*** 1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
        activate(n__filter(X1,X2)) -> filter(activate(X1),activate(X2))
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        activate(n__sieve(X)) -> sieve(activate(X))
        cons(X1,X2) -> n__cons(X1,X2)
        filter(X1,X2) -> n__filter(X1,X2)
        filter(s(s(X)),cons(Y,Z)) -> if(divides(s(s(X)),Y),n__filter(n__s(n__s(X)),activate(Z)),n__cons(Y,n__filter(X,n__sieve(Y))))
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        head(cons(X,Y)) -> X
        if(false(),X,Y) -> activate(Y)
        if(true(),X,Y) -> activate(X)
        primes() -> sieve(from(s(s(0()))))
        s(X) -> n__s(X)
        sieve(X) -> n__sieve(X)
        sieve(cons(X,Y)) -> cons(X,n__filter(X,n__sieve(activate(Y))))
        tail(cons(X,Y)) -> activate(Y)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,cons/2,filter/2,from/1,head/1,if/3,primes/0,s/1,sieve/1,tail/1} / {0/0,divides/2,false/0,n__cons/2,n__filter/2,n__from/1,n__s/1,n__sieve/1,true/0}
      Obligation:
        Innermost
        basic terms: {activate,cons,filter,from,head,if,primes,s,sieve,tail}/{0,divides,false,n__cons,n__filter,n__from,n__s,n__sieve,true}
    Applied Processor:
      InnermostRuleRemoval
    Proof:
      Arguments of following rules are not normal-forms.
        filter(s(s(X)),cons(Y,Z)) -> if(divides(s(s(X)),Y),n__filter(n__s(n__s(X)),activate(Z)),n__cons(Y,n__filter(X,n__sieve(Y))))
        head(cons(X,Y)) -> X
        sieve(cons(X,Y)) -> cons(X,n__filter(X,n__sieve(activate(Y))))
        tail(cons(X,Y)) -> activate(Y)
      All above mentioned rules can be savely removed.
*** 1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
        activate(n__filter(X1,X2)) -> filter(activate(X1),activate(X2))
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        activate(n__sieve(X)) -> sieve(activate(X))
        cons(X1,X2) -> n__cons(X1,X2)
        filter(X1,X2) -> n__filter(X1,X2)
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        if(false(),X,Y) -> activate(Y)
        if(true(),X,Y) -> activate(X)
        primes() -> sieve(from(s(s(0()))))
        s(X) -> n__s(X)
        sieve(X) -> n__sieve(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,cons/2,filter/2,from/1,head/1,if/3,primes/0,s/1,sieve/1,tail/1} / {0/0,divides/2,false/0,n__cons/2,n__filter/2,n__from/1,n__s/1,n__sieve/1,true/0}
      Obligation:
        Innermost
        basic terms: {activate,cons,filter,from,head,if,primes,s,sieve,tail}/{0,divides,false,n__cons,n__filter,n__from,n__s,n__sieve,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {1},
          uargs(filter) = {1,2},
          uargs(from) = {1},
          uargs(s) = {1},
          uargs(sieve) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                  p(0) = [0]                           
           p(activate) = [7] x1 + [0]                  
               p(cons) = [1] x1 + [5]                  
            p(divides) = [1] x1 + [1] x2 + [0]         
              p(false) = [3]                           
             p(filter) = [1] x1 + [1] x2 + [0]         
               p(from) = [1] x1 + [5]                  
               p(head) = [0]                           
                 p(if) = [9] x1 + [7] x2 + [7] x3 + [1]
            p(n__cons) = [1] x1 + [3]                  
          p(n__filter) = [1] x1 + [1] x2 + [0]         
            p(n__from) = [1] x1 + [1]                  
               p(n__s) = [1] x1 + [0]                  
           p(n__sieve) = [1] x1 + [0]                  
             p(primes) = [0]                           
                  p(s) = [1] x1 + [0]                  
              p(sieve) = [1] x1 + [1]                  
               p(tail) = [0]                           
               p(true) = [0]                           
        
