*** 1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: 2ndsneg(0(),Z) -> rnil() 2ndsneg(s(N),cons(X,Z)) -> 2ndsneg(s(N),cons2(X,activate(Z))) 2ndsneg(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,activate(Z))) 2ndspos(0(),Z) -> rnil() 2ndspos(s(N),cons(X,Z)) -> 2ndspos(s(N),cons2(X,activate(Z))) 2ndspos(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,activate(Z))) activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Weak DP Rules: Weak TRS Rules: Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1} Obligation: Innermost basic terms: {2ndsneg,2ndspos,activate,from,pi,plus,square,times}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs 2ndsneg#(0(),Z) -> c_1() 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z)) 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z)) 2ndspos#(0(),Z) -> c_4() 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z)) 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)) activate#(X) -> c_7() activate#(n__from(X)) -> c_8(from#(X)) from#(X) -> c_9() from#(X) -> c_10() pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0())) plus#(0(),Y) -> c_12() plus#(s(X),Y) -> c_13(plus#(X,Y)) square#(X) -> c_14(times#(X,X)) times#(0(),Y) -> c_15() times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: 2ndsneg#(0(),Z) -> c_1() 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z)) 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z)) 2ndspos#(0(),Z) -> c_4() 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z)) 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)) activate#(X) -> c_7() activate#(n__from(X)) -> c_8(from#(X)) from#(X) -> c_9() from#(X) -> c_10() pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0())) plus#(0(),Y) -> c_12() plus#(s(X),Y) -> c_13(plus#(X,Y)) square#(X) -> c_14(times#(X,X)) times#(0(),Y) -> c_15() times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: 2ndsneg(0(),Z) -> rnil() 2ndsneg(s(N),cons(X,Z)) -> 2ndsneg(s(N),cons2(X,activate(Z))) 2ndsneg(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,activate(Z))) 2ndspos(0(),Z) -> rnil() 2ndspos(s(N),cons(X,Z)) -> 2ndspos(s(N),cons2(X,activate(Z))) 2ndspos(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,activate(Z))) activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/2,c_6/2,c_7/0,c_8/1,c_9/0,c_10/0,c_11/2,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) 2ndsneg#(0(),Z) -> c_1() 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z)) 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z)) 2ndspos#(0(),Z) -> c_4() 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z)) 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)) activate#(X) -> c_7() activate#(n__from(X)) -> c_8(from#(X)) from#(X) -> c_9() from#(X) -> c_10() pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0())) plus#(0(),Y) -> c_12() plus#(s(X),Y) -> c_13(plus#(X,Y)) square#(X) -> c_14(times#(X,X)) times#(0(),Y) -> c_15() times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) *** 1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: 2ndsneg#(0(),Z) -> c_1() 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z)) 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z)) 2ndspos#(0(),Z) -> c_4() 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z)) 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)) activate#(X) -> c_7() activate#(n__from(X)) -> c_8(from#(X)) from#(X) -> c_9() from#(X) -> c_10() pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0())) plus#(0(),Y) -> c_12() plus#(s(X),Y) -> c_13(plus#(X,Y)) square#(X) -> c_14(times#(X,X)) times#(0(),Y) -> c_15() times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/2,c_6/2,c_7/0,c_8/1,c_9/0,c_10/0,c_11/2,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,4,7,9,10,12,15} by application of Pre({1,4,7,9,10,12,15}) = {2,3,5,6,8,11,13,14,16}. Here rules are labelled as follows: 1: 2ndsneg#(0(),Z) -> c_1() 2: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N) ,cons2(X,activate(Z))) ,activate#(Z)) 3: 2ndsneg#(s(N) ,cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)) ,activate#(Z)) 4: 2ndspos#(0(),Z) -> c_4() 5: 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N) ,cons2(X,activate(Z))) ,activate#(Z)) 6: 2ndspos#(s(N) ,cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)) ,activate#(Z)) 7: activate#(X) -> c_7() 8: activate#(n__from(X)) -> c_8(from#(X)) 9: from#(X) -> c_9() 10: from#(X) -> c_10() 11: pi#(X) -> c_11(2ndspos#(X ,from(0())) ,from#(0())) 12: plus#(0(),Y) -> c_12() 13: plus#(s(X),Y) -> c_13(plus#(X ,Y)) 14: square#(X) -> c_14(times#(X,X)) 15: times#(0(),Y) -> c_15() 16: times#(s(X),Y) -> c_16(plus#(Y ,times(X,Y)) ,times#(X,Y)) *** 1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z)) 