We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).
Strict Trs:
{ primes() -> sieve(from(s(s(0()))))
, sieve(X) -> n__sieve(X)
, sieve(cons(X, Y)) -> cons(X, n__filter(X, n__sieve(activate(Y))))
, from(X) -> cons(X, n__from(n__s(X)))
, from(X) -> n__from(X)
, s(X) -> n__s(X)
, cons(X1, X2) -> n__cons(X1, X2)
, head(cons(X, Y)) -> X
, tail(cons(X, Y)) -> activate(Y)
, activate(X) -> X
, activate(n__from(X)) -> from(activate(X))
, activate(n__s(X)) -> s(activate(X))
, activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2))
, activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
, activate(n__sieve(X)) -> sieve(activate(X))
, if(true(), X, Y) -> activate(X)
, if(false(), X, Y) -> activate(Y)
, filter(X1, X2) -> n__filter(X1, X2)
, filter(s(s(X)), cons(Y, Z)) ->
if(divides(s(s(X)), Y),
n__filter(n__s(n__s(X)), activate(Z)),
n__cons(Y, n__filter(X, n__sieve(Y)))) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^1))
Arguments of following rules are not normal-forms:
{ sieve(cons(X, Y)) -> cons(X, n__filter(X, n__sieve(activate(Y))))
, head(cons(X, Y)) -> X
, tail(cons(X, Y)) -> activate(Y)
, filter(s(s(X)), cons(Y, Z)) ->
if(divides(s(s(X)), Y),
n__filter(n__s(n__s(X)), activate(Z)),
n__cons(Y, n__filter(X, n__sieve(Y)))) }
All above mentioned rules can be savely removed.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).
Strict Trs:
{ primes() -> sieve(from(s(s(0()))))
, sieve(X) -> n__sieve(X)
, from(X) -> cons(X, n__from(n__s(X)))
, from(X) -> n__from(X)
, s(X) -> n__s(X)
, cons(X1, X2) -> n__cons(X1, X2)
, activate(X) -> X
, activate(n__from(X)) -> from(activate(X))
, activate(n__s(X)) -> s(activate(X))
, activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2))
, activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
, activate(n__sieve(X)) -> sieve(activate(X))
, if(true(), X, Y) -> activate(X)
, if(false(), X, Y) -> activate(Y)
, filter(X1, X2) -> n__filter(X1, X2) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^1))
We add the following dependency tuples:
Strict DPs:
{ primes^#() ->
c_1(sieve^#(from(s(s(0())))),
from^#(s(s(0()))),
s^#(s(0())),
s^#(0()))
, sieve^#(X) -> c_2()
, from^#(X) -> c_3(cons^#(X, n__from(n__s(X))))
, from^#(X) -> c_4()
, s^#(X) -> c_5()
, cons^#(X1, X2) -> c_6()
, activate^#(X) -> c_7()
, activate^#(n__from(X)) -> c_8(from^#(activate(X)), activate^#(X))
, activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X))
, activate^#(n__filter(X1, X2)) ->
c_10(filter^#(activate(X1), activate(X2)),
activate^#(X1),
activate^#(X2))
, activate^#(n__cons(X1, X2)) ->
c_11(cons^#(activate(X1), X2), activate^#(X1))
, activate^#(n__sieve(X)) ->
c_12(sieve^#(activate(X)), activate^#(X))
, filter^#(X1, X2) -> c_15()
, if^#(true(), X, Y) -> c_13(activate^#(X))
, if^#(false(), X, Y) -> c_14(activate^#(Y)) }
and mark the set of starting terms.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).
