We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , head(cons(X, XS)) -> X
  , 2nd(cons(X, XS)) -> head(activate(XS))
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
  , take(X1, X2) -> n__take(X1, X2)
  , take(0(), XS) -> nil()
  , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))
  , s(X) -> n__s(X)
  , sel(0(), cons(X, XS)) -> X
  , sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

Arguments of following rules are not normal-forms:

{ take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))
, sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) }

All above mentioned rules can be savely removed.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , head(cons(X, XS)) -> X
  , 2nd(cons(X, XS)) -> head(activate(XS))
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
  , take(X1, X2) -> n__take(X1, X2)
  , take(0(), XS) -> nil()
  , s(X) -> n__s(X)
  , sel(0(), cons(X, XS)) -> X }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We add the following weak dependency pairs:

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , head^#(cons(X, XS)) -> c_3()
  , 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS)))
  , activate^#(X) -> c_5()
  , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
  , activate^#(n__take(X1, X2)) ->
    c_8(take^#(activate(X1), activate(X2)))
  , s^#(X) -> c_11()
  , take^#(X1, X2) -> c_9()
  , take^#(0(), XS) -> c_10()
  , sel^#(0(), cons(X, XS)) -> c_12() }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , head^#(cons(X, XS)) -> c_3()
  , 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS)))
  , activate^#(X) -> c_5()
  , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
  , activate^#(n__take(X1, X2)) ->
    c_8(take^#(activate(X1), activate(X2)))
  , s^#(X) -> c_11()
  , take^#(X1, X2) -> c_9()
  , take^#(0(), XS) -> c_10()
  , sel^#(0(), cons(X, XS)) -> c_12() }
Strict Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , head(cons(X, XS)) -> X
  , 2nd(cons(X, XS)) -> head(activate(XS))
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
  , take(X1, X2) -> n__take(X1, X2)
  , take(0(), XS) -> nil()
  , s(X) -> n__s(X)
  , sel(0(), cons(X, XS)) -> X }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We replace rewrite rules by usable rules:

  Strict Usable Rules:
    { from(X) -> cons(X, n__from(n__s(X)))
    , from(X) -> n__from(X)
    , activate(X) -> X
    , activate(n__from(X)) -> from(activate(X))
    , activate(n__s(X)) -> s(activate(X))
    , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
    , take(X1, X2) -> n__take(X1, X2)
    , take(0(), XS) -> nil()
    , s(X) -> n__s(X) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , head^#(cons(X, XS)) -> c_3()
  , 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS)))
  , activate^#(X) -> c_5()
  , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
  , activate^#(n__take(X1, X2)) ->
    c_8(take^#(activate(X1), activate(X2)))
  , s^#(X) -> c_11()
  , take^#(X1, X2) -> c_9()
  , take^#(0(), XS) -> c_10()
  , sel^#(0(), cons(X, XS)) -> c_12() }
Strict Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
  , take(X1, X2) -> n__take(X1, X2)
  , take(0(), XS) -> nil()
  , s(X) -> n__s(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following constant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(from) = {1}, Uargs(take) = {1, 2}, Uargs(s) = {1},
  Uargs(from^#) = {1}, Uargs(head^#) = {1}, Uargs(c_4) = {1},
  Uargs(c_6) = {1}, Uargs(c_7) = {1}, Uargs(s^#) = {1},
  Uargs(c_8) = {1}, Uargs(take^#) = {1, 2}

TcT has computed the following constructor-restricted matrix
interpretation.

         [from](x1) = [1 0] x1 + [2]           
                      [0 1]      [2]           
                                               
     [cons](x1, x2) = [1 0] x2 + [0]           
                      [0 1]      [0]           
                                               
      [n__from](x1) = [1 0] x1 + [1]           
                      [0 1]      [1]           
                                               
         [n__s](x1) = [1 0] x1 + [0]           
                      [0 1]      [1]           
                                               
     [activate](x1) = [1 2] x1 + [2]           
                      [2 1]      [2]           
                                               
     [take](x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                      [0 1]      [0 1]      [2]
                                               
                [0] = [0]                      
                      [0]                      
                                               
              [nil] = [0]                      
                      [0]                      
                                               
