We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , 2ndspos(0(), Z) -> rnil()
  , 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
  , 2ndspos(s(N), cons2(X, cons(Y, Z))) ->
    rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , 2ndsneg(0(), Z) -> rnil()
  , 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
  , 2ndsneg(s(N), cons2(X, cons(Y, Z))) ->
    rcons(negrecip(Y), 2ndspos(N, activate(Z)))
  , pi(X) -> 2ndspos(X, from(0()))
  , plus(0(), Y) -> Y
  , plus(s(X), Y) -> s(plus(X, Y))
  , times(0(), Y) -> 0()
  , times(s(X), Y) -> plus(Y, times(X, Y))
  , square(X) -> times(X, X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

Arguments of following rules are not normal-forms:

{ 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, activate(Z)))
, 2ndspos(s(N), cons2(X, cons(Y, Z))) ->
  rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
, 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, activate(Z)))
, 2ndsneg(s(N), cons2(X, cons(Y, Z))) ->
  rcons(negrecip(Y), 2ndspos(N, activate(Z)))
, plus(s(X), Y) -> s(plus(X, Y))
, times(s(X), Y) -> plus(Y, times(X, Y)) }

All above mentioned rules can be savely removed.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , 2ndspos(0(), Z) -> rnil()
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , 2ndsneg(0(), Z) -> rnil()
  , pi(X) -> 2ndspos(X, from(0()))
  , plus(0(), Y) -> Y
  , times(0(), Y) -> 0()
  , square(X) -> times(X, X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We add the following weak dependency pairs:

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , 2ndspos^#(0(), Z) -> c_3()
  , s^#(X) -> c_4()
  , activate^#(X) -> c_5()
  , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
  , 2ndsneg^#(0(), Z) -> c_8()
  , pi^#(X) -> c_9(2ndspos^#(X, from(0())))
  , plus^#(0(), Y) -> c_10()
  , times^#(0(), Y) -> c_11()
  , square^#(X) -> c_12(times^#(X, X)) }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , 2ndspos^#(0(), Z) -> c_3()
  , s^#(X) -> c_4()
  , activate^#(X) -> c_5()
  , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
  , 2ndsneg^#(0(), Z) -> c_8()
  , pi^#(X) -> c_9(2ndspos^#(X, from(0())))
  , plus^#(0(), Y) -> c_10()
  , times^#(0(), Y) -> c_11()
  , square^#(X) -> c_12(times^#(X, X)) }
Strict Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , 2ndspos(0(), Z) -> rnil()
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , 2ndsneg(0(), Z) -> rnil()
  , pi(X) -> 2ndspos(X, from(0()))
  , plus(0(), Y) -> Y
  , times(0(), Y) -> 0()
  , square(X) -> times(X, X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We replace rewrite rules by usable rules:

  Strict Usable Rules:
    { from(X) -> cons(X, n__from(n__s(X)))
    , from(X) -> n__from(X)
    , s(X) -> n__s(X)
    , activate(X) -> X
    , activate(n__from(X)) -> from(activate(X))
    , activate(n__s(X)) -> s(activate(X)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , 2ndspos^#(0(), Z) -> c_3()
  , s^#(X) -> c_4()
  , activate^#(X) -> c_5()
  , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
  , 2ndsneg^#(0(), Z) -> c_8()
  , pi^#(X) -> c_9(2ndspos^#(X, from(0())))
  , plus^#(0(), Y) -> c_10()
  , times^#(0(), Y) -> c_11()
  , square^#(X) -> c_12(times^#(X, X)) }
Strict Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following constant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(from) = {1}, Uargs(s) = {1}, Uargs(from^#) = {1},
  Uargs(2ndspos^#) = {2}, Uargs(s^#) = {1}, Uargs(c_6) = {1},
  Uargs(c_7) = {1}, Uargs(c_9) = {1}, Uargs(c_12) = {1}

TcT has computed the following constructor-restricted matrix
interpretation.

           [from](x1) = [1 0] x1 + [2]
                        [0 1]      [2]
                                      
       [cons](x1, x2) = [0]           
                        [0]           
                                      
        [n__from](x1) = [1 0] x1 + [1]
                        [0 1]      [2]
                                      
           [n__s](x1) = [1 0] x1 + [1]
                        [0 1]      [2]
                                      
                  [0] = [0]           
                        [0]           
                                      
              [s](x1) = [1 0] x1 + [2]
                        [0 1]      [2]
                                      
       [activate](x1) = [1 1] x1 + [2]
                        [0 1]      [2]
                                      
         [from^#](x1) = [1 0] x1 + [0]
                        [0 0]      [0]
                                      
