*** 1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: activate(X) -> X activate(n__cons(X1,X2)) -> cons(activate(X1),X2) activate(n__filter(X1,X2)) -> filter(activate(X1),activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__sieve(X)) -> sieve(activate(X)) cons(X1,X2) -> n__cons(X1,X2) filter(X1,X2) -> n__filter(X1,X2) filter(s(s(X)),cons(Y,Z)) -> if(divides(s(s(X)),Y),n__filter(n__s(n__s(X)),activate(Z)),n__cons(Y,n__filter(X,n__sieve(Y)))) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,Y)) -> X if(false(),X,Y) -> activate(Y) if(true(),X,Y) -> activate(X) primes() -> sieve(from(s(s(0())))) s(X) -> n__s(X) sieve(X) -> n__sieve(X) sieve(cons(X,Y)) -> cons(X,n__filter(X,n__sieve(activate(Y)))) tail(cons(X,Y)) -> activate(Y) Weak DP Rules: Weak TRS Rules: Signature: {activate/1,cons/2,filter/2,from/1,head/1,if/3,primes/0,s/1,sieve/1,tail/1} / {0/0,divides/2,false/0,n__cons/2,n__filter/2,n__from/1,n__s/1,n__sieve/1,true/0} Obligation: Innermost basic terms: {activate,cons,filter,from,head,if,primes,s,sieve,tail}/{0,divides,false,n__cons,n__filter,n__from,n__s,n__sieve,true} Applied Processor: InnermostRuleRemoval Proof: Arguments of following rules are not normal-forms. filter(s(s(X)),cons(Y,Z)) -> if(divides(s(s(X)),Y),n__filter(n__s(n__s(X)),activate(Z)),n__cons(Y,n__filter(X,n__sieve(Y)))) head(cons(X,Y)) -> X sieve(cons(X,Y)) -> cons(X,n__filter(X,n__sieve(activate(Y)))) tail(cons(X,Y)) -> activate(Y) All above mentioned rules can be savely removed. *** 1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: activate(X) -> X activate(n__cons(X1,X2)) -> cons(activate(X1),X2) activate(n__filter(X1,X2)) -> filter(activate(X1),activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__sieve(X)) -> sieve(activate(X)) cons(X1,X2) -> n__cons(X1,X2) filter(X1,X2) -> n__filter(X1,X2) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) if(false(),X,Y) -> activate(Y) if(true(),X,Y) -> activate(X) primes() -> sieve(from(s(s(0())))) s(X) -> n__s(X) sieve(X) -> n__sieve(X) Weak DP Rules: Weak TRS Rules: Signature: {activate/1,cons/2,filter/2,from/1,head/1,if/3,primes/0,s/1,sieve/1,tail/1} / {0/0,divides/2,false/0,n__cons/2,n__filter/2,n__from/1,n__s/1,n__sieve/1,true/0} Obligation: Innermost basic terms: {activate,cons,filter,from,head,if,primes,s,sieve,tail}/{0,divides,false,n__cons,n__filter,n__from,n__s,n__sieve,true} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {1}, uargs(filter) = {1,2}, uargs(from) = {1}, uargs(s) = {1}, uargs(sieve) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(activate) = [7] x1 + [0] p(cons) = [1] x1 + [5] p(divides) = [1] x1 + [1] x2 + [0] p(false) = [3] p(filter) = [1] x1 + [1] x2 + [0] p(from) = [1] x1 + [5] p(head) = [0] p(if) = [9] x1 + [7] x2 + [7] x3 + [1] p(n__cons) = [1] x1 + [3] p(n__filter) = [1] x1 + [1] x2 + [0] p(n__from) = [1] x1 + [1] p(n__s) = [1] x1 + [0] p(n__sieve) = [1] x1 + [0] p(primes) = [0] p(s) = [1] x1 + [0] p(sieve) = [1] x1 + [1] p(tail) = [0] p(true) = [0] Following rules are strictly oriented: activate(n__cons(X1,X2)) = [7] X1 + [21] > [7] X1 + [5] = cons(activate(X1),X2) activate(n__from(X)) = [7] X + [7] > [7] X + [5] = from(activate(X)) cons(X1,X2) = [1] X1 + [5] > [1] X1 + [3] = n__cons(X1,X2) from(X) = [1] X + [5] > [1] X + [1] = n__from(X) if(false(),X,Y) = [7] X + [7] Y + [28] > [7] Y + [0] = activate(Y) if(true(),X,Y) = [7] X + [7] Y + [1] > [7] X + [0] = activate(X) sieve(X) = [1] X + [1] > [1] X + [0] = n__sieve(X) Following rules are (at-least) weakly oriented: activate(X) = [7] X + [0] >= [1] X + [0] = X activate(n__filter(X1,X2)) = [7] X1 + [7] X2 + [0] >= [7] X1 + [7] X2 + [0] = filter(activate(X1) ,activate(X2)) activate(n__s(X)) = [7] X + [0] >= [7] X + [0] = s(activate(X)) activate(n__sieve(X)) = [7] X + [0] >= [7] X + [1] = sieve(activate(X)) filter(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = n__filter(X1,X2) from(X) = [1] X + [5] >= [1] X + [5] = cons(X,n__from(n__s(X))) primes() = [0] >= [6] = sieve(from(s(s(0())))) s(X) = [1] X + [0] >= [1] X + [0] = n__s(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: activate(X) -> X activate(n__filter(X1,X2)) -> filter(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__sieve(X)) -> sieve(activate(X)) filter(X1,X2) -> n__filter(X1,X2) from(X) -> cons(X,n__from(n__s(X))) primes() -> sieve(from(s(s(0())))) s(X) -> n__s(X) Weak DP Rules: Weak TRS Rules: activate(n__cons(X1,X2)) -> cons(activate(X1),X2) activate(n__from(X)) -> from(activate(X)) cons(X1,X2) -> n__cons(X1,X2) from(X) -> n__from(X) if(false(),X,Y) -> activate(Y) if(true(),X,Y) -> activate(X) sieve(X) -> n__sieve(X) Signature: {activate/1,cons/2,filter/2,from/1,head/1,if/3,primes/0,s/1,sieve/1,tail/1} / {0/0,divides/2,false/0,n__cons/2,n__filter/2,n__from/1,n__s/1,n__sieve/1,true/0} Obligation: Innermost basic terms: {activate,cons,filter,from,head,if,primes,s,sieve,tail}/{0,divides,false,n__cons,n__filter,n__from,n__s,n__sieve,true} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {1}, uargs(filter) = {1,2}, uargs(from) = {1}, uargs(s) = {1}, uargs(sieve) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(activate) = [1] x1 + [1] p(cons) = [1] x1 + [1] p(divides) = [1] x1 + [1] x2 + [0] p(false) = [1] p(filter) = [1] x1 + [1] x2 + [0] p(from) = [1] x1 + [2] p(head) = [0] p(if) = [2] x2 + [1] x3 + [1] p(n__cons) = [1] x1 + [1] p(n__filter) = [1] x1 + [1] x2 + [0] p(n__from) = [1] x1 + [2] p(n__s) = [1] x1 + [0] p(n__sieve) = [1] x1 + [0] p(primes) = [0] p(s) = [1] x1 + [0] p(sieve) = [1] x1 + [0] p(tail) = [0] p(true) = [4] Following rules are strictly oriented: activate(X) = [1] X + [1] > [1] X + [0] = X from(X) = [1] X + [2] > [1] X + [1] = cons(X,n__from(n__s(X))) Following rules are (at-least) weakly oriented: activate(n__cons(X1,X2)) = [1] X1 + [2] >= [1] X1 + [2] = cons(activate(X1),X2) activate(n__filter(X1,X2)) = [1] X1 + [1] X2 + [1] >= [1] X1 + [1] X2 + [2] = filter(activate(X1) ,activate(X2)) activate(n__from(X)) = [1] X + [3] >= [1] X + [3] = from(activate(X)) activate(n__s(X)) = [1] X + [1] >= [1] X + [1] = s(activate(X)) activate(n__sieve(X)) = [1] X + [1] >= [1] X + [1] = sieve(activate(X)) cons(X1,X2) = [1] X1 + [1] >= [1] X1 + [1] = n__cons(X1,X2) filter(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = n__filter(X1,X2) from(X) = [1] X + [2] >= [1] X + [2] = n__from(X) if(false(),X,Y) = [2] X + [1] Y + [1] >= [1] Y + [1] = activate(Y) if(true(),X,Y) = [2] X + [1] Y + [1] >= [1] X + [1] = activate(X) primes() = [0] >= [2] = sieve(from(s(s(0())))) s(X) = [1] X + [0] >= [1] X + [0] = n__s(X) sieve(X) = [1] X + [0] >= [1] X + [0] = n__sieve(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: activate(n__filter(X1,X2)) -> filter(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__sieve(X)) -> sieve(activate(X)) filter(X1,X2) -> n__filter(X1,X2) primes() -> sieve(from(s(s(0())))) s(X) -> n__s(X) Weak DP Rules: Weak TRS Rules: activate(X) -> X activate(n__cons(X1,X2)) -> cons(activate(X1),X2) activate(n__from(X)) -> from(activate(X)) cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) if(false(),X,Y) -> activate(Y) if(true(),X,Y) -> activate(X) sieve(X) -> n__sieve(X) Signature: {activate/1,cons/2,filter/2,from/1,head/1,if/3,primes/0,s/1,sieve/1,tail/1} / {0/0,divides/2,false/0,n__cons/2,n__filter/2,n__from/1,n__s/1,n__sieve/1,true/0} Obligation: Innermost basic terms: {activate,cons,filter,from,head,if,primes,s,sieve,tail}/{0,divides,false,n__cons,n__filter,n__from,n__s,n__sieve,true} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {1}, uargs(filter) = {1,2}, uargs(from) = {1}, uargs(s) = {1}, uargs(sieve) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [5] p(activate) = [1] x1 + [0] p(cons) = [1] x1 + [0] p(divides) = [1] p(false) = [0] p(filter) = [1] x1 + [1] x2 + [2] p(from) = [1] x1 + [0] p(head) = [1] x1 + [1] p(if) = [4] x1 + [2] x2 + [2] x3 + [4] p(n__cons) = [1] x1 + [0] p(n__filter) = [1] x1 + [1] x2 + [0] p(n__from) = [1] x1 + [0] p(n__s) = [1] x1 + [0] p(n__sieve) = [1] x1 + [2] p(primes) = [1] p(s) = [1] x1 + [0] p(sieve) = [1] x1 + [3] p(tail) = [2] p(true) = [2] Following rules are strictly oriented: filter(X1,X2) = [1] X1 + [1] X2 + [2] > [1] X1 + [1] X2 + [0] = n__filter(X1,X2) Following rules are (at-least) weakly oriented: activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__cons(X1,X2)) = [1] X1 + [0] >= [1] X1 + [0] = cons(activate(X1),X2) activate(n__filter(X1,X2)) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [2] = filter(activate(X1) ,activate(X2)) activate(n__from(X)) = [1] X + [0] >= [1] X + [0] = from(activate(X)) activate(n__s(X)) = [1] X + [0] >= [1] X + [0] = s(activate(X)) activate(n__sieve(X)) = [1] X + [2] >= [1] X + [3] = sieve(activate(X)) cons(X1,X2) = [1] X1 + [0] >= [1] X1 + [0] = n__cons(X1,X2) from(X) = [1] X + [0] >= [1] X + [0] = cons(X,n__from(n__s(X))) from(X) = [1] X + [0] >= [1] X + [0] = n__from(X) if(false(),X,Y) = [2] X + [2] Y + [4] >= [1] Y + [0] = activate(Y) if(true(),X,Y) = [2] X + [2] Y + [12] >= [1] X + [0] = activate(X) primes() = [1] >= [8] = sieve(from(s(s(0())))) s(X) = [1] X + [0] >= [1] X + [0] = n__s(X) sieve(X) = [1] X + [3] >= [1] X + [2] = n__sieve(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: activate(n__filter(X1,X2)) -> filter(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__sieve(X)) -> sieve(activate(X)) primes() -> sieve(from(s(s(0())))) s(X) -> n__s(X) Weak DP Rules: Weak TRS Rules: activate(X) -> X activate(n__cons(X1,X2)) -> cons(activate(X1),X2) activate(n__from(X)) -> from(activate(X)) cons(X1,X2) -> n__cons(X1,X2) filter(X1,X2) -> n__filter(X1,X2) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) if(false(),X,Y) -> activate(Y) if(true(),X,Y) -> activate(X) sieve(X) -> n__sieve(X) Signature: {activate/1,cons/2,filter/2,from/1,head/1,if/3,primes/0,s/1,sieve/1,tail/1} / {0/0,divides/2,false/0,n__cons/2,n__filter/2,n__from/1,n__s/1,n__sieve/1,true/0} Obligation: Innermost basic terms: {activate,cons,filter,from,head,if,primes,s,sieve,tail}/{0,divides,false,n__cons,n__filter,n__from,n__s,n__sieve,true} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {1}, uargs(filter) = {1,2}, uargs(from) = {1}, uargs(s) = {1}, uargs(sieve) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(activate) = [5] x1 + [0] p(cons) = [1] x1 + [0] p(divides) = [1] x1 + [1] x2 + [0] p(false) = [0] p(filter) = [1] x1 + [1] x2 + [0] p(from) = [1] x1 + [0] p(head) = [0] p(if) = [5] x2 + [5] x3 + [0] p(n__cons) = [1] x1 + [0] p(n__filter) = [1] x1 + [1] x2 + [0] p(n__from) = [1] x1 + [0] p(n__s) = [1] x1 + [2] p(n__sieve) = [1] x1 + [0] p(primes) = [0] p(s) = [1] x1 + [7] p(sieve) = [1] x1 + [0] p(tail) = [0] p(true) = [0] Following rules are strictly oriented: activate(n__s(X)) = [5] X + [10] > [5] X + [7] = s(activate(X)) s(X) = [1] X + [7] > [1] X + [2] = n__s(X) Following rules are (at-least) weakly oriented: activate(X) = [5] X + [0] >= [1] X + [0] = X activate(n__cons(X1,X2)) = [5] X1 + [0] >= [5] X1 + [0] = cons(activate(X1),X2) activate(n__filter(X1,X2)) = [5] X1 + [5] X2 + [0] >= [5] X1 + [5] X2 + [0] = filter(activate(X1) ,activate(X2)) activate(n__from(X)) = [5] X + [0] >= [5] X + [0] = from(activate(X)) activate(n__sieve(X)) = [5] X + [0] >= [5] X + [0] = sieve(activate(X)) cons(X1,X2) = [1] X1 + [0] >= [1] X1 + [0] = n__cons(X1,X2) filter(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = n__filter(X1,X2) from(X) = [1] X + [0] >= [1] X + [0] = cons(X,n__from(n__s(X))) from(X) = [1] X + [0] >= [1] X + [0] = n__from(X) if(false(),X,Y) = [5] X + [5] Y + [0] >= [5] Y + [0] = activate(Y) if(true(),X,Y) = [5] X + [5] Y + [0] >= [5] X + [0] = activate(X) primes() = [0] >= [14] = sieve(from(s(s(0())))) sieve(X) = [1] X + [0] >= [1] X + [0] = n__sieve(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: activate(n__filter(X1,X2)) -> filter(activate(X1),activate(X2)) activate(n__sieve(X)) -> sieve(activate(X)) primes() -> sieve(from(s(s(0())))) Weak DP Rules: Weak TRS Rules: activate(X) -> X activate(n__cons(X1,X2)) -> cons(activate(X1),X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) cons(X1,X2) -> n__cons(X1,X2) filter(X1,X2) -> n__filter(X1,X2) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) if(false(),X,Y) -> activate(Y) if(true(),X,Y) -> activate(X) s(X) -> n__s(X) sieve(X) -> n__sieve(X) Signature: {activate/1,cons/2,filter/2,from/1,head/1,if/3,primes/0,s/1,sieve/1,tail/1} / {0/0,divides/2,false/0,n__cons/2,n__filter/2,n__from/1,n__s/1,n__sieve/1,true/0} Obligation: Innermost basic terms: {activate,cons,filter,from,head,if,primes,s,sieve,tail}/{0,divides,false,n__cons,n__filter,n__from,n__s,n__sieve,true} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {1}, uargs(filter) = {1,2}, uargs(from) = {1}, uargs(s) = {1}, uargs(sieve) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [2] p(activate) = [1] x1 + [0] p(cons) = [1] x1 + [2] p(divides) = [1] x1 + [1] x2 + [0] p(false) = [0] p(filter) = [1] x1 + [1] x2 + [4] p(from) = [1] x1 + [2] p(head) = [0] p(if) = [1] x2 + [1] x3 + [0] p(n__cons) = [1] x1 + [2] p(n__filter) = [1] x1 + [1] x2 + [4] p(n__from) = [1] x1 + [2] p(n__s) = [1] x1 + [0] p(n__sieve) = [1] x1 + [0] p(primes) = [5] p(s) = [1] x1 + [0] p(sieve) = [1] x1 + [0] p(tail) = [0] p(true) = [0] Following rules are strictly oriented: primes() = [5] > [4] = sieve(from(s(s(0())))) Following rules are (at-least) weakly oriented: activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__cons(X1,X2)) = [1] X1 + [2] >= [1] X1 + [2] = cons(activate(X1),X2) activate(n__filter(X1,X2)) = [1] X1 + [1] X2 + [4] >= [1] X1 + [1] X2 + [4] = filter(activate(X1) ,activate(X2)) activate(n__from(X)) = [1] X + [2] >= [1] X + [2] = from(activate(X)) activate(n__s(X)) = [1] X + [0] >= [1] X + [0] = s(activate(X)) activate(n__sieve(X)) = [1] X + [0] >= [1] X + [0] = sieve(activate(X)) cons(X1,X2) = [1] X1 + [2] >= [1] X1 + [2] = n__cons(X1,X2) filter(X1,X2) = [1] X1 + [1] X2 + [4] >= [1] X1 + [1] X2 + [4] = n__filter(X1,X2) from(X) = [1] X + [2] >= [1] X + [2] = cons(X,n__from(n__s(X))) from(X) = [1] X + [2] >= [1] X + [2] = n__from(X) if(false(),X,Y) = [1] X + [1] Y + [0] >= [1] Y + [0] = activate(Y) if(true(),X,Y) = [1] X + [1] Y + [0] >= [1] X + [0] = activate(X) s(X) = [1] X + [0] >= [1] X + [0] = n__s(X) sieve(X) = [1] X + [0] >= [1] X + [0] = n__sieve(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: activate(n__filter(X1,X2)) -> filter(activate(X1),activate(X2)) activate(n__sieve(X)) -> sieve(activate(X)) Weak DP Rules: Weak TRS Rules: activate(X) -> X