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z)) 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z)) 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)) activate#(n__from(X)) -> c_8(from#(X)) pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0())) plus#(s(X),Y) -> c_13(plus#(X,Y)) square#(X) -> c_14(times#(X,X)) times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Strict TRS Rules: Weak DP Rules: 2ndsneg#(0(),Z) -> c_1() 2ndspos#(0(),Z) -> c_4() activate#(X) -> c_7() from#(X) -> c_9() from#(X) -> c_10() plus#(0(),Y) -> c_12() times#(0(),Y) -> c_15() Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/2,c_6/2,c_7/0,c_8/1,c_9/0,c_10/0,c_11/2,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {5} by application of Pre({5}) = {1,2,3,4}. Here rules are labelled as follows: 1: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N) ,cons2(X,activate(Z))) ,activate#(Z)) 2: 2ndsneg#(s(N) ,cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)) ,activate#(Z)) 3: 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N) ,cons2(X,activate(Z))) ,activate#(Z)) 4: 2ndspos#(s(N) ,cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)) ,activate#(Z)) 5: activate#(n__from(X)) -> c_8(from#(X)) 6: pi#(X) -> c_11(2ndspos#(X ,from(0())) ,from#(0())) 7: plus#(s(X),Y) -> c_13(plus#(X ,Y)) 8: square#(X) -> c_14(times#(X,X)) 9: times#(s(X),Y) -> c_16(plus#(Y ,times(X,Y)) ,times#(X,Y)) 10: 2ndsneg#(0(),Z) -> c_1() 11: 2ndspos#(0(),Z) -> c_4() 12: activate#(X) -> c_7() 13: from#(X) -> c_9() 14: from#(X) -> c_10() 15: plus#(0(),Y) -> c_12() 16: times#(0(),Y) -> c_15() *** 1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z)) 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z)) 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z)) 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)) pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0())) plus#(s(X),Y) -> c_13(plus#(X,Y)) square#(X) -> c_14(times#(X,X)) times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Strict TRS Rules: Weak DP Rules: 2ndsneg#(0(),Z) -> c_1() 2ndspos#(0(),Z) -> c_4() activate#(X) -> c_7() activate#(n__from(X)) -> c_8(from#(X)) from#(X) -> c_9() from#(X) -> c_10() plus#(0(),Y) -> c_12() times#(0(),Y) -> c_15() Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/2,c_6/2,c_7/0,c_8/1,c_9/0,c_10/0,c_11/2,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z)) -->_2 activate#(n__from(X)) -> c_8(from#(X)):12 -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z)):2 -->_2 activate#(X) -> c_7():11 2:S:2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z)) -->_2 activate#(n__from(X)) -> c_8(from#(X)):12 -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)):4 -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z)):3 -->_2 activate#(X) -> c_7():11 -->_1 2ndspos#(0(),Z) -> c_4():10 3:S:2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z)) -->_2 activate#(n__from(X)) -> c_8(from#(X)):12 -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)):4 -->_2 activate#(X) -> c_7():11 4:S:2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)) -->_2 activate#(n__from(X)) -> c_8(from#(X)):12 -->_2 activate#(X) -> c_7():11 -->_1 2ndsneg#(0(),Z) -> c_1():9 -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z)):2 -->_1 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z)):1 5:S:pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0())) -->_2 from#(X) -> c_10():14 -->_2 from#(X) -> c_9():13 -->_1 2ndspos#(0(),Z) -> c_4():10 -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)):4 -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z)):3 6:S:plus#(s(X),Y) -> c_13(plus#(X,Y)) -->_1 plus#(0(),Y) -> c_12():15 -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6 7:S:square#(X) -> c_14(times#(X,X)) -->_1 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):8 -->_1 times#(0(),Y) -> c_15():16 8:S:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) -->_2 times#(0(),Y) -> c_15():16 -->_1 plus#(0(),Y) -> c_12():15 -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):8 -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6 9:W:2ndsneg#(0(),Z) -> c_1() 10:W:2ndspos#(0(),Z) -> c_4() 11:W:activate#(X) -> c_7() 12:W:activate#(n__from(X)) -> c_8(from#(X)) -->_1 from#(X) -> c_10():14 -->_1 from#(X) -> c_9():13 13:W:from#(X) -> c_9() 14:W:from#(X) -> c_10() 15:W:plus#(0(),Y) -> c_12() 16:W:times#(0(),Y) -> c_15() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 16: times#(0(),Y) -> c_15() 15: plus#(0(),Y) -> c_12() 10: 2ndspos#(0(),Z) -> c_4() 9: 2ndsneg#(0(),Z) -> c_1() 11: activate#(X) -> c_7() 12: activate#(n__from(X)) -> c_8(from#(X)) 13: from#(X) -> c_9() 14: from#(X) -> c_10() *** 1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z)) 