        Following rules are strictly oriented:
        activate(n__cons(X1,X2)) = [7] X1 + [21]        
                                 > [7] X1 + [5]         
                                 = cons(activate(X1),X2)
        
            activate(n__from(X)) = [7] X + [7]          
                                 > [7] X + [5]          
                                 = from(activate(X))    
        
                     cons(X1,X2) = [1] X1 + [5]         
                                 > [1] X1 + [3]         
                                 = n__cons(X1,X2)       
        
                         from(X) = [1] X + [5]          
                                 > [1] X + [1]          
                                 = n__from(X)           
        
                 if(false(),X,Y) = [7] X + [7] Y + [28] 
                                 > [7] Y + [0]          
                                 = activate(Y)          
        
                  if(true(),X,Y) = [7] X + [7] Y + [1]  
                                 > [7] X + [0]          
                                 = activate(X)          
        
                        sieve(X) = [1] X + [1]          
                                 > [1] X + [0]          
                                 = n__sieve(X)          
        
        
        Following rules are (at-least) weakly oriented:
                       activate(X) =  [7] X + [0]             
                                   >= [1] X + [0]             
                                   =  X                       
        
        activate(n__filter(X1,X2)) =  [7] X1 + [7] X2 + [0]   
                                   >= [7] X1 + [7] X2 + [0]   
                                   =  filter(activate(X1)     
                                            ,activate(X2))    
        
                 activate(n__s(X)) =  [7] X + [0]             
                                   >= [7] X + [0]             
                                   =  s(activate(X))          
        
             activate(n__sieve(X)) =  [7] X + [0]             
                                   >= [7] X + [1]             
                                   =  sieve(activate(X))      
        
                     filter(X1,X2) =  [1] X1 + [1] X2 + [0]   
                                   >= [1] X1 + [1] X2 + [0]   
                                   =  n__filter(X1,X2)        
        
                           from(X) =  [1] X + [5]             
                                   >= [1] X + [5]             
                                   =  cons(X,n__from(n__s(X)))
        
                          primes() =  [0]                     
                                   >= [6]                     
                                   =  sieve(from(s(s(0()))))  
        
                              s(X) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  n__s(X)                 
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        activate(n__filter(X1,X2)) -> filter(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        activate(n__sieve(X)) -> sieve(activate(X))
        filter(X1,X2) -> n__filter(X1,X2)
        from(X) -> cons(X,n__from(n__s(X)))
        primes() -> sieve(from(s(s(0()))))
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
        activate(n__from(X)) -> from(activate(X))
        cons(X1,X2) -> n__cons(X1,X2)
        from(X) -> n__from(X)
        if(false(),X,Y) -> activate(Y)
        if(true(),X,Y) -> activate(X)
        sieve(X) -> n__sieve(X)
      Signature:
        {activate/1,cons/2,filter/2,from/1,head/1,if/3,primes/0,s/1,sieve/1,tail/1} / {0/0,divides/2,false/0,n__cons/2,n__filter/2,n__from/1,n__s/1,n__sieve/1,true/0}
      Obligation:
        Innermost
        basic terms: {activate,cons,filter,from,head,if,primes,s,sieve,tail}/{0,divides,false,n__cons,n__filter,n__from,n__s,n__sieve,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {1},
          uargs(filter) = {1,2},
          uargs(from) = {1},
          uargs(s) = {1},
          uargs(sieve) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                  p(0) = [0]                  
           p(activate) = [1] x1 + [1]         
               p(cons) = [1] x1 + [1]         
            p(divides) = [1] x1 + [1] x2 + [0]
              p(false) = [1]                  
             p(filter) = [1] x1 + [1] x2 + [0]
               p(from) = [1] x1 + [2]         
               p(head) = [0]                  
                 p(if) = [2] x2 + [1] x3 + [1]
            p(n__cons) = [1] x1 + [1]         
          p(n__filter) = [1] x1 + [1] x2 + [0]
            p(n__from) = [1] x1 + [2]         
               p(n__s) = [1] x1 + [0]         
           p(n__sieve) = [1] x1 + [0]         
             p(primes) = [0]                  
                  p(s) = [1] x1 + [0]         
              p(sieve) = [1] x1 + [0]         
               p(tail) = [0]                  
               p(true) = [4]                  
        
