*** 1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndsneg(s(N),cons(X,Z)) -> 2ndsneg(s(N),cons2(X,activate(Z)))
        2ndsneg(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,activate(Z)))
        2ndspos(0(),Z) -> rnil()
        2ndspos(s(N),cons(X,Z)) -> 2ndspos(s(N),cons2(X,activate(Z)))
        2ndspos(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,activate(Z)))
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        pi(X) -> 2ndspos(X,from(0()))
        plus(0(),Y) -> Y
        plus(s(X),Y) -> s(plus(X,Y))
        square(X) -> times(X,X)
        times(0(),Y) -> 0()
        times(s(X),Y) -> plus(Y,times(X,Y))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,from,pi,plus,square,times}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        2ndsneg#(0(),Z) -> c_1()
        2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z))
        2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z))
        2ndspos#(0(),Z) -> c_4()
        2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z))
        2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z))
        activate#(X) -> c_7()
        activate#(n__from(X)) -> c_8(from#(X))
        from#(X) -> c_9()
        from#(X) -> c_10()
        pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0()))
        plus#(0(),Y) -> c_12()
        plus#(s(X),Y) -> c_13(plus#(X,Y))
        square#(X) -> c_14(times#(X,X))
        times#(0(),Y) -> c_15()
        times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        2ndsneg#(0(),Z) -> c_1()
        2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z))
        2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z))
        2ndspos#(0(),Z) -> c_4()
        2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z))
        2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z))
        activate#(X) -> c_7()
        activate#(n__from(X)) -> c_8(from#(X))
        from#(X) -> c_9()
        from#(X) -> c_10()
        pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0()))
        plus#(0(),Y) -> c_12()
        plus#(s(X),Y) -> c_13(plus#(X,Y))
        square#(X) -> c_14(times#(X,X))
        times#(0(),Y) -> c_15()
        times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndsneg(s(N),cons(X,Z)) -> 2ndsneg(s(N),cons2(X,activate(Z)))
        2ndsneg(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,activate(Z)))
        2ndspos(0(),Z) -> rnil()
        2ndspos(s(N),cons(X,Z)) -> 2ndspos(s(N),cons2(X,activate(Z)))
        2ndspos(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,activate(Z)))
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        pi(X) -> 2ndspos(X,from(0()))
        plus(0(),Y) -> Y
        plus(s(X),Y) -> s(plus(X,Y))
        square(X) -> times(X,X)
        times(0(),Y) -> 0()
        times(s(X),Y) -> plus(Y,times(X,Y))
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/2,c_6/2,c_7/0,c_8/1,c_9/0,c_10/0,c_11/2,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
      Obligation:
        Innermost
        basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        plus(0(),Y) -> Y
        plus(s(X),Y) -> s(plus(X,Y))
        times(0(),Y) -> 0()
        times(s(X),Y) -> plus(Y,times(X,Y))
        2ndsneg#(0(),Z) -> c_1()
        2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z))
        2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z))
        2ndspos#(0(),Z) -> c_4()
        2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z))
        2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z))
        activate#(X) -> c_7()
        activate#(n__from(X)) -> c_8(from#(X))
        from#(X) -> c_9()
        from#(X) -> c_10()
        pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0()))
        plus#(0(),Y) -> c_12()
        plus#(s(X),Y) -> c_13(plus#(X,Y))
        square#(X) -> c_14(times#(X,X))
        times#(0(),Y) -> c_15()
        times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
*** 1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        2ndsneg#(0(),Z) -> c_1()
        2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z))
        2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z))
        2ndspos#(0(),Z) -> c_4()
        2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z))
        2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z))
        activate#(X) -> c_7()
        activate#(n__from(X)) -> c_8(from#(X))
        from#(X) -> c_9()
        from#(X) -> c_10()
        pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0()))
        plus#(0(),Y) -> c_12()
        plus#(s(X),Y) -> c_13(plus#(X,Y))
        square#(X) -> c_14(times#(X,X))
        times#(0(),Y) -> c_15()
        times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        plus(0(),Y) -> Y
        plus(s(X),Y) -> s(plus(X,Y))
        times(0(),Y) -> 0()
        times(s(X),Y) -> plus(Y,times(X,Y))
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/2,c_6/2,c_7/0,c_8/1,c_9/0,c_10/0,c_11/2,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
      Obligation:
        Innermost
        basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,4,7,9,10,12,15}
      by application of
        Pre({1,4,7,9,10,12,15}) = {2,3,5,6,8,11,13,14,16}.
      Here rules are labelled as follows:
        1:  2ndsneg#(0(),Z) -> c_1()                
        2:  2ndsneg#(s(N),cons(X,Z)) ->             
              c_2(2ndsneg#(s(N)                     
                          ,cons2(X,activate(Z)))    
                 ,activate#(Z))                     
        3:  2ndsneg#(s(N)                           
                    ,cons2(X,cons(Y,Z))) ->         
              c_3(2ndspos#(N,activate(Z))           
                 ,activate#(Z))                     
        4:  2ndspos#(0(),Z) -> c_4()                
        5:  2ndspos#(s(N),cons(X,Z)) ->             
              c_5(2ndspos#(s(N)                     
                          ,cons2(X,activate(Z)))    
                 ,activate#(Z))                     
        6:  2ndspos#(s(N)                           
                    ,cons2(X,cons(Y,Z))) ->         
              c_6(2ndsneg#(N,activate(Z))           
                 ,activate#(Z))                     
        7:  activate#(X) -> c_7()                   
        8:  activate#(n__from(X)) ->                
              c_8(from#(X))                         
        9:  from#(X) -> c_9()                       
        10: from#(X) -> c_10()                      
        11: pi#(X) -> c_11(2ndspos#(X               
                                   ,from(0()))      
                          ,from#(0()))              
        12: plus#(0(),Y) -> c_12()                  
        13: plus#(s(X),Y) -> c_13(plus#(X           
                                       ,Y))         
        14: square#(X) -> c_14(times#(X,X))         
        15: times#(0(),Y) -> c_15()                 
        16: times#(s(X),Y) -> c_16(plus#(Y          
                                        ,times(X,Y))
                                  ,times#(X,Y))     
*** 1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z))
        2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z))
        2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z))
        2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z))
        activate#(n__from(X)) -> c_8(from#(X))
        pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0()))
        plus#(s(X),Y) -> c_13(plus#(X,Y))
        square#(X) -> c_14(times#(X,X))
        times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
      Strict TRS Rules:
        
