*** 1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        activate(n__terms(X)) -> terms(activate(X))
        add(0(),X) -> X
        add(s(X),Y) -> s(add(X,Y))
        dbl(0()) -> 0()
        dbl(s(X)) -> s(s(dbl(X)))
        first(X1,X2) -> n__first(X1,X2)
        first(0(),X) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        half(0()) -> 0()
        half(dbl(X)) -> X
        half(s(0())) -> 0()
        half(s(s(X))) -> s(half(X))
        s(X) -> n__s(X)
        sqr(0()) -> 0()
        sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
        terms(X) -> n__terms(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,add/2,dbl/1,first/2,half/1,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
      Obligation:
        Innermost
        basic terms: {activate,add,dbl,first,half,s,sqr,terms}/{0,cons,n__first,n__s,n__terms,nil,recip}
    Applied Processor:
      InnermostRuleRemoval
    Proof:
      Arguments of following rules are not normal-forms.
        add(s(X),Y) -> s(add(X,Y))
        dbl(s(X)) -> s(s(dbl(X)))
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        half(s(0())) -> 0()
        half(s(s(X))) -> s(half(X))
        sqr(s(X)) -> s(add(sqr(X),dbl(X)))
      All above mentioned rules can be savely removed.
*** 1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        activate(n__terms(X)) -> terms(activate(X))
        add(0(),X) -> X
        dbl(0()) -> 0()
        first(X1,X2) -> n__first(X1,X2)
        first(0(),X) -> nil()
        half(0()) -> 0()
        half(dbl(X)) -> X
        s(X) -> n__s(X)
        sqr(0()) -> 0()
        terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
        terms(X) -> n__terms(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,add/2,dbl/1,first/2,half/1,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
      Obligation:
        Innermost
        basic terms: {activate,add,dbl,first,half,s,sqr,terms}/{0,cons,n__first,n__s,n__terms,nil,recip}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {1},
          uargs(first) = {1,2},
          uargs(recip) = {1},
          uargs(s) = {1},
          uargs(terms) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [8]                   
          p(activate) = [8] x1 + [0]          
               p(add) = [2] x1 + [2] x2 + [1] 
              p(cons) = [1] x1 + [0]          
               p(dbl) = [2] x1 + [4]          
             p(first) = [1] x1 + [1] x2 + [10]
              p(half) = [1] x1 + [8]          
          p(n__first) = [1] x1 + [1] x2 + [0] 
              p(n__s) = [1] x1 + [0]          
          p(n__terms) = [1] x1 + [0]          
               p(nil) = [0]                   
             p(recip) = [1] x1 + [0]          
                 p(s) = [1] x1 + [0]          
               p(sqr) = [0]                   
             p(terms) = [1] x1 + [0]          
        
        Following rules are strictly oriented:
          add(0(),X) = [2] X + [17]          
                     > [1] X + [0]           
                     = X                     
        
            dbl(0()) = [20]                  
                     > [8]                   
                     = 0()                   
        
        first(X1,X2) = [1] X1 + [1] X2 + [10]
                     > [1] X1 + [1] X2 + [0] 
                     = n__first(X1,X2)       
        
        first(0(),X) = [1] X + [18]          
                     > [0]                   
                     = nil()                 
        
           half(0()) = [16]                  
                     > [8]                   
                     = 0()                   
        
        half(dbl(X)) = [2] X + [12]          
                     > [1] X + [0]           
                     = X                     
        
        
        Following rules are (at-least) weakly oriented:
                      activate(X) =  [8] X + [0]                     
                                  >= [1] X + [0]                     
                                  =  X                               
        
        activate(n__first(X1,X2)) =  [8] X1 + [8] X2 + [0]           
                                  >= [8] X1 + [8] X2 + [10]          
                                  =  first(activate(X1),activate(X2))
        
                activate(n__s(X)) =  [8] X + [0]                     
                                  >= [8] X + [0]                     
                                  =  s(activate(X))                  
        
            activate(n__terms(X)) =  [8] X + [0]                     
                                  >= [8] X + [0]                     
                                  =  terms(activate(X))              
        
                             s(X) =  [1] X + [0]                     
                                  >= [1] X + [0]                     
                                  =  n__s(X)                         
        
                         sqr(0()) =  [0]                             
                                  >= [8]                             
                                  =  0()                             
        
                         terms(N) =  [1] N + [0]                     
                                  >= [0]                             
                                  =  cons(recip(sqr(N))              
                                         ,n__terms(n__s(N)))         
        