        Following rules are strictly oriented:
        activate(X) = [1] X + [1]             
                    > [1] X + [0]             
                    = X                       
        
            from(X) = [1] X + [2]             
                    > [1] X + [1]             
                    = cons(X,n__from(n__s(X)))
        
        
        Following rules are (at-least) weakly oriented:
          activate(n__cons(X1,X2)) =  [1] X1 + [2]          
                                   >= [1] X1 + [2]          
                                   =  cons(activate(X1),X2) 
        
        activate(n__filter(X1,X2)) =  [1] X1 + [1] X2 + [1] 
                                   >= [1] X1 + [1] X2 + [2] 
                                   =  filter(activate(X1)   
                                            ,activate(X2))  
        
              activate(n__from(X)) =  [1] X + [3]           
                                   >= [1] X + [3]           
                                   =  from(activate(X))     
        
                 activate(n__s(X)) =  [1] X + [1]           
                                   >= [1] X + [1]           
                                   =  s(activate(X))        
        
             activate(n__sieve(X)) =  [1] X + [1]           
                                   >= [1] X + [1]           
                                   =  sieve(activate(X))    
        
                       cons(X1,X2) =  [1] X1 + [1]          
                                   >= [1] X1 + [1]          
                                   =  n__cons(X1,X2)        
        
                     filter(X1,X2) =  [1] X1 + [1] X2 + [0] 
                                   >= [1] X1 + [1] X2 + [0] 
                                   =  n__filter(X1,X2)      
        
                           from(X) =  [1] X + [2]           
                                   >= [1] X + [2]           
                                   =  n__from(X)            
        
                   if(false(),X,Y) =  [2] X + [1] Y + [1]   
                                   >= [1] Y + [1]           
                                   =  activate(Y)           
        
                    if(true(),X,Y) =  [2] X + [1] Y + [1]   
                                   >= [1] X + [1]           
                                   =  activate(X)           
        
                          primes() =  [0]                   
                                   >= [2]                   
                                   =  sieve(from(s(s(0()))))
        
                              s(X) =  [1] X + [0]           
                                   >= [1] X + [0]           
                                   =  n__s(X)               
        
                          sieve(X) =  [1] X + [0]           
                                   >= [1] X + [0]           
                                   =  n__sieve(X)           
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__filter(X1,X2)) -> filter(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        activate(n__sieve(X)) -> sieve(activate(X))
        filter(X1,X2) -> n__filter(X1,X2)
        primes() -> sieve(from(s(s(0()))))
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
        activate(n__from(X)) -> from(activate(X))
        cons(X1,X2) -> n__cons(X1,X2)
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        if(false(),X,Y) -> activate(Y)
        if(true(),X,Y) -> activate(X)
        sieve(X) -> n__sieve(X)
      Signature:
        {activate/1,cons/2,filter/2,from/1,head/1,if/3,primes/0,s/1,sieve/1,tail/1} / {0/0,divides/2,false/0,n__cons/2,n__filter/2,n__from/1,n__s/1,n__sieve/1,true/0}
      Obligation:
        Innermost
        basic terms: {activate,cons,filter,from,head,if,primes,s,sieve,tail}/{0,divides,false,n__cons,n__filter,n__from,n__s,n__sieve,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {1},
          uargs(filter) = {1,2},
          uargs(from) = {1},
          uargs(s) = {1},
          uargs(sieve) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                  p(0) = [5]                           
           p(activate) = [1] x1 + [0]                  
               p(cons) = [1] x1 + [0]                  
            p(divides) = [1]                           
              p(false) = [0]                           
             p(filter) = [1] x1 + [1] x2 + [2]         
               p(from) = [1] x1 + [0]                  
               p(head) = [1] x1 + [1]                  
                 p(if) = [4] x1 + [2] x2 + [2] x3 + [4]
            p(n__cons) = [1] x1 + [0]                  
          p(n__filter) = [1] x1 + [1] x2 + [0]         
            p(n__from) = [1] x1 + [0]                  
               p(n__s) = [1] x1 + [0]                  
           p(n__sieve) = [1] x1 + [2]                  
             p(primes) = [1]                           
                  p(s) = [1] x1 + [0]                  
              p(sieve) = [1] x1 + [3]                  
               p(tail) = [2]                           
               p(true) = [2]                           
        