      Weak DP Rules:
        2ndsneg#(0(),Z) -> c_1()
        2ndspos#(0(),Z) -> c_4()
        activate#(X) -> c_7()
        from#(X) -> c_9()
        from#(X) -> c_10()
        plus#(0(),Y) -> c_12()
        times#(0(),Y) -> c_15()
      Weak TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        plus(0(),Y) -> Y
        plus(s(X),Y) -> s(plus(X,Y))
        times(0(),Y) -> 0()
        times(s(X),Y) -> plus(Y,times(X,Y))
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/2,c_6/2,c_7/0,c_8/1,c_9/0,c_10/0,c_11/2,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
      Obligation:
        Innermost
        basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {5}
      by application of
        Pre({5}) = {1,2,3,4}.
      Here rules are labelled as follows:
        1:  2ndsneg#(s(N),cons(X,Z)) ->             
              c_2(2ndsneg#(s(N)                     
                          ,cons2(X,activate(Z)))    
                 ,activate#(Z))                     
        2:  2ndsneg#(s(N)                           
                    ,cons2(X,cons(Y,Z))) ->         
              c_3(2ndspos#(N,activate(Z))           
                 ,activate#(Z))                     
        3:  2ndspos#(s(N),cons(X,Z)) ->             
              c_5(2ndspos#(s(N)                     
                          ,cons2(X,activate(Z)))    
                 ,activate#(Z))                     
        4:  2ndspos#(s(N)                           
                    ,cons2(X,cons(Y,Z))) ->         
              c_6(2ndsneg#(N,activate(Z))           
                 ,activate#(Z))                     
        5:  activate#(n__from(X)) ->                
              c_8(from#(X))                         
        6:  pi#(X) -> c_11(2ndspos#(X               
                                   ,from(0()))      
                          ,from#(0()))              
        7:  plus#(s(X),Y) -> c_13(plus#(X           
                                       ,Y))         
        8:  square#(X) -> c_14(times#(X,X))         
        9:  times#(s(X),Y) -> c_16(plus#(Y          
                                        ,times(X,Y))
                                  ,times#(X,Y))     
        10: 2ndsneg#(0(),Z) -> c_1()                
        11: 2ndspos#(0(),Z) -> c_4()                
        12: activate#(X) -> c_7()                   
        13: from#(X) -> c_9()                       
        14: from#(X) -> c_10()                      
        15: plus#(0(),Y) -> c_12()                  
        16: times#(0(),Y) -> c_15()                 
*** 1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z))
        2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z))
        2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z))
        2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z))
        pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0()))
        plus#(s(X),Y) -> c_13(plus#(X,Y))
        square#(X) -> c_14(times#(X,X))
        times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
      Strict TRS Rules:
        
      Weak DP Rules:
        2ndsneg#(0(),Z) -> c_1()
        2ndspos#(0(),Z) -> c_4()
        activate#(X) -> c_7()
        activate#(n__from(X)) -> c_8(from#(X))
        from#(X) -> c_9()
        from#(X) -> c_10()
        plus#(0(),Y) -> c_12()
        times#(0(),Y) -> c_15()
      Weak TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        plus(0(),Y) -> Y
        plus(s(X),Y) -> s(plus(X,Y))
        times(0(),Y) -> 0()
        times(s(X),Y) -> plus(Y,times(X,Y))
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/2,c_6/2,c_7/0,c_8/1,c_9/0,c_10/0,c_11/2,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
      Obligation:
        Innermost
        basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z))
           -->_2 activate#(n__from(X)) -> c_8(from#(X)):12
           -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z)):2
           -->_2 activate#(X) -> c_7():11
        
        2:S:2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z))
           -->_2 activate#(n__from(X)) -> c_8(from#(X)):12
           -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)):4
           -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z)):3
           -->_2 activate#(X) -> c_7():11
           -->_1 2ndspos#(0(),Z) -> c_4():10
        
