We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , 2ndspos(0(), Z) -> rnil() , 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z))) , 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z))) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , 2ndsneg(0(), Z) -> rnil() , 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z))) , 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z))) , pi(X) -> 2ndspos(X, from(0())) , plus(0(), Y) -> Y , plus(s(X), Y) -> s(plus(X, Y)) , times(0(), Y) -> 0() , times(s(X), Y) -> plus(Y, times(X, Y)) , square(X) -> times(X, X) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) Arguments of following rules are not normal-forms: { 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z))) , 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, activate(Z))) , 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z))) , 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, activate(Z))) , plus(s(X), Y) -> s(plus(X, Y)) , times(s(X), Y) -> plus(Y, times(X, Y)) } All above mentioned rules can be savely removed. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , 2ndspos(0(), Z) -> rnil() , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , 2ndsneg(0(), Z) -> rnil() , pi(X) -> 2ndspos(X, from(0())) , plus(0(), Y) -> Y , times(0(), Y) -> 0() , square(X) -> times(X, X) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We add the following weak dependency pairs: Strict DPs: { from^#(X) -> c_1() , from^#(X) -> c_2() , 2ndspos^#(0(), Z) -> c_3() , s^#(X) -> c_4() , activate^#(X) -> c_5() , activate^#(n__from(X)) -> c_6(from^#(activate(X))) , activate^#(n__s(X)) -> c_7(s^#(activate(X))) , 2ndsneg^#(0(), Z) -> c_8() , pi^#(X) -> c_9(2ndspos^#(X, from(0()))) , plus^#(0(), Y) -> c_10() , times^#(0(), Y) -> c_11() , square^#(X) -> c_12(times^#(X, X)) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { from^#(X) -> c_1() , from^#(X) -> c_2() , 2ndspos^#(0(), Z) -> c_3() , s^#(X) -> c_4() , activate^#(X) -> c_5() , activate^#(n__from(X)) -> c_6(from^#(activate(X))) , activate^#(n__s(X)) -> c_7(s^#(activate(X))) , 2ndsneg^#(0(), Z) -> c_8() , pi^#(X) -> c_9(2ndspos^#(X, from(0()))) , plus^#(0(), Y) -> c_10() , times^#(0(), Y) -> c_11() , square^#(X) -> c_12(times^#(X, X)) } Strict Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , 2ndspos(0(), Z) -> rnil() , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , 2ndsneg(0(), Z) -> rnil() , pi(X) -> 2ndspos(X, from(0())) , plus(0(), Y) -> Y , times(0(), Y) -> 0() , square(X) -> times(X, X) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We replace rewrite rules by usable rules: Strict Usable Rules: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { from^#(X) -> c_1() , from^#(X) -> c_2() , 2ndspos^#(0(), Z) -> c_3() , s^#(X) -> c_4() , activate^#(X) -> c_5() , activate^#(n__from(X)) -> c_6(from^#(activate(X))) , activate^#(n__s(X)) -> c_7(s^#(activate(X))) , 2ndsneg^#(0(), Z) -> c_8() , pi^#(X) -> c_9(2ndspos^#(X, from(0()))) , plus^#(0(), Y) -> c_10() , times^#(0(), Y) -> c_11() , square^#(X) -> c_12(times^#(X, X)) } Strict Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following constant growth matrix-interpretation) The following argument positions are usable: Uargs(from) = {1}, Uargs(s) = {1}, Uargs(from^#) = {1}, Uargs(2ndspos^#) = {2}, Uargs(s^#) = {1}, Uargs(c_6) = {1}, Uargs(c_7) = {1}, Uargs(c_9) = {1}, Uargs(c_12) = {1} TcT has computed the following constructor-restricted matrix interpretation. [from](x1) = [1 0] x1 + [2] [0 1] [2] [cons](x1, x2) = [0] [0] [n__from](x1) = [1 