*** 1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        2nd(cons(X,XS)) -> head(activate(XS))
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        activate(n__take(X1,X2)) -> take(X1,X2)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        head(cons(X,XS)) -> X
        sel(0(),cons(X,XS)) -> X
        sel(s(N),cons(X,XS)) -> sel(N,activate(XS))
        take(X1,X2) -> n__take(X1,X2)
        take(0(),XS) -> nil()
        take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {2nd/1,activate/1,from/1,head/1,sel/2,take/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {2nd,activate,from,head,sel,take}/{0,cons,n__from,n__take,nil,s}
    Applied Processor:
      DependencyPairs {dpKind_ = WIDP}
    Proof:
      We add the following weak innermost dependency pairs:
      
      Strict DPs
        2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
        activate#(X) -> c_2()
        activate#(n__from(X)) -> c_3(from#(X))
        activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
        from#(X) -> c_5()
        from#(X) -> c_6()
        head#(cons(X,XS)) -> c_7()
        sel#(0(),cons(X,XS)) -> c_8()
        sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)))
        take#(X1,X2) -> c_10()
        take#(0(),XS) -> c_11()
        take#(s(N),cons(X,XS)) -> c_12(activate#(XS))
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
        activate#(X) -> c_2()
        activate#(n__from(X)) -> c_3(from#(X))
        activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
        from#(X) -> c_5()
        from#(X) -> c_6()
        head#(cons(X,XS)) -> c_7()
        sel#(0(),cons(X,XS)) -> c_8()
        sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)))
        take#(X1,X2) -> c_10()
        take#(0(),XS) -> c_11()
        take#(s(N),cons(X,XS)) -> c_12(activate#(XS))
      Strict TRS Rules:
        2nd(cons(X,XS)) -> head(activate(XS))
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        activate(n__take(X1,X2)) -> take(X1,X2)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        head(cons(X,XS)) -> X
        sel(0(),cons(X,XS)) -> X
        sel(s(N),cons(X,XS)) -> sel(N,activate(XS))
        take(X1,X2) -> n__take(X1,X2)
        take(0(),XS) -> nil()
        take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1}
      Obligation:
        Innermost
        basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        activate(n__take(X1,X2)) -> take(X1,X2)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        take(X1,X2) -> n__take(X1,X2)
        take(0(),XS) -> nil()
        take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
        2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
        activate#(X) -> c_2()
        activate#(n__from(X)) -> c_3(from#(X))
        activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
        from#(X) -> c_5()
        from#(X) -> c_6()
        head#(cons(X,XS)) -> c_7()
        sel#(0(),cons(X,XS)) -> c_8()
        sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)))
        take#(X1,X2) -> c_10()
        take#(0(),XS) -> c_11()
        take#(s(N),cons(X,XS)) -> c_12(activate#(XS))
*** 1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
        activate#(X) -> c_2()
        activate#(n__from(X)) -> c_3(from#(X))
        activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
        from#(X) -> c_5()
        from#(X) -> c_6()
        head#(cons(X,XS)) -> c_7()
        sel#(0(),cons(X,XS)) -> c_8()
        sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)))
        take#(X1,X2) -> c_10()
        take#(0(),XS) -> c_11()
        take#(s(N),cons(X,XS)) -> c_12(activate#(XS))
      Strict TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        activate(n__take(X1,X2)) -> take(X1,X2)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        take(X1,X2) -> n__take(X1,X2)
        take(0(),XS) -> nil()
        take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1}
      Obligation:
        Innermost
        basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs}
    Proof:
      The weightgap principle applies using the following constant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {2},
          uargs(n__take) = {2},
          uargs(head#) = {1},
          uargs(sel#) = {2},
          uargs(c_1) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_9) = {1},
          uargs(c_12) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                  p(0) = [1]                  
                p(2nd) = [0]                  
           p(activate) = [1] x1 + [3]         
               p(cons) = [1] x2 + [1]         
               p(from) = [7]                  
               p(head) = [1] x1 + [1]         
            p(n__from) = [5]                  
            p(n__take) = [1] x1 + [1] x2 + [1]
                p(nil) = [0]                  
                  p(s) = [1] x1 + [2]         
                p(sel) = [0]                  
               p(take) = [1] x1 + [1] x2 + [3]
               p(2nd#) = [2] x1 + [0]         
          p(activate#) = [0]                  
              p(from#) = [0]                  
              p(head#) = [1] x1 + [0]         
               p(sel#) = [5] x1 + [1] x2 + [0]
              p(take#) = [0]                  
                p(c_1) = [1] x1 + [0]         
                p(c_2) = [0]                  
                p(c_3) = [1] x1 + [0]         
                p(c_4) = [1] x1 + [0]         
                p(c_5) = [0]                  
                p(c_6) = [0]                  
                p(c_7) = [0]                  
                p(c_8) = [0]                  
                p(c_9) = [1] x1 + [0]         
               p(c_10) = [0]                  
               p(c_11) = [0]                  
               p(c_12) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
               head#(cons(X,XS)) = [1] XS + [1]                   
                                 > [0]                            
                                 = c_7()                          
        