                [c_1] = [0]           
                        [0]           
                                      
                [c_2] = [0]           
                        [0]           
                                      
  [2ndspos^#](x1, x2) = [2 0] x2 + [0]
                        [0 0]      [0]
                                      
                [c_3] = [0]           
                        [0]           
                                      
            [s^#](x1) = [1 0] x1 + [0]
                        [0 0]      [0]
                                      
                [c_4] = [0]           
                        [0]           
                                      
     [activate^#](x1) = [1 1] x1 + [0]
                        [0 0]      [0]
                                      
                [c_5] = [0]           
                        [0]           
                                      
            [c_6](x1) = [1 0] x1 + [0]
                        [0 1]      [0]
                                      
            [c_7](x1) = [1 0] x1 + [0]
                        [0 1]      [0]
                                      
  [2ndsneg^#](x1, x2) = [0]           
                        [0]           
                                      
                [c_8] = [0]           
                        [0]           
                                      
           [pi^#](x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                                      
            [c_9](x1) = [1 0] x1 + [0]
                        [0 1]      [0]
                                      
     [plus^#](x1, x2) = [0]           
                        [0]           
                                      
               [c_10] = [0]           
                        [0]           
                                      
    [times^#](x1, x2) = [0]           
                        [0]           
                                      
               [c_11] = [0]           
                        [0]           
                                      
       [square^#](x1) = [2 1] x1 + [0]
                        [0 0]      [0]
                                      
           [c_12](x1) = [1 0] x1 + [0]
                        [0 1]      [0]

The order satisfies the following ordering constraints:

                 [from(X)] =  [1 0] X + [2]                 
                              [0 1]     [2]                 
                           >  [0]                           
                              [0]                           
                           =  [cons(X, n__from(n__s(X)))]   
                                                            
                 [from(X)] =  [1 0] X + [2]                 
                              [0 1]     [2]                 
                           >  [1 0] X + [1]                 
                              [0 1]     [2]                 
                           =  [n__from(X)]                  
                                                            
                    [s(X)] =  [1 0] X + [2]                 
                              [0 1]     [2]                 
                           >  [1 0] X + [1]                 
                              [0 1]     [2]                 
                           =  [n__s(X)]                     
                                                            
             [activate(X)] =  [1 1] X + [2]                 
                              [0 1]     [2]                 
                           >  [1 0] X + [0]                 
                              [0 1]     [0]                 
                           =  [X]                           
                                                            
    [activate(n__from(X))] =  [1 1] X + [5]                 
                              [0 1]     [4]                 
                           >  [1 1] X + [4]                 
                              [0 1]     [4]                 
                           =  [from(activate(X))]           
                                                            
       [activate(n__s(X))] =  [1 1] X + [5]                 
                              [0 1]     [4]                 
                           >  [1 1] X + [4]                 
                              [0 1]     [4]                 
                           =  [s(activate(X))]              
                                                            
               [from^#(X)] =  [1 0] X + [0]                 
                              [0 0]     [0]                 
                           >= [0]                           
                              [0]                           
                           =  [c_1()]                       
                                                            
               [from^#(X)] =  [1 0] X + [0]                 
                              [0 0]     [0]                 
                           >= [0]                           
                              [0]                           
                           =  [c_2()]                       
                                                            
       [2ndspos^#(0(), Z)] =  [2 0] Z + [0]                 
                              [0 0]     [0]                 
                           >= [0]                           
                              [0]                           
                           =  [c_3()]                       
                                                            
                  [s^#(X)] =  [1 0] X + [0]                 
                              [0 0]     [0]                 
                           >= [0]                           
                              [0]                           
                           =  [c_4()]                       
                                                            
           [activate^#(X)] =  [1 1] X + [0]                 
                              [0 0]     [0]                 
                           >= [0]                           
                              [0]                           
                           =  [c_5()]                       
                                                            
  [activate^#(n__from(X))] =  [1 1] X + [3]                 
                              [0 0]     [0]                 
                           >  [1 1] X + [2]                 
                              [0 0]     [0]                 
                           =  [c_6(from^#(activate(X)))]    
                                                            
     [activate^#(n__s(X))] =  [1 1] X + [3]                 
                              [0 0]     [0]                 
                           >  [1 1] X + [2]                 
                              [0 0]     [0]                 
                           =  [c_7(s^#(activate(X)))]       
                                                            
       [2ndsneg^#(0(), Z)] =  [0]                           
                              [0]                           
                           >= [0]                           
                              [0]                           
                           =  [c_8()]                       
                                                            
