We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { primes() -> sieve(from(s(s(0())))) , sieve(X) -> n__sieve(X) , sieve(cons(X, Y)) -> cons(X, n__filter(X, n__sieve(activate(Y)))) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , cons(X1, X2) -> n__cons(X1, X2) , head(cons(X, Y)) -> X , tail(cons(X, Y)) -> activate(Y) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2)) , activate(n__cons(X1, X2)) -> cons(activate(X1), X2) , activate(n__sieve(X)) -> sieve(activate(X)) , if(true(), X, Y) -> activate(X) , if(false(), X, Y) -> activate(Y) , filter(X1, X2) -> n__filter(X1, X2) , filter(s(s(X)), cons(Y, Z)) -> if(divides(s(s(X)), Y), n__filter(n__s(n__s(X)), activate(Z)), n__cons(Y, n__filter(X, n__sieve(Y)))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) Arguments of following rules are not normal-forms: { sieve(cons(X, Y)) -> cons(X, n__filter(X, n__sieve(activate(Y)))) , head(cons(X, Y)) -> X , tail(cons(X, Y)) -> activate(Y) , filter(s(s(X)), cons(Y, Z)) -> if(divides(s(s(X)), Y), n__filter(n__s(n__s(X)), activate(Z)), n__cons(Y, n__filter(X, n__sieve(Y)))) } All above mentioned rules can be savely removed. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { primes() -> sieve(from(s(s(0())))) , sieve(X) -> n__sieve(X) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , cons(X1, X2) -> n__cons(X1, X2) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2)) , activate(n__cons(X1, X2)) -> cons(activate(X1), X2) , activate(n__sieve(X)) -> sieve(activate(X)) , if(true(), X, Y) -> activate(X) , if(false(), X, Y) -> activate(Y) , filter(X1, X2) -> n__filter(X1, X2) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We add the following dependency tuples: Strict DPs: { primes^#() -> c_1(sieve^#(from(s(s(0())))), from^#(s(s(0()))), s^#(s(0())), s^#(0())) , sieve^#(X) -> c_2() , from^#(X) -> c_3(cons^#(X, n__from(n__s(X)))) , from^#(X) -> c_4() , s^#(X) -> c_5() , cons^#(X1, X2) -> c_6() , activate^#(X) -> c_7() , activate^#(n__from(X)) -> c_8(from^#(activate(X)), activate^#(X)) , activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X)) , activate^#(n__filter(X1, X2)) -> c_10(filter^#(activate(X1), activate(X2)), activate^#(X1), activate^#(X2)) , activate^#(n__cons(X1, X2)) -> c_11(cons^#(activate(X1), X2), activate^#(X1)) , activate^#(n__sieve(X)) -> c_12(sieve^#(activate(X)), activate^#(X)) , filter^#(X1, X2) -> c_15() , if^#(true(), X, Y) -> c_13(activate^#(X)) , if^#(false(), X, Y) -> c_14(activate^#(Y)) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { primes^#() -> c_1(sieve^#(from(s(s(0())))), from^#(s(s(0()))), s^#(s(0())), s^#(0())) , sieve^#(X) -> c_2() , from^#(X) -> c_3(cons^#(X, n__from(n__s(X)))) , from^#(X) -> c_4() , s^#(X) -> c_5() , cons^#(X1, X2) -> c_6() , activate^#(X) -> c_7() , activate^#(n__from(X)) -> c_8(from^#(activate(X)), activate^#(X)) , activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X)) , activate^#(n__filter(X1, X2)) -> c_10(filter^#(activate(X1), activate(X2)), activate^#(X1), activate^#(X2)) , activate^#(n__cons(X1, X2)) -> c_11(cons^#(activate(X1), X2), activate^#(X1)) , activate^#(n__sieve(X)) -> c_12(sieve^#(activate(X)), activate^#(X)) , filter^#(X1, X2) -> c_15() , if^#(true(), X, Y) -> c_13(activate^#(X)) , if^#(false(), X, Y) -> c_14(activate^#(Y)) } Weak Trs: { primes() -> sieve(from(s(s(0())))) , sieve(X) -> n__sieve(X) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , cons(X1, X2) -> n__cons(X1, X2) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2)) , activate(n__cons(X1, X2)) -> cons(activate(X1), X2) , activate(n__sieve(X)) -> sieve(activate(X)) , if(true(), X, Y) -> activate(X) , if(false(), X, Y) -> activate(Y) , filter(X1, X2) -> n__filter(X1, X2) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We