*** 1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndsneg(s(N),cons(X,Z)) -> 2ndsneg(s(N),cons2(X,activate(Z)))
        2ndsneg(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,activate(Z)))
        2ndspos(0(),Z) -> rnil()
        2ndspos(s(N),cons(X,Z)) -> 2ndspos(s(N),cons2(X,activate(Z)))
        2ndspos(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,activate(Z)))
        activate(X) -> X
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        pi(X) -> 2ndspos(X,from(0()))
        plus(0(),Y) -> Y
        plus(s(X),Y) -> s(plus(X,Y))
        s(X) -> n__s(X)
        square(X) -> times(X,X)
        times(0(),Y) -> 0()
        times(s(X),Y) -> plus(Y,times(X,Y))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,from,pi,plus,s,square,times}/{0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil}
    Applied Processor:
      InnermostRuleRemoval
    Proof:
      Arguments of following rules are not normal-forms.
        2ndsneg(s(N),cons(X,Z)) -> 2ndsneg(s(N),cons2(X,activate(Z)))
        2ndsneg(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,activate(Z)))
        2ndspos(s(N),cons(X,Z)) -> 2ndspos(s(N),cons2(X,activate(Z)))
        2ndspos(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,activate(Z)))
        plus(s(X),Y) -> s(plus(X,Y))
        times(s(X),Y) -> plus(Y,times(X,Y))
      All above mentioned rules can be savely removed.
*** 1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndspos(0(),Z) -> rnil()
        activate(X) -> X
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        pi(X) -> 2ndspos(X,from(0()))
        plus(0(),Y) -> Y
        s(X) -> n__s(X)
        square(X) -> times(X,X)
        times(0(),Y) -> 0()
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,from,pi,plus,s,square,times}/{0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(2ndspos) = {2},
          uargs(from) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
           p(2ndsneg) = [0]                  
           p(2ndspos) = [1] x2 + [0]         
          p(activate) = [4] x1 + [2]         
              p(cons) = [0]                  
             p(cons2) = [1] x1 + [1] x2 + [0]
              p(from) = [1] x1 + [0]         
           p(n__from) = [1] x1 + [0]         
              p(n__s) = [1] x1 + [0]         
          p(negrecip) = [1] x1 + [0]         
                p(pi) = [0]                  
              p(plus) = [2] x2 + [0]         
          p(posrecip) = [1] x1 + [0]         
             p(rcons) = [1] x1 + [1] x2 + [0]
              p(rnil) = [0]                  
                 p(s) = [1] x1 + [0]         
            p(square) = [0]                  
             p(times) = [0]                  
        
        Following rules are strictly oriented:
        activate(X) = [4] X + [2]
                    > [1] X + [0]
                    = X          
        
        
        Following rules are (at-least) weakly oriented:
              2ndsneg(0(),Z) =  [0]                     
                             >= [0]                     
                             =  rnil()                  
        
              2ndspos(0(),Z) =  [1] Z + [0]             
                             >= [0]                     
                             =  rnil()                  
        
        activate(n__from(X)) =  [4] X + [2]             
                             >= [4] X + [2]             
                             =  from(activate(X))       
        
           activate(n__s(X)) =  [4] X + [2]             
                             >= [4] X + [2]             
                             =  s(activate(X))          
        
                     from(X) =  [1] X + [0]             
                             >= [0]                     
                             =  cons(X,n__from(n__s(X)))
        
                     from(X) =  [1] X + [0]             
                             >= [1] X + [0]             
                             =  n__from(X)              
        
                       pi(X) =  [0]                     
                             >= [0]                     
                             =  2ndspos(X,from(0()))    
        
                 plus(0(),Y) =  [2] Y + [0]             
                             >= [1] Y + [0]             
                             =  Y                       
        
