*** 1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        2nd(cons(X,XS)) -> head(activate(XS))
        activate(X) -> X
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        head(cons(X,XS)) -> X
        s(X) -> n__s(X)
        sel(0(),cons(X,XS)) -> X
        sel(s(N),cons(X,XS)) -> sel(N,activate(XS))
        take(X1,X2) -> n__take(X1,X2)
        take(0(),XS) -> nil()
        take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0}
      Obligation:
        Innermost
        basic terms: {2nd,activate,from,head,s,sel,take}/{0,cons,n__from,n__s,n__take,nil}
    Applied Processor:
      InnermostRuleRemoval
    Proof:
      Arguments of following rules are not normal-forms.
        sel(s(N),cons(X,XS)) -> sel(N,activate(XS))
        take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
      All above mentioned rules can be savely removed.
*** 1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        2nd(cons(X,XS)) -> head(activate(XS))
        activate(X) -> X
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        head(cons(X,XS)) -> X
        s(X) -> n__s(X)
        sel(0(),cons(X,XS)) -> X
        take(X1,X2) -> n__take(X1,X2)
        take(0(),XS) -> nil()
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0}
      Obligation:
        Innermost
        basic terms: {2nd,activate,from,head,s,sel,take}/{0,cons,n__from,n__s,n__take,nil}
    Applied Processor:
      DependencyPairs {dpKind_ = WIDP}
    Proof:
      We add the following weak innermost dependency pairs:
      
      Strict DPs
        2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
        activate#(X) -> c_2()
        activate#(n__from(X)) -> c_3(from#(activate(X)))
        activate#(n__s(X)) -> c_4(s#(activate(X)))
        activate#(n__take(X1,X2)) -> c_5(take#(activate(X1),activate(X2)))
        from#(X) -> c_6()
        from#(X) -> c_7()
        head#(cons(X,XS)) -> c_8()
        s#(X) -> c_9()
        sel#(0(),cons(X,XS)) -> c_10()
        take#(X1,X2) -> c_11()
        take#(0(),XS) -> c_12()
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
        activate#(X) -> c_2()
        activate#(n__from(X)) -> c_3(from#(activate(X)))
        activate#(n__s(X)) -> c_4(s#(activate(X)))
        activate#(n__take(X1,X2)) -> c_5(take#(activate(X1),activate(X2)))
        from#(X) -> c_6()
        from#(X) -> c_7()
        head#(cons(X,XS)) -> c_8()
        s#(X) -> c_9()
        sel#(0(),cons(X,XS)) -> c_10()
        take#(X1,X2) -> c_11()
        take#(0(),XS) -> c_12()
      Strict TRS Rules:
        2nd(cons(X,XS)) -> head(activate(XS))
        activate(X) -> X
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        head(cons(X,XS)) -> X
        s(X) -> n__s(X)
        sel(0(),cons(X,XS)) -> X
        take(X1,X2) -> n__take(X1,X2)
        take(0(),XS) -> nil()
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,s#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0}
      Obligation:
        Innermost
        basic terms: {2nd#,activate#,from#,head#,s#,sel#,take#}/{0,cons,n__from,n__s,n__take,nil}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        activate(X) -> X
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        s(X) -> n__s(X)
        take(X1,X2) -> n__take(X1,X2)
        take(0(),XS) -> nil()
        2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
        activate#(X) -> c_2()
        activate#(n__from(X)) -> c_3(from#(activate(X)))
        activate#(n__s(X)) -> c_4(s#(activate(X)))
        activate#(n__take(X1,X2)) -> c_5(take#(activate(X1),activate(X2)))
        from#(X) -> c_6()
        from#(X) -> c_7()
        head#(cons(X,XS)) -> c_8()
        s#(X) -> c_9()
        sel#(0(),cons(X,XS)) -> c_10()
        take#(X1,X2) -> c_11()
        take#(0(),XS) -> c_12()
*** 1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
        activate#(X) -> c_2()
        activate#(n__from(X)) -> c_3(from#(activate(X)))
        activate#(n__s(X)) -> c_4(s#(activate(X)))
        activate#(n__take(X1,X2)) -> c_5(take#(activate(X1),activate(X2)))
        from#(X) -> c_6()
        from#(X) -> c_7()
        head#(cons(X,XS)) -> c_8()
        s#(X) -> c_9()
        sel#(0(),cons(X,XS)) -> c_10()
        take#(X1,X2) -> c_11()
        take#(0(),XS) -> c_12()
      Strict TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        s(X) -> n__s(X)
        take(X1,X2) -> n__take(X1,X2)
        take(0(),XS) -> nil()
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,s#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0}
      Obligation:
        Innermost
        basic terms: {2nd#,activate#,from#,head#,s#,sel#,take#}/{0,cons,n__from,n__s,n__take,nil}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs}
    Proof:
      The weightgap principle applies using the following constant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(from) = {1},
          uargs(s) = {1},
          uargs(take) = {1,2},
          uargs(from#) = {1},
          uargs(head#) = {1},
          uargs(s#) = {1},
          uargs(take#) = {1,2},
          uargs(c_1) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                  p(0) = [2]                   
                p(2nd) = [1] x1 + [1]          
           p(activate) = [5] x1 + [1]          
               p(cons) = [1] x2 + [4]          
               p(from) = [1] x1 + [15]         
               p(head) = [4] x1 + [1]          
            p(n__from) = [1] x1 + [4]          
               p(n__s) = [1] x1 + [2]          
            p(n__take) = [1] x1 + [1] x2 + [2] 
                p(nil) = [1]                   
                  p(s) = [1] x1 + [9]          
                p(sel) = [1] x2 + [1]          
               p(take) = [1] x1 + [1] x2 + [7] 
               p(2nd#) = [7] x1 + [0]          
          p(activate#) = [5] x1 + [6]          
              p(from#) = [1] x1 + [1]          
              p(head#) = [1] x1 + [3]          
                 p(s#) = [1] x1 + [0]          
               p(sel#) = [1] x1 + [2] x2 + [10]
              p(take#) = [1] x1 + [1] x2 + [4] 
                p(c_1) = [1] x1 + [0]          
                p(c_2) = [2]                   
                p(c_3) = [1] x1 + [8]          
                p(c_4) = [1] x1 + [9]          
                p(c_5) = [1] x1 + [12]         
                p(c_6) = [0]                   
                p(c_7) = [0]                   
                p(c_8) = [0]                   
                p(c_9) = [0]                   
               p(c_10) = [0]                   
               p(c_11) = [1]                   
               p(c_12) = [8]                   
        