            [s](x1) = [1 0] x1 + [1]           
                      [0 1]      [1]           
                                               
  [n__take](x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                      [0 1]      [0 1]      [2]
                                               
       [from^#](x1) = [1 0] x1 + [0]           
                      [0 0]      [0]           
                                               
              [c_1] = [0]                      
                      [0]                      
                                               
              [c_2] = [0]                      
                      [0]                      
                                               
       [head^#](x1) = [1 0] x1 + [0]           
                      [0 0]      [0]           
                                               
              [c_3] = [0]                      
                      [0]                      
                                               
        [2nd^#](x1) = [2 2] x1 + [0]           
                      [0 0]      [0]           
                                               
          [c_4](x1) = [1 0] x1 + [0]           
                      [0 1]      [0]           
                                               
   [activate^#](x1) = [2 2] x1 + [0]           
                      [0 0]      [0]           
                                               
              [c_5] = [0]                      
                      [0]                      
                                               
          [c_6](x1) = [1 0] x1 + [0]           
                      [0 1]      [0]           
                                               
          [c_7](x1) = [1 0] x1 + [0]           
                      [0 1]      [0]           
                                               
          [s^#](x1) = [1 0] x1 + [0]           
                      [0 0]      [0]           
                                               
          [c_8](x1) = [1 0] x1 + [0]           
                      [0 1]      [0]           
                                               
   [take^#](x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                      [0 0]      [0 0]      [0]
                                               
              [c_9] = [0]                      
                      [0]                      
                                               
             [c_10] = [0]                      
                      [0]                      
                                               
             [c_11] = [0]                      
                      [0]                      
                                               
    [sel^#](x1, x2) = [0]                      
                      [0]                      
                                               
             [c_12] = [0]                      
                      [0]                      

The order satisfies the following ordering constraints:

                      [from(X)] =  [1 0] X + [2]                            
                                   [0 1]     [2]                            
                                >  [1 0] X + [1]                            
                                   [0 1]     [2]                            
                                =  [cons(X, n__from(n__s(X)))]              
                                                                            
                      [from(X)] =  [1 0] X + [2]                            
                                   [0 1]     [2]                            
                                >  [1 0] X + [1]                            
                                   [0 1]     [1]                            
                                =  [n__from(X)]                             
                                                                            
                  [activate(X)] =  [1 2] X + [2]                            
                                   [2 1]     [2]                            
                                >  [1 0] X + [0]                            
                                   [0 1]     [0]                            
                                =  [X]                                      
                                                                            
         [activate(n__from(X))] =  [1 2] X + [5]                            
                                   [2 1]     [5]                            
                                >  [1 2] X + [4]                            
                                   [2 1]     [4]                            
                                =  [from(activate(X))]                      
                                                                            
            [activate(n__s(X))] =  [1 2] X + [4]                            
                                   [2 1]     [3]                            
                                >  [1 2] X + [3]                            
                                   [2 1]     [3]                            
                                =  [s(activate(X))]                         
                                                                            
    [activate(n__take(X1, X2))] =  [1 2] X1 + [1 2] X2 + [7]                
                                   [2 1]      [2 1]      [6]                
                                >  [1 2] X1 + [1 2] X2 + [6]                
                                   [2 1]      [2 1]      [6]                
                                =  [take(activate(X1), activate(X2))]       
                                                                            
                 [take(X1, X2)] =  [1 0] X1 + [1 0] X2 + [2]                
                                   [0 1]      [0 1]      [2]                
                                >  [1 0] X1 + [1 0] X2 + [1]                
                                   [0 1]      [0 1]      [2]                
                                =  [n__take(X1, X2)]                        
                                                                            
                [take(0(), XS)] =  [1 0] XS + [2]                           
                                   [0 1]      [2]                           
                                >  [0]                                      
                                   [0]                                      
                                =  [nil()]                                  
                                                                            
                         [s(X)] =  [1 0] X + [1]                            
                                   [0 1]     [1]                            
                                >  [1 0] X + [0]                            
                                   [0 1]     [1]                            
                                =  [n__s(X)]                                
                                                                            
                    [from^#(X)] =  [1 0] X + [0]                            
                                   [0 0]     [0]                            
                                >= [0]                                      
                                   [0]                                      
                                =  [c_1()]                                  
                                                                            