estimate the number of application of {2,4,5,6,7,13} by applications of Pre({2,4,5,6,7,13}) = {1,3,8,9,10,11,12,14,15}. Here rules are labeled as follows: DPs: { 1: primes^#() -> c_1(sieve^#(from(s(s(0())))), from^#(s(s(0()))), s^#(s(0())), s^#(0())) , 2: sieve^#(X) -> c_2() , 3: from^#(X) -> c_3(cons^#(X, n__from(n__s(X)))) , 4: from^#(X) -> c_4() , 5: s^#(X) -> c_5() , 6: cons^#(X1, X2) -> c_6() , 7: activate^#(X) -> c_7() , 8: activate^#(n__from(X)) -> c_8(from^#(activate(X)), activate^#(X)) , 9: activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X)) , 10: activate^#(n__filter(X1, X2)) -> c_10(filter^#(activate(X1), activate(X2)), activate^#(X1), activate^#(X2)) , 11: activate^#(n__cons(X1, X2)) -> c_11(cons^#(activate(X1), X2), activate^#(X1)) , 12: activate^#(n__sieve(X)) -> c_12(sieve^#(activate(X)), activate^#(X)) , 13: filter^#(X1, X2) -> c_15() , 14: if^#(true(), X, Y) -> c_13(activate^#(X)) , 15: if^#(false(), X, Y) -> c_14(activate^#(Y)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { primes^#() -> c_1(sieve^#(from(s(s(0())))), from^#(s(s(0()))), s^#(s(0())), s^#(0())) , from^#(X) -> c_3(cons^#(X, n__from(n__s(X)))) , activate^#(n__from(X)) -> c_8(from^#(activate(X)), activate^#(X)) , activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X)) , activate^#(n__filter(X1, X2)) -> c_10(filter^#(activate(X1), activate(X2)), activate^#(X1), activate^#(X2)) , activate^#(n__cons(X1, X2)) -> c_11(cons^#(activate(X1), X2), activate^#(X1)) , activate^#(n__sieve(X)) -> c_12(sieve^#(activate(X)), activate^#(X)) , if^#(true(), X, Y) -> c_13(activate^#(X)) , if^#(false(), X, Y) -> c_14(activate^#(Y)) } Weak DPs: { sieve^#(X) -> c_2() , from^#(X) -> c_4() , s^#(X) -> c_5() , cons^#(X1, X2) -> c_6() , activate^#(X) -> c_7() , filter^#(X1, X2) -> c_15() } Weak Trs: { primes() -> sieve(from(s(s(0())))) , sieve(X) -> n__sieve(X) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , cons(X1, X2) -> n__cons(X1, X2) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2)) , activate(n__cons(X1, X2)) -> cons(activate(X1), X2) , activate(n__sieve(X)) -> sieve(activate(X)) , if(true(), X, Y) -> activate(X) , if(false(), X, Y) -> activate(Y) , filter(X1, X2) -> n__filter(X1, X2) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We estimate the number of application of {2} by applications of Pre({2}) = {1,3}. Here rules are labeled as follows: DPs: { 1: primes^#() -> c_1(sieve^#(from(s(s(0())))), from^#(s(s(0()))), s^#(s(0())), s^#(0())) , 2: from^#(X) -> c_3(cons^#(X, n__from(n__s(X)))) , 3: activate^#(n__from(X)) -> c_8(from^#(activate(X)), activate^#(X)) , 4: activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X)) , 5: activate^#(n__filter(X1, X2)) -> c_10(filter^#(activate(X1), activate(X2)), activate^#(X1), activate^#(X2)) , 6: activate^#(n__cons(X1, X2)) -> c_11(cons^#(activate(X1), X2), activate^#(X1)) , 7: activate^#(n__sieve(X)) -> c_12(sieve^#(activate(X)), activate^#(X)) , 8: if^#(true(), X, Y) -> c_13(activate^#(X)) , 9: if^#(false(), X, Y) -> c_14(activate^#(Y)) , 10: sieve^#(X) -> c_2() , 11: from^#(X) -> c_4() , 12: s^#(X) -> c_5() , 13: cons^#(X1, X2) -> c_6() , 14: activate^#(X) -> c_7() , 15: filter^#(X1, X2) -> c_15() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { primes^#() -> c_1(sieve^#(from(s(s(0())))), from^#(s(s(0()))), s^#(s(0())), s^#(0())) , activate^#(n__from(X)) -> c_8(from^#(activate(X)), activate^#(X)) , activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X)) , activate^#(n__filter(X1, X2)) -> c_10(filter^#(activate(X1), activate(X2)), activate^#(X1), activate^#(X2)) , activate^#(n__cons(X1, X2)) -> c_11(cons^#(activate(X1), X2), activate^#(X1)) , activate^#(n__sieve(X)) -> c_12(sieve^#(activate(X)), activate^#(X)) , if^#(true(), X, Y) -> c_13(activate^#(X)) , if^#(false(), X, Y) -> c_14(activate^#(Y)) } Weak