Strict DPs:
{ primes^#() ->
c_1(sieve^#(from(s(s(0())))),
from^#(s(s(0()))),
s^#(s(0())),
s^#(0()))
, sieve^#(X) -> c_2()
, from^#(X) -> c_3(cons^#(X, n__from(n__s(X))))
, from^#(X) -> c_4()
, s^#(X) -> c_5()
, cons^#(X1, X2) -> c_6()
, activate^#(X) -> c_7()
, activate^#(n__from(X)) -> c_8(from^#(activate(X)), activate^#(X))
, activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X))
, activate^#(n__filter(X1, X2)) ->
c_10(filter^#(activate(X1), activate(X2)),
activate^#(X1),
activate^#(X2))
, activate^#(n__cons(X1, X2)) ->
c_11(cons^#(activate(X1), X2), activate^#(X1))
, activate^#(n__sieve(X)) ->
c_12(sieve^#(activate(X)), activate^#(X))
, filter^#(X1, X2) -> c_15()
, if^#(true(), X, Y) -> c_13(activate^#(X))
, if^#(false(), X, Y) -> c_14(activate^#(Y)) }
Weak Trs:
{ primes() -> sieve(from(s(s(0()))))
, sieve(X) -> n__sieve(X)
, from(X) -> cons(X, n__from(n__s(X)))
, from(X) -> n__from(X)
, s(X) -> n__s(X)
, cons(X1, X2) -> n__cons(X1, X2)
, activate(X) -> X
, activate(n__from(X)) -> from(activate(X))
, activate(n__s(X)) -> s(activate(X))
, activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2))
, activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
, activate(n__sieve(X)) -> sieve(activate(X))
, if(true(), X, Y) -> activate(X)
, if(false(), X, Y) -> activate(Y)
, filter(X1, X2) -> n__filter(X1, X2) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^1))
We estimate the number of application of {2,4,5,6,7,13} by
applications of Pre({2,4,5,6,7,13}) = {1,3,8,9,10,11,12,14,15}.
Here rules are labeled as follows:
DPs:
{ 1: primes^#() ->
c_1(sieve^#(from(s(s(0())))),
from^#(s(s(0()))),
s^#(s(0())),
s^#(0()))
, 2: sieve^#(X) -> c_2()
, 3: from^#(X) -> c_3(cons^#(X, n__from(n__s(X))))
, 4: from^#(X) -> c_4()
, 5: s^#(X) -> c_5()
, 6: cons^#(X1, X2) -> c_6()
, 7: activate^#(X) -> c_7()
, 8: activate^#(n__from(X)) ->
c_8(from^#(activate(X)), activate^#(X))
, 9: activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X))
, 10: activate^#(n__filter(X1, X2)) ->
c_10(filter^#(activate(X1), activate(X2)),
activate^#(X1),
activate^#(X2))
, 11: activate^#(n__cons(X1, X2)) ->
c_11(cons^#(activate(X1), X2), activate^#(X1))
, 12: activate^#(n__sieve(X)) ->
c_12(sieve^#(activate(X)), activate^#(X))
, 13: filter^#(X1, X2) -> c_15()
, 14: if^#(true(), X, Y) -> c_13(activate^#(X))
, 15: if^#(false(), X, Y) -> c_14(activate^#(Y)) }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).
Strict DPs:
{ primes^#() ->
c_1(sieve^#(from(s(s(0())))),
from^#(s(s(0()))),
s^#(s(0())),
s^#(0()))
, from^#(X) -> c_3(cons^#(X, n__from(n__s(X))))
, activate^#(n__from(X)) -> c_8(from^#(activate(X)), activate^#(X))
, activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X))
, activate^#(n__filter(X1, X2)) ->
c_10(filter^#(activate(X1), activate(X2)),
activate^#(X1),
activate^#(X2))
, activate^#(n__cons(X1, X2)) ->
c_11(cons^#(activate(X1), X2), activate^#(X1))
, activate^#(n__sieve(X)) ->
c_12(sieve^#(activate(X)), activate^#(X))
, if^#(true(), X, Y) -> c_13(activate^#(X))
, if^#(false(), X, Y) -> c_14(activate^#(Y)) }
Weak DPs:
{ sieve^#(X) -> c_2()
, from^#(X) -> c_4()
, s^#(X) -> c_5()
, cons^#(X1, X2) -> c_6()
, activate^#(X) -> c_7()
, filter^#(X1, X2) -> c_15() }
Weak Trs:
{ primes() -> sieve(from(s(s(0()))))
, sieve(X) -> n__sieve(X)
, from(X) -> cons(X, n__from(n__s(X)))
, from(X) -> n__from(X)
, s(X) -> n__s(X)
, cons(X1, X2) -> n__cons(X1, X2)
, activate(X) -> X
, activate(n__from(X)) -> from(activate(X))
, activate(n__s(X)) -> s(activate(X))
, activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2))
, activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
, activate(n__sieve(X)) -> sieve(activate(X))
, if(true(), X, Y) -> activate(X)
, if(false(), X, Y) -> activate(Y)
, filter(X1, X2) -> n__filter(X1, X2) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^1))
We estimate the number of application of {2} by applications of
Pre({2}) = {1,3}. Here rules are labeled as follows:
DPs:
{ 1: primes^#() ->
c_1(sieve^#(from(s(s(0())))),
from^#(s(s(0()))),
s^#(s(0())),
s^#(0()))
, 2: from^#(X) -> c_3(cons^#(X, n__from(n__s(X))))
, 3: activate^#(n__from(X)) ->
c_8(from^#(activate(X)), activate^#(X))
, 4: activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X))
, 5: activate^#(n__filter(X1, X2)) ->
c_10(filter^#(activate(X1), activate(X2)),
activate^#(X1),
activate^#(X2))
, 6: activate^#(n__cons(X1, X2)) ->
c_11(cons^#(activate(X1), X2), activate^#(X1))
, 7: activate^#(n__sieve(X)) ->
c_12(sieve^#(activate(X)), activate^#(X))
, 8: if^#(true(), X, Y) -> c_13(activate^#(X))
, 9: if^#(false(), X, Y) -> c_14(activate^#(Y))
, 10: sieve^#(X) -> c_2()
, 11: from^#(X) -> c_4()
, 12: s^#(X) -> c_5()
, 13: cons^#(X1, X2) -> c_6()
, 14: activate^#(X) -> c_7()
, 15: filter^#(X1, X2) -> c_15() }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).