                    [from^#(X)] =  [1 0] X + [0]                            
                                   [0 0]     [0]                            
                                >= [0]                                      
                                   [0]                                      
                                =  [c_2()]                                  
                                                                            
          [head^#(cons(X, XS))] =  [1 0] XS + [0]                           
                                   [0 0]      [0]                           
                                >= [0]                                      
                                   [0]                                      
                                =  [c_3()]                                  
                                                                            
           [2nd^#(cons(X, XS))] =  [2 2] XS + [0]                           
                                   [0 0]      [0]                           
                                ?  [1 2] XS + [2]                           
                                   [0 0]      [0]                           
                                =  [c_4(head^#(activate(XS)))]              
                                                                            
                [activate^#(X)] =  [2 2] X + [0]                            
                                   [0 0]     [0]                            
                                >= [0]                                      
                                   [0]                                      
                                =  [c_5()]                                  
                                                                            
       [activate^#(n__from(X))] =  [2 2] X + [4]                            
                                   [0 0]     [0]                            
                                >  [1 2] X + [2]                            
                                   [0 0]     [0]                            
                                =  [c_6(from^#(activate(X)))]               
                                                                            
          [activate^#(n__s(X))] =  [2 2] X + [2]                            
                                   [0 0]     [0]                            
                                >= [1 2] X + [2]                            
                                   [0 0]     [0]                            
                                =  [c_7(s^#(activate(X)))]                  
                                                                            
  [activate^#(n__take(X1, X2))] =  [2 2] X1 + [2 2] X2 + [6]                
                                   [0 0]      [0 0]      [0]                
                                >  [1 2] X1 + [1 2] X2 + [4]                
                                   [0 0]      [0 0]      [0]                
                                =  [c_8(take^#(activate(X1), activate(X2)))]
                                                                            
                       [s^#(X)] =  [1 0] X + [0]                            
                                   [0 0]     [0]                            
                                >= [0]                                      
                                   [0]                                      
                                =  [c_11()]                                 
                                                                            
               [take^#(X1, X2)] =  [1 0] X1 + [1 0] X2 + [0]                
                                   [0 0]      [0 0]      [0]                
                                >= [0]                                      
                                   [0]                                      
                                =  [c_9()]                                  
                                                                            
              [take^#(0(), XS)] =  [1 0] XS + [0]                           
                                   [0 0]      [0]                           
                                >= [0]                                      
                                   [0]                                      
                                =  [c_10()]                                 
                                                                            
      [sel^#(0(), cons(X, XS))] =  [0]                                      
                                   [0]                                      
                                >= [0]                                      
                                   [0]                                      
                                =  [c_12()]                                 
                                                                            

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , head^#(cons(X, XS)) -> c_3()
  , 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS)))
  , activate^#(X) -> c_5()
  , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
  , s^#(X) -> c_11()
  , take^#(X1, X2) -> c_9()
  , take^#(0(), XS) -> c_10()
  , sel^#(0(), cons(X, XS)) -> c_12() }
Weak DPs:
  { activate^#(n__from(X)) -> c_6(from^#(activate(X)))
  , activate^#(n__take(X1, X2)) ->
    c_8(take^#(activate(X1), activate(X2))) }
Weak Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
  , take(X1, X2) -> n__take(X1, X2)
  , take(0(), XS) -> nil()
  , s(X) -> n__s(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

We estimate the number of application of {3,5,7,10} by applications
of Pre({3,5,7,10}) = {4,6}. Here rules are labeled as follows:

  DPs:
    { 1: from^#(X) -> c_1()
    , 2: from^#(X) -> c_2()
    , 3: head^#(cons(X, XS)) -> c_3()
    , 4: 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS)))
    , 5: activate^#(X) -> c_5()
    , 6: activate^#(n__s(X)) -> c_7(s^#(activate(X)))
    , 7: s^#(X) -> c_11()
    , 8: take^#(X1, X2) -> c_9()
    , 9: take^#(0(), XS) -> c_10()
    , 10: sel^#(0(), cons(X, XS)) -> c_12()
    , 11: activate^#(n__from(X)) -> c_6(from^#(activate(X)))
    , 12: activate^#(n__take(X1, X2)) ->
          c_8(take^#(activate(X1), activate(X2))) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS)))
  , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
  , take^#(X1, X2) -> c_9()
  , take^#(0(), XS) -> c_10() }
Weak DPs:
  { head^#(cons(X, XS)) -> c_3()
  , activate^#(X) -> c_5()
  , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
  , activate^#(n__take(X1, X2)) ->
    c_8(take^#(activate(X1), activate(X2)))
  , s^#(X) -> c_11()
  , sel^#(0(), cons(X, XS)) -> c_12() }
Weak Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
  , take(X1, X2) -> n__take(X1, X2)
  , take(0(), XS) -> nil()
  , s(X) -> n__s(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