        Following rules are strictly oriented:
        filter(X1,X2) = [1] X1 + [1] X2 + [2]
                      > [1] X1 + [1] X2 + [0]
                      = n__filter(X1,X2)     
        
        
        Following rules are (at-least) weakly oriented:
                       activate(X) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  X                       
        
          activate(n__cons(X1,X2)) =  [1] X1 + [0]            
                                   >= [1] X1 + [0]            
                                   =  cons(activate(X1),X2)   
        
        activate(n__filter(X1,X2)) =  [1] X1 + [1] X2 + [0]   
                                   >= [1] X1 + [1] X2 + [2]   
                                   =  filter(activate(X1)     
                                            ,activate(X2))    
        
              activate(n__from(X)) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  from(activate(X))       
        
                 activate(n__s(X)) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  s(activate(X))          
        
             activate(n__sieve(X)) =  [1] X + [2]             
                                   >= [1] X + [3]             
                                   =  sieve(activate(X))      
        
                       cons(X1,X2) =  [1] X1 + [0]            
                                   >= [1] X1 + [0]            
                                   =  n__cons(X1,X2)          
        
                           from(X) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  cons(X,n__from(n__s(X)))
        
                           from(X) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  n__from(X)              
        
                   if(false(),X,Y) =  [2] X + [2] Y + [4]     
                                   >= [1] Y + [0]             
                                   =  activate(Y)             
        
                    if(true(),X,Y) =  [2] X + [2] Y + [12]    
                                   >= [1] X + [0]             
                                   =  activate(X)             
        
                          primes() =  [1]                     
                                   >= [8]                     
                                   =  sieve(from(s(s(0()))))  
        
                              s(X) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  n__s(X)                 
        
                          sieve(X) =  [1] X + [3]             
                                   >= [1] X + [2]             
                                   =  n__sieve(X)             
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__filter(X1,X2)) -> filter(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        activate(n__sieve(X)) -> sieve(activate(X))
        primes() -> sieve(from(s(s(0()))))
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
        activate(n__from(X)) -> from(activate(X))
        cons(X1,X2) -> n__cons(X1,X2)
        filter(X1,X2) -> n__filter(X1,X2)
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        if(false(),X,Y) -> activate(Y)
        if(true(),X,Y) -> activate(X)
        sieve(X) -> n__sieve(X)
      Signature:
        {activate/1,cons/2,filter/2,from/1,head/1,if/3,primes/0,s/1,sieve/1,tail/1} / {0/0,divides/2,false/0,n__cons/2,n__filter/2,n__from/1,n__s/1,n__sieve/1,true/0}
      Obligation:
        Innermost
        basic terms: {activate,cons,filter,from,head,if,primes,s,sieve,tail}/{0,divides,false,n__cons,n__filter,n__from,n__s,n__sieve,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {1},
          uargs(filter) = {1,2},
          uargs(from) = {1},
          uargs(s) = {1},
          uargs(sieve) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                  p(0) = [0]                  
           p(activate) = [5] x1 + [0]         
               p(cons) = [1] x1 + [0]         
            p(divides) = [1] x1 + [1] x2 + [0]
              p(false) = [0]                  
             p(filter) = [1] x1 + [1] x2 + [0]
               p(from) = [1] x1 + [0]         
               p(head) = [0]                  
                 p(if) = [5] x2 + [5] x3 + [0]
            p(n__cons) = [1] x1 + [0]         
          p(n__filter) = [1] x1 + [1] x2 + [0]
            p(n__from) = [1] x1 + [0]         
               p(n__s) = [1] x1 + [2]         
           p(n__sieve) = [1] x1 + [0]         
             p(primes) = [0]                  
                  p(s) = [1] x1 + [7]         
              p(sieve) = [1] x1 + [0]         
               p(tail) = [0]                  
               p(true) = [0]                  
        