                 [pi^#(X)] =  [1 2] X + [0]                 
                              [0 0]     [0]                 
                           ?  [4]                           
                              [0]                           
                           =  [c_9(2ndspos^#(X, from(0())))]
                                                            
          [plus^#(0(), Y)] =  [0]                           
                              [0]                           
                           >= [0]                           
                              [0]                           
                           =  [c_10()]                      
                                                            
         [times^#(0(), Y)] =  [0]                           
                              [0]                           
                           >= [0]                           
                              [0]                           
                           =  [c_11()]                      
                                                            
             [square^#(X)] =  [2 1] X + [0]                 
                              [0 0]     [0]                 
                           >= [0]                           
                              [0]                           
                           =  [c_12(times^#(X, X))]         
                                                            

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , 2ndspos^#(0(), Z) -> c_3()
  , s^#(X) -> c_4()
  , activate^#(X) -> c_5()
  , 2ndsneg^#(0(), Z) -> c_8()
  , pi^#(X) -> c_9(2ndspos^#(X, from(0())))
  , plus^#(0(), Y) -> c_10()
  , times^#(0(), Y) -> c_11()
  , square^#(X) -> c_12(times^#(X, X)) }
Weak DPs:
  { activate^#(n__from(X)) -> c_6(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_7(s^#(activate(X))) }
Weak Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

We estimate the number of application of {3,5,6,8,9} by
applications of Pre({3,5,6,8,9}) = {7,10}. Here rules are labeled
as follows:

  DPs:
    { 1: from^#(X) -> c_1()
    , 2: from^#(X) -> c_2()
    , 3: 2ndspos^#(0(), Z) -> c_3()
    , 4: s^#(X) -> c_4()
    , 5: activate^#(X) -> c_5()
    , 6: 2ndsneg^#(0(), Z) -> c_8()
    , 7: pi^#(X) -> c_9(2ndspos^#(X, from(0())))
    , 8: plus^#(0(), Y) -> c_10()
    , 9: times^#(0(), Y) -> c_11()
    , 10: square^#(X) -> c_12(times^#(X, X))
    , 11: activate^#(n__from(X)) -> c_6(from^#(activate(X)))
    , 12: activate^#(n__s(X)) -> c_7(s^#(activate(X))) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , s^#(X) -> c_4()
  , pi^#(X) -> c_9(2ndspos^#(X, from(0())))
  , square^#(X) -> c_12(times^#(X, X)) }
Weak DPs:
  { 2ndspos^#(0(), Z) -> c_3()
  , activate^#(X) -> c_5()
  , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
  , 2ndsneg^#(0(), Z) -> c_8()
  , plus^#(0(), Y) -> c_10()
  , times^#(0(), Y) -> c_11() }
Weak Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

We estimate the number of application of {4,5} by applications of
Pre({4,5}) = {}. Here rules are labeled as follows:

  DPs:
    { 1: from^#(X) -> c_1()
    , 2: from^#(X) -> c_2()
    , 3: s^#(X) -> c_4()
    , 4: pi^#(X) -> c_9(2ndspos^#(X, from(0())))
    , 5: square^#(X) -> c_12(times^#(X, X))
    , 6: 2ndspos^#(0(), Z) -> c_3()
    , 7: activate^#(X) -> c_5()
    , 8: activate^#(n__from(X)) -> c_6(from^#(activate(X)))
    , 9: activate^#(n__s(X)) -> c_7(s^#(activate(X)))
    , 10: 2ndsneg^#(0(), Z) -> c_8()
    , 11: plus^#(0(), Y) -> c_10()
    , 12: times^#(0(), Y) -> c_11() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , s^#(X) -> c_4() }
Weak DPs:
  { 2ndspos^#(0(), Z) -> c_3()
  , activate^#(X) -> c_5()
  , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
  , 2ndsneg^#(0(), Z) -> c_8()
  , pi^#(X) -> c_9(2ndspos^#(X, from(0())))
  , plus^#(0(), Y) -> c_10()
  , times^#(0(), Y) -> c_11()
  , square^#(X) -> c_12(times^#(X, X)) }
Weak Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ 2ndspos^#(0(), Z) -> c_3()
, activate^#(X) -> c_5()
, 2ndsneg^#(0(), Z) -> c_8()
, pi^#(X) -> c_9(2ndspos^#(X, from(0())))
, plus^#(0(), Y) -> c_10()
, times^#(0(), Y) -> c_11()
, square^#(X) -> c_12(times^#(X, X)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , s^#(X) -> c_4() }
Weak DPs:
  { activate^#(n__from(X)) -> c_6(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_7(s^#(activate(X))) }
Weak Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

We analyse the complexity of following sub-problems (R) and (S).
Problem (S) is obtained from the input problem by shifting strict
rules from (R) into the weak component:

Problem (R):
------------
  Strict DPs: { from^#(X) -> c_2() }
  Weak DPs:
    { from^#(X) -> c_1()
    , s^#(X) -> c_4()
    , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
    , activate^#(n__s(X)) -> c_7(s^#(activate(X))) }
  Weak Trs:
    { from(X) -> cons(X, n__from(n__s(X)))
    , from(X) -> n__from(X)
    , s(X) -> n__s(X)
    , activate(X) -> X
    , activate(n__from(X)) -> from(activate(X))
    , activate(n__s(X)) -> s(activate(X)) }
  StartTerms: basic terms
  Strategy: innermost

Problem (S):
------------
  Strict DPs:
    { from^#(X) -> c_1()
    , s^#(X) -> c_4() }
  Weak DPs:
    { from^#(X) -> c_2()
    , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
    , activate^#(n__s(X)) -> c_7(s^#(activate(X))) }
  Weak Trs:
    { from(X) -> cons(X, n__from(n__s(X)))
    , from(X) -> n__from(X)
    , s(X) -> n__s(X)
    , activate(X) -> X
    , activate(n__from(X)) -> from(activate(X))
    , activate(n__s(X)) -> s(activate(X)) }
  StartTerms: basic terms
  Strategy: innermost

Overall, the transformation results in the following sub-problem(s):

Generated new problems:
-----------------------
R) Strict DPs: { from^#(X) -> c_2() }
   Weak DPs:
     { from^#(X) -> c_1()
     , s^#(X) -> c_4()
     , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
     , activate^#(n__s(X)) -> c_7(s^#(activate(X))) }
   Weak Trs:
     { from(X) -> cons(X, n__from(n__s(X)))
     , from(X) -> n__from(X)
     , s(X) -> n__s(X)
     , activate(X) -> X
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X)) }
   StartTerms: basic terms
   Strategy: innermost
   
   This problem was proven YES(O(1),O(1)).

S) Strict DPs:
     { from^#(X) -> c_1()
     , s^#(X) -> c_4() }
   Weak DPs:
     { from^#(X) -> c_2()
     , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
     , activate^#(n__s(X)) -> c_7(s^#(activate(X))) }
   Weak Trs:
     { from(X) -> cons(X, n__from(n__s(X)))
     , from(X) -> n__from(X)
     , s(X) -> n__s(X)
     , activate(X) -> X
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X)) }
   StartTerms: basic terms
   Strategy: innermost
   
   This problem was proven YES(O(1),O(1)).


Proofs for generated problems:
------------------------------
R) We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Strict DPs: { from^#(X) -> c_2() }
   Weak DPs:
     { from^#(X) -> c_1()
     , s^#(X) -> c_4()
     , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
     , activate^#(n__s(X)) -> c_7(s^#(activate(X))) }
   Weak Trs:
     { from(X) -> cons(X, n__from(n__s(X)))
     , from(X) -> n__from(X)
     , s(X) -> n__s(X)
     , activate(X) -> X
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X)) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   The following weak DPs constitute a sub-graph of the DG that is
   closed under successors. The DPs are removed.
   
   { from^#(X) -> c_1()
   , s^#(X) -> c_4()
   , activate^#(n__s(X)) -> c_7(s^#(activate(X))) }
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Strict DPs: { from^#(X) -> c_2() }
   Weak DPs: { activate^#(n__from(X)) -> c_6(from^#(activate(X))) }
   Weak Trs:
     { from(X) -> cons(X, n__from(n__s(X)))
     , from(X) -> n__from(X)
     , s(X) -> n__s(X)
     , activate(X) -> X
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X)) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   The dependency graph contains no loops, we remove all dependency
   pairs.
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Weak Trs:
     { from(X) -> cons(X, n__from(n__s(X)))
     , from(X) -> n__from(X)
     , s(X) -> n__s(X)
     , activate(X) -> X
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X)) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   No rule is usable, rules are removed from the input problem.
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Rules: Empty
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   Empty rules are trivially bounded

S) We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Strict DPs:
     { from^#(X) -> c_1()
     , s^#(X) -> c_4() }
   Weak DPs:
     { from^#(X) -> c_2()
     , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
     , activate^#(n__s(X)) -> c_7(s^#(activate(X))) }
   Weak Trs:
     { from(X) -> cons(X, n__from(n__s(X)))
     , from(X) -> n__from(X)
     , s(X) -> n__s(X)
     , activate(X) -> X
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X)) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   The following weak DPs constitute a sub-graph of the DG that is
   closed under successors. The DPs are removed.
   