We estimate the number of application of {3,4} by applications of
Pre({3,4}) = {}. Here rules are labeled as follows:

  DPs:
    { 1: from^#(X) -> c_1()
    , 2: from^#(X) -> c_2()
    , 3: 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS)))
    , 4: activate^#(n__s(X)) -> c_7(s^#(activate(X)))
    , 5: take^#(X1, X2) -> c_9()
    , 6: take^#(0(), XS) -> c_10()
    , 7: head^#(cons(X, XS)) -> c_3()
    , 8: activate^#(X) -> c_5()
    , 9: activate^#(n__from(X)) -> c_6(from^#(activate(X)))
    , 10: activate^#(n__take(X1, X2)) ->
          c_8(take^#(activate(X1), activate(X2)))
    , 11: s^#(X) -> c_11()
    , 12: sel^#(0(), cons(X, XS)) -> c_12() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , take^#(X1, X2) -> c_9()
  , take^#(0(), XS) -> c_10() }
Weak DPs:
  { head^#(cons(X, XS)) -> c_3()
  , 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS)))
  , activate^#(X) -> c_5()
  , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
  , activate^#(n__take(X1, X2)) ->
    c_8(take^#(activate(X1), activate(X2)))
  , s^#(X) -> c_11()
  , sel^#(0(), cons(X, XS)) -> c_12() }
Weak Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
  , take(X1, X2) -> n__take(X1, X2)
  , take(0(), XS) -> nil()
  , s(X) -> n__s(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ head^#(cons(X, XS)) -> c_3()
, 2nd^#(cons(X, XS)) -> c_4(head^#(activate(XS)))
, activate^#(X) -> c_5()
, activate^#(n__s(X)) -> c_7(s^#(activate(X)))
, s^#(X) -> c_11()
, sel^#(0(), cons(X, XS)) -> c_12() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , take^#(X1, X2) -> c_9()
  , take^#(0(), XS) -> c_10() }
Weak DPs:
  { activate^#(n__from(X)) -> c_6(from^#(activate(X)))
  , activate^#(n__take(X1, X2)) ->
    c_8(take^#(activate(X1), activate(X2))) }
Weak Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
  , take(X1, X2) -> n__take(X1, X2)
  , take(0(), XS) -> nil()
  , s(X) -> n__s(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

We analyse the complexity of following sub-problems (R) and (S).
Problem (S) is obtained from the input problem by shifting strict
rules from (R) into the weak component:

Problem (R):
------------
  Strict DPs: { from^#(X) -> c_2() }
  Weak DPs:
    { from^#(X) -> c_1()
    , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
    , activate^#(n__take(X1, X2)) ->
      c_8(take^#(activate(X1), activate(X2)))
    , take^#(X1, X2) -> c_9()
    , take^#(0(), XS) -> c_10() }
  Weak Trs:
    { from(X) -> cons(X, n__from(n__s(X)))
    , from(X) -> n__from(X)
    , activate(X) -> X
    , activate(n__from(X)) -> from(activate(X))
    , activate(n__s(X)) -> s(activate(X))
    , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
    , take(X1, X2) -> n__take(X1, X2)
    , take(0(), XS) -> nil()
    , s(X) -> n__s(X) }
  StartTerms: basic terms
  Strategy: innermost