                        s(X) =  [1] X + [0]             
                             >= [1] X + [0]             
                             =  n__s(X)                 
        
                   square(X) =  [0]                     
                             >= [0]                     
                             =  times(X,X)              
        
                times(0(),Y) =  [0]                     
                             >= [0]                     
                             =  0()                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndspos(0(),Z) -> rnil()
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        pi(X) -> 2ndspos(X,from(0()))
        plus(0(),Y) -> Y
        s(X) -> n__s(X)
        square(X) -> times(X,X)
        times(0(),Y) -> 0()
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,from,pi,plus,s,square,times}/{0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(2ndspos) = {2},
          uargs(from) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [4]                  
           p(2ndsneg) = [3] x1 + [0]         
           p(2ndspos) = [1] x1 + [1] x2 + [0]
          p(activate) = [2] x1 + [1]         
              p(cons) = [0]                  
             p(cons2) = [1] x1 + [1] x2 + [0]
              p(from) = [1] x1 + [4]         
           p(n__from) = [1] x1 + [0]         
              p(n__s) = [1] x1 + [0]         
          p(negrecip) = [1] x1 + [0]         
                p(pi) = [1] x1 + [0]         
              p(plus) = [6] x1 + [2] x2 + [0]
          p(posrecip) = [1] x1 + [0]         
             p(rcons) = [2]                  
              p(rnil) = [1]                  
                 p(s) = [1] x1 + [15]        
            p(square) = [8] x1 + [0]         
             p(times) = [1] x1 + [1]         
        
        Following rules are strictly oriented:
        2ndsneg(0(),Z) = [12]                    
                       > [1]                     
                       = rnil()                  
        
        2ndspos(0(),Z) = [1] Z + [4]             
                       > [1]                     
                       = rnil()                  
        
               from(X) = [1] X + [4]             
                       > [0]                     
                       = cons(X,n__from(n__s(X)))
        
               from(X) = [1] X + [4]             
                       > [1] X + [0]             
                       = n__from(X)              
        
           plus(0(),Y) = [2] Y + [24]            
                       > [1] Y + [0]             
                       = Y                       
        
                  s(X) = [1] X + [15]            
                       > [1] X + [0]             
                       = n__s(X)                 
        
          times(0(),Y) = [5]                     
                       > [4]                     
                       = 0()                     
        
        
        Following rules are (at-least) weakly oriented:
                 activate(X) =  [2] X + [1]         
                             >= [1] X + [0]         
                             =  X                   
        
        activate(n__from(X)) =  [2] X + [1]         
                             >= [2] X + [5]         
                             =  from(activate(X))   
        
           activate(n__s(X)) =  [2] X + [1]         
                             >= [2] X + [16]        
                             =  s(activate(X))      
        
                       pi(X) =  [1] X + [0]         
                             >= [1] X + [8]         
                             =  2ndspos(X,from(0()))
        
                   square(X) =  [8] X + [0]         
                             >= [1] X + [1]         
                             =  times(X,X)          
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        pi(X) -> 2ndspos(X,from(0()))
        square(X) -> times(X,X)
      Weak DP Rules:
        
      Weak TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndspos(0(),Z) -> rnil()
        activate(X) -> X
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        plus(0(),Y) -> Y
        s(X) -> n__s(X)
        times(0(),Y) -> 0()
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,from,pi,plus,s,square,times}/{0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil}
    Applied Processor:
      NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(2ndspos) = {2},
        uargs(from) = {1},
        uargs(s) = {1}
      
      Following symbols are considered usable:
        {2ndsneg,2ndspos,activate,from,pi,plus,s,square,times}
      TcT has computed the following interpretation:
               p(0) = [1]                   
         p(2ndsneg) = [2] x2 + [5]          
         p(2ndspos) = [5] x1 + [4] x2 + [3] 
        p(activate) = [1] x1 + [1]          
            p(cons) = [1] x1 + [0]          
           p(cons2) = [1] x2 + [1]          
            p(from) = [1] x1 + [0]          
         p(n__from) = [1] x1 + [0]          
            p(n__s) = [1] x1 + [4]          
        p(negrecip) = [1] x1 + [1]          
              p(pi) = [5] x1 + [12]         
            p(plus) = [8] x1 + [4] x2 + [12]
        p(posrecip) = [1]                   
           p(rcons) = [1] x2 + [1]          
            p(rnil) = [5]                   
               p(s) = [1] x1 + [4]          
          p(square) = [2] x1 + [11]         
           p(times) = [2] x1 + [9]          
      
      Following rules are strictly oriented:
          pi(X) = [5] X + [12]        
                > [5] X + [7]         
                = 2ndspos(X,from(0()))
      
      square(X) = [2] X + [11]        
                > [2] X + [9]         
                = times(X,X)          
      