                         terms(X) =  [1] X + [0]                     
                                  >= [1] X + [0]                     
                                  =  n__terms(X)                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        activate(n__terms(X)) -> terms(activate(X))
        s(X) -> n__s(X)
        sqr(0()) -> 0()
        terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
        terms(X) -> n__terms(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        add(0(),X) -> X
        dbl(0()) -> 0()
        first(X1,X2) -> n__first(X1,X2)
        first(0(),X) -> nil()
        half(0()) -> 0()
        half(dbl(X)) -> X
      Signature:
        {activate/1,add/2,dbl/1,first/2,half/1,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
      Obligation:
        Innermost
        basic terms: {activate,add,dbl,first,half,s,sqr,terms}/{0,cons,n__first,n__s,n__terms,nil,recip}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {1},
          uargs(first) = {1,2},
          uargs(recip) = {1},
          uargs(s) = {1},
          uargs(terms) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [4]                   
          p(activate) = [1] x1 + [2]          
               p(add) = [2] x1 + [1] x2 + [0] 
              p(cons) = [1] x1 + [1]          
               p(dbl) = [4] x1 + [0]          
             p(first) = [1] x1 + [1] x2 + [11]
              p(half) = [2] x1 + [13]         
          p(n__first) = [1] x1 + [1] x2 + [8] 
              p(n__s) = [1] x1 + [4]          
          p(n__terms) = [1] x1 + [8]          
               p(nil) = [2]                   
             p(recip) = [1] x1 + [8]          
                 p(s) = [1] x1 + [14]         
               p(sqr) = [1] x1 + [2]          
             p(terms) = [1] x1 + [0]          
        
        Following rules are strictly oriented:
                  activate(X) = [1] X + [2]       
                              > [1] X + [0]       
                              = X                 
        
        activate(n__terms(X)) = [1] X + [10]      
                              > [1] X + [2]       
                              = terms(activate(X))
        
                         s(X) = [1] X + [14]      
                              > [1] X + [4]       
                              = n__s(X)           
        
                     sqr(0()) = [6]               
                              > [4]               
                              = 0()               
        
        
        Following rules are (at-least) weakly oriented:
        activate(n__first(X1,X2)) =  [1] X1 + [1] X2 + [10]          
                                  >= [1] X1 + [1] X2 + [15]          
                                  =  first(activate(X1),activate(X2))
        
                activate(n__s(X)) =  [1] X + [6]                     
                                  >= [1] X + [16]                    
                                  =  s(activate(X))                  
        
                       add(0(),X) =  [1] X + [8]                     
                                  >= [1] X + [0]                     
                                  =  X                               
        
                         dbl(0()) =  [16]                            
                                  >= [4]                             
                                  =  0()                             
        
                     first(X1,X2) =  [1] X1 + [1] X2 + [11]          
                                  >= [1] X1 + [1] X2 + [8]           
                                  =  n__first(X1,X2)                 
        
                     first(0(),X) =  [1] X + [15]                    
                                  >= [2]                             
                                  =  nil()                           
        
                        half(0()) =  [21]                            
                                  >= [4]                             
                                  =  0()                             
        
                     half(dbl(X)) =  [8] X + [13]                    
                                  >= [1] X + [0]                     
                                  =  X                               
        
                         terms(N) =  [1] N + [0]                     
                                  >= [1] N + [11]                    
                                  =  cons(recip(sqr(N))              
                                         ,n__terms(n__s(N)))         
        
                         terms(X) =  [1] X + [0]                     
                                  >= [1] X + [8]                     
                                  =  n__terms(X)                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
        terms(X) -> n__terms(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__terms(X)) -> terms(activate(X))
        add(0(),X) -> X
        dbl(0()) -> 0()
        first(X1,X2) -> n__first(X1,X2)
        first(0(),X) -> nil()
        half(0()) -> 0()
        half(dbl(X)) -> X
        s(X) -> n__s(X)
        sqr(0()) -> 0()
      Signature:
        {activate/1,add/2,dbl/1,first/2,half/1,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
      Obligation:
        Innermost
        basic terms: {activate,add,dbl,first,half,s,sqr,terms}/{0,cons,n__first,n__s,n__terms,nil,recip}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {1},
          uargs(first) = {1,2},
          uargs(recip) = {1},
          uargs(s) = {1},
          uargs(terms) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
          p(activate) = [4] x1 + [0]         
               p(add) = [1] x2 + [15]        
              p(cons) = [1] x1 + [13]        
               p(dbl) = [1] x1 + [0]         
             p(first) = [1] x1 + [1] x2 + [0]
              p(half) = [8] x1 + [15]        
          p(n__first) = [1] x1 + [1] x2 + [0]
              p(n__s) = [1] x1 + [0]         
          p(n__terms) = [1] x1 + [4]         
               p(nil) = [0]                  
             p(recip) = [1] x1 + [0]         
                 p(s) = [1] x1 + [1]         
               p(sqr) = [12]                 
             p(terms) = [1] x1 + [5]         
        