        Following rules are strictly oriented:
                2nd#(cons(X,XS)) = [7] XS + [28]                  
                                 > [5] XS + [4]                   
                                 = c_1(head#(activate(XS)))       
        
                    activate#(X) = [5] X + [6]                    
                                 > [2]                            
                                 = c_2()                          
        
           activate#(n__from(X)) = [5] X + [26]                   
                                 > [5] X + [10]                   
                                 = c_3(from#(activate(X)))        
        
              activate#(n__s(X)) = [5] X + [16]                   
                                 > [5] X + [10]                   
                                 = c_4(s#(activate(X)))           
        
                        from#(X) = [1] X + [1]                    
                                 > [0]                            
                                 = c_6()                          
        
                        from#(X) = [1] X + [1]                    
                                 > [0]                            
                                 = c_7()                          
        
               head#(cons(X,XS)) = [1] XS + [7]                   
                                 > [0]                            
                                 = c_8()                          
        
            sel#(0(),cons(X,XS)) = [2] XS + [20]                  
                                 > [0]                            
                                 = c_10()                         
        
                    take#(X1,X2) = [1] X1 + [1] X2 + [4]          
                                 > [1]                            
                                 = c_11()                         
        
                     activate(X) = [5] X + [1]                    
                                 > [1] X + [0]                    
                                 = X                              
        
            activate(n__from(X)) = [5] X + [21]                   
                                 > [5] X + [16]                   
                                 = from(activate(X))              
        
               activate(n__s(X)) = [5] X + [11]                   
                                 > [5] X + [10]                   
                                 = s(activate(X))                 
        
        activate(n__take(X1,X2)) = [5] X1 + [5] X2 + [11]         
                                 > [5] X1 + [5] X2 + [9]          
                                 = take(activate(X1),activate(X2))
        
                         from(X) = [1] X + [15]                   
                                 > [1] X + [10]                   
                                 = cons(X,n__from(n__s(X)))       
        
                         from(X) = [1] X + [15]                   
                                 > [1] X + [4]                    
                                 = n__from(X)                     
        
