We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict Trs:
  { from(X) -> cons(X, n__from(s(X)))
  , from(X) -> n__from(X)
  , head(cons(X, XS)) -> X
  , 2nd(cons(X, XS)) -> head(activate(XS))
  , activate(X) -> X
  , activate(n__from(X)) -> from(X)
  , activate(n__take(X1, X2)) -> take(X1, X2)
  , take(X1, X2) -> n__take(X1, X2)
  , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))
  , take(0(), XS) -> nil()
  , sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
  , sel(0(), cons(X, XS)) -> X }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We add the following weak dependency pairs:

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , head^#(cons(X, XS)) -> c_3()
  , 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS)))
  , activate^#(X) -> c_5()
  , activate^#(n__from(X)) -> c_6(from^#(X))
  , activate^#(n__take(X1, X2)) -> c_7(take^#(X1, X2))
  , take^#(X1, X2) -> c_8()
  , take^#(s(N), cons(X, XS)) -> c_9(activate^#(XS))
  , take^#(0(), XS) -> c_10()
  , sel^#(s(N), cons(X, XS)) -> c_11(sel^#(N, activate(XS)))
  , sel^#(0(), cons(X, XS)) -> c_12() }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , head^#(cons(X, XS)) -> c_3()
  , 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS)))
  , activate^#(X) -> c_5()
  , activate^#(n__from(X)) -> c_6(from^#(X))
  , activate^#(n__take(X1, X2)) -> c_7(take^#(X1, X2))
  , take^#(X1, X2) -> c_8()
  , take^#(s(N), cons(X, XS)) -> c_9(activate^#(XS))
  , take^#(0(), XS) -> c_10()
  , sel^#(s(N), cons(X, XS)) -> c_11(sel^#(N, activate(XS)))
  , sel^#(0(), cons(X, XS)) -> c_12() }
Strict Trs:
  { from(X) -> cons(X, n__from(s(X)))
  , from(X) -> n__from(X)
  , head(cons(X, XS)) -> X
  , 2nd(cons(X, XS)) -> head(activate(XS))
  , activate(X) -> X
  , activate(n__from(X)) -> from(X)
  , activate(n__take(X1, X2)) -> take(X1, X2)
  , take(X1, X2) -> n__take(X1, X2)
  , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))
  , take(0(), XS) -> nil()
  , sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
  , sel(0(), cons(X, XS)) -> X }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

We replace rewrite rules by usable rules:

  Strict Usable Rules:
    { from(X) -> cons(X, n__from(s(X)))
    , from(X) -> n__from(X)
    , activate(X) -> X
    , activate(n__from(X)) -> from(X)
    , activate(n__take(X1, X2)) -> take(X1, X2)
    , take(X1, X2) -> n__take(X1, X2)
    , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))
    , take(0(), XS) -> nil() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^2)).

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , head^#(cons(X, XS)) -> c_3()
  , 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS)))
  , activate^#(X) -> c_5()
  , activate^#(n__from(X)) -> c_6(from^#(X))
  , activate^#(n__take(X1, X2)) -> c_7(take^#(X1, X2))
  , take^#(X1, X2) -> c_8()
  , take^#(s(N), cons(X, XS)) -> c_9(activate^#(XS))
  , take^#(0(), XS) -> c_10()
  , sel^#(s(N), cons(X, XS)) -> c_11(sel^#(N, activate(XS)))
  , sel^#(0(), cons(X, XS)) -> c_12() }
Strict Trs:
  { from(X) -> cons(X, n__from(s(X)))
  , from(X) -> n__from(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(X)
  , activate(n__take(X1, X2)) -> take(X1, X2)
  , take(X1, X2) -> n__take(X1, X2)
  , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))
  , take(0(), XS) -> nil() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^2))

The weightgap principle applies (using the following constant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(cons) = {2}, Uargs(n__take) = {2}, Uargs(head^#) = {1},
  Uargs(c_4) = {1}, Uargs(c_6) = {1}, Uargs(c_7) = {1},
  Uargs(c_9) = {1}, Uargs(sel^#) = {2}, Uargs(c_11) = {1}

TcT has computed the following constructor-restricted matrix
interpretation.