        3:S:2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z))
           -->_2 activate#(n__from(X)) -> c_8(from#(X)):12
           -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)):4
           -->_2 activate#(X) -> c_7():11
        
        4:S:2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z))
           -->_2 activate#(n__from(X)) -> c_8(from#(X)):12
           -->_2 activate#(X) -> c_7():11
           -->_1 2ndsneg#(0(),Z) -> c_1():9
           -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z)):2
           -->_1 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z)):1
        
        5:S:pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0()))
           -->_2 from#(X) -> c_10():14
           -->_2 from#(X) -> c_9():13
           -->_1 2ndspos#(0(),Z) -> c_4():10
           -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)):4
           -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z)):3
        
        6:S:plus#(s(X),Y) -> c_13(plus#(X,Y))
           -->_1 plus#(0(),Y) -> c_12():15
           -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6
        
        7:S:square#(X) -> c_14(times#(X,X))
           -->_1 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):8
           -->_1 times#(0(),Y) -> c_15():16
        
        8:S:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
           -->_2 times#(0(),Y) -> c_15():16
           -->_1 plus#(0(),Y) -> c_12():15
           -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):8
           -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6
        
        9:W:2ndsneg#(0(),Z) -> c_1()
           
        
        10:W:2ndspos#(0(),Z) -> c_4()
           
        
        11:W:activate#(X) -> c_7()
           
        
        12:W:activate#(n__from(X)) -> c_8(from#(X))
           -->_1 from#(X) -> c_10():14
           -->_1 from#(X) -> c_9():13
        
        13:W:from#(X) -> c_9()
           
        
        14:W:from#(X) -> c_10()
           
        
        15:W:plus#(0(),Y) -> c_12()
           
        
        16:W:times#(0(),Y) -> c_15()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        16: times#(0(),Y) -> c_15() 
        15: plus#(0(),Y) -> c_12()  
        10: 2ndspos#(0(),Z) -> c_4()
        9:  2ndsneg#(0(),Z) -> c_1()
        11: activate#(X) -> c_7()   
        12: activate#(n__from(X)) ->
              c_8(from#(X))         
        13: from#(X) -> c_9()       
        14: from#(X) -> c_10()      
*** 1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z))
        2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z))
        2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z))
        2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z))
        pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0()))
        plus#(s(X),Y) -> c_13(plus#(X,Y))
        square#(X) -> c_14(times#(X,X))
        times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        plus(0(),Y) -> Y
        plus(s(X),Y) -> s(plus(X,Y))
        times(0(),Y) -> 0()
        times(s(X),Y) -> plus(Y,times(X,Y))
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/2,c_6/2,c_7/0,c_8/1,c_9/0,c_10/0,c_11/2,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
      Obligation:
        Innermost
        basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    Applied Processor:
      SimplifyRHS
    Proof:
      Consider the dependency graph
        1:S:2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z))
           -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z)):2
        
        2:S:2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z))
           -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)):4
           -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z)):3
        
        3:S:2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z))
           -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)):4
        
        4:S:2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z))
           -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z)):2
           -->_1 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z)):1
        
        5:S:pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0()))
           -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)):4
           -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z)):3
        
        6:S:plus#(s(X),Y) -> c_13(plus#(X,Y))
           -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6
        
        7:S:square#(X) -> c_14(times#(X,X))
           -->_1 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):8
        
        8:S:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
           -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):8
           -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6
        
      Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
        2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
        2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
        2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
        2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
        pi#(X) -> c_11(2ndspos#(X,from(0())))
*** 1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
        2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
        2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
        2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
        pi#(X) -> c_11(2ndspos#(X,from(0())))
        plus#(s(X),Y) -> c_13(plus#(X,Y))
        square#(X) -> c_14(times#(X,X))
        times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        plus(0(),Y) -> Y
        plus(s(X),Y) -> s(plus(X,Y))
        times(0(),Y) -> 0()
        times(s(X),Y) -> plus(Y,times(X,Y))
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
      Obligation:
        Innermost
        basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    Applied Processor:
      RemoveHeads
    Proof:
      Consider the dependency graph
      
      1:S:2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
         -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):2
      
      2:S:2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
         -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4
         -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):3
      
      3:S:2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
         -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4
      
      4:S:2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
         -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):2
         -->_1 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))):1
      
      5:S:pi#(X) -> c_11(2ndspos#(X,from(0())))
         -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4
         -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):3
      
      6:S:plus#(s(X),Y) -> c_13(plus#(X,Y))
         -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6
      
      7:S:square#(X) -> c_14(times#(X,X))
         -->_1 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):8
      
      8:S:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
         -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):8
         -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6
      
      
      Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
      
      [(7,square#(X) -> c_14(times#(X,X)))]
*** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
        2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
        2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
        2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
        pi#(X) -> c_11(2ndspos#(X,from(0())))
        plus#(s(X),Y) -> c_13(plus#(X,Y))
        times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        plus(0(),Y) -> Y
        plus(s(X),Y) -> s(plus(X,Y))
        times(0(),Y) -> 0()
        times(s(X),Y) -> plus(Y,times(X,Y))
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
      Obligation:
        Innermost
        basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    Applied Processor:
      Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    Proof:
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
      
      Problem (R)
        Strict DP Rules:
          2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
          2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
          2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
          2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
        Strict TRS Rules:
          