DPs: { sieve^#(X) -> c_2() , from^#(X) -> c_3(cons^#(X, n__from(n__s(X)))) , from^#(X) -> c_4() , s^#(X) -> c_5() , cons^#(X1, X2) -> c_6() , activate^#(X) -> c_7() , filter^#(X1, X2) -> c_15() } Weak Trs: { primes() -> sieve(from(s(s(0())))) , sieve(X) -> n__sieve(X) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , cons(X1, X2) -> n__cons(X1, X2) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2)) , activate(n__cons(X1, X2)) -> cons(activate(X1), X2) , activate(n__sieve(X)) -> sieve(activate(X)) , if(true(), X, Y) -> activate(X) , if(false(), X, Y) -> activate(Y) , filter(X1, X2) -> n__filter(X1, X2) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We estimate the number of application of {1} by applications of Pre({1}) = {}. Here rules are labeled as follows: DPs: { 1: primes^#() -> c_1(sieve^#(from(s(s(0())))), from^#(s(s(0()))), s^#(s(0())), s^#(0())) , 2: activate^#(n__from(X)) -> c_8(from^#(activate(X)), activate^#(X)) , 3: activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X)) , 4: activate^#(n__filter(X1, X2)) -> c_10(filter^#(activate(X1), activate(X2)), activate^#(X1), activate^#(X2)) , 5: activate^#(n__cons(X1, X2)) -> c_11(cons^#(activate(X1), X2), activate^#(X1)) , 6: activate^#(n__sieve(X)) -> c_12(sieve^#(activate(X)), activate^#(X)) , 7: if^#(true(), X, Y) -> c_13(activate^#(X)) , 8: if^#(false(), X, Y) -> c_14(activate^#(Y)) , 9: sieve^#(X) -> c_2() , 10: from^#(X) -> c_3(cons^#(X, n__from(n__s(X)))) , 11: from^#(X) -> c_4() , 12: s^#(X) -> c_5() , 13: cons^#(X1, X2) -> c_6() , 14: activate^#(X) -> c_7() , 15: filter^#(X1, X2) -> c_15() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { activate^#(n__from(X)) -> c_8(from^#(activate(X)), activate^#(X)) , activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X)) , activate^#(n__filter(X1, X2)) -> c_10(filter^#(activate(X1), activate(X2)), activate^#(X1), activate^#(X2)) , activate^#(n__cons(X1, X2)) -> c_11(cons^#(activate(X1), X2), activate^#(X1)) , activate^#(n__sieve(X)) -> c_12(sieve^#(activate(X)), activate^#(X)) , if^#(true(), X, Y) -> c_13(activate^#(X)) , if^#(false(), X, Y) -> c_14(activate^#(Y)) } Weak DPs: { primes^#() -> c_1(sieve^#(from(s(s(0())))), from^#(s(s(0()))), s^#(s(0())), s^#(0())) , sieve^#(X) -> c_2() , from^#(X) -> c_3(cons^#(X, n__from(n__s(X)))) , from^#(X) -> c_4() , s^#(X) -> c_5() , cons^#(X1, X2) -> c_6() , activate^#(X) -> c_7() , filter^#(X1, X2) -> c_15() } Weak Trs: { primes() -> sieve(from(s(s(0())))) , sieve(X) -> n__sieve(X) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , cons(X1, X2) -> n__cons(X1, X2) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2)) , activate(n__cons(X1, X2)) -> cons(activate(X1), X2) , activate(n__sieve(X)) -> sieve(activate(X)) , if(true(), X, Y) -> activate(X) , if(false(), X, Y) -> activate(Y) , filter(X1, X2) -> n__filter(X1, X2) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { primes^#() -> c_1(sieve^#(from(s(s(0())))), from^#(s(s(0()))), s^#(s(0())), s^#(0())) , sieve^#(X) -> c_2() , from^#(X) -> c_3(cons^#(X, n__from(n__s(X)))) , from^#(X) -> c_4() , s^#(X) -> c_5() , cons^#(X1, X2) -> c_6() , activate^#(X) -> c_7() , filter^#(X1, X2) -> c_15() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { activate^#(n__from(X)) -> c_8(from^#(activate(X)), activate^#(X)) , activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X)) , activate^#(n__filter(X1, X2)) -> c_10(filter^#(activate(X1), activate(X2)), activate^#(X1), activate^#(X2)) , activate^#(n__cons(X1, X2)) -> c_11(cons^#(activate(X1), X2), activate^#(X1)) , activate^#(n__sieve(X)) -> c_12(sieve^#(activate(X)), activate^#(X)) , if^#(true(), X, Y) -> c_13(activate^#(X)) , if^#(false(), X, Y) -> c_14(activate^#(Y)) } Weak