         [from](x1) = [1]                      
                      [2]                      
                                               
     [cons](x1, x2) = [1 2] x2 + [0]           
                      [0 1]      [1]           
                                               
      [n__from](x1) = [0]                      
                      [0]                      
                                               
            [s](x1) = [1 0] x1 + [0]           
                      [0 1]      [2]           
                                               
     [activate](x1) = [1 1] x1 + [2]           
                      [0 2]      [2]           
                                               
     [take](x1, x2) = [0 2] x1 + [1 1] x2 + [2]
                      [0 0]      [0 0]      [2]
                                               
                [0] = [0]                      
                      [0]                      
                                               
              [nil] = [0]                      
                      [0]                      
                                               
  [n__take](x1, x2) = [0 2] x1 + [1 1] x2 + [0]
                      [0 0]      [0 0]      [1]
                                               
       [from^#](x1) = [1]                      
                      [1]                      
                                               
              [c_1] = [0]                      
                      [0]                      
                                               
              [c_2] = [0]                      
                      [0]                      
                                               
       [head^#](x1) = [1 0] x1 + [0]           
                      [0 0]      [0]           
                                               
              [c_3] = [0]                      
                      [0]                      
                                               
        [2nd^#](x1) = [1 2] x1 + [0]           
                      [0 0]      [0]           
                                               
          [c_4](x1) = [1 0] x1 + [0]           
                      [0 1]      [0]           
                                               
   [activate^#](x1) = [0]                      
                      [0]                      
                                               
              [c_5] = [0]                      
                      [0]                      
                                               
          [c_6](x1) = [1 0] x1 + [1]           
                      [0 1]      [1]           
                                               
          [c_7](x1) = [1 0] x1 + [0]           
                      [0 1]      [0]           
                                               
   [take^#](x1, x2) = [0]                      
                      [0]                      
                                               
              [c_8] = [0]                      
                      [0]                      
                                               
          [c_9](x1) = [1 0] x1 + [0]           
                      [0 1]      [0]           
                                               
             [c_10] = [0]                      
                      [0]                      
                                               
    [sel^#](x1, x2) = [2 1] x2 + [0]           
                      [0 0]      [0]           
                                               
         [c_11](x1) = [1 0] x1 + [0]           
                      [0 1]      [0]           
                                               
             [c_12] = [0]                      
                      [0]                      

The order satisfies the following ordering constraints:

                      [from(X)] =  [1]                                
                                   [2]                                
                                >  [0]                                
                                   [1]                                
                                =  [cons(X, n__from(s(X)))]           
                                                                      
                      [from(X)] =  [1]                                
                                   [2]                                
                                >  [0]                                
                                   [0]                                
                                =  [n__from(X)]                       
                                                                      
                  [activate(X)] =  [1 1] X + [2]                      
                                   [0 2]     [2]                      
                                >  [1 0] X + [0]                      
                                   [0 1]     [0]                      
                                =  [X]                                
                                                                      
         [activate(n__from(X))] =  [2]                                
                                   [2]                                
                                >  [1]                                
                                   [2]                                
                                =  [from(X)]                          
                                                                      
    [activate(n__take(X1, X2))] =  [0 2] X1 + [1 1] X2 + [3]          
                                   [0 0]      [0 0]      [4]          
                                >  [0 2] X1 + [1 1] X2 + [2]          
                                   [0 0]      [0 0]      [2]          
                                =  [take(X1, X2)]                     
                                                                      
                 [take(X1, X2)] =  [0 2] X1 + [1 1] X2 + [2]          
                                   [0 0]      [0 0]      [2]          
                                >  [0 2] X1 + [1 1] X2 + [0]          
                                   [0 0]      [0 0]      [1]          
                                =  [n__take(X1, X2)]                  
                                                                      
      [take(s(N), cons(X, XS))] =  [1 3] XS + [0 2] N + [7]           
                                   [0 0]      [0 0]     [2]           
                                >  [1 3] XS + [0 2] N + [6]           
                                   [0 0]      [0 0]     [2]           
                                =  [cons(X, n__take(N, activate(XS)))]
                                                                      