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z)) 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z)) 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)) pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0())) plus#(s(X),Y) -> c_13(plus#(X,Y)) square#(X) -> c_14(times#(X,X)) times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/2,c_6/2,c_7/0,c_8/1,c_9/0,c_10/0,c_11/2,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z)) -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z)):2 2:S:2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z)) -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)):4 -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z)):3 3:S:2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z)) -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)):4 4:S:2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)) -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z)):2 -->_1 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z)):1 5:S:pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0())) -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)):4 -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z)):3 6:S:plus#(s(X),Y) -> c_13(plus#(X,Y)) -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6 7:S:square#(X) -> c_14(times#(X,X)) -->_1 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):8 8:S:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):8 -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))) 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))) 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) pi#(X) -> c_11(2ndspos#(X,from(0()))) *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))) 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))) 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) pi#(X) -> c_11(2ndspos#(X,from(0()))) plus#(s(X),Y) -> c_13(plus#(X,Y)) square#(X) -> c_14(times#(X,X)) times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: RemoveHeads Proof: Consider the dependency graph 1:S:2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))) -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):2 2:S:2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4 -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):3 3:S:2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))) -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4 4:S:2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):2 -->_1 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))):1 5:S:pi#(X) -> c_11(2ndspos#(X,from(0()))) -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4 -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):3 6:S:plus#(s(X),Y) -> c_13(plus#(X,Y)) -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6 7:S:square#(X) -> c_14(times#(X,X)) -->_1 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):8 8:S:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):8 -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(7,square#(X) -> c_14(times#(X,X)))] *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))) 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))) 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) pi#(X) -> c_11(2ndspos#(X,from(0()))) plus#(s(X),Y) -> c_13(plus#(X,Y)) times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))) 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))) 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) Strict TRS Rules: Weak DP Rules: pi#(X) -> c_11(2ndspos#(X,from(0()))) plus#(s(X),Y) -> c_13(plus#(X,Y)) times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Problem (S) Strict DP Rules: pi#(X) -> c_11(2ndspos#(X,from(0()))) plus#(s(X),Y) -> c_13(plus#(X,Y)) times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Strict TRS Rules: Weak DP Rules: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))) 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))) 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))) 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))) 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) Strict TRS Rules: Weak DP Rules: pi#(X) -> c_11(2ndspos#(X,from(0()))) plus#(s(X),Y) -> c_13(plus#(X,Y)) times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))) -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):2 2:S:2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4 -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):3 3:S:2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))) -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4 4:S:2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):2 -->_1 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))):1 5:W:pi#(X) -> c_11(2ndspos#(X,from(0()))) -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4 -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):3 6:W:plus#(s(X),Y) -> c_13(plus#(X,Y)) -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6 8:W:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6 -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):8 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 8: times#(s(X),Y) -> c_16(plus#(Y ,times(X,Y)) ,times#(X,Y)) 6: plus#(s(X),Y) -> c_13(plus#(X ,Y)) *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))) 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))) 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) Strict TRS Rules: Weak DP Rules: pi#(X) -> c_11(2ndspos#(X,from(0()))) Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))) 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))) 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) pi#(X) -> c_11(2ndspos#(X,from(0()))) *** 1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))) 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))) 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) Strict TRS Rules: Weak DP Rules: pi#(X) -> c_11(2ndspos#(X,from(0()))) Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 4: 2ndspos#(s(N) ,cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) Consider the set of all dependency pairs 1: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N) ,cons2(X,activate(Z)))) 2: 2ndsneg#(s(N) ,cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) 3: 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N) ,cons2(X,activate(Z)))) 4: 2ndspos#(s(N) ,cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) 5: pi#(X) -> c_11(2ndspos#(X ,from(0()))) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {4} These cover all (indirect) predecessors of dependency pairs {1,2,3,4,5} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))) 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))) 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) Strict TRS Rules: Weak DP Rules: pi#(X) -> c_11(2ndspos#(X,from(0()))) Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_5) = {1}, uargs(c_6) = {1}, uargs(c_11) = {1} Following symbols are considered usable: {activate,from,2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#} TcT has computed the following interpretation: p(0) = [0] p(2ndsneg) = [2] x1 + [1] p(2ndspos) = [1] x1 + [1] p(activate) = [1] x1 + [4] p(cons) = [1] x2 + [4] p(cons2) = [1] x2 + [0] p(from) = [4] p(n__from) = [0] p(negrecip) = [1] p(pi) = [2] x1 + [1] p(plus) = [1] x1 + [2] p(posrecip) = [1] x1 + [1] p(rcons) = [1] x1 + [1] p(rnil) = [0] p(s) = [1] x1 + [2] p(square) = [0] p(times) = [2] x2 + [8] p(2ndsneg#) = [2] x1 + [1] x2 + [2] p(2ndspos#) = [2] x1 + [1] x2 + [1] p(activate#) = [1] x1 + [1] p(from#) = [2] x1 + [2] p(pi#) = [2] x1 + [5] p(plus#) = [0] p(square#) = [4] p(times#) = [2] x2 + [2] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [1] x1 + [5] p(c_4) = [1] p(c_5) = [1] x1 + [0] p(c_6) = [1] x1 + [1] p(c_7) = [0] p(c_8) = [0] p(c_9) = [2] p(c_10) = [1] p(c_11) = [1] x1 + [0] p(c_12) = [0] p(c_13) = [2] x1 + [1] p(c_14) = [1] x1 + [0] p(c_15) = [2] p(c_16) = [1] x2 + [0] Following rules are strictly oriented: 2ndspos#(s(N) = [2] N + [1] Z + [9] ,cons2(X,cons(Y,Z))) > [2] N + [1] Z + [7] = c_6(2ndsneg#(N,activate(Z))) Following rules are (at-least) weakly oriented: 2ndsneg#(s(N),cons(X,Z)) = [2] N + [1] Z + [10] >= [2] N + [1] Z + [10] = c_2(2ndsneg#(s(N) ,cons2(X,activate(Z)))) 2ndsneg#(s(N) = [2] N + [1] Z + [10] ,cons2(X,cons(Y,Z))) >= [2] N + [1] Z + [10] = c_3(2ndspos#(N,activate(Z))) 2ndspos#(s(N),cons(X,Z)) = [2] N + [1] Z + [9] >= [2] N + [1] Z + [9] = c_5(2ndspos#(s(N) ,cons2(X,activate(Z)))) pi#(X) = [2] X + [5] >= [2] X + [5] = c_11(2ndspos#(X,from(0()))) activate(X) = [1] X + [4] >= [1] X + [0] = X activate(n__from(X)) = [4] >= [4] = from(X) from(X) = [4] >= [4] = cons(X,n__from(s(X))) from(X) = [4] >= [0] = n__from(X) *** 1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))) 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))) Strict TRS Rules: Weak DP Rules: 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) pi#(X) -> c_11(2ndspos#(X,from(0()))) Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))) 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))) 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) pi#(X) -> c_11(2ndspos#(X,from(0()))) Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))) -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):2 2:W:2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4 -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):3 3:W:2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))) -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4 