Problem (S):
------------
  Strict DPs:
    { from^#(X) -> c_1()
    , take^#(X1, X2) -> c_9()
    , take^#(0(), XS) -> c_10() }
  Weak DPs:
    { from^#(X) -> c_2()
    , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
    , activate^#(n__take(X1, X2)) ->
      c_8(take^#(activate(X1), activate(X2))) }
  Weak Trs:
    { from(X) -> cons(X, n__from(n__s(X)))
    , from(X) -> n__from(X)
    , activate(X) -> X
    , activate(n__from(X)) -> from(activate(X))
    , activate(n__s(X)) -> s(activate(X))
    , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
    , take(X1, X2) -> n__take(X1, X2)
    , take(0(), XS) -> nil()
    , s(X) -> n__s(X) }
  StartTerms: basic terms
  Strategy: innermost

Overall, the transformation results in the following sub-problem(s):

Generated new problems:
-----------------------
R) Strict DPs: { from^#(X) -> c_2() }
   Weak DPs:
     { from^#(X) -> c_1()
     , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
     , activate^#(n__take(X1, X2)) ->
       c_8(take^#(activate(X1), activate(X2)))
     , take^#(X1, X2) -> c_9()
     , take^#(0(), XS) -> c_10() }
   Weak Trs:
     { from(X) -> cons(X, n__from(n__s(X)))
     , from(X) -> n__from(X)
     , activate(X) -> X
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
     , take(X1, X2) -> n__take(X1, X2)
     , take(0(), XS) -> nil()
     , s(X) -> n__s(X) }
   StartTerms: basic terms
   Strategy: innermost
   
   This problem was proven YES(O(1),O(1)).

S) Strict DPs:
     { from^#(X) -> c_1()
     , take^#(X1, X2) -> c_9()
     , take^#(0(), XS) -> c_10() }
   Weak DPs:
     { from^#(X) -> c_2()
     , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
     , activate^#(n__take(X1, X2)) ->
       c_8(take^#(activate(X1), activate(X2))) }
   Weak Trs:
     { from(X) -> cons(X, n__from(n__s(X)))
     , from(X) -> n__from(X)
     , activate(X) -> X
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
     , take(X1, X2) -> n__take(X1, X2)
     , take(0(), XS) -> nil()
     , s(X) -> n__s(X) }
   StartTerms: basic terms
   Strategy: innermost
   
   This problem was proven YES(O(1),O(1)).


Proofs for generated problems:
------------------------------
R) We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Strict DPs: { from^#(X) -> c_2() }
   Weak DPs:
     { from^#(X) -> c_1()
     , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
     , activate^#(n__take(X1, X2)) ->
       c_8(take^#(activate(X1), activate(X2)))
     , take^#(X1, X2) -> c_9()
     , take^#(0(), XS) -> c_10() }
   Weak Trs:
     { from(X) -> cons(X, n__from(n__s(X)))
     , from(X) -> n__from(X)
     , activate(X) -> X
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
     , take(X1, X2) -> n__take(X1, X2)
     , take(0(), XS) -> nil()
     , s(X) -> n__s(X) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   The following weak DPs constitute a sub-graph of the DG that is
   closed under successors. The DPs are removed.
   
   { from^#(X) -> c_1()
   , activate^#(n__take(X1, X2)) ->
     c_8(take^#(activate(X1), activate(X2)))
   , take^#(X1, X2) -> c_9()
   , take^#(0(), XS) -> c_10() }
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Strict DPs: { from^#(X) -> c_2() }
   Weak DPs: { activate^#(n__from(X)) -> c_6(from^#(activate(X))) }
   Weak Trs:
     { from(X) -> cons(X, n__from(n__s(X)))
     , from(X) -> n__from(X)
     , activate(X) -> X
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
     , take(X1, X2) -> n__take(X1, X2)
     , take(0(), XS) -> nil()
     , s(X) -> n__s(X) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   The dependency graph contains no loops, we remove all dependency
   pairs.
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Weak Trs:
     { from(X) -> cons(X, n__from(n__s(X)))
     , from(X) -> n__from(X)
     , activate(X) -> X
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
     , take(X1, X2) -> n__take(X1, X2)
     , take(0(), XS) -> nil()
     , s(X) -> n__s(X) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   No rule is usable, rules are removed from the input problem.
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Rules: Empty
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   Empty rules are trivially bounded

S) We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Strict DPs:
     { from^#(X) -> c_1()
     , take^#(X1, X2) -> c_9()
     , take^#(0(), XS) -> c_10() }
   Weak DPs:
     { from^#(X) -> c_2()
     , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
     , activate^#(n__take(X1, X2)) ->
       c_8(take^#(activate(X1), activate(X2))) }
   Weak Trs:
     { from(X) -> cons(X, n__from(n__s(X)))
     , from(X) -> n__from(X)
     , activate(X) -> X
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
     , take(X1, X2) -> n__take(X1, X2)
     , take(0(), XS) -> nil()
     , s(X) -> n__s(X) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   The following weak DPs constitute a sub-graph of the DG that is
   closed under successors. The DPs are removed.
   