        Weak DP Rules:
          pi#(X) -> c_11(2ndspos#(X,from(0())))
          plus#(s(X),Y) -> c_13(plus#(X,Y))
          times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        Weak TRS Rules:
          activate(X) -> X
          activate(n__from(X)) -> from(X)
          from(X) -> cons(X,n__from(s(X)))
          from(X) -> n__from(X)
          plus(0(),Y) -> Y
          plus(s(X),Y) -> s(plus(X,Y))
          times(0(),Y) -> 0()
          times(s(X),Y) -> plus(Y,times(X,Y))
        Signature:
          {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
        Obligation:
          Innermost
          basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
      
      Problem (S)
        Strict DP Rules:
          pi#(X) -> c_11(2ndspos#(X,from(0())))
          plus#(s(X),Y) -> c_13(plus#(X,Y))
          times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        Strict TRS Rules:
          
        Weak DP Rules:
          2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
          2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
          2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
          2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
        Weak TRS Rules:
          activate(X) -> X
          activate(n__from(X)) -> from(X)
          from(X) -> cons(X,n__from(s(X)))
          from(X) -> n__from(X)
          plus(0(),Y) -> Y
          plus(s(X),Y) -> s(plus(X,Y))
          times(0(),Y) -> 0()
          times(s(X),Y) -> plus(Y,times(X,Y))
        Signature:
          {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
        Obligation:
          Innermost
          basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
  *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
          2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
          2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
          2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
        Strict TRS Rules:
          
        Weak DP Rules:
          pi#(X) -> c_11(2ndspos#(X,from(0())))
          plus#(s(X),Y) -> c_13(plus#(X,Y))
          times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        Weak TRS Rules:
          activate(X) -> X
          activate(n__from(X)) -> from(X)
          from(X) -> cons(X,n__from(s(X)))
          from(X) -> n__from(X)
          plus(0(),Y) -> Y
          plus(s(X),Y) -> s(plus(X,Y))
          times(0(),Y) -> 0()
          times(s(X),Y) -> plus(Y,times(X,Y))
        Signature:
          {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
        Obligation:
          Innermost
          basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
             -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):2
          
          2:S:2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
             -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4
             -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):3
          
          3:S:2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
             -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4
          
          4:S:2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
             -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):2
             -->_1 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))):1
          
          5:W:pi#(X) -> c_11(2ndspos#(X,from(0())))
             -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4
             -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):3
          
          6:W:plus#(s(X),Y) -> c_13(plus#(X,Y))
             -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6
          
          8:W:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
             -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6
             -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):8
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          8: times#(s(X),Y) -> c_16(plus#(Y          
                                         ,times(X,Y))
                                   ,times#(X,Y))     
          6: plus#(s(X),Y) -> c_13(plus#(X           
                                        ,Y))         
  *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
          2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
          2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
          2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
        Strict TRS Rules:
          
        Weak DP Rules:
          pi#(X) -> c_11(2ndspos#(X,from(0())))
        Weak TRS Rules:
          activate(X) -> X
          activate(n__from(X)) -> from(X)
          from(X) -> cons(X,n__from(s(X)))
          from(X) -> n__from(X)
          plus(0(),Y) -> Y
          plus(s(X),Y) -> s(plus(X,Y))
          times(0(),Y) -> 0()
          times(s(X),Y) -> plus(Y,times(X,Y))
        Signature:
          {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
        Obligation:
          Innermost
          basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
      Applied Processor:
        UsableRules
      Proof:
        We replace rewrite rules by usable rules:
          activate(X) -> X
          activate(n__from(X)) -> from(X)
          from(X) -> cons(X,n__from(s(X)))
          from(X) -> n__from(X)
          2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
          2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
          2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
          2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
          pi#(X) -> c_11(2ndspos#(X,from(0())))
  *** 1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
          2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
          2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
          2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
        Strict TRS Rules:
          
        Weak DP Rules:
          pi#(X) -> c_11(2ndspos#(X,from(0())))
        Weak TRS Rules:
          activate(X) -> X
          activate(n__from(X)) -> from(X)
          from(X) -> cons(X,n__from(s(X)))
          from(X) -> n__from(X)
        Signature:
          {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
        Obligation:
          Innermost
          basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          4: 2ndspos#(s(N)                  
                     ,cons2(X,cons(Y,Z))) ->
               c_6(2ndsneg#(N,activate(Z))) 
          
        Consider the set of all dependency pairs
          1: 2ndsneg#(s(N),cons(X,Z)) ->          
               c_2(2ndsneg#(s(N)                  
                           ,cons2(X,activate(Z))))
          2: 2ndsneg#(s(N)                        
                     ,cons2(X,cons(Y,Z))) ->      
               c_3(2ndspos#(N,activate(Z)))       
          3: 2ndspos#(s(N),cons(X,Z)) ->          
               c_5(2ndspos#(s(N)                  
                           ,cons2(X,activate(Z))))
          4: 2ndspos#(s(N)                        
                     ,cons2(X,cons(Y,Z))) ->      
               c_6(2ndsneg#(N,activate(Z)))       
          5: pi#(X) -> c_11(2ndspos#(X            
                                    ,from(0())))  
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {4}
        These cover all (indirect) predecessors of dependency pairs
          {1,2,3,4,5}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
    *** 1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
            2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
            2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
            2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
          Strict TRS Rules:
            