Strict DPs:
{ primes^#() ->
c_1(sieve^#(from(s(s(0())))),
from^#(s(s(0()))),
s^#(s(0())),
s^#(0()))
, activate^#(n__from(X)) -> c_8(from^#(activate(X)), activate^#(X))
, activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X))
, activate^#(n__filter(X1, X2)) ->
c_10(filter^#(activate(X1), activate(X2)),
activate^#(X1),
activate^#(X2))
, activate^#(n__cons(X1, X2)) ->
c_11(cons^#(activate(X1), X2), activate^#(X1))
, activate^#(n__sieve(X)) ->
c_12(sieve^#(activate(X)), activate^#(X))
, if^#(true(), X, Y) -> c_13(activate^#(X))
, if^#(false(), X, Y) -> c_14(activate^#(Y)) }
Weak DPs:
{ sieve^#(X) -> c_2()
, from^#(X) -> c_3(cons^#(X, n__from(n__s(X))))
, from^#(X) -> c_4()
, s^#(X) -> c_5()
, cons^#(X1, X2) -> c_6()
, activate^#(X) -> c_7()
, filter^#(X1, X2) -> c_15() }
Weak Trs:
{ primes() -> sieve(from(s(s(0()))))
, sieve(X) -> n__sieve(X)
, from(X) -> cons(X, n__from(n__s(X)))
, from(X) -> n__from(X)
, s(X) -> n__s(X)
, cons(X1, X2) -> n__cons(X1, X2)
, activate(X) -> X
, activate(n__from(X)) -> from(activate(X))
, activate(n__s(X)) -> s(activate(X))
, activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2))
, activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
, activate(n__sieve(X)) -> sieve(activate(X))
, if(true(), X, Y) -> activate(X)
, if(false(), X, Y) -> activate(Y)
, filter(X1, X2) -> n__filter(X1, X2) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^1))
We estimate the number of application of {1} by applications of
Pre({1}) = {}. Here rules are labeled as follows:
DPs:
{ 1: primes^#() ->
c_1(sieve^#(from(s(s(0())))),
from^#(s(s(0()))),
s^#(s(0())),
s^#(0()))
, 2: activate^#(n__from(X)) ->
c_8(from^#(activate(X)), activate^#(X))
, 3: activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X))
, 4: activate^#(n__filter(X1, X2)) ->
c_10(filter^#(activate(X1), activate(X2)),
activate^#(X1),
activate^#(X2))
, 5: activate^#(n__cons(X1, X2)) ->
c_11(cons^#(activate(X1), X2), activate^#(X1))
, 6: activate^#(n__sieve(X)) ->
c_12(sieve^#(activate(X)), activate^#(X))
, 7: if^#(true(), X, Y) -> c_13(activate^#(X))
, 8: if^#(false(), X, Y) -> c_14(activate^#(Y))
, 9: sieve^#(X) -> c_2()
, 10: from^#(X) -> c_3(cons^#(X, n__from(n__s(X))))
, 11: from^#(X) -> c_4()
, 12: s^#(X) -> c_5()
, 13: cons^#(X1, X2) -> c_6()
, 14: activate^#(X) -> c_7()
, 15: filter^#(X1, X2) -> c_15() }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).
