We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(a(), X, X)) -> mark(f(X, b(), b())) , active(b()) -> mark(a()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(a()) -> ok(a()) , proper(b()) -> ok(b()) , top(mark(X)) -> top(proper(X)) , top(ok(X)) -> top(active(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We add the following dependency tuples: Strict DPs: { active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , active^#(f(a(), X, X)) -> c_2(f^#(X, b(), b())) , active^#(b()) -> c_3() , f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) , proper^#(a()) -> c_7() , proper^#(b()) -> c_8() , top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) , top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , active^#(f(a(), X, X)) -> c_2(f^#(X, b(), b())) , active^#(b()) -> c_3() , f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) , proper^#(a()) -> c_7() , proper^#(b()) -> c_8() , top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) , top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(a(), X, X)) -> mark(f(X, b(), b())) , active(b()) -> mark(a()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(a()) -> ok(a()) , proper(b()) -> ok(b()) , top(mark(X)) -> top(proper(X)) , top(ok(X)) -> top(active(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We estimate the number of application of {2,3,7,8} by applications of Pre({2,3,7,8}) = {1,6,9,10}. Here rules are labeled as follows: DPs: { 1: active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , 2: active^#(f(a(), X, X)) -> c_2(f^#(X, b(), b())) , 3: active^#(b()) -> c_3() , 4: f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , 5: f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , 6: proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) , 7: proper^#(a()) -> c_7() , 8: proper^#(b()) -> c_8() , 9: top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) , 10: top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) , top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) , top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } Weak DPs: { active^#(f(a(), X, X)) -> c_2(f^#(X, b(), b())) , active^#(b()) -> c_3() , proper^#(a()) -> c_7() , proper^#(b()) -> c_8() } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(a(), X, X)) -> mark(f(X, b(), b())) , active(b()) -> mark(a()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(a()) -> ok(a()) , proper(b()) -> ok(b()) , top(mark(X)) -> top(proper(X)) , top(ok(X)) -> top(active(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { active^#(f(a(), X, X)) -> c_2(f^#(X, b(), b())) , active^#(b()) -> c_3() , proper^#(a()) -> c_7() , proper^#(b()) -> c_8() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) , top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) , top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(a(), X, X)) -> mark(f(X, b(), b())) , active(b()) -> mark(a()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(a()) -> ok(a()) , proper(b()) -> ok(b()) , top(mark(X)) -> top(proper(X)) , top(ok(X)) -> top(active(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We replace rewrite rules by usable rules: Weak Usable