          Weak DP Rules:
            pi#(X) -> c_11(2ndspos#(X,from(0())))
          Weak TRS Rules:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
          Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
          Obligation:
            Innermost
            basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
        Applied Processor:
          NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(c_2) = {1},
            uargs(c_3) = {1},
            uargs(c_5) = {1},
            uargs(c_6) = {1},
            uargs(c_11) = {1}
          
          Following symbols are considered usable:
            {activate,from,2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}
          TcT has computed the following interpretation:
                    p(0) = [0]                  
              p(2ndsneg) = [2] x1 + [1]         
              p(2ndspos) = [1] x1 + [1]         
             p(activate) = [1] x1 + [4]         
                 p(cons) = [1] x2 + [4]         
                p(cons2) = [1] x2 + [0]         
                 p(from) = [4]                  
              p(n__from) = [0]                  
             p(negrecip) = [1]                  
                   p(pi) = [2] x1 + [1]         
                 p(plus) = [1] x1 + [2]         
             p(posrecip) = [1] x1 + [1]         
                p(rcons) = [1] x1 + [1]         
                 p(rnil) = [0]                  
                    p(s) = [1] x1 + [2]         
               p(square) = [0]                  
                p(times) = [2] x2 + [8]         
             p(2ndsneg#) = [2] x1 + [1] x2 + [2]
             p(2ndspos#) = [2] x1 + [1] x2 + [1]
            p(activate#) = [1] x1 + [1]         
                p(from#) = [2] x1 + [2]         
                  p(pi#) = [2] x1 + [5]         
                p(plus#) = [0]                  
              p(square#) = [4]                  
               p(times#) = [2] x2 + [2]         
                  p(c_1) = [0]                  
                  p(c_2) = [1] x1 + [0]         
                  p(c_3) = [1] x1 + [5]         
                  p(c_4) = [1]                  
                  p(c_5) = [1] x1 + [0]         
                  p(c_6) = [1] x1 + [1]         
                  p(c_7) = [0]                  
                  p(c_8) = [0]                  
                  p(c_9) = [2]                  
                 p(c_10) = [1]                  
                 p(c_11) = [1] x1 + [0]         
                 p(c_12) = [0]                  
                 p(c_13) = [2] x1 + [1]         
                 p(c_14) = [1] x1 + [0]         
                 p(c_15) = [2]                  
                 p(c_16) = [1] x2 + [0]         
          
          Following rules are strictly oriented:
                         2ndspos#(s(N) = [2] N + [1] Z + [9]         
                  ,cons2(X,cons(Y,Z)))                               
                                       > [2] N + [1] Z + [7]         
                                       = c_6(2ndsneg#(N,activate(Z)))
          
          
          Following rules are (at-least) weakly oriented:
              2ndsneg#(s(N),cons(X,Z)) =  [2] N + [1] Z + [10]               
                                       >= [2] N + [1] Z + [10]               
                                       =  c_2(2ndsneg#(s(N)                  
                                                      ,cons2(X,activate(Z))))
          
                         2ndsneg#(s(N) =  [2] N + [1] Z + [10]               
                  ,cons2(X,cons(Y,Z)))                                       
                                       >= [2] N + [1] Z + [10]               
                                       =  c_3(2ndspos#(N,activate(Z)))       
          
              2ndspos#(s(N),cons(X,Z)) =  [2] N + [1] Z + [9]                
                                       >= [2] N + [1] Z + [9]                
                                       =  c_5(2ndspos#(s(N)                  
                                                      ,cons2(X,activate(Z))))
          
                                pi#(X) =  [2] X + [5]                        
                                       >= [2] X + [5]                        
                                       =  c_11(2ndspos#(X,from(0())))        
          
                           activate(X) =  [1] X + [4]                        
                                       >= [1] X + [0]                        
                                       =  X                                  
          
                  activate(n__from(X)) =  [4]                                
                                       >= [4]                                
                                       =  from(X)                            
          
                               from(X) =  [4]                                
                                       >= [4]                                
                                       =  cons(X,n__from(s(X)))              
          
                               from(X) =  [4]                                
                                       >= [0]                                
                                       =  n__from(X)                         
          
    *** 1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
            2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
            2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
          Strict TRS Rules:
            
          Weak DP Rules:
            2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
            pi#(X) -> c_11(2ndspos#(X,from(0())))
          Weak TRS Rules:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
          Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
          Obligation:
            Innermost
            basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
            2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
            2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
            2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
            pi#(X) -> c_11(2ndspos#(X,from(0())))
          Weak TRS Rules:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
          Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
          Obligation:
            Innermost
            basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
               -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):2
            
            2:W:2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
               -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4
               -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):3
            
            3:W:2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
               -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4
            
            4:W:2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
               -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):2
               -->_1 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))):1
            
            5:W:pi#(X) -> c_11(2ndspos#(X,from(0())))
               -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4
               -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):3
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            5: pi#(X) -> c_11(2ndspos#(X            
                                      ,from(0())))  
            1: 2ndsneg#(s(N),cons(X,Z)) ->          
                 c_2(2ndsneg#(s(N)                  
                             ,cons2(X,activate(Z))))
            4: 2ndspos#(s(N)                        
                       ,cons2(X,cons(Y,Z))) ->      
                 c_6(2ndsneg#(N,activate(Z)))       
            3: 2ndspos#(s(N),cons(X,Z)) ->          
                 c_5(2ndspos#(s(N)                  
                             ,cons2(X,activate(Z))))
            2: 2ndsneg#(s(N)                        
                       ,cons2(X,cons(Y,Z))) ->      
                 c_3(2ndspos#(N,activate(Z)))       
    *** 1.1.1.1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
          Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
          Obligation:
            Innermost
            basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).
    