        Following rules are strictly oriented:
        activate(n__s(X)) = [5] X + [10]  
                          > [5] X + [7]   
                          = s(activate(X))
        
                     s(X) = [1] X + [7]   
                          > [1] X + [2]   
                          = n__s(X)       
        
        
        Following rules are (at-least) weakly oriented:
                       activate(X) =  [5] X + [0]             
                                   >= [1] X + [0]             
                                   =  X                       
        
          activate(n__cons(X1,X2)) =  [5] X1 + [0]            
                                   >= [5] X1 + [0]            
                                   =  cons(activate(X1),X2)   
        
        activate(n__filter(X1,X2)) =  [5] X1 + [5] X2 + [0]   
                                   >= [5] X1 + [5] X2 + [0]   
                                   =  filter(activate(X1)     
                                            ,activate(X2))    
        
              activate(n__from(X)) =  [5] X + [0]             
                                   >= [5] X + [0]             
                                   =  from(activate(X))       
        
             activate(n__sieve(X)) =  [5] X + [0]             
                                   >= [5] X + [0]             
                                   =  sieve(activate(X))      
        
                       cons(X1,X2) =  [1] X1 + [0]            
                                   >= [1] X1 + [0]            
                                   =  n__cons(X1,X2)          
        
                     filter(X1,X2) =  [1] X1 + [1] X2 + [0]   
                                   >= [1] X1 + [1] X2 + [0]   
                                   =  n__filter(X1,X2)        
        
                           from(X) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  cons(X,n__from(n__s(X)))
        
                           from(X) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  n__from(X)              
        
                   if(false(),X,Y) =  [5] X + [5] Y + [0]     
                                   >= [5] Y + [0]             
                                   =  activate(Y)             
        
                    if(true(),X,Y) =  [5] X + [5] Y + [0]     
                                   >= [5] X + [0]             
                                   =  activate(X)             
        
                          primes() =  [0]                     
                                   >= [14]                    
                                   =  sieve(from(s(s(0()))))  
        
                          sieve(X) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  n__sieve(X)             
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__filter(X1,X2)) -> filter(activate(X1),activate(X2))
        activate(n__sieve(X)) -> sieve(activate(X))
        primes() -> sieve(from(s(s(0()))))
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        cons(X1,X2) -> n__cons(X1,X2)
        filter(X1,X2) -> n__filter(X1,X2)
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        if(false(),X,Y) -> activate(Y)
        if(true(),X,Y) -> activate(X)
        s(X) -> n__s(X)
        sieve(X) -> n__sieve(X)
      Signature:
        {activate/1,cons/2,filter/2,from/1,head/1,if/3,primes/0,s/1,sieve/1,tail/1} / {0/0,divides/2,false/0,n__cons/2,n__filter/2,n__from/1,n__s/1,n__sieve/1,true/0}
      Obligation:
        Innermost
        basic terms: {activate,cons,filter,from,head,if,primes,s,sieve,tail}/{0,divides,false,n__cons,n__filter,n__from,n__s,n__sieve,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {1},
          uargs(filter) = {1,2},
          uargs(from) = {1},
          uargs(s) = {1},
          uargs(sieve) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                  p(0) = [2]                  
           p(activate) = [1] x1 + [0]         
               p(cons) = [1] x1 + [2]         
            p(divides) = [1] x1 + [1] x2 + [0]
              p(false) = [0]                  
             p(filter) = [1] x1 + [1] x2 + [4]
               p(from) = [1] x1 + [2]         
               p(head) = [0]                  
                 p(if) = [1] x2 + [1] x3 + [0]
            p(n__cons) = [1] x1 + [2]         
          p(n__filter) = [1] x1 + [1] x2 + [4]
            p(n__from) = [1] x1 + [2]         
               p(n__s) = [1] x1 + [0]         
           p(n__sieve) = [1] x1 + [0]         
             p(primes) = [5]                  
                  p(s) = [1] x1 + [0]         
              p(sieve) = [1] x1 + [0]         
               p(tail) = [0]                  
               p(true) = [0]                  
        