Strict DPs:
{ activate^#(n__from(X)) -> c_8(from^#(activate(X)), activate^#(X))
, activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X))
, activate^#(n__filter(X1, X2)) ->
c_10(filter^#(activate(X1), activate(X2)),
activate^#(X1),
activate^#(X2))
, activate^#(n__cons(X1, X2)) ->
c_11(cons^#(activate(X1), X2), activate^#(X1))
, activate^#(n__sieve(X)) ->
c_12(sieve^#(activate(X)), activate^#(X))
, if^#(true(), X, Y) -> c_13(activate^#(X))
, if^#(false(), X, Y) -> c_14(activate^#(Y)) }
Weak DPs:
{ primes^#() ->
c_1(sieve^#(from(s(s(0())))),
from^#(s(s(0()))),
s^#(s(0())),
s^#(0()))
, sieve^#(X) -> c_2()
, from^#(X) -> c_3(cons^#(X, n__from(n__s(X))))
, from^#(X) -> c_4()
, s^#(X) -> c_5()
, cons^#(X1, X2) -> c_6()
, activate^#(X) -> c_7()
, filter^#(X1, X2) -> c_15() }
Weak Trs:
{ primes() -> sieve(from(s(s(0()))))
, sieve(X) -> n__sieve(X)
, from(X) -> cons(X, n__from(n__s(X)))
, from(X) -> n__from(X)
, s(X) -> n__s(X)
, cons(X1, X2) -> n__cons(X1, X2)
, activate(X) -> X
, activate(n__from(X)) -> from(activate(X))
, activate(n__s(X)) -> s(activate(X))
, activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2))
, activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
, activate(n__sieve(X)) -> sieve(activate(X))
, if(true(), X, Y) -> activate(X)
, if(false(), X, Y) -> activate(Y)
, filter(X1, X2) -> n__filter(X1, X2) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^1))
The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.
{ primes^#() ->
c_1(sieve^#(from(s(s(0())))),
from^#(s(s(0()))),
s^#(s(0())),
s^#(0()))
, sieve^#(X) -> c_2()
, from^#(X) -> c_3(cons^#(X, n__from(n__s(X))))
, from^#(X) -> c_4()
, s^#(X) -> c_5()
, cons^#(X1, X2) -> c_6()
, activate^#(X) -> c_7()
, filter^#(X1, X2) -> c_15() }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).
Strict DPs:
{ activate^#(n__from(X)) -> c_8(from^#(activate(X)), activate^#(X))
, activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X))
, activate^#(n__filter(X1, X2)) ->
c_10(filter^#(activate(X1), activate(X2)),
activate^#(X1),
activate^#(X2))
, activate^#(n__cons(X1, X2)) ->
c_11(cons^#(activate(X1), X2), activate^#(X1))
, activate^#(n__sieve(X)) ->
c_12(sieve^#(activate(X)), activate^#(X))
, if^#(true(), X, Y) -> c_13(activate^#(X))
, if^#(false(), X, Y) -> c_14(activate^#(Y)) }
Weak Trs:
{ primes() -> sieve(from(s(s(0()))))
, sieve(X) -> n__sieve(X)
, from(X) -> cons(X, n__from(n__s(X)))
, from(X) -> n__from(X)
, s(X) -> n__s(X)
, cons(X1, X2) -> n__cons(X1, X2)
, activate(X) -> X
, activate(n__from(X)) -> from(activate(X))
, activate(n__s(X)) -> s(activate(X))
, activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2))
, activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
, activate(n__sieve(X)) -> sieve(activate(X))
, if(true(), X, Y) -> activate(X)
, if(false(), X, Y) -> activate(Y)
, filter(X1, X2) -> n__filter(X1, X2) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^1))
Due to missing edges in the dependency-graph, the right-hand sides
of following rules could be simplified:
{ activate^#(n__from(X)) -> c_8(from^#(activate(X)), activate^#(X))
, activate^#(n__s(X)) -> c_9(s^#(activate(X)), activate^#(X))
, activate^#(n__filter(X1, X2)) ->
c_10(filter^#(activate(X1), activate(X2)),
activate^#(X1),
activate^#(X2))
, activate^#(n__cons(X1, X2)) ->
c_11(cons^#(activate(X1), X2), activate^#(X1))
, activate^#(n__sieve(X)) ->
c_12(sieve^#(activate(X)), activate^#(X)) }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).