0] x1 + [1] [0 1] [2] [n__s](x1) = [1 0] x1 + [1] [0 1] [2] [0] = [0] [0] [s](x1) = [1 0] x1 + [2] [0 1] [2] [activate](x1) = [1 1] x1 + [2] [0 1] [2] [from^#](x1) = [1 0] x1 + [0] [0 0] [0] [c_1] = [0] [0] [c_2] = [0] [0] [2ndspos^#](x1, x2) = [2 0] x2 + [0] [0 0] [0] [c_3] = [0] [0] [s^#](x1) = [1 0] x1 + [0] [0 0] [0] [c_4] = [0] [0] [activate^#](x1) = [1 1] x1 + [0] [0 0] [0] [c_5] = [0] [0] [c_6](x1) = [1 0] x1 + [0] [0 1] [0] [c_7](x1) = [1 0] x1 + [0] [0 1] [0] [2ndsneg^#](x1, x2) = [0] [0] [c_8] = [0] [0] [pi^#](x1) = [1 2] x1 + [0] [0 0] [0] [c_9](x1) = [1 0] x1 + [0] [0 1] [0] [plus^#](x1, x2) = [0] [0] [c_10] = [0] [0] [times^#](x1, x2) = [0] [0] [c_11] = [0] [0] [square^#](x1) = [2 1] x1 + [0] [0 0] [0] [c_12](x1) = [1 0] x1 + [0] [0 1] [0] The order satisfies the following ordering constraints: [from(X)] = [1 0] X + [2] [0 1] [2] > [0] [0] = [cons(X, n__from(n__s(X)))] [from(X)] = [1 0] X + [2] [0 1] [2] > [1 0] X + [1] [0 1] [2] = [n__from(X)] [s(X)] = [1 0] X + [2] [0 1] [2] > [1 0] X + [1] [0 1] [2] = [n__s(X)] [activate(X)] = [1 1] X + [2] [0 1] [2] > [1 0] X + [0] [0 1] [0] = [X] [activate(n__from(X))] = [1 1] X + [5] [0 1] [4] > [1 1] X + [4] [0 1] [4] = [from(activate(X))] [activate(n__s(X))] = [1 1] X + [5] [0 1] [4] > [1 1] X + [4] [0 1] [4] = [s(activate(X))] [from^#(X)] = [1 0] X + [0] [0 0] [0] >= [0] [0] = [c_1()] [from^#(X)] = [1 0] X + [0] [0 0] [0] >= [0] [0] = [c_2()] [2ndspos^#(0(), Z)] = [2 0] Z + [0] [0 0] [0] >= [0] [0] = [c_3()] [s^#(X)] = [1 0] X + [0] [0 0] [0] >= [0] [0] = [c_4()] [activate^#(X)] = [1 1] X + [0] [0 0] [0] >= [0] [0] = [c_5()] [activate^#(n__from(X))] = [1 1] X + [3] [0 0] [0] > [1 1] X + [2] [0 0] [0] = [c_6(from^#(activate(X)))] [activate^#(n__s(X))] = [1 1] X + [3] [0 0] [0] > [1 1] X + [2] [0 0] [0] = [c_7(s^#(activate(X)))] [2ndsneg^#(0(), Z)] = [0] [0] >= [0] [0] = [c_8()] [pi^#(X)] = [1 2] X + [0] [0 0] [0] ? [4] [0] = [c_9(2ndspos^#(X, from(0())))] [plus^#(0(), Y)] = [0] [0] >= [0] [0] = [c_10()] [times^#(0(), Y)] = [0] [0] >= [0] [0] = [c_11()] [square^#(X)] = [2 1] X + [0] [0 0] [0] >= [0] [0] = [c_12(times^#(X, X))] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { from^#(X) -> c_1() , from^#(X) -> c_2() , 2ndspos^#(0(), Z) -> c_3() , s^#(X) -> c_4() , activate^#(X) -> c_5() , 2ndsneg^#(0(), Z) -> c_8() , pi^#(X) -> c_9(2ndspos^#(X, from(0()))) , plus^#(0(), Y) -> c_10() , times^#(0(), Y) -> c_11() , square^#(X) -> c_12(times^#(X, X)) } Weak DPs: { activate^#(n__from(X)) -> c_6(from^#(activate(X))) , activate^#(n__s(X)) -> c_7(s^#(activate(X))) } Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) We estimate the number of application of {3,5,6,8,9} by applications of Pre({3,5,6,8,9}) = {7,10}. Here rules are labeled as follows: DPs: { 1: from^#(X) -> c_1() , 2: from^#(X) -> c_2() , 3: 2ndspos^#(0(), Z) -> c_3() , 4: s^#(X) -> c_4() , 5: activate^#(X) -> c_5() , 6: 2ndsneg^#(0(), Z) -> c_8() , 7: pi^#(X) -> c_9(2ndspos^#(X, from(0()))) , 8: plus^#(0(), Y) -> c_10() , 9: times^#(0(), Y) -> c_11() , 10: square^#(X) -> c_12(times^#(X, X)) , 11: activate^#(n__from(X)) -> c_6(from^#(activate(X))) , 12: activate^#(n__s(X)) -> c_7(s^#(activate(X))) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { from^#(X) -> c_1() , from^#(X) -> c_2() , s^#(X) -> c_4() , pi^#(X) -> c_9(2ndspos^#(X, from(0()))) , square^#(X) -> c_12(times^#(X, X)) } Weak DPs: { 2ndspos^#(0(), Z) -> c_3() , activate^#(X) -> c_5() , activate^#(n__from(X)) -> c_6(from^#(activate(X))) , activate^#(n__s(X)) -> c_7(s^#(activate(X))) , 