   { from^#(X) -> c_2() }
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Strict DPs:
     { from^#(X) -> c_1()
     , take^#(X1, X2) -> c_9()
     , take^#(0(), XS) -> c_10() }
   Weak DPs:
     { activate^#(n__from(X)) -> c_6(from^#(activate(X)))
     , activate^#(n__take(X1, X2)) ->
       c_8(take^#(activate(X1), activate(X2))) }
   Weak Trs:
     { from(X) -> cons(X, n__from(n__s(X)))
     , from(X) -> n__from(X)
     , activate(X) -> X
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
     , take(X1, X2) -> n__take(X1, X2)
     , take(0(), XS) -> nil()
     , s(X) -> n__s(X) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   We analyse the complexity of following sub-problems (R) and (S).
   Problem (S) is obtained from the input problem by shifting strict
   rules from (R) into the weak component:
   
   Problem (R):
   ------------
     Strict DPs: { from^#(X) -> c_1() }
     Weak DPs:
       { activate^#(n__from(X)) -> c_6(from^#(activate(X)))
       , activate^#(n__take(X1, X2)) ->
         c_8(take^#(activate(X1), activate(X2)))
       , take^#(X1, X2) -> c_9()
       , take^#(0(), XS) -> c_10() }
     Weak Trs:
       { from(X) -> cons(X, n__from(n__s(X)))
       , from(X) -> n__from(X)
       , activate(X) -> X
       , activate(n__from(X)) -> from(activate(X))
       , activate(n__s(X)) -> s(activate(X))
       , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
       , take(X1, X2) -> n__take(X1, X2)
       , take(0(), XS) -> nil()
       , s(X) -> n__s(X) }
     StartTerms: basic terms
     Strategy: innermost
   
   Problem (S):
   ------------
     Strict DPs:
       { take^#(X1, X2) -> c_9()
       , take^#(0(), XS) -> c_10() }
     Weak DPs:
       { from^#(X) -> c_1()
       , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
       , activate^#(n__take(X1, X2)) ->
         c_8(take^#(activate(X1), activate(X2))) }
     Weak Trs:
       { from(X) -> cons(X, n__from(n__s(X)))
       , from(X) -> n__from(X)
       , activate(X) -> X
       , activate(n__from(X)) -> from(activate(X))
       , activate(n__s(X)) -> s(activate(X))
       , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
       , take(X1, X2) -> n__take(X1, X2)
       , take(0(), XS) -> nil()
       , s(X) -> n__s(X) }
     StartTerms: basic terms
     Strategy: innermost
   
   Overall, the transformation results in the following sub-problem(s):
   
   Generated new problems:
   -----------------------
   R) Strict DPs: { from^#(X) -> c_1() }
      Weak DPs:
        { activate^#(n__from(X)) -> c_6(from^#(activate(X)))
        , activate^#(n__take(X1, X2)) ->
          c_8(take^#(activate(X1), activate(X2)))
        , take^#(X1, X2) -> c_9()
        , take^#(0(), XS) -> c_10() }
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
        , take(X1, X2) -> n__take(X1, X2)
        , take(0(), XS) -> nil()
        , s(X) -> n__s(X) }
      StartTerms: basic terms
      Strategy: innermost
      
      This problem was proven YES(O(1),O(1)).
   
   S) Strict DPs:
        { take^#(X1, X2) -> c_9()
        , take^#(0(), XS) -> c_10() }
      Weak DPs:
        { from^#(X) -> c_1()
        , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
        , activate^#(n__take(X1, X2)) ->
          c_8(take^#(activate(X1), activate(X2))) }
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
        , take(X1, X2) -> n__take(X1, X2)
        , take(0(), XS) -> nil()
        , s(X) -> n__s(X) }
      StartTerms: basic terms
      Strategy: innermost
      
      This problem was proven YES(O(1),O(1)).
   