  *** 1.1.1.1.1.1.1.1.2 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          pi#(X) -> c_11(2ndspos#(X,from(0())))
          plus#(s(X),Y) -> c_13(plus#(X,Y))
          times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        Strict TRS Rules:
          
        Weak DP Rules:
          2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
          2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
          2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
          2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
        Weak TRS Rules:
          activate(X) -> X
          activate(n__from(X)) -> from(X)
          from(X) -> cons(X,n__from(s(X)))
          from(X) -> n__from(X)
          plus(0(),Y) -> Y
          plus(s(X),Y) -> s(plus(X,Y))
          times(0(),Y) -> 0()
          times(s(X),Y) -> plus(Y,times(X,Y))
        Signature:
          {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
        Obligation:
          Innermost
          basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
      Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
      Proof:
        We estimate the number of application of
          {1}
        by application of
          Pre({1}) = {}.
        Here rules are labelled as follows:
          1: pi#(X) -> c_11(2ndspos#(X               
                                    ,from(0())))     
          2: plus#(s(X),Y) -> c_13(plus#(X           
                                        ,Y))         
          3: times#(s(X),Y) -> c_16(plus#(Y          
                                         ,times(X,Y))
                                   ,times#(X,Y))     
          4: 2ndsneg#(s(N),cons(X,Z)) ->             
               c_2(2ndsneg#(s(N)                     
                           ,cons2(X,activate(Z))))   
          5: 2ndsneg#(s(N)                           
                     ,cons2(X,cons(Y,Z))) ->         
               c_3(2ndspos#(N,activate(Z)))          
          6: 2ndspos#(s(N),cons(X,Z)) ->             
               c_5(2ndspos#(s(N)                     
                           ,cons2(X,activate(Z))))   
          7: 2ndspos#(s(N)                           
                     ,cons2(X,cons(Y,Z))) ->         
               c_6(2ndsneg#(N,activate(Z)))          
  *** 1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          plus#(s(X),Y) -> c_13(plus#(X,Y))
          times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        Strict TRS Rules:
          
        Weak DP Rules:
          2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
          2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
          2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
          2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
          pi#(X) -> c_11(2ndspos#(X,from(0())))
        Weak TRS Rules:
          activate(X) -> X
          activate(n__from(X)) -> from(X)
          from(X) -> cons(X,n__from(s(X)))
          from(X) -> n__from(X)
          plus(0(),Y) -> Y
          plus(s(X),Y) -> s(plus(X,Y))
          times(0(),Y) -> 0()
          times(s(X),Y) -> plus(Y,times(X,Y))
        Signature:
          {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
        Obligation:
          Innermost
          basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:plus#(s(X),Y) -> c_13(plus#(X,Y))
             -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):1
          
          2:S:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
             -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):2
             -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):1
          
          3:W:2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
             -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):4
          
          4:W:2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
             -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):6
             -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):5
          
          5:W:2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
             -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):6
          
          6:W:2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
             -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):4
             -->_1 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))):3
          
          7:W:pi#(X) -> c_11(2ndspos#(X,from(0())))
             -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):6
             -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):5
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          7: pi#(X) -> c_11(2ndspos#(X            
                                    ,from(0())))  
          3: 2ndsneg#(s(N),cons(X,Z)) ->          
               c_2(2ndsneg#(s(N)                  
                           ,cons2(X,activate(Z))))
          6: 2ndspos#(s(N)                        
                     ,cons2(X,cons(Y,Z))) ->      
               c_6(2ndsneg#(N,activate(Z)))       
          5: 2ndspos#(s(N),cons(X,Z)) ->          
               c_5(2ndspos#(s(N)                  
                           ,cons2(X,activate(Z))))
          4: 2ndsneg#(s(N)                        
                     ,cons2(X,cons(Y,Z))) ->      
               c_3(2ndspos#(N,activate(Z)))       
  *** 1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          plus#(s(X),Y) -> c_13(plus#(X,Y))
          times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          activate(X) -> X
          activate(n__from(X)) -> from(X)
          from(X) -> cons(X,n__from(s(X)))
          from(X) -> n__from(X)
          plus(0(),Y) -> Y
          plus(s(X),Y) -> s(plus(X,Y))
          times(0(),Y) -> 0()
          times(s(X),Y) -> plus(Y,times(X,Y))
        Signature:
          {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
        Obligation:
          Innermost
          basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
      Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
      Proof:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          Strict DP Rules:
            plus#(s(X),Y) -> c_13(plus#(X,Y))
          Strict TRS Rules:
            