Trs: { primes() -> sieve(from(s(s(0())))) , sieve(X) -> n__sieve(X) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , cons(X1, X2) -> n__cons(X1, X2) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2)) , activate(n__cons(X1, X2)) -> cons(activate(X1), X2) , activate(n__sieve(X)) -> sieve(activate(X)) , if(true(), X, Y) -> activate(X) , if(false(), X, Y) -> activate(Y) , filter(X1, X2) -> n__filter(X1, X2) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { activate^#(n__from(X)) -> c_8(from^#(activate(X)), activate^#(X)) , activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X)) , activate^#(n__filter(X1, X2)) -> c_10(filter^#(activate(X1), activate(X2)), activate^#(X1), activate^#(X2)) , activate^#(n__cons(X1, X2)) -> c_11(cons^#(activate(X1), X2), activate^#(X1)) , activate^#(n__sieve(X)) -> c_12(sieve^#(activate(X)), activate^#(X)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { activate^#(n__from(X)) -> c_1(activate^#(X)) , activate^#(n__s(X)) -> c_2(activate^#(X)) , activate^#(n__filter(X1, X2)) -> c_3(activate^#(X1), activate^#(X2)) , activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) , activate^#(n__sieve(X)) -> c_5(activate^#(X)) , if^#(true(), X, Y) -> c_6(activate^#(X)) , if^#(false(), X, Y) -> c_7(activate^#(Y)) } Weak Trs: { primes() -> sieve(from(s(s(0())))) , sieve(X) -> n__sieve(X) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , cons(X1, X2) -> n__cons(X1, X2) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2)) , activate(n__cons(X1, X2)) -> cons(activate(X1), X2) , activate(n__sieve(X)) -> sieve(activate(X)) , if(true(), X, Y) -> activate(X) , if(false(), X, Y) -> activate(Y) , filter(X1, X2) -> n__filter(X1, X2) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { activate^#(n__from(X)) -> c_1(activate^#(X)) , activate^#(n__s(X)) -> c_2(activate^#(X)) , activate^#(n__filter(X1, X2)) -> c_3(activate^#(X1), activate^#(X2)) , activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) , activate^#(n__sieve(X)) -> c_5(activate^#(X)) , if^#(true(), X, Y) -> c_6(activate^#(X)) , if^#(false(), X, Y) -> c_7(activate^#(Y)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) Consider the dependency graph 1: activate^#(n__from(X)) -> c_1(activate^#(X)) -->_1 activate^#(n__sieve(X)) -> c_5(activate^#(X)) :5 -->_1 activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) :4 -->_1 activate^#(n__filter(X1, X2)) -> c_3(activate^#(X1), activate^#(X2)) :3 -->_1 activate^#(n__s(X)) -> c_2(activate^#(X)) :2 -->_1 activate^#(n__from(X)) -> c_1(activate^#(X)) :1 2: activate^#(n__s(X)) -> c_2(activate^#(X)) -->_1 activate^#(n__sieve(X)) -> c_5(activate^#(X)) :5 -->_1 activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) :4 -->_1 activate^#(n__filter(X1, X2)) -> c_3(activate^#(X1), activate^#(X2)) :3 -->_1 activate^#(n__s(X)) -> c_2(activate^#(X)) :2 -->_1 activate^#(n__from(X)) -> c_1(activate^#(X)) :1 3: activate^#(n__filter(X1, X2)) -> c_3(activate^#(X1), activate^#(X2)) -->_2 activate^#(n__sieve(X)) -> c_5(activate^#(X)) :5 -->_1 activate^#(n__sieve(X)) -> c_5(activate^#(X)) :5 -->_2 activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) :4 -->_1 activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) :4 -->_2 activate^#(n__filter(X1, X2)) -> c_3(activate^#(X1), activate^#(X2)) :3 -->_1 activate^#(n__filter(X1, X2)) -> c_3(activate^#(X1), activate^#(X2)) :3 -->_2 activate^#(n__s(X)) -> c_2(activate^#(X)) :2 -->_1 activate^#(n__s(X)) -> c_2(activate^#(X)) :2 -->_2 activate^#(n__from(X)) -> c_1(activate^#(X)) :1 -->_1 activate^#(n__from(X)) -> c_1(activate^#(X)) :1 4: activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) -->_1 activate^#(n__sieve(X)) -> c_5(activate^#(X)) :5 -->_1 activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) :4 -->_1 activate^#(n__filter(X1, X2)) -> c_3(activate^#(X1), activate^#(X2)) :3 -->_1 activate^#(n__s(X)) -> c_2(activate^#(X)) :2 -->_1 activate^#(n__from(X)) -> c_1(activate^#(X)) :1 5: activate^#(n__sieve(X)) -> c_5(activate^#(X)) -->_1 activate^#(n__sieve(X)) -> c_5(activate^#(X)) :5 -->_1 activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) :4 -->_1 activate^#(n__filter(X1, X2)) -> c_3(activate^#(X1), activate^#(X2)) :3 -->_1 activate^#(n__s(X)) -> c_2(activate^#(X)) :2 -->_1 activate^#(n__from(X)) -> c_1(activate^#(X)) :1 6: if^#(true(), X, Y) -> c_6(activate^#(X)) -->_1 activate^#(n__sieve(X)) -> c_5(activate^#(X)) :5 -->_1 activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) :4 -->_1 activate^#(n__filter(X1, X2)) -> c_3(activate^#(X1), activate^#(X2)) :3 -->_1 activate^#(n__s(X)) -> c_2(activate^#(X)) :2 -->_1 activate^#(n__from(X)) -> c_1(activate^#(X)) :1 7: if^#(false(), X, Y) -> c_7(activate^#(Y)) -->_1 activate^#(n__sieve(X)) -> c_5(activate^#(X)) :5 -->_1 activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) :4 -->_1 activate^#(n__filter(X1, X2)) -> c_3(activate^#(X1), activate^#(X2)) :3 -->_1 activate^#(n__s(X)) -> c_2(activate^#(X)) :2 -->_1 activate^#(n__from(X)) -> c_1(activate^#(X)) :1 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). { if^#(true(), X, Y) -> c_6(activate^#(X)) , if^#(false(), X, Y) -> c_7(activate^#(Y)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { activate^#(n__from(X)) -> c_1(activate^#(X)) , activate^#(n__s(X)) -> c_2(activate^#(X)) , activate^#(n__filter(X1, X2)) -> c_3(activate^#(X1), activate^#(X2)) , activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) , activate^#(n__sieve(X)) -> c_5(activate^#(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 1: activate^#(n__from(X)) -> c_1(activate^#(X)) , 2: activate^#(n__s(X)) -> c_2(activate^#(X)) , 3: activate^#(n__filter(X1, X2)) -> c_3(activate^#(X1), activate^#(X2)) , 4: activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) , 5: activate^#(n__sieve(X)) -> c_5(activate^#(X)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_3) = {1, 2}, Uargs(c_4) = {1}, Uargs(c_5) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [n__from](x1) = [1] x1 + [4] [n__s](x1) = [1] x1 + [4] [n__filter](x1, x2) = [1] x1 + [1] x2 + [4] [n__cons](x1, x2) = [1] x1 + [4] [n__sieve](x1) = [1] x1 + [4] [activate^#](x1) = [2] x1 + [0] [c_1](x1) = [1] x1 + [1] [c_2](x1) = [1] x1 + [0] [c_3](x1, x2) = [1] x1 + [1] x2 + [0] [c_4](x1) = [1] x1 + [0] [c_5](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [activate^#(n__from(X))] = [2] X + [8] > [2] X + [1] = [c_1(activate^#(X))] [activate^#(n__s(X))] = [2] X + [8] > [2] X + [0] = [c_2(activate^#(X))] [activate^#(n__filter(X1, X2))] = [2] X1 + [2] X2 + [8] > [2] X1 + [2] X2 + [0] = [c_3(activate^#(X1), activate^#(X2))] [activate^#(n__cons(X1, X2))] = [2] X1 + [8] > [2] X1 + [0] = [c_4(activate^#(X1))] [activate^#(n__sieve(X))] = [2] X + [8] > [2] X + [0] = [c_5(activate^#(X))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { activate^#(n__from(X)) -> c_1(activate^#(X)) , activate^#(n__s(X)) -> c_2(activate^#(X)) , activate^#(n__filter(X1, X2)) -> c_3(activate^#(X1), activate^#(X2)) , activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) , activate^#(n__sieve(X)) -> c_5(activate^#(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { activate^#(n__from(X)) -> c_1(activate^#(X)) , activate^#(n__s(X)) -> c_2(activate^#(X)) , activate^#(n__filter(X1, X2)) -> c_3(activate^#(X1), activate^#(X2)) , activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) , activate^#(n__sieve(X)) -> c_5(activate^#(X)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^1))