Strict DPs:
{ activate^#(n__from(X)) -> c_1(activate^#(X))
, activate^#(n__s(X)) -> c_2(activate^#(X))
, activate^#(n__filter(X1, X2)) ->
c_3(activate^#(X1), activate^#(X2))
, activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1))
, activate^#(n__sieve(X)) -> c_5(activate^#(X))
, if^#(true(), X, Y) -> c_6(activate^#(X))
, if^#(false(), X, Y) -> c_7(activate^#(Y)) }
Weak Trs:
{ primes() -> sieve(from(s(s(0()))))
, sieve(X) -> n__sieve(X)
, from(X) -> cons(X, n__from(n__s(X)))
, from(X) -> n__from(X)
, s(X) -> n__s(X)
, cons(X1, X2) -> n__cons(X1, X2)
, activate(X) -> X
, activate(n__from(X)) -> from(activate(X))
, activate(n__s(X)) -> s(activate(X))
, activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2))
, activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
, activate(n__sieve(X)) -> sieve(activate(X))
, if(true(), X, Y) -> activate(X)
, if(false(), X, Y) -> activate(Y)
, filter(X1, X2) -> n__filter(X1, X2) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^1))
No rule is usable, rules are removed from the input problem.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).
Strict DPs:
{ activate^#(n__from(X)) -> c_1(activate^#(X))
, activate^#(n__s(X)) -> c_2(activate^#(X))
, activate^#(n__filter(X1, X2)) ->
c_3(activate^#(X1), activate^#(X2))
, activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1))
, activate^#(n__sieve(X)) -> c_5(activate^#(X))
, if^#(true(), X, Y) -> c_6(activate^#(X))
, if^#(false(), X, Y) -> c_7(activate^#(Y)) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^1))
Consider the dependency graph
1: activate^#(n__from(X)) -> c_1(activate^#(X))
-->_1 activate^#(n__sieve(X)) -> c_5(activate^#(X)) :5
-->_1 activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) :4
-->_1 activate^#(n__filter(X1, X2)) ->
c_3(activate^#(X1), activate^#(X2)) :3
-->_1 activate^#(n__s(X)) -> c_2(activate^#(X)) :2
-->_1 activate^#(n__from(X)) -> c_1(activate^#(X)) :1
2: activate^#(n__s(X)) -> c_2(activate^#(X))
-->_1 activate^#(n__sieve(X)) -> c_5(activate^#(X)) :5
-->_1 activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) :4
-->_1 activate^#(n__filter(X1, X2)) ->
c_3(activate^#(X1), activate^#(X2)) :3
-->_1 activate^#(n__s(X)) -> c_2(activate^#(X)) :2
-->_1 activate^#(n__from(X)) -> c_1(activate^#(X)) :1
3: activate^#(n__filter(X1, X2)) ->
c_3(activate^#(X1), activate^#(X2))
-->_2 activate^#(n__sieve(X)) -> c_5(activate^#(X)) :5
-->_1 activate^#(n__sieve(X)) -> c_5(activate^#(X)) :5
-->_2 activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) :4
-->_1 activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) :4
-->_2 activate^#(n__filter(X1, X2)) ->
c_3(activate^#(X1), activate^#(X2)) :3
-->_1 activate^#(n__filter(X1, X2)) ->
c_3(activate^#(X1), activate^#(X2)) :3
-->_2 activate^#(n__s(X)) -> c_2(activate^#(X)) :2
-->_1 activate^#(n__s(X)) -> c_2(activate^#(X)) :2
-->_2 activate^#(n__from(X)) -> c_1(activate^#(X)) :1
-->_1 activate^#(n__from(X)) -> c_1(activate^#(X)) :1
4: activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1))
-->_1 activate^#(n__sieve(X)) -> c_5(activate^#(X)) :5
-->_1 activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) :4
-->_1 activate^#(n__filter(X1, X2)) ->
c_3(activate^#(X1), activate^#(X2)) :3
-->_1 activate^#(n__s(X)) -> c_2(activate^#(X)) :2
-->_1 activate^#(n__from(X)) -> c_1(activate^#(X)) :1
5: activate^#(n__sieve(X)) -> c_5(activate^#(X))
-->_1 activate^#(n__sieve(X)) -> c_5(activate^#(X)) :5
-->_1 activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) :4
-->_1 activate^#(n__filter(X1, X2)) ->
c_3(activate^#(X1), activate^#(X2)) :3
-->_1 activate^#(n__s(X)) -> c_2(activate^#(X)) :2
-->_1 activate^#(n__from(X)) -> c_1(activate^#(X)) :1
6: if^#(true(), X, Y) -> c_6(activate^#(X))
-->_1 activate^#(n__sieve(X)) -> c_5(activate^#(X)) :5
-->_1 activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) :4
-->_1 activate^#(n__filter(X1, X2)) ->
c_3(activate^#(X1), activate^#(X2)) :3
-->_1 activate^#(n__s(X)) -> c_2(activate^#(X)) :2
-->_1 activate^#(n__from(X)) -> c_1(activate^#(X)) :1
7: if^#(false(), X, Y) -> c_7(activate^#(Y))
-->_1 activate^#(n__sieve(X)) -> c_5(activate^#(X)) :5
-->_1 activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1)) :4
-->_1 activate^#(n__filter(X1, X2)) ->
c_3(activate^#(X1), activate^#(X2)) :3
-->_1 activate^#(n__s(X)) -> c_2(activate^#(X)) :2
-->_1 activate^#(n__from(X)) -> c_1(activate^#(X)) :1
Following roots of the dependency graph are removed, as the
considered set of starting terms is closed under reduction with
respect to these rules (modulo compound contexts).