            sel#(0(),cons(X,XS)) = [1] XS + [6]                   
                                 > [0]                            
                                 = c_8()                          
        
           sel#(s(N),cons(X,XS)) = [5] N + [1] XS + [11]          
                                 > [5] N + [1] XS + [3]           
                                 = c_9(sel#(N,activate(XS)))      
        
                     activate(X) = [1] X + [3]                    
                                 > [1] X + [0]                    
                                 = X                              
        
            activate(n__from(X)) = [8]                            
                                 > [7]                            
                                 = from(X)                        
        
        activate(n__take(X1,X2)) = [1] X1 + [1] X2 + [4]          
                                 > [1] X1 + [1] X2 + [3]          
                                 = take(X1,X2)                    
        
                         from(X) = [7]                            
                                 > [6]                            
                                 = cons(X,n__from(s(X)))          
        
                         from(X) = [7]                            
                                 > [5]                            
                                 = n__from(X)                     
        
                     take(X1,X2) = [1] X1 + [1] X2 + [3]          
                                 > [1] X1 + [1] X2 + [1]          
                                 = n__take(X1,X2)                 
        
                    take(0(),XS) = [1] XS + [4]                   
                                 > [0]                            
                                 = nil()                          
        
           take(s(N),cons(X,XS)) = [1] N + [1] XS + [6]           
                                 > [1] N + [1] XS + [5]           
                                 = cons(X,n__take(N,activate(XS)))
        
        
        Following rules are (at-least) weakly oriented:
                 2nd#(cons(X,XS)) =  [2] XS + [2]            
                                  >= [1] XS + [3]            
                                  =  c_1(head#(activate(XS)))
        
                     activate#(X) =  [0]                     
                                  >= [0]                     
                                  =  c_2()                   
        
            activate#(n__from(X)) =  [0]                     
                                  >= [0]                     
                                  =  c_3(from#(X))           
        
        activate#(n__take(X1,X2)) =  [0]                     
                                  >= [0]                     
                                  =  c_4(take#(X1,X2))       
        
                         from#(X) =  [0]                     
                                  >= [0]                     
                                  =  c_5()                   
        
                         from#(X) =  [0]                     
                                  >= [0]                     
                                  =  c_6()                   
        
                     take#(X1,X2) =  [0]                     
                                  >= [0]                     
                                  =  c_10()                  
        
                    take#(0(),XS) =  [0]                     
                                  >= [0]                     
                                  =  c_11()                  
        
           take#(s(N),cons(X,XS)) =  [0]                     
                                  >= [0]                     
                                  =  c_12(activate#(XS))     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
        activate#(X) -> c_2()
        activate#(n__from(X)) -> c_3(from#(X))
        activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
        from#(X) -> c_5()
        from#(X) -> c_6()
        take#(X1,X2) -> c_10()
        take#(0(),XS) -> c_11()
        take#(s(N),cons(X,XS)) -> c_12(activate#(XS))
      Strict TRS Rules:
        
      Weak DP Rules:
        head#(cons(X,XS)) -> c_7()
        sel#(0(),cons(X,XS)) -> c_8()
        sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)))
      Weak TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        activate(n__take(X1,X2)) -> take(X1,X2)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        take(X1,X2) -> n__take(X1,X2)
        take(0(),XS) -> nil()
        take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
      Signature:
        {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1}
      Obligation:
        Innermost
        basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,2,5,6,7,8}
      by application of
        Pre({1,2,5,6,7,8}) = {3,4,9}.
      Here rules are labelled as follows:
        1:  2nd#(cons(X,XS)) ->          
              c_1(head#(activate(XS)))   
        2:  activate#(X) -> c_2()        
        3:  activate#(n__from(X)) ->     
              c_3(from#(X))              
        4:  activate#(n__take(X1,X2)) -> 
              c_4(take#(X1,X2))          
        5:  from#(X) -> c_5()            
        6:  from#(X) -> c_6()            
        7:  take#(X1,X2) -> c_10()       
        8:  take#(0(),XS) -> c_11()      
        9:  take#(s(N),cons(X,XS)) ->    
              c_12(activate#(XS))        
        10: head#(cons(X,XS)) -> c_7()   
        11: sel#(0(),cons(X,XS)) -> c_8()
        12: sel#(s(N),cons(X,XS)) ->     
              c_9(sel#(N,activate(XS)))  
*** 1.1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(n__from(X)) -> c_3(from#(X))
        activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
        take#(s(N),cons(X,XS)) -> c_12(activate#(XS))
      Strict TRS Rules:
        