Rules: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(a(), X, X)) -> mark(f(X, b(), b())) , active(b()) -> mark(a()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(a()) -> ok(a()) , proper(b()) -> ok(b()) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) , top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) , top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(a(), X, X)) -> mark(f(X, b(), b())) , active(b()) -> mark(a()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(a()) -> ok(a()) , proper(b()) -> ok(b()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We decompose the input problem according to the dependency graph into the upper component { top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) , top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } and lower component { active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) } Further, following extension rules are added to the lower component. { top^#(mark(X)) -> proper^#(X) , top^#(mark(X)) -> top^#(proper(X)) , top^#(ok(X)) -> active^#(X) , top^#(ok(X)) -> top^#(active(X)) } TcT solves the upper component with certificate YES(O(1),O(n^1)). Sub-proof: ---------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) , top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(a(), X, X)) -> mark(f(X, b(), b())) , active(b()) -> mark(a()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(a()) -> ok(a()) , proper(b()) -> ok(b()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. DPs: { 1: top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) } Trs: { active(f(a(), X, X)) -> mark(f(X, b(), b())) , active(b()) -> mark(a()) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_9) = {1}, Uargs(c_10) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [active](x1) = [0 2] x1 + [0] [0 1] [0] [f](x1, x2, x3) = [1 3] x1 + [1 0] x2 + [1 0] x3 + [0] [1 2] [0 1] [4 1] [0] [a] = [6] [0] [mark](x1) = [0 0] x1 + [3] [0 1] [2] [b] = [0] [2] [proper](x1) = [1 0] x1 + [0] [0 1] [0] [ok](x1) = [1 0] x1 + [0] [0 1] [0] [active^#](x1) = [0 1] x1 + [1] [0 0] [1] [proper^#](x1) = [2] [1] [top^#](x1) = [0 7] x1 + [0] [1 1] [0] [c_9](x1, x2) = [1 0] x1 + [1] [0 0] [0] [c_10](x1, x2) = [1 0] x1 + [0] [0 0] [0] The order satisfies the following ordering constraints: [active(f(X1, X2, X3))] = [2 4] X1 + [0 2] X2 + [8 2] X3 + [0] [1 2] [0 1] [4 1] [0] >= [1 3] X1 + [0 2] X2 + [1 0] X3 + [0] [1 2] [0 1] [4 1] [0] = [f(X1, active(X2), X3)] [active(f(a(), X, X))] = [8 4] X + [12] [4 2] [6] > [0 0] X + [3] [1 2] [6] = [mark(f(X, b(), b()))] [active(b())] = [4] [2] > [3] [2] = [mark(a())] [f(X1, mark(X2), X3)] = [1 3] X1 + [0 0] X2 + [1 0] X3 + [3] [1 2] [0 1] [4 1] [2] >= [0 0] X1 + [0 0] X2 + [0 0] X3 + [3] [1 2] [0 1] [4 1] [2] = [mark(f(X1, X2, X3))] [f(ok(X1), ok(X2), ok(X3))] = [1 3] X1 + [1 0] X2 + [1 0] X3 + [0] [1 2] [0 1] [4 1] [0] >= [1 3] X1 + [1 0] X2 + [1 0] X3 + [0] [1 2] [0 1] [4 1] [0] = [ok(f(X1, X2, X3))] [proper(f(X1, X2, X3))] = [1 3] X1 + [1 0] X2 + [1 0] X3 + [0] [1 2] [0 1] [4 1] [0] >= [1 3] X1 + [1 0] X2 + [1 0] X3 + [0] [1 2] [0 1] [4 1] [0] = [f(proper(X1), proper(X2), proper(X3))] [proper(a())] = [6] [0] >= [6] [0] = [ok(a())] [proper(b())] = [0] [2] >= [0] [2] = [ok(b())] [top^#(mark(X))] = [0 7] X + [14] [0 1] [5] > [0 7] X + [1] [0 0] [0] = [c_9(top^#(proper(X)), proper^#(X))] [top^#(ok(X))] = [0 7] X + [0] [1 1] [0] >= [0 7] X + [0] [0 0] [0] = [c_10(top^#(active(X)), active^#(X))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } Weak DPs: { top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(a(), X, X)) -> mark(f(X, b(), b())) , active(b()) -> mark(a()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(a()) -> ok(a()) , proper(b()) -> ok(b()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. DPs: { 1: top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_9) = {1}, Uargs(c_10) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [active](x1) = [0 0] x1 + [0] [1 1] [1] [f](x1, x2, x3) = [0 0] x1 + [1 0] x2 + [0 0] x3 + [0] [2 0] [0 1] [1 0] [1] [a] = [2] [0] [mark](x1) = [0 0] x1 + [0] [1 1] [2] [b] = [0] [3] [proper](x1) = [1 0] x1 + [0] [0 1] [2] [ok](x1) = [1 0] x1 + [0] [0 1] [2] [active^#](x1) = [0] [1] [proper^#](x1) = [0] [0] [top^#](x1) = [6 6] x1 + [0] [0 0] [5] [c_9](x1, x2) = [1 0] x1 + [0] [0 0] [0] [c_10](x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] The order satisfies the following ordering constraints: [active(f(X1, X2, X3))] = [0 0] X1 + [0 0] X2 + [0 0] X3 + [0] [2 0] [1 1] [1 0] [2] >= [0 0] X1 + [0 0] X2 + [0 0] X3 + [0] [2 0] [1 1] [1 0] [2] = [f(X1, active(X2), X3)] [active(f(a(), X, X))] = [0 0] X + [0] [2 1] [6] >= [0 0] X + [0] [2 0] [6] = [mark(f(X, b(), b()))] [active(b())] = [0] [4] >= [0] [4] = [mark(a())] [f(X1, mark(X2), X3)] = [0 0] X1 + [0 0] X2 + [0 0] X3 + [0] [2 0] [1 1] [1 0] [3] >= [0 0] X1 + [0 0] X2 + [0 0] X3 + [0] [2 0] [1 1] [1 0] [3] = [mark(f(X1, X2, X3))] [f(ok(X1), ok(X2), ok(X3))] = [0 0] X1 + [1 0] X2 + [0 0] X3 + [0] [2 0] [0 1] [1 0] [3] >= [0 0] X1 + [1 0] X2 + [0 0] X3 + [0] [2 0] [0 1] [1 0] [3] = [ok(f(X1, X2, X3))] [proper(f(X1, X2, X3))] = [0 0] X1 + [1 0] X2 + [0 0] X3 + [0] [2 0] [0 1] [1 0] [3] >= [0 0] X1 + [1 0] X2 + [0 0] X3 + [0] [2 0] [0 1] [1 0] [3] = [f(proper(X1), proper(X2), proper(X3))] [proper(a())] = [2] [2] >= [2] [2] = [ok(a())] [proper(b())] = [0] [5] >= [0] [5] = [ok(b())] [top^#(mark(X))] = [6 6] X + [12] [0 0] [5] >= [6 6] X + [12] [0 0] [0] = [c_9(top^#(proper(X)), proper^#(X))] [top^#(ok(X))] = [6 6] X + [12] [0 0] [5] > [6 6] X + [6] [0 0] [0] = [c_10(top^#(active(X)), active^#(X))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) , top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(a(), X, X)) -> mark(f(X, b(), b())) , active(b()) -> mark(a()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(a()) -> ok(a()) , proper(b()) -> ok(b()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) , top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(a(), X, X)) -> mark(f(X, b(), b())) , active(b()) -> mark(a()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(a()) -> ok(a()) , proper(b()) -> ok(b()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) } Weak DPs: { top^#(mark(X)) -> proper^#(X) , top^#(mark(X)) -> top^#(proper(X)) , top^#(ok(X)) -> active^#(X) , top^#(ok(X)) -> top^#(active(X)) } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(a(), X, X)) -> mark(f(X, b(), b())) , active(b()) -> mark(a()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(a()) -> ok(a()) , proper(b()) -> ok(b()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. DPs: { 2: f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , 5: top^#(mark(X)) -> proper^#(X) , 7: top^#(ok(X)) -> active^#(X) } Trs: { active(f(a(), X, X)) -> mark(f(X, b(), b())) , active(b()) -> mark(a()) , proper(a()) -> ok(a()) , proper(b()) -> ok(b()) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_1) = {1, 2}, Uargs(c_4) = {1}, Uargs(c_5) = {1}, Uargs(c_6) = {1, 2, 3, 4} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [active](x1) = [0 1] x1 + [0] [0 1] [0] [f](x1, x2, x3) = [0 