4:W:2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):2 -->_1 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))):1 5:W:pi#(X) -> c_11(2ndspos#(X,from(0()))) -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4 -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: pi#(X) -> c_11(2ndspos#(X ,from(0()))) 1: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N) ,cons2(X,activate(Z)))) 4: 2ndspos#(s(N) ,cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) 3: 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N) ,cons2(X,activate(Z)))) 2: 2ndsneg#(s(N) ,cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) *** 1.1.1.1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: pi#(X) -> c_11(2ndspos#(X,from(0()))) plus#(s(X),Y) -> c_13(plus#(X,Y)) times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Strict TRS Rules: Weak DP Rules: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))) 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))) 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1} by application of Pre({1}) = {}. Here rules are labelled as follows: 1: pi#(X) -> c_11(2ndspos#(X ,from(0()))) 2: plus#(s(X),Y) -> c_13(plus#(X ,Y)) 3: times#(s(X),Y) -> c_16(plus#(Y ,times(X,Y)) ,times#(X,Y)) 4: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N) ,cons2(X,activate(Z)))) 5: 2ndsneg#(s(N) ,cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) 6: 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N) ,cons2(X,activate(Z)))) 7: 2ndspos#(s(N) ,cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) *** 1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: plus#(s(X),Y) -> c_13(plus#(X,Y)) times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Strict TRS Rules: Weak DP Rules: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))) 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))) 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) pi#(X) -> c_11(2ndspos#(X,from(0()))) Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:plus#(s(X),Y) -> c_13(plus#(X,Y)) -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):1 2:S:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):2 -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):1 3:W:2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))) -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):4 4:W:2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):6 -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):5 5:W:2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))) -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):6 6:W:2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):4 -->_1 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))):3 7:W:pi#(X) -> c_11(2ndspos#(X,from(0()))) -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):6 -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):5 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: pi#(X) -> c_11(2ndspos#(X ,from(0()))) 3: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N) ,cons2(X,activate(Z)))) 6: 2ndspos#(s(N) ,cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))) 5: 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N) ,cons2(X,activate(Z)))) 4: 2ndsneg#(s(N) ,cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))) *** 1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: plus#(s(X),Y) -> c_13(plus#(X,Y)) times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: plus#(s(X),Y) -> c_13(plus#(X,Y)) Strict TRS Rules: Weak DP Rules: times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Problem (S) Strict DP Rules: times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Strict TRS Rules: Weak DP Rules: plus#(s(X),Y) -> c_13(plus#(X,Y)) Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} *** 1.1.1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: plus#(s(X),Y) -> c_13(plus#(X,Y)) Strict TRS Rules: Weak DP Rules: times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) plus#(s(X),Y) -> c_13(plus#(X,Y)) times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) *** 1.1.1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: plus#(s(X),Y) -> c_13(plus#(X,Y)) Strict TRS Rules: Weak DP Rules: times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Weak TRS Rules: plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: plus#(s(X),Y) -> c_13(plus#(X ,Y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: plus#(s(X),Y) -> c_13(plus#(X,Y)) Strict TRS Rules: Weak DP Rules: times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Weak TRS Rules: plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_13) = {1}, uargs(c_16) = {1,2} Following symbols are considered usable: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#} TcT