                            s(X) = [1] X + [9]                    
                                 > [1] X + [2]                    
                                 = n__s(X)                        
        
                     take(X1,X2) = [1] X1 + [1] X2 + [7]          
                                 > [1] X1 + [1] X2 + [2]          
                                 = n__take(X1,X2)                 
        
                    take(0(),XS) = [1] XS + [9]                   
                                 > [1]                            
                                 = nil()                          
        
        
        Following rules are (at-least) weakly oriented:
        activate#(n__take(X1,X2)) =  [5] X1 + [5] X2 + [16]  
                                  >= [5] X1 + [5] X2 + [18]  
                                  =  c_5(take#(activate(X1)  
                                              ,activate(X2)))
        
                            s#(X) =  [1] X + [0]             
                                  >= [0]                     
                                  =  c_9()                   
        
                    take#(0(),XS) =  [1] XS + [6]            
                                  >= [8]                     
                                  =  c_12()                  
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(n__take(X1,X2)) -> c_5(take#(activate(X1),activate(X2)))
        s#(X) -> c_9()
        take#(0(),XS) -> c_12()
      Strict TRS Rules:
        
      Weak DP Rules:
        2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
        activate#(X) -> c_2()
        activate#(n__from(X)) -> c_3(from#(activate(X)))
        activate#(n__s(X)) -> c_4(s#(activate(X)))
        from#(X) -> c_6()
        from#(X) -> c_7()
        head#(cons(X,XS)) -> c_8()
        sel#(0(),cons(X,XS)) -> c_10()
        take#(X1,X2) -> c_11()
      Weak TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        s(X) -> n__s(X)
        take(X1,X2) -> n__take(X1,X2)
        take(0(),XS) -> nil()
      Signature:
        {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,s#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0}
      Obligation:
        Innermost
        basic terms: {2nd#,activate#,from#,head#,s#,sel#,take#}/{0,cons,n__from,n__s,n__take,nil}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {3}
      by application of
        Pre({3}) = {1}.
      Here rules are labelled as follows:
        1:  activate#(n__take(X1,X2)) ->  
              c_5(take#(activate(X1)      
                       ,activate(X2)))    
        2:  s#(X) -> c_9()                
        3:  take#(0(),XS) -> c_12()       
        4:  2nd#(cons(X,XS)) ->           
              c_1(head#(activate(XS)))    
        5:  activate#(X) -> c_2()         
        6:  activate#(n__from(X)) ->      
              c_3(from#(activate(X)))     
        7:  activate#(n__s(X)) ->         
              c_4(s#(activate(X)))        
        8:  from#(X) -> c_6()             
        9:  from#(X) -> c_7()             
        10: head#(cons(X,XS)) -> c_8()    
        11: sel#(0(),cons(X,XS)) -> c_10()
        12: take#(X1,X2) -> c_11()        
*** 1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(n__take(X1,X2)) -> c_5(take#(activate(X1),activate(X2)))
        s#(X) -> c_9()
      Strict TRS Rules:
        
      Weak DP Rules:
        2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
        activate#(X) -> c_2()
        activate#(n__from(X)) -> c_3(from#(activate(X)))
        activate#(n__s(X)) -> c_4(s#(activate(X)))
        from#(X) -> c_6()
        from#(X) -> c_7()
        head#(cons(X,XS)) -> c_8()
        sel#(0(),cons(X,XS)) -> c_10()
        take#(X1,X2) -> c_11()
        take#(0(),XS) -> c_12()
      Weak TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        s(X) -> n__s(X)
        take(X1,X2) -> n__take(X1,X2)
        take(0(),XS) -> nil()
      Signature:
        {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,s#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0}
      Obligation:
        Innermost
        basic terms: {2nd#,activate#,from#,head#,s#,sel#,take#}/{0,cons,n__from,n__s,n__take,nil}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1}
      by application of
        Pre({1}) = {}.
      Here rules are labelled as follows:
        1:  activate#(n__take(X1,X2)) ->  
              c_5(take#(activate(X1)      
                       ,activate(X2)))    
        2:  s#(X) -> c_9()                
        3:  2nd#(cons(X,XS)) ->           
              c_1(head#(activate(XS)))    
        4:  activate#(X) -> c_2()         
        5:  activate#(n__from(X)) ->      
              c_3(from#(activate(X)))     
        6:  activate#(n__s(X)) ->         
              c_4(s#(activate(X)))        
        7:  from#(X) -> c_6()             
        8:  from#(X) -> c_7()             
        9:  head#(cons(X,XS)) -> c_8()    
        10: sel#(0(),cons(X,XS)) -> c_10()
        11: take#(X1,X2) -> c_11()        
        12: take#(0(),XS) -> c_12()       
*** 1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        s#(X) -> c_9()
      Strict TRS Rules:
        