{ if^#(true(), X, Y) -> c_6(activate^#(X))
, if^#(false(), X, Y) -> c_7(activate^#(Y)) }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).
Strict DPs:
{ activate^#(n__from(X)) -> c_1(activate^#(X))
, activate^#(n__s(X)) -> c_2(activate^#(X))
, activate^#(n__filter(X1, X2)) ->
c_3(activate^#(X1), activate^#(X2))
, activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1))
, activate^#(n__sieve(X)) -> c_5(activate^#(X)) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(n^1))
We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.
DPs:
{ 1: activate^#(n__from(X)) -> c_1(activate^#(X))
, 2: activate^#(n__s(X)) -> c_2(activate^#(X))
, 3: activate^#(n__filter(X1, X2)) ->
c_3(activate^#(X1), activate^#(X2))
, 4: activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1))
, 5: activate^#(n__sieve(X)) -> c_5(activate^#(X)) }
Sub-proof:
----------
The following argument positions are usable:
Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_3) = {1, 2},
Uargs(c_4) = {1}, Uargs(c_5) = {1}
TcT has computed the following constructor-based matrix
interpretation satisfying not(EDA).
[n__from](x1) = [1] x1 + [4]
[n__s](x1) = [1] x1 + [4]
[n__filter](x1, x2) = [1] x1 + [1] x2 + [4]
[n__cons](x1, x2) = [1] x1 + [4]
[n__sieve](x1) = [1] x1 + [4]
[activate^#](x1) = [2] x1 + [0]
[c_1](x1) = [1] x1 + [1]
[c_2](x1) = [1] x1 + [0]
[c_3](x1, x2) = [1] x1 + [1] x2 + [0]
[c_4](x1) = [1] x1 + [0]
[c_5](x1) = [1] x1 + [0]
The order satisfies the following ordering constraints:
[activate^#(n__from(X))] = [2] X + [8]
> [2] X + [1]
= [c_1(activate^#(X))]
[activate^#(n__s(X))] = [2] X + [8]
> [2] X + [0]
= [c_2(activate^#(X))]
[activate^#(n__filter(X1, X2))] = [2] X1 + [2] X2 + [8]
> [2] X1 + [2] X2 + [0]
= [c_3(activate^#(X1), activate^#(X2))]
[activate^#(n__cons(X1, X2))] = [2] X1 + [8]
> [2] X1 + [0]
= [c_4(activate^#(X1))]
[activate^#(n__sieve(X))] = [2] X + [8]
> [2] X + [0]
= [c_5(activate^#(X))]
The strictly oriented rules are moved into the weak component.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Weak DPs:
{ activate^#(n__from(X)) -> c_1(activate^#(X))
, activate^#(n__s(X)) -> c_2(activate^#(X))
, activate^#(n__filter(X1, X2)) ->
c_3(activate^#(X1), activate^#(X2))
, activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1))
, activate^#(n__sieve(X)) -> c_5(activate^#(X)) }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.
{ activate^#(n__from(X)) -> c_1(activate^#(X))
, activate^#(n__s(X)) -> c_2(activate^#(X))
, activate^#(n__filter(X1, X2)) ->
c_3(activate^#(X1), activate^#(X2))
, activate^#(n__cons(X1, X2)) -> c_4(activate^#(X1))
, activate^#(n__sieve(X)) -> c_5(activate^#(X)) }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Rules: Empty
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
Empty rules are trivially bounded
Hurray, we answered YES(O(1),O(n^1))