        Following rules are strictly oriented:
        terms(X) = [1] X + [5]
                 > [1] X + [4]
                 = n__terms(X)
        
        
        Following rules are (at-least) weakly oriented:
                      activate(X) =  [4] X + [0]                     
                                  >= [1] X + [0]                     
                                  =  X                               
        
        activate(n__first(X1,X2)) =  [4] X1 + [4] X2 + [0]           
                                  >= [4] X1 + [4] X2 + [0]           
                                  =  first(activate(X1),activate(X2))
        
                activate(n__s(X)) =  [4] X + [0]                     
                                  >= [4] X + [1]                     
                                  =  s(activate(X))                  
        
            activate(n__terms(X)) =  [4] X + [16]                    
                                  >= [4] X + [5]                     
                                  =  terms(activate(X))              
        
                       add(0(),X) =  [1] X + [15]                    
                                  >= [1] X + [0]                     
                                  =  X                               
        
                         dbl(0()) =  [0]                             
                                  >= [0]                             
                                  =  0()                             
        
                     first(X1,X2) =  [1] X1 + [1] X2 + [0]           
                                  >= [1] X1 + [1] X2 + [0]           
                                  =  n__first(X1,X2)                 
        
                     first(0(),X) =  [1] X + [0]                     
                                  >= [0]                             
                                  =  nil()                           
        
                        half(0()) =  [15]                            
                                  >= [0]                             
                                  =  0()                             
        
                     half(dbl(X)) =  [8] X + [15]                    
                                  >= [1] X + [0]                     
                                  =  X                               
        
                             s(X) =  [1] X + [1]                     
                                  >= [1] X + [0]                     
                                  =  n__s(X)                         
        
                         sqr(0()) =  [12]                            
                                  >= [0]                             
                                  =  0()                             
        
                         terms(N) =  [1] N + [5]                     
                                  >= [25]                            
                                  =  cons(recip(sqr(N))              
                                         ,n__terms(n__s(N)))         
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__terms(X)) -> terms(activate(X))
        add(0(),X) -> X
        dbl(0()) -> 0()
        first(X1,X2) -> n__first(X1,X2)
        first(0(),X) -> nil()
        half(0()) -> 0()
        half(dbl(X)) -> X
        s(X) -> n__s(X)
        sqr(0()) -> 0()
        terms(X) -> n__terms(X)
      Signature:
        {activate/1,add/2,dbl/1,first/2,half/1,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
      Obligation:
        Innermost
        basic terms: {activate,add,dbl,first,half,s,sqr,terms}/{0,cons,n__first,n__s,n__terms,nil,recip}
    Applied Processor:
      NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(cons) = {1},
        uargs(first) = {1,2},
        uargs(recip) = {1},
        uargs(s) = {1},
        uargs(terms) = {1}
      
      Following symbols are considered usable:
        {activate,add,dbl,first,half,s,sqr,terms}
      TcT has computed the following interpretation:
               p(0) = [0]                  
        p(activate) = [1] x1 + [0]         
             p(add) = [2] x2 + [2]         
            p(cons) = [1] x1 + [4]         
             p(dbl) = [2] x1 + [4]         
           p(first) = [1] x1 + [1] x2 + [0]
            p(half) = [1] x1 + [0]         
        p(n__first) = [1] x1 + [1] x2 + [0]
            p(n__s) = [1] x1 + [2]         
        p(n__terms) = [1] x1 + [8]         
             p(nil) = [0]                  
           p(recip) = [1] x1 + [0]         
               p(s) = [1] x1 + [2]         
             p(sqr) = [1] x1 + [0]         
           p(terms) = [1] x1 + [8]         
      
      Following rules are strictly oriented:
      terms(N) = [1] N + [8]            
               > [1] N + [4]            
               = cons(recip(sqr(N))     
                     ,n__terms(n__s(N)))
      
      
      Following rules are (at-least) weakly oriented:
                    activate(X) =  [1] X + [0]                     
                                >= [1] X + [0]                     
                                =  X                               
      
      activate(n__first(X1,X2)) =  [1] X1 + [1] X2 + [0]           
                                >= [1] X1 + [1] X2 + [0]           
                                =  first(activate(X1),activate(X2))
      
              activate(n__s(X)) =  [1] X + [2]                     
                                >= [1] X + [2]                     
                                =  s(activate(X))                  
      
          activate(n__terms(X)) =  [1] X + [8]                     
                                >= [1] X + [8]                     
                                =  terms(activate(X))              
      
                     add(0(),X) =  [2] X + [2]                     
                                >= [1] X + [0]                     
                                =  X                               
      
                       dbl(0()) =  [4]                             
                                >= [0]                             
                                =  0()                             
      
                   first(X1,X2) =  [1] X1 + [1] X2 + [0]           
                                >= [1] X1 + [1] X2 + [0]           
                                =  n__first(X1,X2)                 
      
                   first(0(),X) =  [1] X + [0]                     
                                >= [0]                             
                                =  nil()                           
      
                      half(0()) =  [0]                             
                                >= [0]                             
                                =  0()                             
      
                   half(dbl(X)) =  [2] X + [4]                     
                                >= [1] X + [0]                     
                                =  X                               
      