                [take(0(), XS)] =  [1 1] XS + [2]                     
                                   [0 0]      [2]                     
                                >  [0]                                
                                   [0]                                
                                =  [nil()]                            
                                                                      
                    [from^#(X)] =  [1]                                
                                   [1]                                
                                >  [0]                                
                                   [0]                                
                                =  [c_1()]                            
                                                                      
                    [from^#(X)] =  [1]                                
                                   [1]                                
                                >  [0]                                
                                   [0]                                
                                =  [c_2()]                            
                                                                      
          [head^#(cons(X, XS))] =  [1 2] XS + [0]                     
                                   [0 0]      [0]                     
                                >= [0]                                
                                   [0]                                
                                =  [c_3()]                            
                                                                      
           [2nd^#(cons(X, XS))] =  [1 4] XS + [2]                     
                                   [0 0]      [0]                     
                                >= [1 1] XS + [2]                     
                                   [0 0]      [0]                     
                                =  [c_4(head^#(activate(XS)))]        
                                                                      
                [activate^#(X)] =  [0]                                
                                   [0]                                
                                >= [0]                                
                                   [0]                                
                                =  [c_5()]                            
                                                                      
       [activate^#(n__from(X))] =  [0]                                
                                   [0]                                
                                ?  [2]                                
                                   [2]                                
                                =  [c_6(from^#(X))]                   
                                                                      
  [activate^#(n__take(X1, X2))] =  [0]                                
                                   [0]                                
                                >= [0]                                
                                   [0]                                
                                =  [c_7(take^#(X1, X2))]              
                                                                      
               [take^#(X1, X2)] =  [0]                                
                                   [0]                                
                                >= [0]                                
                                   [0]                                
                                =  [c_8()]                            
                                                                      
    [take^#(s(N), cons(X, XS))] =  [0]                                
                                   [0]                                
                                >= [0]                                
                                   [0]                                
                                =  [c_9(activate^#(XS))]              
                                                                      
              [take^#(0(), XS)] =  [0]                                
                                   [0]                                
                                >= [0]                                
                                   [0]                                
                                =  [c_10()]                           
                                                                      
     [sel^#(s(N), cons(X, XS))] =  [2 5] XS + [1]                     
                                   [0 0]      [0]                     
                                ?  [2 4] XS + [6]                     
                                   [0 0]      [0]                     
                                =  [c_11(sel^#(N, activate(XS)))]     
                                                                      
      [sel^#(0(), cons(X, XS))] =  [2 5] XS + [1]                     
                                   [0 0]      [0]                     
                                >  [0]                                
                                   [0]                                
                                =  [c_12()]                           
                                                                      

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { head^#(cons(X, XS)) -> c_3()
  , 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS)))
  , activate^#(X) -> c_5()
  , activate^#(n__from(X)) -> c_6(from^#(X))
  , activate^#(n__take(X1, X2)) -> c_7(take^#(X1, X2))
  , take^#(X1, X2) -> c_8()
  , take^#(s(N), cons(X, XS)) -> c_9(activate^#(XS))
  , take^#(0(), XS) -> c_10()
  , sel^#(s(N), cons(X, XS)) -> c_11(sel^#(N, activate(XS))) }
Weak DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , sel^#(0(), cons(X, XS)) -> c_12() }
Weak Trs:
  { from(X) -> cons(X, n__from(s(X)))
  , from(X) -> n__from(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(X)
  , activate(n__take(X1, X2)) -> take(X1, X2)
  , take(X1, X2) -> n__take(X1, X2)
  , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))
  , take(0(), XS) -> nil() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We estimate the number of application of {1,3,4,6,8} by
applications of Pre({1,3,4,6,8}) = {2,5,7}. Here rules are labeled
as follows:

  DPs:
    { 1: head^#(cons(X, XS)) -> c_3()
    , 2: 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS)))
    , 3: activate^#(X) -> c_5()
    , 4: activate^#(n__from(X)) -> c_6(from^#(X))
    , 5: activate^#(n__take(X1, X2)) -> c_7(take^#(X1, X2))
    , 6: take^#(X1, X2) -> c_8()
    , 7: take^#(s(N), cons(X, XS)) -> c_9(activate^#(XS))
    , 8: take^#(0(), XS) -> c_10()
    , 9: sel^#(s(N), cons(X, XS)) -> c_11(sel^#(N, activate(XS)))
    , 10: from^#(X) -> c_1()
    , 11: from^#(X) -> c_2()
    , 12: sel^#(0(), cons(X, XS)) -> c_12() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS)))
  , activate^#(n__take(X1, X2)) -> c_7(take^#(X1, X2))
  , take^#(s(N), cons(X, XS)) -> c_9(activate^#(XS))
  , sel^#(s(N), cons(X, XS)) -> c_11(sel^#(N, activate(XS))) }
Weak DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , head^#(cons(X, XS)) -> c_3()
  , activate^#(X) -> c_5()
  , activate^#(n__from(X)) -> c_6(from^#(X))
  , take^#(X1, X2) -> c_8()
  , take^#(0(), XS) -> c_10()
  , sel^#(0(), cons(X, XS)) -> c_12() }
Weak Trs:
  { from(X) -> cons(X, n__from(s(X)))
  , from(X) -> n__from(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(X)
  , activate(n__take(X1, X2)) -> take(X1, X2)
  , take(X1, X2) -> n__take(X1, X2)
  , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))
  , take(0(), XS) -> nil() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We estimate the number of application of {1} by applications of
Pre({1}) = {}. Here rules are labeled as follows:

  DPs:
    { 1: 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS)))
    , 2: activate^#(n__take(X1, X2)) -> c_7(take^#(X1, X2))
    , 3: take^#(s(N), cons(X, XS)) -> c_9(activate^#(XS))
    , 4: sel^#(s(N), cons(X, XS)) -> c_11(sel^#(N, activate(XS)))
    , 5: from^#(X) -> c_1()
    , 6: from^#(X) -> c_2()
    , 7: head^#(cons(X, XS)) -> c_3()
    , 8: activate^#(X) -> c_5()
    , 9: activate^#(n__from(X)) -> c_6(from^#(X))
    , 10: take^#(X1, X2) -> c_8()
    , 11: take^#(0(), XS) -> c_10()
    , 12: sel^#(0(), cons(X, XS)) -> c_12() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { activate^#(n__take(X1, X2)) -> c_7(take^#(X1, X2))
  , take^#(s(N), cons(X, XS)) -> c_9(activate^#(XS))
  , sel^#(s(N), cons(X, XS)) -> c_11(sel^#(N, activate(XS))) }
Weak DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , head^#(cons(X, XS)) -> c_3()
  , 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS)))
  , activate^#(X) -> c_5()
  , activate^#(n__from(X)) -> c_6(from^#(X))
  , take^#(X1, X2) -> c_8()
  , take^#(0(), XS) -> c_10()
  , sel^#(0(), cons(X, XS)) -> c_12() }
Weak Trs:
  { from(X) -> cons(X, n__from(s(X)))
  , from(X) -> n__from(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(X)
  , activate(n__take(X1, X2)) -> take(X1, X2)
  , take(X1, X2) -> n__take(X1, X2)
  , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))
  , take(0(), XS) -> nil() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ from^#(X) -> c_1()
, from^#(X) -> c_2()
, head^#(cons(X, XS)) -> c_3()
, 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS)))
, activate^#(X) -> c_5()
, activate^#(n__from(X)) -> c_6(from^#(X))
, take^#(X1, X2) -> c_8()
, take^#(0(), XS) -> c_10()
, sel^#(0(), cons(X, XS)) -> c_12() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { activate^#(n__take(X1, X2)) -> c_7(take^#(X1, X2))
  , take^#(s(N), cons(X, XS)) -> c_9(activate^#(XS))
  , sel^#(s(N), cons(X, XS)) -> c_11(sel^#(N, activate(XS))) }
Weak Trs:
  { from(X) -> cons(X, n__from(s(X)))
  , from(X) -> n__from(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(X)
  , activate(n__take(X1, X2)) -> take(X1, X2)
  , take(X1, X2) -> n__take(X1, X2)
  , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))
  , take(0(), XS) -> nil() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'Small Polynomial Path Order (PS,1-bounded)'
to orient following rules strictly.