2ndsneg^#(0(), Z) -> c_8() , plus^#(0(), Y) -> c_10() , times^#(0(), Y) -> c_11() } Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) We estimate the number of application of {4,5} by applications of Pre({4,5}) = {}. Here rules are labeled as follows: DPs: { 1: from^#(X) -> c_1() , 2: from^#(X) -> c_2() , 3: s^#(X) -> c_4() , 4: pi^#(X) -> c_9(2ndspos^#(X, from(0()))) , 5: square^#(X) -> c_12(times^#(X, X)) , 6: 2ndspos^#(0(), Z) -> c_3() , 7: activate^#(X) -> c_5() , 8: activate^#(n__from(X)) -> c_6(from^#(activate(X))) , 9: activate^#(n__s(X)) -> c_7(s^#(activate(X))) , 10: 2ndsneg^#(0(), Z) -> c_8() , 11: plus^#(0(), Y) -> c_10() , 12: times^#(0(), Y) -> c_11() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { from^#(X) -> c_1() , from^#(X) -> c_2() , s^#(X) -> c_4() } Weak DPs: { 2ndspos^#(0(), Z) -> c_3() , activate^#(X) -> c_5() , activate^#(n__from(X)) -> c_6(from^#(activate(X))) , activate^#(n__s(X)) -> c_7(s^#(activate(X))) , 2ndsneg^#(0(), Z) -> c_8() , pi^#(X) -> c_9(2ndspos^#(X, from(0()))) , plus^#(0(), Y) -> c_10() , times^#(0(), Y) -> c_11() , square^#(X) -> c_12(times^#(X, X)) } Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { 2ndspos^#(0(), Z) -> c_3() , activate^#(X) -> c_5() , 2ndsneg^#(0(), Z) -> c_8() , pi^#(X) -> c_9(2ndspos^#(X, from(0()))) , plus^#(0(), Y) -> c_10() , times^#(0(), Y) -> c_11() , square^#(X) -> c_12(times^#(X, X)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { from^#(X) -> c_1() , from^#(X) -> c_2() , s^#(X) -> c_4() } Weak DPs: { activate^#(n__from(X)) -> c_6(from^#(activate(X))) , activate^#(n__s(X)) -> c_7(s^#(activate(X))) } Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component: Problem (R): ------------ Strict DPs: { from^#(X) -> c_2() } Weak DPs: { from^#(X) -> c_1() , s^#(X) -> c_4() , activate^#(n__from(X)) -> c_6(from^#(activate(X))) , activate^#(n__s(X)) -> c_7(s^#(activate(X))) } Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } StartTerms: basic terms Strategy: innermost Problem (S): ------------ Strict DPs: { from^#(X) -> c_1() , s^#(X) -> c_4() } Weak DPs: { from^#(X) -> c_2() , activate^#(n__from(X)) -> c_6(from^#(activate(X))) , activate^#(n__s(X)) -> c_7(s^#(activate(X))) } Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } StartTerms: basic terms Strategy: innermost Overall, the transformation results in the following sub-problem(s): Generated new problems: ----------------------- R) Strict DPs: { from^#(X) -> c_2() } Weak DPs: { from^#(X) -> c_1() , s^#(X) -> c_4() , activate^#(n__from(X)) -> c_6(from^#(activate(X))) , activate^#(n__s(X)) -> c_7(s^#(activate(X))) } Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } StartTerms: basic terms Strategy: innermost This problem was proven YES(O(1),O(1)). S) Strict DPs: { from^#(X) -> c_1() , s^#(X) -> c_4() } Weak DPs: { from^#(X) -> c_2() , activate^#(n__from(X)) -> c_6(from^#(activate(X))) , activate^#(n__s(X)) -> c_7(s^#(activate(X))) } Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } StartTerms: basic terms Strategy: innermost This problem was proven YES(O(1),O(1)). Proofs for generated problems: ------------------------------ R) We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { from^#(X) -> c_2() } Weak DPs: { from^#(X) -> c_1() , s^#(X) -> c_4() , activate^#(n__from(X)) -> c_6(from^#(activate(X))) , activate^#(n__s(X)) -> c_7(s^#(activate(X))) } Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { from^#(X) -> c_1() , s^#(X) -> c_4() , activate^#(n__s(X)) -> c_7(s^#(activate(X))) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { from^#(X) -> c_2() } Weak DPs: { activate^#(n__from(X)) -> c_6(from^#(activate(X))) } Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The dependency graph contains no loops, we remove all dependency pairs. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded S) We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { from^#(X) -> c_1() , s^#(X) -> c_4() } Weak DPs: { from^#(X) -> c_2() , activate^#(n__from(X)) -> c_6(from^#(activate(X))) , activate^#(n__s(X)) -> c_7(s^#(activate(X))) } Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { from^#(X) -> c_2() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { from^#(X) -> c_1() , s^#(X) -> c_4() } Weak DPs: { activate^#(n__from(X)) -> c_6(from^#(activate(X))) , activate^#(n__s(X)) -> c_7(s^#(activate(X))) } Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component: Problem (R): ------------ Strict DPs: { from^#(X) -> c_1() } Weak DPs: { s^#(X) -> c_4() , activate^#(n__from(X)) -> c_6(from^#(activate(X))) , activate^#(n__s(X)) -> c_7(s^#(activate(X))) } Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } StartTerms: basic terms Strategy: innermost Problem (S): ------------ Strict DPs: { s^#(X) -> c_4() } Weak DPs: { from^#(X) -> c_1() , activate^#(n__from(X)) -> c_6(from^#(activate(X))) , activate^#(n__s(X)) -> c_7(s^#(activate(X))) } Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } StartTerms: basic terms Strategy: innermost Overall, the transformation results in the following sub-problem(s): Generated new problems: ----------------------- R) Strict DPs: { from^#(X) -> c_1() } Weak DPs: { s^#(X) -> c_4() , activate^#(n__from(X)) -> c_6(from^#(activate(X))) , activate^#(n__s(X)) -> c_7(s^#(activate(X))) } Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } StartTerms: basic terms Strategy: innermost This problem was proven YES(O(1),O(1)). S) Strict DPs: { s^#(X) -> c_4() } Weak DPs: { from^#(X) -> c_1() , activate^#(n__from(X)) -> c_6(from^#(activate(X))) , activate^#(n__s(X)) -> c_7(s^#(activate(X))) } Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } StartTerms: basic terms Strategy: innermost This problem was proven YES(O(1),O(1)). Proofs for generated problems: ------------------------------ R) We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { from^#(X) -> c_1() } Weak DPs: { s^#(X) -> c_4() , activate^#(n__from(X)) -> c_6(from^#(activate(X))) , activate^#(n__s(X)) -> c_7(s^#(activate(X))) } Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { s^#(X) -> c_4() , activate^#(n__s(X)) -> c_7(s^#(activate(X))) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { from^#(X) -> c_1() } Weak DPs: { activate^#(n__from(X)) -> c_6(from^#(activate(X))) } Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The dependency graph contains no loops, we remove all dependency pairs. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded S) We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { s^#(X) -> c_4() } Weak DPs: { from^#(X) -> c_1() , activate^#(n__from(X)) -> c_6(from^#(activate(X))) , activate^#(n__s(X)) -> c_7(s^#(activate(X))) } Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { from^#(X) -> c_1() , activate^#(n__from(X)) -> c_6(from^#(activate(X))) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { s^#(X) -> c_4() } Weak DPs: { activate^#(n__s(X)) -> c_7(s^#(activate(X))) } Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The dependency graph contains no loops, we remove all dependency pairs. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^1))