                           s(X) =  [1] X + [2]                     
                                >= [1] X + [2]                     
                                =  n__s(X)                         
      
                       sqr(0()) =  [0]                             
                                >= [0]                             
                                =  0()                             
      
                       terms(X) =  [1] X + [8]                     
                                >= [1] X + [8]                     
                                =  n__terms(X)                     
      
*** 1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__terms(X)) -> terms(activate(X))
        add(0(),X) -> X
        dbl(0()) -> 0()
        first(X1,X2) -> n__first(X1,X2)
        first(0(),X) -> nil()
        half(0()) -> 0()
        half(dbl(X)) -> X
        s(X) -> n__s(X)
        sqr(0()) -> 0()
        terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
        terms(X) -> n__terms(X)
      Signature:
        {activate/1,add/2,dbl/1,first/2,half/1,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
      Obligation:
        Innermost
        basic terms: {activate,add,dbl,first,half,s,sqr,terms}/{0,cons,n__first,n__s,n__terms,nil,recip}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {1},
          uargs(first) = {1,2},
          uargs(recip) = {1},
          uargs(s) = {1},
          uargs(terms) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [1]                  
          p(activate) = [3] x1 + [0]         
               p(add) = [2] x2 + [0]         
              p(cons) = [1] x1 + [3]         
               p(dbl) = [1] x1 + [0]         
             p(first) = [1] x1 + [1] x2 + [9]
              p(half) = [1] x1 + [13]        
          p(n__first) = [1] x1 + [1] x2 + [8]
              p(n__s) = [1] x1 + [2]         
          p(n__terms) = [1] x1 + [1]         
               p(nil) = [0]                  
             p(recip) = [1] x1 + [0]         
                 p(s) = [1] x1 + [2]         
               p(sqr) = [1] x1 + [0]         
             p(terms) = [1] x1 + [3]         
        
        Following rules are strictly oriented:
        activate(n__first(X1,X2)) = [3] X1 + [3] X2 + [24]          
                                  > [3] X1 + [3] X2 + [9]           
                                  = first(activate(X1),activate(X2))
        
                activate(n__s(X)) = [3] X + [6]                     
                                  > [3] X + [2]                     
                                  = s(activate(X))                  
        
        
        Following rules are (at-least) weakly oriented:
                  activate(X) =  [3] X + [0]            
                              >= [1] X + [0]            
                              =  X                      
        
        activate(n__terms(X)) =  [3] X + [3]            
                              >= [3] X + [3]            
                              =  terms(activate(X))     
        
                   add(0(),X) =  [2] X + [0]            
                              >= [1] X + [0]            
                              =  X                      
        
                     dbl(0()) =  [1]                    
                              >= [1]                    
                              =  0()                    
        
                 first(X1,X2) =  [1] X1 + [1] X2 + [9]  
                              >= [1] X1 + [1] X2 + [8]  
                              =  n__first(X1,X2)        
        
                 first(0(),X) =  [1] X + [10]           
                              >= [0]                    
                              =  nil()                  
        
                    half(0()) =  [14]                   
                              >= [1]                    
                              =  0()                    
        
                 half(dbl(X)) =  [1] X + [13]           
                              >= [1] X + [0]            
                              =  X                      
        
                         s(X) =  [1] X + [2]            
                              >= [1] X + [2]            
                              =  n__s(X)                
        
                     sqr(0()) =  [1]                    
                              >= [1]                    
                              =  0()                    
        
                     terms(N) =  [1] N + [3]            
                              >= [1] N + [3]            
                              =  cons(recip(sqr(N))     
                                     ,n__terms(n__s(N)))
        
                     terms(X) =  [1] X + [3]            
                              >= [1] X + [1]            
                              =  n__terms(X)            
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        activate(n__terms(X)) -> terms(activate(X))
        add(0(),X) -> X
        dbl(0()) -> 0()
        first(X1,X2) -> n__first(X1,X2)
        first(0(),X) -> nil()
        half(0()) -> 0()
        half(dbl(X)) -> X
        s(X) -> n__s(X)
        sqr(0()) -> 0()
        terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
        terms(X) -> n__terms(X)
      Signature:
        {activate/1,add/2,dbl/1,first/2,half/1,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
      Obligation:
        Innermost
        basic terms: {activate,add,dbl,first,half,s,sqr,terms}/{0,cons,n__first,n__s,n__terms,nil,recip}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).