*** 1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(X) -> X activate(n__from(X)) -> from(X) activate(n__take(X1,X2)) -> take(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X sel(0(),cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) take(X1,X2) -> n__take(X1,X2) take(0(),XS) -> nil() take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) Weak DP Rules: Weak TRS Rules: Signature: {2nd/1,activate/1,from/1,head/1,sel/2,take/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1} Obligation: Innermost basic terms: {2nd,activate,from,head,sel,take}/{0,cons,n__from,n__take,nil,s} Applied Processor: DependencyPairs {dpKind_ = WIDP} Proof: We add the following weak innermost dependency pairs: Strict DPs 2nd#(cons(X,XS)) -> c_1(head#(activate(XS))) activate#(X) -> c_2() activate#(n__from(X)) -> c_3(from#(X)) activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)) from#(X) -> c_5() from#(X) -> c_6() head#(cons(X,XS)) -> c_7() sel#(0(),cons(X,XS)) -> c_8() sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS))) take#(X1,X2) -> c_10() take#(0(),XS) -> c_11() take#(s(N),cons(X,XS)) -> c_12(activate#(XS)) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: 2nd#(cons(X,XS)) -> c_1(head#(activate(XS))) activate#(X) -> c_2() activate#(n__from(X)) -> c_3(from#(X)) activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)) from#(X) -> c_5() from#(X) -> c_6() head#(cons(X,XS)) -> c_7() sel#(0(),cons(X,XS)) -> c_8() sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS))) take#(X1,X2) -> c_10() take#(0(),XS) -> c_11() take#(s(N),cons(X,XS)) -> c_12(activate#(XS)) Strict TRS Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(X) -> X activate(n__from(X)) -> from(X) activate(n__take(X1,X2)) -> take(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X sel(0(),cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) take(X1,X2) -> n__take(X1,X2) take(0(),XS) -> nil() take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) Weak DP Rules: Weak TRS Rules: Signature: {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1} Obligation: Innermost basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: activate(X) -> X activate(n__from(X)) -> from(X) activate(n__take(X1,X2)) -> take(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) take(X1,X2) -> n__take(X1,X2) take(0(),XS) -> nil() take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) 2nd#(cons(X,XS)) -> c_1(head#(activate(XS))) activate#(X) -> c_2() activate#(n__from(X)) -> c_3(from#(X)) activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)) from#(X) -> c_5() from#(X) -> c_6() head#(cons(X,XS)) -> c_7() sel#(0(),cons(X,XS)) -> c_8() sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS))) take#(X1,X2) -> c_10() take#(0(),XS) -> c_11() take#(s(N),cons(X,XS)) -> c_12(activate#(XS)) *** 1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: 2nd#(cons(X,XS)) -> c_1(head#(activate(XS))) activate#(X) -> c_2() activate#(n__from(X)) -> c_3(from#(X)) activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)) from#(X) -> c_5() from#(X) -> c_6() head#(cons(X,XS)) -> c_7() sel#(0(),cons(X,XS)) -> c_8() sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS))) take#(X1,X2) -> c_10() take#(0(),XS) -> c_11() take#(s(N),cons(X,XS)) -> c_12(activate#(XS)) Strict TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) activate(n__take(X1,X2)) -> take(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) take(X1,X2) -> n__take(X1,X2) take(0(),XS) -> nil() take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) Weak DP Rules: Weak TRS Rules: Signature: {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1} Obligation: Innermost basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs} Proof: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {2}, uargs(n__take) = {2}, uargs(head#) = {1}, uargs(sel#) = {2}, uargs(c_1) = {1}, uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_9) = {1}, uargs(c_12) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [1] p(2nd) = [0] p(activate) = [1] x1 + [3] p(cons) = [1] x2 + [1] p(from) = [7] p(head) = [1] x1 + [1] p(n__from) = [5] p(n__take) = [1] x1 + [1] x2 + [1] p(nil) = [0] p(s) = [1] x1 + [2] p(sel) = [0] p(take) = [1] x1 + [1] x2 + [3] p(2nd#) = [2] x1 + [0] p(activate#) = [0] p(from#) = [0] p(head#) = [1] x1 + [0] p(sel#) = [5] x1 + [1] x2 + [0] p(take#) = [0] p(c_1) = [1] x1 + [0] p(c_2) = [0] p(c_3) = [1] x1 + [0] p(c_4) = [1] x1 + [0] p(c_5) = [0] p(c_6) = [0] p(c_7) = [0] p(c_8) = [0] p(c_9) = [1] x1 + [0] p(c_10) = [0] p(c_11) = [0] p(c_12) = [1] x1 + [0] Following rules are strictly oriented: head#(cons(X,XS)) = [1] XS + [1] > [0] = c_7() sel#(0(),cons(X,XS)) = [1] XS + [6] > [0] = c_8() sel#(s(N),cons(X,XS)) = [5] N + [1] XS + [11] > [5] N + [1] XS + [3] = c_9(sel#(N,activate(XS))) activate(X) = [1] X + [3] > [1] X + [0] = X activate(n__from(X)) = [8] > [7] = from(X) activate(n__take(X1,X2)) = [1] X1 + [1] X2 + [4] > [1] X1 + [1] X2 + [3] = take(X1,X2) from(X) = [7] > [6] = cons(X,n__from(s(X))) from(X) = [7] > [5] = n__from(X) take(X1,X2) = [1] X1 + [1] X2 + [3] > [1] X1 + [1] X2 + [1] = n__take(X1,X2) take(0(),XS) = [1] XS + [4] > [0] = nil() take(s(N),cons(X,XS)) = [1] N + [1] XS + [6] > [1] N + [1] XS + [5] = cons(X,n__take(N,activate(XS))) Following rules are (at-least) weakly oriented: 2nd#(cons(X,XS)) = [2] XS + [2] >= [1] XS + [3] = c_1(head#(activate(XS))) activate#(X) = [0] >= [0] = c_2() activate#(n__from(X)) = [0] >= [0] = c_3(from#(X)) activate#(n__take(X1,X2)) = [0] >= [0] = c_4(take#(X1,X2)) from#(X) = [0] >= [0] = c_5() from#(X) = [0] >= [0] = c_6() take#(X1,X2) = [0] >= [0] = c_10() take#(0(),XS) = [0] >= [0] = c_11() take#(s(N),cons(X,XS)) = [0] >= [0] = c_12(activate#(XS)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: 2nd#(cons(X,XS)) -> c_1(head#(activate(XS))) activate#(X) -> c_2() activate#(n__from(X)) -> c_3(from#(X)) activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)) from#(X) -> c_5() from#(X) -> c_6() take#(X1,X2) -> c_10() take#(0(),XS) -> c_11() take#(s(N),cons(X,XS)) -> c_12(activate#(XS)) Strict TRS Rules: Weak DP Rules: head#(cons(X,XS)) -> c_7() sel#(0(),cons(X,XS)) -> c_8() sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS))) Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) activate(n__take(X1,X2)) -> take(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) take(X1,X2) -> n__take(X1,X2) take(0(),XS) -> nil() take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) Signature: {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1} Obligation: Innermost basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,2,5,6,7,8} by application of Pre({1,2,5,6,7,8}) = {3,4,9}. Here rules are labelled as follows: 1: 2nd#(cons(X,XS)) -> c_1(head#(activate(XS))) 2: activate#(X) -> c_2() 3: activate#(n__from(X)) -> c_3(from#(X)) 4: activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)) 5: from#(X) -> c_5() 6: from#(X) -> c_6() 7: take#(X1,X2) -> c_10() 8: take#(0(),XS) -> c_11() 9: take#(s(N),cons(X,XS)) -> c_12(activate#(XS)) 10: head#(cons(X,XS)) -> c_7() 11: sel#(0(),cons(X,XS)) -> c_8() 12: sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS))) *** 1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: activate#(n__from(X)) -> c_3(from#(X)) activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)) take#(s(N),cons(X,XS)) -> c_12(activate#(XS)) Strict TRS Rules: Weak DP Rules: 2nd#(cons(X,XS)) -> c_1(head#(activate(XS))) activate#(X) -> c_2() from#(X) -> c_5() from#(X) -> c_6() head#(cons(X,XS)) -> c_7() sel#(0(),cons(X,XS)) -> c_8() sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS))) take#(X1,X2) -> c_10() take#(0(),XS) -> c_11() Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) activate(n__take(X1,X2)) -> take(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) take(X1,X2) -> n__take(X1,X2) take(0(),XS) -> nil() take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) Signature: {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1} Obligation: Innermost basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1} by application of Pre({1}) = {3}. Here rules are labelled as follows: 1: activate#(n__from(X)) -> c_3(from#(X)) 2: activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)) 3: take#(s(N),cons(X,XS)) -> c_12(activate#(XS)) 4: 2nd#(cons(X,XS)) -> c_1(head#(activate(XS))) 5: activate#(X) -> c_2() 6: from#(X) -> c_5() 7: from#(X) -> c_6() 8: head#(cons(X,XS)) -> c_7() 9: sel#(0(),cons(X,XS)) -> c_8() 10: sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS))) 11: take#(X1,X2) -> c_10() 12: take#(0(),XS) -> c_11() *** 1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)) take#(s(N),cons(X,XS)) -> c_12(activate#(XS)) Strict TRS Rules: Weak DP Rules: 2nd#(cons(X,XS)) -> c_1(head#(activate(XS))) activate#(X) -> c_2() activate#(n__from(X)) -> c_3(from#(X)) from#(X) -> c_5() from#(X) -> c_6() head#(cons(X,XS)) -> c_7() sel#(0(),cons(X,XS)) -> c_8() sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS))) take#(X1,X2) -> c_10() take#(0(),XS) -> c_11() Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) activate(n__take(X1,X2)) -> take(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) take(X1,X2) -> n__take(X1,X2) take(0(),XS) -> nil() take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) Signature: {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1} Obligation: Innermost basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)) -->_1 take#(s(N),cons(X,XS)) -> c_12(activate#(XS)):2 -->_1 take#(0(),XS) -> c_11():12 -->_1 take#(X1,X2) -> c_10():11 2:S:take#(s(N),cons(X,XS)) -> c_12(activate#(XS)) -->_1 activate#(n__from(X)) -> c_3(from#(X)):5 -->_1 activate#(X) -> c_2():4 -->_1 activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)):1 3:W:2nd#(cons(X,XS)) -> c_1(head#(activate(XS))) -->_1 head#(cons(X,XS)) -> c_7():8 4:W:activate#(X) -> c_2() 5:W:activate#(n__from(X)) -> c_3(from#(X)) -->_1 from#(X) -> c_6():7 -->_1 from#(X) -> c_5():6 6:W:from#(X) -> c_5() 7:W:from#(X) -> c_6() 8:W:head#(cons(X,XS)) -> c_7() 9:W:sel#(0(),cons(X,XS)) -> c_8() 10:W:sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS))) -->_1 sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS))):10 -->_1 sel#(0(),cons(X,XS)) -> c_8():9 11:W:take#(X1,X2) -> c_10() 12:W:take#(0(),XS) -> c_11() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 10: sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS))) 9: sel#(0(),cons(X,XS)) -> c_8() 3: 2nd#(cons(X,XS)) -> c_1(head#(activate(XS))) 8: head#(cons(X,XS)) -> c_7() 11: take#(X1,X2) -> c_10() 12: take#(0(),XS) -> c_11() 4: activate#(X) -> c_2() 5: activate#(n__from(X)) -> c_3(from#(X)) 6: from#(X) -> c_5() 7: from#(X) -> c_6() *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)) take#(s(N),cons(X,XS)) -> c_12(activate#(XS)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: activate(X) -> X activate(n__from(X)) -> from(X) activate(n__take(X1,X2)) -> take(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) take(X1,X2) -> n__take(X1,X2) take(0(),XS) -> nil() take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) Signature: {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1} Obligation: Innermost basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)) take#(s(N),cons(X,XS)) -> c_12(activate#(XS)) *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)) take#(s(N),cons(X,XS)) -> c_12(activate#(XS)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1} Obligation: Innermost basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 2: take#(s(N),cons(X,XS)) -> c_12(activate#(XS)) Consider the set of all dependency pairs 1: activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)) 2: take#(s(N),cons(X,XS)) -> c_12(activate#(XS)) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {2} These cover all (indirect) predecessors of dependency pairs {1,2} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)) take#(s(N),cons(X,XS)) -> c_12(activate#(XS)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1} Obligation: Innermost basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1}, uargs(c_12) = {1} Following symbols are considered usable: {2nd#,activate#,from#,head#,sel#,take#} TcT has computed the following interpretation: p(0) = [1] p(2nd) = [8] x1 + [2] p(activate) = [2] p(cons) = [1] x2 + [0] p(from) = [2] x1 + [0] p(head) = [2] x1 + [1] p(n__from) = [4] p(n__take) = [1] x1 + [1] x2 + [0] p(nil) = [0] p(s) = [1] x1 + [2] p(sel) = [0] p(take) = [8] p(2nd#) = [1] p(activate#) = [8] x1 + [0] p(from#) = [1] p(head#) = [2] x1 + [0] p(sel#) = [2] x1 + [0] p(take#) = [8] x1 + [8] x2 + [0] p(c_1) = [0] p(c_2) = [2] p(c_3) = [4] x1 + [0] p(c_4) = [1] x1 + [0] p(c_5) = [1] p(c_6) = [0] p(c_7) = [0] p(c_8) = [1] p(c_9) = [2] x1 + [0] p(c_10) = [2] p(c_11) = [4] p(c_12) = [1] x1 + [8] Following rules are strictly oriented: take#(s(N),cons(X,XS)) = [8] N + [8] XS + [16] > [8] XS + [8] = c_12(activate#(XS)) Following rules are (at-least) weakly oriented: activate#(n__take(X1,X2)) = [8] X1 + [8] X2 + [0] >= [8] X1 + [8] X2 + [0] = c_4(take#(X1,X2)) *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)) Strict TRS Rules: Weak DP Rules: take#(s(N),cons(X,XS)) -> c_12(activate#(XS)) Weak TRS Rules: Signature: {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1} Obligation: Innermost basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)) take#(s(N),cons(X,XS)) -> c_12(activate#(XS)) Weak TRS Rules: Signature: {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1} Obligation: Innermost basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)) -->_1 take#(s(N),cons(X,XS)) -> c_12(activate#(XS)):2 2:W:take#(s(N),cons(X,XS)) -> c_12(activate#(XS)) -->_1 activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)) 2: take#(s(N),cons(X,XS)) -> c_12(activate#(XS)) *** 1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1} Obligation: Innermost basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).