activate(n__cons(X1,X2)) -> cons(activate(X1),X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) cons(X1,X2) -> n__cons(X1,X2) filter(X1,X2) -> n__filter(X1,X2) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) if(false(),X,Y) -> activate(Y) if(true(),X,Y) -> activate(X) primes() -> sieve(from(s(s(0())))) s(X) -> n__s(X) sieve(X) -> n__sieve(X) Signature: {activate/1,cons/2,filter/2,from/1,head/1,if/3,primes/0,s/1,sieve/1,tail/1} / {0/0,divides/2,false/0,n__cons/2,n__filter/2,n__from/1,n__s/1,n__sieve/1,true/0} Obligation: Innermost basic terms: {activate,cons,filter,from,head,if,primes,s,sieve,tail}/{0,divides,false,n__cons,n__filter,n__from,n__s,n__sieve,true} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {1}, uargs(filter) = {1,2}, uargs(from) = {1}, uargs(s) = {1}, uargs(sieve) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [2] p(activate) = [5] x1 + [0] p(cons) = [1] x1 + [0] p(divides) = [1] x1 + [1] x2 + [0] p(false) = [0] p(filter) = [1] x1 + [1] x2 + [2] p(from) = [1] x1 + [0] p(head) = [0] p(if) = [6] x2 + [5] x3 + [0] p(n__cons) = [1] x1 + [0] p(n__filter) = [1] x1 + [1] x2 + [0] p(n__from) = [1] x1 + [0] p(n__s) = [1] x1 + [0] p(n__sieve) = [1] x1 + [1] p(primes) = [7] p(s) = [1] x1 + [0] p(sieve) = [1] x1 + [4] p(tail) = [4] x1 + [1] p(true) = [0] Following rules are strictly oriented: activate(n__sieve(X)) = [5] X + [5] > [5] X + [4] = sieve(activate(X)) Following rules are (at-least) weakly oriented: activate(X) = [5] X + [0] >= [1] X + [0] = X activate(n__cons(X1,X2)) = [5] X1 + [0] >= [5] X1 + [0] = cons(activate(X1),X2) activate(n__filter(X1,X2)) = [5] X1 + [5] X2 + [0] >= [5] X1 + [5] X2 + [2] = filter(activate(X1) ,activate(X2)) activate(n__from(X)) = [5] X + [0] >= [5] X + [0] = from(activate(X)) activate(n__s(X)) = [5] X + [0] >= [5] X + [0] = s(activate(X)) cons(X1,X2) = [1] X1 + [0] >= [1] X1 + [0] = n__cons(X1,X2) filter(X1,X2) = [1] X1 + [1] X2 + [2] >= [1] X1 + [1] X2 + [0] = n__filter(X1,X2) from(X) = [1] X + [0] >= [1] X + [0] = cons(X,n__from(n__s(X))) from(X) = [1] X + [0] >= [1] X + [0] = n__from(X) if(false(),X,Y) = [6] X + [5] Y + [0] >= [5] Y + [0] = activate(Y) if(true(),X,Y) = [6] X + [5] Y + [0] >= [5] X + [0] = activate(X) primes() = [7] >= [6] = sieve(from(s(s(0())))) s(X) = [1] X + [0] >= [1] X + [0] = n__s(X) sieve(X) = [1] X + [4] >= [1] X + [1] = n__sieve(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: activate(n__filter(X1,X2)) -> filter(activate(X1),activate(X2)) Weak DP Rules: Weak TRS Rules: activate(X) -> X activate(n__cons(X1,X2)) -> cons(activate(X1),X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__sieve(X)) -> sieve(activate(X)) cons(X1,X2) -> n__cons(X1,X2) filter(X1,X2) -> n__filter(X1,X2) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) if(false(),X,Y) -> activate(Y) if(true(),X,Y) -> activate(X) primes() -> sieve(from(s(s(0())))) s(X) -> n__s(X) sieve(X) -> n__sieve(X) Signature: {activate/1,cons/2,filter/2,from/1,head/1,if/3,primes/0,s/1,sieve/1,tail/1} / {0/0,divides/2,false/0,n__cons/2,n__filter/2,n__from/1,n__s/1,n__sieve/1,true/0} Obligation: Innermost basic terms: {activate,cons,filter,from,head,if,primes,s,sieve,tail}/{0,divides,false,n__cons,n__filter,n__from,n__s,n__sieve,true} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {1}, uargs(filter) = {1,2}, uargs(from) = {1}, uargs(s) = {1}, uargs(sieve) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [4] p(activate) = [3] x1 + [0] p(cons) = [1] x1 + [0] p(divides) = [0] p(false) = [4] p(filter) = [1] x1 + [1] x2 + [2] p(from) = [1] x1 + [3] p(head) = [2] x1 + [0] p(if) = [1] x1 + [5] x2 + [3] x3 + [0] p(n__cons) = [1] x1 + [0] p(n__filter) = [1] x1 + [1] x2 + [1] p(n__from) = [1] x1 + [1] p(n__s) = [1] x1 + [0] p(n__sieve) = [1] x1 + [0] p(primes) = [7] p(s) = [1] x1 + [0] p(sieve) = [1] x1 + [0] p(tail) = [0] p(true) = [5] Following rules are strictly oriented: activate(n__filter(X1,X2)) = [3] X1 + [3] X2 + [3] > [3] X1 + [3] X2 + [2] = filter(activate(X1) ,activate(X2)) Following rules are (at-least) weakly oriented: activate(X) = [3] X + [0] >= [1] X + [0] = X activate(n__cons(X1,X2)) = [3] X1 + [0] >= [3] X1 + [0] = cons(activate(X1),X2) activate(n__from(X)) = [3] X + [3] >= [3] X + [3] = from(activate(X)) activate(n__s(X)) = [3] X + [0] >= [3] X + [0] = s(activate(X)) activate(n__sieve(X)) = [3] X + [0] >= [3] X + [0] = sieve(activate(X)) cons(X1,X2) = [1] X1 + [0] >= [1] X1 + [0] = n__cons(X1,X2) filter(X1,X2) = [1] X1 + [1] X2 + [2] >= [1] X1 + [1] X2 + [1] = n__filter(X1,X2) from(X) = [1] X + [3] >= [1] X + [0] = cons(X,n__from(n__s(X))) from(X) = [1] X + [3] >= [1] X + [1] = n__from(X) if(false(),X,Y) = [5] X + [3] Y + [4] >= [3] Y + [0] = activate(Y) if(true(),X,Y) = [5] X + [3] Y + [5] >= [3] X + [0] = activate(X) primes() = [7] >= [7] = sieve(from(s(s(0())))) s(X) = [1] X + [0] >= [1] X + [0] = n__s(X) sieve(X) = [1] X + [0] >= [1] X + [0] = n__sieve(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: activate(X) -> X activate(n__cons(X1,X2)) -> cons(activate(X1),X2) activate(n__filter(X1,X2)) -> filter(activate(X1),activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__sieve(X)) -> sieve(activate(X)) cons(X1,X2) -> n__cons(X1,X2) filter(X1,X2) -> n__filter(X1,X2) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) if(false(),X,Y) -> activate(Y) if(true(),X,Y) -> activate(X) primes() -> sieve(from(s(s(0())))) s(X) -> n__s(X) sieve(X) -> n__sieve(X) Signature: {activate/1,cons/2,filter/2,from/1,head/1,if/3,primes/0,s/1,sieve/1,tail/1} / {0/0,divides/2,false/0,n__cons/2,n__filter/2,n__from/1,n__s/1,n__sieve/1,true/0} Obligation: Innermost basic terms: {activate,cons,filter,from,head,if,primes,s,sieve,tail}/{0,divides,false,n__cons,n__filter,n__from,n__s,n__sieve,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).