0] x1 + [1 0] x2 + [0 0] x3 + [0] [0 5] [0 4] [0 1] [0] [a] = [0] [3] [mark](x1) = [1 0] x1 + [2] [0 1] [0] [b] = [0] [3] [proper](x1) = [0 3] x1 + [0] [0 1] [0] [ok](x1) = [0 0] x1 + [0] [1 1] [0] [active^#](x1) = [0 3] x1 + [0] [0 1] [0] [c_1](x1, x2) = [1 0] x1 + [1 1] x2 + [0] [0 0] [0 0] [0] [f^#](x1, x2, x3) = [1 1] x2 + [0 0] x3 + [0] [0 0] [4 0] [1] [c_4](x1) = [1 0] x1 + [1] [0 0] [0] [c_5](x1) = [1 0] x1 + [0] [0 0] [0] [proper^#](x1) = [0 2] x1 + [0] [0 0] [0] [c_6](x1, x2, x3, x4) = [1 0] x1 + [4 0] x2 + [1 0] x3 + [1 1] x4 + [0] [0 0] [0 0] [0 0] [0 0] [0] [top^#](x1) = [0 4] x1 + [7] [0 1] [0] The order satisfies the following ordering constraints: [active(f(X1, X2, X3))] = [0 5] X1 + [0 4] X2 + [0 1] X3 + [0] [0 5] [0 4] [0 1] [0] >= [0 0] X1 + [0 1] X2 + [0 0] X3 + [0] [0 5] [0 4] [0 1] [0] = [f(X1, active(X2), X3)] [active(f(a(), X, X))] = [0 5] X + [15] [0 5] [15] > [0 0] X + [2] [0 5] [15] = [mark(f(X, b(), b()))] [active(b())] = [3] [3] > [2] [3] = [mark(a())] [f(X1, mark(X2), X3)] = [0 0] X1 + [1 0] X2 + [0 0] X3 + [2] [0 5] [0 4] [0 1] [0] >= [0 0] X1 + [1 0] X2 + [0 0] X3 + [2] [0 5] [0 4] [0 1] [0] = [mark(f(X1, X2, X3))] [f(ok(X1), ok(X2), ok(X3))] = [0 0] X1 + [0 0] X2 + [0 0] X3 + [0] [5 5] [4 4] [1 1] [0] >= [0 0] X1 + [0 0] X2 + [0 0] X3 + [0] [0 5] [1 4] [0 1] [0] = [ok(f(X1, X2, X3))] [proper(f(X1, X2, X3))] = [0 15] X1 + [0 12] X2 + [0 3] X3 + [0] [0 5] [0 4] [0 1] [0] >= [0 0] X1 + [0 3] X2 + [0 0] X3 + [0] [0 5] [0 4] [0 1] [0] = [f(proper(X1), proper(X2), proper(X3))] [proper(a())] = [9] [3] > [0] [3] = [ok(a())] [proper(b())] = [9] [3] > [0] [3] = [ok(b())] [active^#(f(X1, X2, X3))] = [0 15] X1 + [0 12] X2 + [0 3] X3 + [0] [0 5] [0 4] [0 1] [0] >= [0 6] X2 + [0] [0 0] [0] = [c_1(f^#(X1, active(X2), X3), active^#(X2))] [f^#(X1, mark(X2), X3)] = [1 1] X2 + [0 0] X3 + [2] [0 0] [4 0] [1] > [1 1] X2 + [1] [0 0] [0] = [c_4(f^#(X1, X2, X3))] [f^#(ok(X1), ok(X2), ok(X3))] = [1 1] X2 + [0] [0 0] [1] >= [1 1] X2 + [0] [0 0] [0] = [c_5(f^#(X1, X2, X3))] [proper^#(f(X1, X2, X3))] = [0 10] X1 + [0 8] X2 + [0 2] X3 + [0] [0 0] [0 0] [0 0] [0] >= [0 8] X1 + [0 6] X2 + [0 2] X3 + [0] [0 0] [0 0] [0 0] [0] = [c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3))] [top^#(mark(X))] = [0 4] X + [7] [0 1] [0] > [0 2] X + [0] [0 0] [0] = [proper^#(X)] [top^#(mark(X))] = [0 4] X + [7] [0 1] [0] >= [0 4] X + [7] [0 1] [0] = [top^#(proper(X))] [top^#(ok(X))] = [4 4] X + [7] [1 1] [0] > [0 3] X + [0] [0 1] [0] = [active^#(X)] [top^#(ok(X))] = [4 4] X + [7] [1 1] [0] >= [0 4] X + [7] [0 1] [0] = [top^#(active(X))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) } Weak DPs: { f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , top^#(mark(X)) -> proper^#(X) , top^#(mark(X)) -> top^#(proper(X)) , top^#(ok(X)) -> active^#(X) , top^#(ok(X)) -> top^#(active(X)) } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(a(), X, X)) -> mark(f(X, b(), b())) , active(b()) -> mark(a()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(a()) -> ok(a()) , proper(b()) -> ok(b()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. DPs: { 1: active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , 2: f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_1) = {1, 2}, Uargs(c_4) = {1}, Uargs(c_5) = {1}, Uargs(c_6) = {1, 2, 3, 4} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [active](x1) = [1 0] x1 + [0] [0 1] [1] [f](x1, x2, x3) = [5 0] x1 + [1 0] x2 + [4 0] x3 + [1] [0 1] [0 1] [0 0] [0] [a] = [1] [0] [mark](x1) = [1 0] x1 + [0] [0 1] [0] [b] = [1] [0] [proper](x1) = [1 0] x1 + [0] [3 0] [3] [ok](x1) = [1 2] x1 + [0] [0 0] [4] [active^#](x1) = [1 6] x1 + [0] [0 0] [0] [c_1](x1, x2) = [2 1] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] [f^#](x1, x2, x3) = [1 1] x1 + [0] [1 0] [0] [c_4](x1) = [1 0] x1 + [0] [0 0] [0] [c_5](x1) = [1 0] x1 + [3] [0 0] [0] [proper^#](x1) = [3 0] x1 + [0] [1 0] [0] [c_6](x1, x2, x3, x4) = [1 4] x1 + [2 0] x2 + [1 0] x3 + [1 1] x4 + [0] [0 0] [0 0] [0 0] [0 0] [0] [top^#](x1) = [3 0] x1 + [0] [4 0] [4] The order satisfies the following ordering constraints: [active(f(X1, X2, X3))] = [5 0] X1 + [1 0] X2 + [4 0] X3 + [1] [0 1] [0 1] [0 0] [1] >= [5 0] X1 + [1 0] X2 + [4 0] X3 + [1] [0 1] [0 1] [0 0] [1] = [f(X1, active(X2), X3)] [active(f(a(), X, X))] = [5 0] X + [6] [0 1] [1] >= [5 0] X + [6] [0 1] [0] = [mark(f(X, b(), b()))] [active(b())] = [1] [1] >= [1] [0] = [mark(a())] [f(X1, mark(X2), X3)] = [5 0] X1 + [1 0] X2 + [4 0] X3 + [1] [0 1] [0 1] [0 0] [0] >= [5 0] X1 + [1 0] X2 + [4 0] X3 + [1] [0 1] [0 1] [0 0] [0] = [mark(f(X1, X2, X3))] [f(ok(X1), ok(X2), ok(X3))] = [5 10] X1 + [1 2] X2 + [4 8] X3 + [1] [0 0] [0 0] [0 0] [8] >= [5 2] X1 + [1 2] X2 + [4 0] X3 + [1] [0 0] [0 0] [0 0] [4] = [ok(f(X1, X2, X3))] [proper(f(X1, X2, X3))] = [ 5 0] X1 + [1 0] X2 + [ 4 0] X3 + [1] [15 0] [3 0] [12 0] [6] >= [5 0] X1 + [1 0] X2 + [4 0] X3 + [1] [3 0] [3 0] [0 0] [6] = [f(proper(X1), proper(X2), proper(X3))] [proper(a())] = [1] [6] >= [1] [4] = [ok(a())] [proper(b())] = [1] [6] >= [1] [4] = [ok(b())] [active^#(f(X1, X2, X3))] = [5 6] X1 + [1 6] X2 + [4 0] X3 + [1] [0 0] [0 0] [0 0] [0] > [3 2] X1 + [1 6] X2 + [0] [0 0] [0 0] [0] = [c_1(f^#(X1, active(X2), X3), active^#(X2))] [f^#(X1, mark(X2), X3)] = [1 1] X1 + [0] [1 0] [0] >= [1 1] X1 + [0] [0 0] [0] = [c_4(f^#(X1, X2, X3))] [f^#(ok(X1), ok(X2), ok(X3))] = [1 2] X1 + [4] [1 2] [0] > [1 1] X1 + [3] [0 0] [0] = [c_5(f^#(X1, X2, X3))] [proper^#(f(X1, X2, X3))] = [15 0] X1 + [3 0] X2 + [12 0] X3 + [3] [ 5 0] [1 0] [ 4 0] [1] >= [14 0] X1 + [3 0] X2 + [4 0] X3 + [3] [ 0 0] [0 0] [0 0] [0] = [c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3))] [top^#(mark(X))] = [3 0] X + [0] [4 0] [4] >= [3 0] X + [0] [1 0] [0] = [proper^#(X)] [top^#(mark(X))] = [3 0] X + [0] [4 0] [4] >= [3 0] X + [0] [4 0] [4] = [top^#(proper(X))] [top^#(ok(X))] = [3 6] X + [0] [4 8] [4] >= [1 6] X + [0] [0 0] [0] = [active^#(X)] [top^#(ok(X))] = [3 6] X + [0] [4 8] [4] >= [3 0] X + [0] [4 0] [4] = [top^#(active(X))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) } Weak DPs: { active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , top^#(mark(X)) -> proper^#(X) , top^#(mark(X)) -> top^#(proper(X)) , top^#(ok(X)) -> active^#(X) , top^#(ok(X)) -> top^#(active(X)) } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(a(), X, X)) -> mark(f(X, b(), b())) , active(b()) -> mark(a()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(a()) -> ok(a()) , proper(b()) -> ok(b()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , top^#(ok(X)) -> active^#(X) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) } Weak DPs: { top^#(mark(X)) -> proper^#(X) , top^#(mark(X)) -> top^#(proper(X)) , top^#(ok(X)) -> top^#(active(X)) } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(a(), X, X)) -> mark(f(X, b(), b())) , active(b()) -> mark(a()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(a()) -> ok(a()) , proper(b()) -> ok(b()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { proper^#(f(X1, X2, X3)) -> c_1(proper^#(X1), proper^#(X2), proper^#(X3)) } Weak DPs: { top^#(mark(X)) -> c_2(proper^#(X)) , top^#(mark(X)) -> c_3(top^#(proper(X))) , top^#(ok(X)) -> c_4(top^#(active(X))) } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(a(), X, X)) -> mark(f(X, b(), b())) , active(b()) -> mark(a()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(a()) -> ok(a()) , proper(b()) -> ok(b()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 1: proper^#(f(X1, X2, X3)) -> c_1(proper^#(X1), proper^#(X2), proper^#(X3)) , 2: top^#(mark(X)) -> c_2(proper^#(X)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_1) = {1, 2, 3}, Uargs(c_2) = {1}, Uargs(c_3) = {1}, Uargs(c_4) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [active](x1) = [1] x1 + [0] [f](x1, x2, x3) = [1] x1 + [2] x2 + [1] x3 + [1] [a] = [0] [mark](x1) = [1] x1 + [0] [b] = [0] [proper](x1) = [1] x1 + [0] [ok](x1) = [1] x1 + [0] [active^#](x1) = [0] [c_1](x1, x2) = [0] [f^#](x1, x2, x3) = [0] [c_4](x1) = [0] [c_5](x1) = [0] [proper^#](x1) = [5] x1 + [0] [c_6](x1, x2, x3, x4) = [0] [top^#](x1) = [7] x1 + [2] [c] = [0] [c_1](x1, x2, x3) = [1] x1 + [2] x2 + [1] x3 + [0] [c_2](x1) = [1] x1 + [1] [c_3](x1) = [1] x1 + [0] [c_4](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [active(f(X1, X2, X3))] = [1] X1 + [2] X2 + [1] X3 + [1] >= [1] X1 + [2] X2 + [1] X3 + [1] = [f(X1, active(X2), X3)] [active(f(a(), X, X))] = [3] X + [1] >= [1] X + [1] = [mark(f(X, b(), b()))] [active(b())] = [0] >= [0] = [mark(a())] [f(X1, mark(X2), X3)] = [1] X1 + [2] X2 + [1] X3 + [1] >= [1] X1 + [2] X2 + [1] X3 + [1] = [mark(f(X1, X2, X3))] [f(ok(X1), ok(X2), ok(X3))] = [1] X1 + [2] X2 + [1] X3 + [1] >= [1] X1 + [2] X2 + [1] X3 + [1] = [ok(f(X1, X2, X3))] [proper(f(X1, X2, X3))] = [1] X1 + [2] X2 + [1] X3 + [1] >= [1] X1 + [2] X2 + [1] X3 + [1] = [f(proper(X1), proper(X2), proper(X3))] [proper(a())] = [0] >= [0] = [ok(a())] [proper(b())] = [0] >= [0] = [ok(b())] [proper^#(f(X1, X2, X3))] = [5] X1 + [10] X2 + [5] X3 + [5] > [5] X1 + [10] X2 + [5] X3 + [0] = [c_1(proper^#(X1), proper^#(X2), proper^#(X3))] [top^#(mark(X))] = [7] X + [2] > [5] X + [1] = [c_2(proper^#(X))] [top^#(mark(X))] = [7] X + [2] >= [7] X + [2] = [c_3(top^#(proper(X)))] [top^#(ok(X))] = [7] X + [2] >= [7] X + [2] = [c_4(top^#(active(X)))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { proper^#(f(X1, X2, X3)) -> c_1(proper^#(X1), proper^#(X2), proper^#(X3)) , top^#(mark(X)) -> c_2(proper^#(X)) , top^#(mark(X)) -> c_3(top^#(proper(X))) , top^#(ok(X)) -> c_4(top^#(active(X))) } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(a(), X, X)) -> mark(f(X, b(), b())) , active(b()) -> mark(a()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(a()) -> ok(a()) , proper(b()) -> ok(b()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { proper^#(f(X1, X2, X3)) -> c_1(proper^#(X1), proper^#(X2), proper^#(X3)) , top^#(mark(X)) -> c_2(proper^#(X)) , top^#(mark(X)) -> c_3(top^#(proper(X))) , top^#(ok(X)) -> c_4(top^#(active(X))) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(a(), X, X)) -> mark(f(X, b(), b())) , active(b()) -> mark(a()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(a()) -> ok(a()) , proper(b()) -> ok(b()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^2))