        Following rules are strictly oriented:
        primes() = [5]                   
                 > [4]                   
                 = sieve(from(s(s(0()))))
        
        
        Following rules are (at-least) weakly oriented:
                       activate(X) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  X                       
        
          activate(n__cons(X1,X2)) =  [1] X1 + [2]            
                                   >= [1] X1 + [2]            
                                   =  cons(activate(X1),X2)   
        
        activate(n__filter(X1,X2)) =  [1] X1 + [1] X2 + [4]   
                                   >= [1] X1 + [1] X2 + [4]   
                                   =  filter(activate(X1)     
                                            ,activate(X2))    
        
              activate(n__from(X)) =  [1] X + [2]             
                                   >= [1] X + [2]             
                                   =  from(activate(X))       
        
                 activate(n__s(X)) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  s(activate(X))          
        
             activate(n__sieve(X)) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  sieve(activate(X))      
        
                       cons(X1,X2) =  [1] X1 + [2]            
                                   >= [1] X1 + [2]            
                                   =  n__cons(X1,X2)          
        
                     filter(X1,X2) =  [1] X1 + [1] X2 + [4]   
                                   >= [1] X1 + [1] X2 + [4]   
                                   =  n__filter(X1,X2)        
        
                           from(X) =  [1] X + [2]             
                                   >= [1] X + [2]             
                                   =  cons(X,n__from(n__s(X)))
        
                           from(X) =  [1] X + [2]             
                                   >= [1] X + [2]             
                                   =  n__from(X)              
        
                   if(false(),X,Y) =  [1] X + [1] Y + [0]     
                                   >= [1] Y + [0]             
                                   =  activate(Y)             
        
                    if(true(),X,Y) =  [1] X + [1] Y + [0]     
                                   >= [1] X + [0]             
                                   =  activate(X)             
        
                              s(X) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  n__s(X)                 
        
                          sieve(X) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  n__sieve(X)             
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__filter(X1,X2)) -> filter(activate(X1),activate(X2))
        activate(n__sieve(X)) -> sieve(activate(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        cons(X1,X2) -> n__cons(X1,X2)
        filter(X1,X2) -> n__filter(X1,X2)
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        if(false(),X,Y) -> activate(Y)
        if(true(),X,Y) -> activate(X)
        primes() -> sieve(from(s(s(0()))))
        s(X) -> n__s(X)
        sieve(X) -> n__sieve(X)
      Signature:
        {activate/1,cons/2,filter/2,from/1,head/1,if/3,primes/0,s/1,sieve/1,tail/1} / {0/0,divides/2,false/0,n__cons/2,n__filter/2,n__from/1,n__s/1,n__sieve/1,true/0}
      Obligation:
        Innermost
        basic terms: {activate,cons,filter,from,head,if,primes,s,sieve,tail}/{0,divides,false,n__cons,n__filter,n__from,n__s,n__sieve,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {1},
          uargs(filter) = {1,2},
          uargs(from) = {1},
          uargs(s) = {1},
          uargs(sieve) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                  p(0) = [2]                  
           p(activate) = [5] x1 + [0]         
               p(cons) = [1] x1 + [0]         
            p(divides) = [1] x1 + [1] x2 + [0]
              p(false) = [0]                  
             p(filter) = [1] x1 + [1] x2 + [2]
               p(from) = [1] x1 + [0]         
               p(head) = [0]                  
                 p(if) = [6] x2 + [5] x3 + [0]
            p(n__cons) = [1] x1 + [0]         
          p(n__filter) = [1] x1 + [1] x2 + [0]
            p(n__from) = [1] x1 + [0]         
               p(n__s) = [1] x1 + [0]         
           p(n__sieve) = [1] x1 + [1]         
             p(primes) = [7]                  
                  p(s) = [1] x1 + [0]         
              p(sieve) = [1] x1 + [4]         
               p(tail) = [4] x1 + [1]         
               p(true) = [0]                  
        