   { from^#(X) -> c_2() }
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Strict DPs:
     { from^#(X) -> c_1()
     , s^#(X) -> c_4() }
   Weak DPs:
     { activate^#(n__from(X)) -> c_6(from^#(activate(X)))
     , activate^#(n__s(X)) -> c_7(s^#(activate(X))) }
   Weak Trs:
     { from(X) -> cons(X, n__from(n__s(X)))
     , from(X) -> n__from(X)
     , s(X) -> n__s(X)
     , activate(X) -> X
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X)) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   We analyse the complexity of following sub-problems (R) and (S).
   Problem (S) is obtained from the input problem by shifting strict
   rules from (R) into the weak component:
   
   Problem (R):
   ------------
     Strict DPs: { from^#(X) -> c_1() }
     Weak DPs:
       { s^#(X) -> c_4()
       , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
       , activate^#(n__s(X)) -> c_7(s^#(activate(X))) }
     Weak Trs:
       { from(X) -> cons(X, n__from(n__s(X)))
       , from(X) -> n__from(X)
       , s(X) -> n__s(X)
       , activate(X) -> X
       , activate(n__from(X)) -> from(activate(X))
       , activate(n__s(X)) -> s(activate(X)) }
     StartTerms: basic terms
     Strategy: innermost
   
   Problem (S):
   ------------
     Strict DPs: { s^#(X) -> c_4() }
     Weak DPs:
       { from^#(X) -> c_1()
       , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
       , activate^#(n__s(X)) -> c_7(s^#(activate(X))) }
     Weak Trs:
       { from(X) -> cons(X, n__from(n__s(X)))
       , from(X) -> n__from(X)
       , s(X) -> n__s(X)
       , activate(X) -> X
       , activate(n__from(X)) -> from(activate(X))
       , activate(n__s(X)) -> s(activate(X)) }
     StartTerms: basic terms
     Strategy: innermost
   
   Overall, the transformation results in the following sub-problem(s):
   
   Generated new problems:
   -----------------------
   R) Strict DPs: { from^#(X) -> c_1() }
      Weak DPs:
        { s^#(X) -> c_4()
        , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
        , activate^#(n__s(X)) -> c_7(s^#(activate(X))) }
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , s(X) -> n__s(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X)) }
      StartTerms: basic terms
      Strategy: innermost
      
      This problem was proven YES(O(1),O(1)).
   
   S) Strict DPs: { s^#(X) -> c_4() }
      Weak DPs:
        { from^#(X) -> c_1()
        , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
        , activate^#(n__s(X)) -> c_7(s^#(activate(X))) }
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , s(X) -> n__s(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X)) }
      StartTerms: basic terms
      Strategy: innermost
      
      This problem was proven YES(O(1),O(1)).
   
   
   Proofs for generated problems:
   ------------------------------
   R) We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Strict DPs: { from^#(X) -> c_1() }
      Weak DPs:
        { s^#(X) -> c_4()
        , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
        , activate^#(n__s(X)) -> c_7(s^#(activate(X))) }
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , s(X) -> n__s(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X)) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      The following weak DPs constitute a sub-graph of the DG that is
      closed under successors. The DPs are removed.
      
      { s^#(X) -> c_4()
      , activate^#(n__s(X)) -> c_7(s^#(activate(X))) }
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Strict DPs: { from^#(X) -> c_1() }
      Weak DPs: { activate^#(n__from(X)) -> c_6(from^#(activate(X))) }
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , s(X) -> n__s(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X)) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      The dependency graph contains no loops, we remove all dependency
      pairs.
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , s(X) -> n__s(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X)) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      No rule is usable, rules are removed from the input problem.
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Rules: Empty
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      Empty rules are trivially bounded
   
   S) We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Strict DPs: { s^#(X) -> c_4() }
      Weak DPs:
        { from^#(X) -> c_1()
        , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
        , activate^#(n__s(X)) -> c_7(s^#(activate(X))) }
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , s(X) -> n__s(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X)) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      The following weak DPs constitute a sub-graph of the DG that is
      closed under successors. The DPs are removed.
      
      { from^#(X) -> c_1()
      , activate^#(n__from(X)) -> c_6(from^#(activate(X))) }
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Strict DPs: { s^#(X) -> c_4() }
      Weak DPs: { activate^#(n__s(X)) -> c_7(s^#(activate(X))) }
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , s(X) -> n__s(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X)) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      The dependency graph contains no loops, we remove all dependency
      pairs.
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , s(X) -> n__s(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X)) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      No rule is usable, rules are removed from the input problem.
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Rules: Empty
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      Empty rules are trivially bounded
   


Hurray, we answered YES(O(1),O(n^1))