      Weak DP Rules:
        2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
        activate#(X) -> c_2()
        activate#(n__from(X)) -> c_3(from#(activate(X)))
        activate#(n__s(X)) -> c_4(s#(activate(X)))
        activate#(n__take(X1,X2)) -> c_5(take#(activate(X1),activate(X2)))
        from#(X) -> c_6()
        from#(X) -> c_7()
        head#(cons(X,XS)) -> c_8()
        sel#(0(),cons(X,XS)) -> c_10()
        take#(X1,X2) -> c_11()
        take#(0(),XS) -> c_12()
      Weak TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        s(X) -> n__s(X)
        take(X1,X2) -> n__take(X1,X2)
        take(0(),XS) -> nil()
      Signature:
        {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,s#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0}
      Obligation:
        Innermost
        basic terms: {2nd#,activate#,from#,head#,s#,sel#,take#}/{0,cons,n__from,n__s,n__take,nil}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:s#(X) -> c_9()
           
        
        2:W:2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
           -->_1 head#(cons(X,XS)) -> c_8():9
        
        3:W:activate#(X) -> c_2()
           
        
        4:W:activate#(n__from(X)) -> c_3(from#(activate(X)))
           -->_1 from#(X) -> c_7():8
           -->_1 from#(X) -> c_6():7
        
        5:W:activate#(n__s(X)) -> c_4(s#(activate(X)))
           -->_1 s#(X) -> c_9():1
        
        6:W:activate#(n__take(X1,X2)) -> c_5(take#(activate(X1),activate(X2)))
           -->_1 take#(0(),XS) -> c_12():12
           -->_1 take#(X1,X2) -> c_11():11
        
        7:W:from#(X) -> c_6()
           
        
        8:W:from#(X) -> c_7()
           
        
        9:W:head#(cons(X,XS)) -> c_8()
           
        
        10:W:sel#(0(),cons(X,XS)) -> c_10()
           
        
        11:W:take#(X1,X2) -> c_11()
           
        
        12:W:take#(0(),XS) -> c_12()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        10: sel#(0(),cons(X,XS)) -> c_10()
        6:  activate#(n__take(X1,X2)) ->  
              c_5(take#(activate(X1)      
                       ,activate(X2)))    
        11: take#(X1,X2) -> c_11()        
        12: take#(0(),XS) -> c_12()       
        4:  activate#(n__from(X)) ->      
              c_3(from#(activate(X)))     
        7:  from#(X) -> c_6()             
        8:  from#(X) -> c_7()             
        3:  activate#(X) -> c_2()         
        2:  2nd#(cons(X,XS)) ->           
              c_1(head#(activate(XS)))    
        9:  head#(cons(X,XS)) -> c_8()    
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        s#(X) -> c_9()
      Strict TRS Rules:
        
      Weak DP Rules:
        activate#(n__s(X)) -> c_4(s#(activate(X)))
      Weak TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        s(X) -> n__s(X)
        take(X1,X2) -> n__take(X1,X2)
        take(0(),XS) -> nil()
      Signature:
        {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,s#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0}
      Obligation:
        Innermost
        basic terms: {2nd#,activate#,from#,head#,s#,sel#,take#}/{0,cons,n__from,n__s,n__take,nil}
    Applied Processor:
      Trivial
    Proof:
      Consider the dependency graph
        1:S:s#(X) -> c_9()
           
        
        5:W:activate#(n__s(X)) -> c_4(s#(activate(X)))
           -->_1 s#(X) -> c_9():1
        
      The dependency graph contains no loops, we remove all dependency pairs.
*** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        s(X) -> n__s(X)
        take(X1,X2) -> n__take(X1,X2)
        take(0(),XS) -> nil()
      Signature:
        {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,s#/1,sel#/2,take#/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0}
      Obligation:
        Innermost
        basic terms: {2nd#,activate#,from#,head#,s#,sel#,take#}/{0,cons,n__from,n__s,n__take,nil}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).