        Following rules are strictly oriented:
        activate(n__sieve(X)) = [5] X + [5]       
                              > [5] X + [4]       
                              = sieve(activate(X))
        
        
        Following rules are (at-least) weakly oriented:
                       activate(X) =  [5] X + [0]             
                                   >= [1] X + [0]             
                                   =  X                       
        
          activate(n__cons(X1,X2)) =  [5] X1 + [0]            
                                   >= [5] X1 + [0]            
                                   =  cons(activate(X1),X2)   
        
        activate(n__filter(X1,X2)) =  [5] X1 + [5] X2 + [0]   
                                   >= [5] X1 + [5] X2 + [2]   
                                   =  filter(activate(X1)     
                                            ,activate(X2))    
        
              activate(n__from(X)) =  [5] X + [0]             
                                   >= [5] X + [0]             
                                   =  from(activate(X))       
        
                 activate(n__s(X)) =  [5] X + [0]             
                                   >= [5] X + [0]             
                                   =  s(activate(X))          
        
                       cons(X1,X2) =  [1] X1 + [0]            
                                   >= [1] X1 + [0]            
                                   =  n__cons(X1,X2)          
        
                     filter(X1,X2) =  [1] X1 + [1] X2 + [2]   
                                   >= [1] X1 + [1] X2 + [0]   
                                   =  n__filter(X1,X2)        
        
                           from(X) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  cons(X,n__from(n__s(X)))
        
                           from(X) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  n__from(X)              
        
                   if(false(),X,Y) =  [6] X + [5] Y + [0]     
                                   >= [5] Y + [0]             
                                   =  activate(Y)             
        
                    if(true(),X,Y) =  [6] X + [5] Y + [0]     
                                   >= [5] X + [0]             
                                   =  activate(X)             
        
                          primes() =  [7]                     
                                   >= [6]                     
                                   =  sieve(from(s(s(0()))))  
        
                              s(X) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  n__s(X)                 
        
                          sieve(X) =  [1] X + [4]             
                                   >= [1] X + [1]             
                                   =  n__sieve(X)             
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__filter(X1,X2)) -> filter(activate(X1),activate(X2))
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        activate(n__sieve(X)) -> sieve(activate(X))
        cons(X1,X2) -> n__cons(X1,X2)
        filter(X1,X2) -> n__filter(X1,X2)
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        if(false(),X,Y) -> activate(Y)
        if(true(),X,Y) -> activate(X)
        primes() -> sieve(from(s(s(0()))))
        s(X) -> n__s(X)
        sieve(X) -> n__sieve(X)
      Signature:
        {activate/1,cons/2,filter/2,from/1,head/1,if/3,primes/0,s/1,sieve/1,tail/1} / {0/0,divides/2,false/0,n__cons/2,n__filter/2,n__from/1,n__s/1,n__sieve/1,true/0}
      Obligation:
        Innermost
        basic terms: {activate,cons,filter,from,head,if,primes,s,sieve,tail}/{0,divides,false,n__cons,n__filter,n__from,n__s,n__sieve,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {1},
          uargs(filter) = {1,2},
          uargs(from) = {1},
          uargs(s) = {1},
          uargs(sieve) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                  p(0) = [4]                           
           p(activate) = [3] x1 + [0]                  
               p(cons) = [1] x1 + [0]                  
            p(divides) = [0]                           
              p(false) = [4]                           
             p(filter) = [1] x1 + [1] x2 + [2]         
               p(from) = [1] x1 + [3]                  
               p(head) = [2] x1 + [0]                  
                 p(if) = [1] x1 + [5] x2 + [3] x3 + [0]
            p(n__cons) = [1] x1 + [0]                  
          p(n__filter) = [1] x1 + [1] x2 + [1]         
            p(n__from) = [1] x1 + [1]                  
               p(n__s) = [1] x1 + [0]                  
           p(n__sieve) = [1] x1 + [0]                  
             p(primes) = [7]                           
                  p(s) = [1] x1 + [0]                  
              p(sieve) = [1] x1 + [0]                  
               p(tail) = [0]                           
               p(true) = [5]                           
        