has computed the following interpretation: p(0) = 0 p(2ndsneg) = 0 p(2ndspos) = 4*x1 + x1^2 + x2 + 4*x2^2 p(activate) = 2*x1 p(cons) = 0 p(cons2) = 0 p(from) = x1^2 p(n__from) = 0 p(negrecip) = 1 p(pi) = 2 p(plus) = 2*x1 p(posrecip) = 1 p(rcons) = x1 p(rnil) = 0 p(s) = 1 + x1 p(square) = 0 p(times) = 3*x1 + x1^2 p(2ndsneg#) = 1 + x1 + 2*x1*x2 + x1^2 + x2 p(2ndspos#) = x1 + x1*x2 + x1^2 + x2 p(activate#) = x1 + 2*x1^2 p(from#) = 1 + 4*x1 p(pi#) = x1 p(plus#) = 4*x1 p(square#) = 0 p(times#) = 2*x1 + 4*x1*x2 + x1^2 + 2*x2 + x2^2 p(c_1) = 1 p(c_2) = 1 + x1 p(c_3) = 0 p(c_4) = 0 p(c_5) = x1 p(c_6) = 0 p(c_7) = 0 p(c_8) = 0 p(c_9) = 0 p(c_10) = 0 p(c_11) = 1 p(c_12) = 0 p(c_13) = x1 p(c_14) = 0 p(c_15) = 0 p(c_16) = 1 + x1 + x2 Following rules are strictly oriented: plus#(s(X),Y) = 4 + 4*X > 4*X = c_13(plus#(X,Y)) Following rules are (at-least) weakly oriented: times#(s(X),Y) = 3 + 4*X + 4*X*Y + X^2 + 6*Y + Y^2 >= 1 + 2*X + 4*X*Y + X^2 + 6*Y + Y^2 = c_16(plus#(Y,times(X,Y)) ,times#(X,Y)) *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: plus#(s(X),Y) -> c_13(plus#(X,Y)) times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Weak TRS Rules: plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.2.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: plus#(s(X),Y) -> c_13(plus#(X,Y)) times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Weak TRS Rules: plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:plus#(s(X),Y) -> c_13(plus#(X,Y)) -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):1 2:W:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):2 -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: times#(s(X),Y) -> c_16(plus#(Y ,times(X,Y)) ,times#(X,Y)) 1: plus#(s(X),Y) -> c_13(plus#(X ,Y)) *** 1.1.1.1.1.1.1.1.2.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.1.1.2.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Strict TRS Rules: Weak DP Rules: plus#(s(X),Y) -> c_13(plus#(X,Y)) Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):2 -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):1 2:W:plus#(s(X),Y) -> c_13(plus#(X,Y)) -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: plus#(s(X),Y) -> c_13(plus#(X ,Y)) *** 1.1.1.1.1.1.1.1.2.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)) -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: times#(s(X),Y) -> c_16(times#(X,Y)) *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: times#(s(X),Y) -> c_16(times#(X,Y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/1} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: times#(s(X),Y) -> c_16(times#(X,Y)) *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: times#(s(X),Y) -> c_16(times#(X,Y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/1} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: times#(s(X),Y) -> c_16(times#(X ,Y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: times#(s(X),Y) -> c_16(times#(X,Y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/1} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_16) = {1} Following symbols are considered usable: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#} TcT has computed the following interpretation: p(0) = [0] p(2ndsneg) = [1] x2 + [8] p(2ndspos) = [8] x2 + [4] p(activate) = [1] x1 + [8] p(cons) = [1] x1 + [1] x2 + [4] p(cons2) = [1] x2 + [0] p(from) = [0] p(n__from) = [1] x1 + [0] p(negrecip) = [1] x1 + [0] p(pi) = [0] p(plus) = [0] p(posrecip) = [1] x1 + [0] p(rcons) = [1] x1 + [1] x2 + [0] p(rnil) = [0] p(s) = [1] x1 + [1] p(square) = [0] p(times) = [0] p(2ndsneg#) = [0] p(2ndspos#) = [0] p(activate#) = [1] p(from#) = [1] p(pi#) = [1] p(plus#) = [0] p(square#) = [2] p(times#) = [8] x1 + [8] p(c_1) = [0] p(c_2) = [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [0] p(c_6) = [0] p(c_7) = [0] p(c_8) = [0] p(c_9) = [0] p(c_10) = [0] p(c_11) = [0] p(c_12) = [0] p(c_13) = [8] x1 + [0] p(c_14) = [8] p(c_15) = [2] p(c_16) = [1] x1 + [4] Following rules are strictly oriented: times#(s(X),Y) = [8] X + [16] > [8] X + [12] = c_16(times#(X,Y)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: times#(s(X),Y) -> c_16(times#(X,Y)) Weak TRS Rules: Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/1} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: times#(s(X),Y) -> c_16(times#(X,Y)) Weak TRS Rules: Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/1} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:times#(s(X),Y) -> c_16(times#(X,Y)) -->_1 times#(s(X),Y) -> c_16(times#(X,Y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: times#(s(X),Y) -> c_16(times#(X ,Y)) *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/1} Obligation: Innermost basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).