We are left with following problem, upon which TcT provides the certificate YES(?,O(1)). Strict Trs: { primes() -> sieve(from(s(s(0())))) , sieve(cons(X, Y)) -> cons(X, n__filter(X, sieve(activate(Y)))) , from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) , cons(X1, X2) -> n__cons(X1, X2) , head(cons(X, Y)) -> X , tail(cons(X, Y)) -> activate(Y) , activate(X) -> X , activate(n__from(X)) -> from(X) , activate(n__filter(X1, X2)) -> filter(X1, X2) , activate(n__cons(X1, X2)) -> cons(X1, X2) , if(true(), X, Y) -> activate(X) , if(false(), X, Y) -> activate(Y) , filter(X1, X2) -> n__filter(X1, X2) , filter(s(s(X)), cons(Y, Z)) -> if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y)))) } Obligation: innermost runtime complexity Answer: YES(?,O(1)) Arguments of following rules are not normal-forms: { sieve(cons(X, Y)) -> cons(X, n__filter(X, sieve(activate(Y)))) , head(cons(X, Y)) -> X , tail(cons(X, Y)) -> activate(Y) , filter(s(s(X)), cons(Y, Z)) -> if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y)))) } All above mentioned rules can be savely removed. We are left with following problem, upon which TcT provides the certificate YES(?,O(1)). Strict Trs: { primes() -> sieve(from(s(s(0())))) , from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) , cons(X1, X2) -> n__cons(X1, X2) , activate(X) -> X , activate(n__from(X)) -> from(X) , activate(n__filter(X1, X2)) -> filter(X1, X2) , activate(n__cons(X1, X2)) -> cons(X1, X2) , if(true(), X, Y) -> activate(X) , if(false(), X, Y) -> activate(Y) , filter(X1, X2) -> n__filter(X1, X2) } Obligation: innermost runtime complexity Answer: YES(?,O(1)) The input was oriented with the instance of 'Small Polynomial Path Order (PS,0-bounded)' as induced by the safe mapping safe(primes) = {}, safe(sieve) = {}, safe(from) = {1}, safe(s) = {1}, safe(0) = {}, safe(cons) = {1, 2}, safe(n__from) = {1}, safe(activate) = {1}, safe(if) = {2}, safe(true) = {}, safe(false) = {}, safe(filter) = {1, 2}, safe(n__filter) = {1, 2}, safe(n__cons) = {1, 2} and precedence primes > from, from > cons, activate > from, activate > cons, activate > filter, if > activate . Following symbols are considered recursive: {} The recursion depth is 0. For your convenience, here are the satisfied ordering constraints: primes() > sieve(from(; s(; s(; 0())));) from(; X) > cons(; X, n__from(; s(; X))) from(; X) > n__from(; X) cons(; X1, X2) > n__cons(; X1, X2) activate(; X) > X activate(; n__from(; X)) > from(; X) activate(; n__filter(; X1, X2)) > filter(; X1, X2) activate(; n__cons(; X1, X2)) > cons(; X1, X2) if(true(), Y; X) > activate(; X) if(false(), Y; X) > activate(; Y) filter(; X1, X2) > n__filter(; X1, X2) Hurray, we answered YES(?,O(1))