DPs:
  { 1: activate^#(n__take(X1, X2)) -> c_7(take^#(X1, X2))
  , 2: take^#(s(N), cons(X, XS)) -> c_9(activate^#(XS))
  , 3: sel^#(s(N), cons(X, XS)) -> c_11(sel^#(N, activate(XS))) }

Sub-proof:
----------
  The input was oriented with the instance of 'Small Polynomial Path
  Order (PS,1-bounded)' as induced by the safe mapping
  
   safe(from) = {1}, safe(cons) = {1, 2}, safe(n__from) = {1},
   safe(s) = {1}, safe(activate) = {1}, safe(take) = {2},
   safe(0) = {}, safe(nil) = {}, safe(n__take) = {1, 2},
   safe(activate^#) = {}, safe(c_7) = {}, safe(take^#) = {1},
   safe(c_9) = {}, safe(sel^#) = {2}, safe(c_11) = {}
  
  and precedence
  
   take > activate, sel^# > activate, activate^# ~ take^# .
  
  Following symbols are considered recursive:
  
   {activate^#, take^#, sel^#}
  
  The recursion depth is 1.
  
  Further, following argument filtering is employed:
  
   pi(from) = [1], pi(cons) = [2], pi(n__from) = 1, pi(s) = [1],
   pi(activate) = [1], pi(take) = [2], pi(0) = [], pi(nil) = [],
   pi(n__take) = [2], pi(activate^#) = [1], pi(c_7) = [1],
   pi(take^#) = [2], pi(c_9) = [1], pi(sel^#) = [1], pi(c_11) = [1]
  
  Usable defined function symbols are a subset of:
  
   {activate^#, take^#, sel^#}
  
  For your convenience, here are the satisfied ordering constraints:
  
    pi(activate^#(n__take(X1, X2))) = activate^#(n__take(; X2);)      
                                    > c_7(take^#(X2;);)               
                                    = pi(c_7(take^#(X1, X2)))         
                                                                      
      pi(take^#(s(N), cons(X, XS))) = take^#(cons(; XS);)             
                                    > c_9(activate^#(XS;);)           
                                    = pi(c_9(activate^#(XS)))         
                                                                      
       pi(sel^#(s(N), cons(X, XS))) = sel^#(s(; N);)                  
                                    > c_11(sel^#(N;);)                
                                    = pi(c_11(sel^#(N, activate(XS))))
                                                                      

The strictly oriented rules are moved into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak DPs:
  { activate^#(n__take(X1, X2)) -> c_7(take^#(X1, X2))
  , take^#(s(N), cons(X, XS)) -> c_9(activate^#(XS))
  , sel^#(s(N), cons(X, XS)) -> c_11(sel^#(N, activate(XS))) }
Weak Trs:
  { from(X) -> cons(X, n__from(s(X)))
  , from(X) -> n__from(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(X)
  , activate(n__take(X1, X2)) -> take(X1, X2)
  , take(X1, X2) -> n__take(X1, X2)
  , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))
  , take(0(), XS) -> nil() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ activate^#(n__take(X1, X2)) -> c_7(take^#(X1, X2))
, take^#(s(N), cons(X, XS)) -> c_9(activate^#(XS))
, sel^#(s(N), cons(X, XS)) -> c_11(sel^#(N, activate(XS))) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak Trs:
  { from(X) -> cons(X, n__from(s(X)))
  , from(X) -> n__from(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(X)
  , activate(n__take(X1, X2)) -> take(X1, X2)
  , take(X1, X2) -> n__take(X1, X2)
  , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))
  , take(0(), XS) -> nil() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

No rule is usable, rules are removed from the input problem.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Rules: Empty
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^2))