          Weak DP Rules:
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
          Weak TRS Rules:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
          Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
          Obligation:
            Innermost
            basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
        
        Problem (S)
          Strict DP Rules:
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
          Strict TRS Rules:
            
          Weak DP Rules:
            plus#(s(X),Y) -> c_13(plus#(X,Y))
          Weak TRS Rules:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
          Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
          Obligation:
            Innermost
            basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    *** 1.1.1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            plus#(s(X),Y) -> c_13(plus#(X,Y))
          Strict TRS Rules:
            
          Weak DP Rules:
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
          Weak TRS Rules:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
          Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
          Obligation:
            Innermost
            basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
        Applied Processor:
          UsableRules
        Proof:
          We replace rewrite rules by usable rules:
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
            plus#(s(X),Y) -> c_13(plus#(X,Y))
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
    *** 1.1.1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            plus#(s(X),Y) -> c_13(plus#(X,Y))
          Strict TRS Rules:
            
          Weak DP Rules:
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
          Weak TRS Rules:
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
          Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
          Obligation:
            Innermost
            basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            1: plus#(s(X),Y) -> c_13(plus#(X  
                                          ,Y))
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              plus#(s(X),Y) -> c_13(plus#(X,Y))
            Strict TRS Rules:
              
            Weak DP Rules:
              times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
            Weak TRS Rules:
              plus(0(),Y) -> Y
              plus(s(X),Y) -> s(plus(X,Y))
              times(0(),Y) -> 0()
              times(s(X),Y) -> plus(Y,times(X,Y))
            Signature:
              {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
            Obligation:
              Innermost
              basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
          Applied Processor:
            NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a polynomial interpretation of kind constructor-based(mixed(2)):
            The following argument positions are considered usable:
              uargs(c_13) = {1},
              uargs(c_16) = {1,2}
            
            Following symbols are considered usable:
              {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}
            TcT has computed the following interpretation:
                      p(0) = 0                                  
                p(2ndsneg) = 0                                  
                p(2ndspos) = 4*x1 + x1^2 + x2 + 4*x2^2          
               p(activate) = 2*x1                               
                   p(cons) = 0                                  
                  p(cons2) = 0                                  
                   p(from) = x1^2                               
                p(n__from) = 0                                  
               p(negrecip) = 1                                  
                     p(pi) = 2                                  
                   p(plus) = 2*x1                               
               p(posrecip) = 1                                  
                  p(rcons) = x1                                 
                   p(rnil) = 0                                  
                      p(s) = 1 + x1                             
                 p(square) = 0                                  
                  p(times) = 3*x1 + x1^2                        
               p(2ndsneg#) = 1 + x1 + 2*x1*x2 + x1^2 + x2       
               p(2ndspos#) = x1 + x1*x2 + x1^2 + x2             
              p(activate#) = x1 + 2*x1^2                        
                  p(from#) = 1 + 4*x1                           
                    p(pi#) = x1                                 
                  p(plus#) = 4*x1                               
                p(square#) = 0                                  
                 p(times#) = 2*x1 + 4*x1*x2 + x1^2 + 2*x2 + x2^2
                    p(c_1) = 1                                  
                    p(c_2) = 1 + x1                             
                    p(c_3) = 0                                  
                    p(c_4) = 0                                  
                    p(c_5) = x1                                 
                    p(c_6) = 0                                  
                    p(c_7) = 0                                  
                    p(c_8) = 0                                  
                    p(c_9) = 0                                  
                   p(c_10) = 0                                  
                   p(c_11) = 1                                  
                   p(c_12) = 0                                  
                   p(c_13) = x1                                 
                   p(c_14) = 0                                  
                   p(c_15) = 0                                  
                   p(c_16) = 1 + x1 + x2                        
            
            Following rules are strictly oriented:
            plus#(s(X),Y) = 4 + 4*X         
                          > 4*X             
                          = c_13(plus#(X,Y))
            
            
            Following rules are (at-least) weakly oriented:
            times#(s(X),Y) =  3 + 4*X + 4*X*Y + X^2 + 6*Y + Y^2
                           >= 1 + 2*X + 4*X*Y + X^2 + 6*Y + Y^2
                           =  c_16(plus#(Y,times(X,Y))         
                                  ,times#(X,Y))                
            
      *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              plus#(s(X),Y) -> c_13(plus#(X,Y))
              times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
            Weak TRS Rules:
              plus(0(),Y) -> Y
              plus(s(X),Y) -> s(plus(X,Y))
              times(0(),Y) -> 0()
              times(s(X),Y) -> plus(Y,times(X,Y))
            Signature:
              {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
            Obligation:
              Innermost
              basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.1.2.1.1.1.1.2 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              plus#(s(X),Y) -> c_13(plus#(X,Y))
              times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
            Weak TRS Rules:
              plus(0(),Y) -> Y
              plus(s(X),Y) -> s(plus(X,Y))
              times(0(),Y) -> 0()
              times(s(X),Y) -> plus(Y,times(X,Y))
            Signature:
              {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
            Obligation:
              Innermost
              basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:W:plus#(s(X),Y) -> c_13(plus#(X,Y))
                 -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):1
              
              2:W:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
                 -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):2
                 -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):1
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              2: times#(s(X),Y) -> c_16(plus#(Y          
                                             ,times(X,Y))
                                       ,times#(X,Y))     
              1: plus#(s(X),Y) -> c_13(plus#(X           
                                            ,Y))         
      *** 1.1.1.1.1.1.1.1.2.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              plus(0(),Y) -> Y
              plus(s(X),Y) -> s(plus(X,Y))
              times(0(),Y) -> 0()
              times(s(X),Y) -> plus(Y,times(X,Y))
            Signature:
              {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
            Obligation:
              Innermost
              basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
          Applied Processor:
            EmptyProcessor
          Proof:
            The problem is already closed. The intended complexity is O(1).
      