      
      Following rules are (at-least) weakly oriented:
            2ndsneg(0(),Z) =  [2] Z + [5]             
                           >= [5]                     
                           =  rnil()                  
      
            2ndspos(0(),Z) =  [4] Z + [8]             
                           >= [5]                     
                           =  rnil()                  
      
               activate(X) =  [1] X + [1]             
                           >= [1] X + [0]             
                           =  X                       
      
      activate(n__from(X)) =  [1] X + [1]             
                           >= [1] X + [1]             
                           =  from(activate(X))       
      
         activate(n__s(X)) =  [1] X + [5]             
                           >= [1] X + [5]             
                           =  s(activate(X))          
      
                   from(X) =  [1] X + [0]             
                           >= [1] X + [0]             
                           =  cons(X,n__from(n__s(X)))
      
                   from(X) =  [1] X + [0]             
                           >= [1] X + [0]             
                           =  n__from(X)              
      
               plus(0(),Y) =  [4] Y + [20]            
                           >= [1] Y + [0]             
                           =  Y                       
      
                      s(X) =  [1] X + [4]             
                           >= [1] X + [4]             
                           =  n__s(X)                 
      
              times(0(),Y) =  [11]                    
                           >= [1]                     
                           =  0()                     
      
*** 1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndspos(0(),Z) -> rnil()
        activate(X) -> X
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        pi(X) -> 2ndspos(X,from(0()))
        plus(0(),Y) -> Y
        s(X) -> n__s(X)
        square(X) -> times(X,X)
        times(0(),Y) -> 0()
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,from,pi,plus,s,square,times}/{0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(2ndspos) = {2},
          uargs(from) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [2]                  
           p(2ndsneg) = [2]                  
           p(2ndspos) = [5] x1 + [1] x2 + [0]
          p(activate) = [8] x1 + [1]         
              p(cons) = [2]                  
             p(cons2) = [1] x1 + [0]         
              p(from) = [1] x1 + [2]         
           p(n__from) = [1] x1 + [2]         
              p(n__s) = [1] x1 + [1]         
          p(negrecip) = [1]                  
                p(pi) = [5] x1 + [7]         
              p(plus) = [1] x2 + [0]         
          p(posrecip) = [1] x1 + [0]         
             p(rcons) = [1] x1 + [1] x2 + [0]
              p(rnil) = [1]                  
                 p(s) = [1] x1 + [1]         
            p(square) = [12] x1 + [8]        
             p(times) = [12] x2 + [2]        
        
        Following rules are strictly oriented:
        activate(n__from(X)) = [8] X + [17]     
                             > [8] X + [3]      
                             = from(activate(X))
        
           activate(n__s(X)) = [8] X + [9]      
                             > [8] X + [2]      
                             = s(activate(X))   
        
        
        Following rules are (at-least) weakly oriented:
        2ndsneg(0(),Z) =  [2]                     
                       >= [1]                     
                       =  rnil()                  
        
        2ndspos(0(),Z) =  [1] Z + [10]            
                       >= [1]                     
                       =  rnil()                  
        
           activate(X) =  [8] X + [1]             
                       >= [1] X + [0]             
                       =  X                       
        
               from(X) =  [1] X + [2]             
                       >= [2]                     
                       =  cons(X,n__from(n__s(X)))
        
               from(X) =  [1] X + [2]             
                       >= [1] X + [2]             
                       =  n__from(X)              
        
                 pi(X) =  [5] X + [7]             
                       >= [5] X + [4]             
                       =  2ndspos(X,from(0()))    
        
           plus(0(),Y) =  [1] Y + [0]             
                       >= [1] Y + [0]             
                       =  Y                       
        
                  s(X) =  [1] X + [1]             
                       >= [1] X + [1]             
                       =  n__s(X)                 
        
             square(X) =  [12] X + [8]            
                       >= [12] X + [2]            
                       =  times(X,X)              
        
          times(0(),Y) =  [12] Y + [2]            
                       >= [2]                     
                       =  0()                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndspos(0(),Z) -> rnil()
        activate(X) -> X
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        pi(X) -> 2ndspos(X,from(0()))
        plus(0(),Y) -> Y
        s(X) -> n__s(X)
        square(X) -> times(X,X)
        times(0(),Y) -> 0()
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,from,pi,plus,s,square,times}/{0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).