        Following rules are strictly oriented:
        activate(n__filter(X1,X2)) = [3] X1 + [3] X2 + [3]
                                   > [3] X1 + [3] X2 + [2]
                                   = filter(activate(X1)  
                                           ,activate(X2)) 
        
        
        Following rules are (at-least) weakly oriented:
                     activate(X) =  [3] X + [0]             
                                 >= [1] X + [0]             
                                 =  X                       
        
        activate(n__cons(X1,X2)) =  [3] X1 + [0]            
                                 >= [3] X1 + [0]            
                                 =  cons(activate(X1),X2)   
        
            activate(n__from(X)) =  [3] X + [3]             
                                 >= [3] X + [3]             
                                 =  from(activate(X))       
        
               activate(n__s(X)) =  [3] X + [0]             
                                 >= [3] X + [0]             
                                 =  s(activate(X))          
        
           activate(n__sieve(X)) =  [3] X + [0]             
                                 >= [3] X + [0]             
                                 =  sieve(activate(X))      
        
                     cons(X1,X2) =  [1] X1 + [0]            
                                 >= [1] X1 + [0]            
                                 =  n__cons(X1,X2)          
        
                   filter(X1,X2) =  [1] X1 + [1] X2 + [2]   
                                 >= [1] X1 + [1] X2 + [1]   
                                 =  n__filter(X1,X2)        
        
                         from(X) =  [1] X + [3]             
                                 >= [1] X + [0]             
                                 =  cons(X,n__from(n__s(X)))
        
                         from(X) =  [1] X + [3]             
                                 >= [1] X + [1]             
                                 =  n__from(X)              
        
                 if(false(),X,Y) =  [5] X + [3] Y + [4]     
                                 >= [3] Y + [0]             
                                 =  activate(Y)             
        
                  if(true(),X,Y) =  [5] X + [3] Y + [5]     
                                 >= [3] X + [0]             
                                 =  activate(X)             
        
                        primes() =  [7]                     
                                 >= [7]                     
                                 =  sieve(from(s(s(0()))))  
        
                            s(X) =  [1] X + [0]             
                                 >= [1] X + [0]             
                                 =  n__s(X)                 
        
                        sieve(X) =  [1] X + [0]             
                                 >= [1] X + [0]             
                                 =  n__sieve(X)             
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
        activate(n__filter(X1,X2)) -> filter(activate(X1),activate(X2))
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        activate(n__sieve(X)) -> sieve(activate(X))
        cons(X1,X2) -> n__cons(X1,X2)
        filter(X1,X2) -> n__filter(X1,X2)
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        if(false(),X,Y) -> activate(Y)
        if(true(),X,Y) -> activate(X)
        primes() -> sieve(from(s(s(0()))))
        s(X) -> n__s(X)
        sieve(X) -> n__sieve(X)
      Signature:
        {activate/1,cons/2,filter/2,from/1,head/1,if/3,primes/0,s/1,sieve/1,tail/1} / {0/0,divides/2,false/0,n__cons/2,n__filter/2,n__from/1,n__s/1,n__sieve/1,true/0}
      Obligation:
        Innermost
        basic terms: {activate,cons,filter,from,head,if,primes,s,sieve,tail}/{0,divides,false,n__cons,n__filter,n__from,n__s,n__sieve,true}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).