    *** 1.1.1.1.1.1.1.1.2.1.1.2 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
          Strict TRS Rules:
            
          Weak DP Rules:
            plus#(s(X),Y) -> c_13(plus#(X,Y))
          Weak TRS Rules:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
          Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
          Obligation:
            Innermost
            basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:S:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
               -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):2
               -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):1
            
            2:W:plus#(s(X),Y) -> c_13(plus#(X,Y))
               -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):2
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            2: plus#(s(X),Y) -> c_13(plus#(X  
                                          ,Y))
    *** 1.1.1.1.1.1.1.1.2.1.1.2.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
          Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/2}
          Obligation:
            Innermost
            basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
        Applied Processor:
          SimplifyRHS
        Proof:
          Consider the dependency graph
            1:S:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
               -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):1
            
          Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
            times#(s(X),Y) -> c_16(times#(X,Y))
    *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            times#(s(X),Y) -> c_16(times#(X,Y))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
          Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/1}
          Obligation:
            Innermost
            basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
        Applied Processor:
          UsableRules
        Proof:
          We replace rewrite rules by usable rules:
            times#(s(X),Y) -> c_16(times#(X,Y))
    *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            times#(s(X),Y) -> c_16(times#(X,Y))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/1}
          Obligation:
            Innermost
            basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            1: times#(s(X),Y) -> c_16(times#(X  
                                            ,Y))
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              times#(s(X),Y) -> c_16(times#(X,Y))
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              
            Signature:
              {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/1}
            Obligation:
              Innermost
              basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
          Applied Processor:
            NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation:
            The following argument positions are considered usable:
              uargs(c_16) = {1}
            
            Following symbols are considered usable:
              {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}
            TcT has computed the following interpretation:
                      p(0) = [0]                  
                p(2ndsneg) = [1] x2 + [8]         
                p(2ndspos) = [8] x2 + [4]         
               p(activate) = [1] x1 + [8]         
                   p(cons) = [1] x1 + [1] x2 + [4]
                  p(cons2) = [1] x2 + [0]         
                   p(from) = [0]                  
                p(n__from) = [1] x1 + [0]         
               p(negrecip) = [1] x1 + [0]         
                     p(pi) = [0]                  
                   p(plus) = [0]                  
               p(posrecip) = [1] x1 + [0]         
                  p(rcons) = [1] x1 + [1] x2 + [0]
                   p(rnil) = [0]                  
                      p(s) = [1] x1 + [1]         
                 p(square) = [0]                  
                  p(times) = [0]                  
               p(2ndsneg#) = [0]                  
               p(2ndspos#) = [0]                  
              p(activate#) = [1]                  
                  p(from#) = [1]                  
                    p(pi#) = [1]                  
                  p(plus#) = [0]                  
                p(square#) = [2]                  
                 p(times#) = [8] x1 + [8]         
                    p(c_1) = [0]                  
                    p(c_2) = [0]                  
                    p(c_3) = [0]                  
                    p(c_4) = [0]                  
                    p(c_5) = [0]                  
                    p(c_6) = [0]                  
                    p(c_7) = [0]                  
                    p(c_8) = [0]                  
                    p(c_9) = [0]                  
                   p(c_10) = [0]                  
                   p(c_11) = [0]                  
                   p(c_12) = [0]                  
                   p(c_13) = [8] x1 + [0]         
                   p(c_14) = [8]                  
                   p(c_15) = [2]                  
                   p(c_16) = [1] x1 + [4]         
            
            Following rules are strictly oriented:
            times#(s(X),Y) = [8] X + [16]     
                           > [8] X + [12]     
                           = c_16(times#(X,Y))
            
            
            Following rules are (at-least) weakly oriented:
            
      *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              times#(s(X),Y) -> c_16(times#(X,Y))
            Weak TRS Rules:
              
            Signature:
              {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/1}
            Obligation:
              Innermost
              basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.2 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              times#(s(X),Y) -> c_16(times#(X,Y))
            Weak TRS Rules:
              
            Signature:
              {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/1}
            Obligation:
              Innermost
              basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:W:times#(s(X),Y) -> c_16(times#(X,Y))
                 -->_1 times#(s(X),Y) -> c_16(times#(X,Y)):1
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              1: times#(s(X),Y) -> c_16(times#(X  
                                              ,Y))
      *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              
            Signature:
              {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0,c_16/1}
            Obligation:
              Innermost
              basic terms: {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}/{0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
          Applied Processor:
            EmptyProcessor
          Proof:
            The problem is already closed. The intended complexity is O(1).