      Weak DP Rules:
        2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
        activate#(X) -> c_2()
        from#(X) -> c_5()
        from#(X) -> c_6()
        head#(cons(X,XS)) -> c_7()
        sel#(0(),cons(X,XS)) -> c_8()
        sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)))
        take#(X1,X2) -> c_10()
        take#(0(),XS) -> c_11()
      Weak TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        activate(n__take(X1,X2)) -> take(X1,X2)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        take(X1,X2) -> n__take(X1,X2)
        take(0(),XS) -> nil()
        take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
      Signature:
        {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1}
      Obligation:
        Innermost
        basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1}
      by application of
        Pre({1}) = {3}.
      Here rules are labelled as follows:
        1:  activate#(n__from(X)) ->     
              c_3(from#(X))              
        2:  activate#(n__take(X1,X2)) -> 
              c_4(take#(X1,X2))          
        3:  take#(s(N),cons(X,XS)) ->    
              c_12(activate#(XS))        
        4:  2nd#(cons(X,XS)) ->          
              c_1(head#(activate(XS)))   
        5:  activate#(X) -> c_2()        
        6:  from#(X) -> c_5()            
        7:  from#(X) -> c_6()            
        8:  head#(cons(X,XS)) -> c_7()   
        9:  sel#(0(),cons(X,XS)) -> c_8()
        10: sel#(s(N),cons(X,XS)) ->     
              c_9(sel#(N,activate(XS)))  
        11: take#(X1,X2) -> c_10()       
        12: take#(0(),XS) -> c_11()      
*** 1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
        take#(s(N),cons(X,XS)) -> c_12(activate#(XS))
      Strict TRS Rules:
        
      Weak DP Rules:
        2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
        activate#(X) -> c_2()
        activate#(n__from(X)) -> c_3(from#(X))
        from#(X) -> c_5()
        from#(X) -> c_6()
        head#(cons(X,XS)) -> c_7()
        sel#(0(),cons(X,XS)) -> c_8()
        sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)))
        take#(X1,X2) -> c_10()
        take#(0(),XS) -> c_11()
      Weak TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        activate(n__take(X1,X2)) -> take(X1,X2)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        take(X1,X2) -> n__take(X1,X2)
        take(0(),XS) -> nil()
        take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
      Signature:
        {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1}
      Obligation:
        Innermost
        basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
           -->_1 take#(s(N),cons(X,XS)) -> c_12(activate#(XS)):2
           -->_1 take#(0(),XS) -> c_11():12
           -->_1 take#(X1,X2) -> c_10():11
        
        2:S:take#(s(N),cons(X,XS)) -> c_12(activate#(XS))
           -->_1 activate#(n__from(X)) -> c_3(from#(X)):5
           -->_1 activate#(X) -> c_2():4
           -->_1 activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)):1
        
        3:W:2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
           -->_1 head#(cons(X,XS)) -> c_7():8
        
        4:W:activate#(X) -> c_2()
           
        
        5:W:activate#(n__from(X)) -> c_3(from#(X))
           -->_1 from#(X) -> c_6():7
           -->_1 from#(X) -> c_5():6
        
        6:W:from#(X) -> c_5()
           
        
        7:W:from#(X) -> c_6()
           
        
        8:W:head#(cons(X,XS)) -> c_7()
           
        
        9:W:sel#(0(),cons(X,XS)) -> c_8()
           
        
        10:W:sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS)))
           -->_1 sel#(s(N),cons(X,XS)) -> c_9(sel#(N,activate(XS))):10
           -->_1 sel#(0(),cons(X,XS)) -> c_8():9
        
        11:W:take#(X1,X2) -> c_10()
           
        
        12:W:take#(0(),XS) -> c_11()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        10: sel#(s(N),cons(X,XS)) ->     
              c_9(sel#(N,activate(XS)))  
        9:  sel#(0(),cons(X,XS)) -> c_8()
        3:  2nd#(cons(X,XS)) ->          
              c_1(head#(activate(XS)))   
        8:  head#(cons(X,XS)) -> c_7()   
        11: take#(X1,X2) -> c_10()       
        12: take#(0(),XS) -> c_11()      
        4:  activate#(X) -> c_2()        
        5:  activate#(n__from(X)) ->     
              c_3(from#(X))              
        6:  from#(X) -> c_5()            
        7:  from#(X) -> c_6()            
*** 1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
        take#(s(N),cons(X,XS)) -> c_12(activate#(XS))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        activate(n__take(X1,X2)) -> take(X1,X2)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        take(X1,X2) -> n__take(X1,X2)
        take(0(),XS) -> nil()
        take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
      Signature:
        {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1}
      Obligation:
        Innermost
        basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
        take#(s(N),cons(X,XS)) -> c_12(activate#(XS))
*** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
        take#(s(N),cons(X,XS)) -> c_12(activate#(XS))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1}
      Obligation:
        Innermost
        basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s}
    Applied Processor:
      PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
    Proof:
      We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
        2: take#(s(N),cons(X,XS)) ->
             c_12(activate#(XS))    
        
