0]                  
                  p(c_2) = [1]                  
                  p(c_3) = [1] x1 + [1]         
                  p(c_4) = [1]                  
                  p(c_5) = [4] x1 + [1]         
                  p(c_6) = [8]                  
                  p(c_7) = [0]                  
                  p(c_8) = [1]                  
                  p(c_9) = [1]                  
                 p(c_10) = [4]                  
                 p(c_11) = [1]                  
                 p(c_12) = [2]                  
                 p(c_13) = [1]                  
                 p(c_14) = [1] x1 + [14]        
                 p(c_15) = [1]                  
                 p(c_16) = [8] x3 + [0]         
                 p(c_17) = [1]                  
                 p(c_18) = [0]                  
          
          Following rules are strictly oriented:
          half#(s(s(X))) = [2] X + [17]  
                         > [2] X + [15]  
                         = c_14(half#(X))
          
          
          Following rules are (at-least) weakly oriented:
          
    *** 1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            half#(s(s(X))) -> c_14(half#(X))
          Weak TRS Rules:
            
          Signature:
            {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/3,c_17/1,c_18/0}
          Obligation:
            Innermost
            basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.2.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            half#(s(s(X))) -> c_14(half#(X))
          Weak TRS Rules:
            
          Signature:
            {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/3,c_17/1,c_18/0}
          Obligation:
            Innermost
            basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:half#(s(s(X))) -> c_14(half#(X))
               -->_1 half#(s(s(X))) -> c_14(half#(X)):1
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            1: half#(s(s(X))) -> c_14(half#(X))
    *** 1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {activate/1,add/2,dbl/1,first/2,half/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/0,c_13/0,c_14/1,c_15/0,c_16/3,c_17/1,c_18/0}
          Obligation:
            Innermost
            basic terms: {activate#,add#,dbl#,first#,half#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).