      Consider the set of all dependency pairs
        1: activate#(n__take(X1,X2)) ->
             c_4(take#(X1,X2))         
        2: take#(s(N),cons(X,XS)) ->   
             c_12(activate#(XS))       
      Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
      SPACE(?,?)on application of the dependency pairs
        {2}
      These cover all (indirect) predecessors of dependency pairs
        {1,2}
      their number of applications is equally bounded.
      The dependency pairs are shifted into the weak component.
  *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
          take#(s(N),cons(X,XS)) -> c_12(activate#(XS))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          
        Signature:
          {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1}
        Obligation:
          Innermost
          basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s}
      Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
      Proof:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_4) = {1},
          uargs(c_12) = {1}
        
        Following symbols are considered usable:
          {2nd#,activate#,from#,head#,sel#,take#}
        TcT has computed the following interpretation:
                  p(0) = [1]                  
                p(2nd) = [8] x1 + [2]         
           p(activate) = [2]                  
               p(cons) = [1] x2 + [0]         
               p(from) = [2] x1 + [0]         
               p(head) = [2] x1 + [1]         
            p(n__from) = [4]                  
            p(n__take) = [1] x1 + [1] x2 + [0]
                p(nil) = [0]                  
                  p(s) = [1] x1 + [2]         
                p(sel) = [0]                  
               p(take) = [8]                  
               p(2nd#) = [1]                  
          p(activate#) = [8] x1 + [0]         
              p(from#) = [1]                  
              p(head#) = [2] x1 + [0]         
               p(sel#) = [2] x1 + [0]         
              p(take#) = [8] x1 + [8] x2 + [0]
                p(c_1) = [0]                  
                p(c_2) = [2]                  
                p(c_3) = [4] x1 + [0]         
                p(c_4) = [1] x1 + [0]         
                p(c_5) = [1]                  
                p(c_6) = [0]                  
                p(c_7) = [0]                  
                p(c_8) = [1]                  
                p(c_9) = [2] x1 + [0]         
               p(c_10) = [2]                  
               p(c_11) = [4]                  
               p(c_12) = [1] x1 + [8]         
        
        Following rules are strictly oriented:
        take#(s(N),cons(X,XS)) = [8] N + [8] XS + [16]
                               > [8] XS + [8]         
                               = c_12(activate#(XS))  
        
        
        Following rules are (at-least) weakly oriented:
        activate#(n__take(X1,X2)) =  [8] X1 + [8] X2 + [0]
                                  >= [8] X1 + [8] X2 + [0]
                                  =  c_4(take#(X1,X2))    
        
  *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
        Strict TRS Rules:
          
        Weak DP Rules:
          take#(s(N),cons(X,XS)) -> c_12(activate#(XS))
        Weak TRS Rules:
          
        Signature:
          {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1}
        Obligation:
          Innermost
          basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s}
      Applied Processor:
        Assumption
      Proof:
        ()
  
  *** 1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          
        Strict TRS Rules:
          
        Weak DP Rules:
          activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
          take#(s(N),cons(X,XS)) -> c_12(activate#(XS))
        Weak TRS Rules:
          
        Signature:
          {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1}
        Obligation:
          Innermost
          basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:W:activate#(n__take(X1,X2)) -> c_4(take#(X1,X2))
             -->_1 take#(s(N),cons(X,XS)) -> c_12(activate#(XS)):2
          
          2:W:take#(s(N),cons(X,XS)) -> c_12(activate#(XS))
             -->_1 activate#(n__take(X1,X2)) -> c_4(take#(X1,X2)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: activate#(n__take(X1,X2)) ->
               c_4(take#(X1,X2))         
          2: take#(s(N),cons(X,XS)) ->   
               c_12(activate#(XS))       
  *** 1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          
        Signature:
          {2nd/1,activate/1,from/1,head/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__take/2,nil/0,s/1,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0,c_12/1}
        Obligation:
          Innermost
          basic terms: {2nd#,activate#,from#,head#,sel#,take#}/{0,cons,n__from,n__take,nil,s}
      Applied Processor:
        EmptyProcessor
      Proof:
        The problem is already closed. The intended complexity is O(1).