   
   Proofs for generated problems:
   ------------------------------
   R) We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Strict DPs: { from^#(X) -> c_1() }
      Weak DPs:
        { activate^#(n__from(X)) -> c_6(from^#(activate(X)))
        , activate^#(n__take(X1, X2)) ->
          c_8(take^#(activate(X1), activate(X2)))
        , take^#(X1, X2) -> c_9()
        , take^#(0(), XS) -> c_10() }
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
        , take(X1, X2) -> n__take(X1, X2)
        , take(0(), XS) -> nil()
        , s(X) -> n__s(X) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      The following weak DPs constitute a sub-graph of the DG that is
      closed under successors. The DPs are removed.
      
      { activate^#(n__take(X1, X2)) ->
        c_8(take^#(activate(X1), activate(X2)))
      , take^#(X1, X2) -> c_9()
      , take^#(0(), XS) -> c_10() }
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Strict DPs: { from^#(X) -> c_1() }
      Weak DPs: { activate^#(n__from(X)) -> c_6(from^#(activate(X))) }
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
        , take(X1, X2) -> n__take(X1, X2)
        , take(0(), XS) -> nil()
        , s(X) -> n__s(X) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      The dependency graph contains no loops, we remove all dependency
      pairs.
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
        , take(X1, X2) -> n__take(X1, X2)
        , take(0(), XS) -> nil()
        , s(X) -> n__s(X) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      No rule is usable, rules are removed from the input problem.
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Rules: Empty
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      Empty rules are trivially bounded
   
   S) We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Strict DPs:
        { take^#(X1, X2) -> c_9()
        , take^#(0(), XS) -> c_10() }
      Weak DPs:
        { from^#(X) -> c_1()
        , activate^#(n__from(X)) -> c_6(from^#(activate(X)))
        , activate^#(n__take(X1, X2)) ->
          c_8(take^#(activate(X1), activate(X2))) }
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
        , take(X1, X2) -> n__take(X1, X2)
        , take(0(), XS) -> nil()
        , s(X) -> n__s(X) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      The following weak DPs constitute a sub-graph of the DG that is
      closed under successors. The DPs are removed.
      
      { from^#(X) -> c_1()
      , activate^#(n__from(X)) -> c_6(from^#(activate(X))) }
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Strict DPs:
        { take^#(X1, X2) -> c_9()
        , take^#(0(), XS) -> c_10() }
      Weak DPs:
        { activate^#(n__take(X1, X2)) ->
          c_8(take^#(activate(X1), activate(X2))) }
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
        , take(X1, X2) -> n__take(X1, X2)
        , take(0(), XS) -> nil()
        , s(X) -> n__s(X) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict
      rules from (R) into the weak component:
      
      Problem (R):
      ------------
        Strict DPs: { take^#(0(), XS) -> c_10() }
        Weak DPs:
          { activate^#(n__take(X1, X2)) ->
            c_8(take^#(activate(X1), activate(X2)))
          , take^#(X1, X2) -> c_9() }
        Weak Trs:
          { from(X) -> cons(X, n__from(n__s(X)))
          , from(X) -> n__from(X)
          , activate(X) -> X
          , activate(n__from(X)) -> from(activate(X))
          , activate(n__s(X)) -> s(activate(X))
          , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
          , take(X1, X2) -> n__take(X1, X2)
          , take(0(), XS) -> nil()
          , s(X) -> n__s(X) }
        StartTerms: basic terms
        Strategy: innermost
      
      Problem (S):
      ------------
        Strict DPs: { take^#(X1, X2) -> c_9() }
        Weak DPs:
          { activate^#(n__take(X1, X2)) ->
            c_8(take^#(activate(X1), activate(X2)))
          , take^#(0(), XS) -> c_10() }
        Weak Trs:
          { from(X) -> cons(X, n__from(n__s(X)))
          , from(X) -> n__from(X)
          , activate(X) -> X
          , activate(n__from(X)) -> from(activate(X))
          , activate(n__s(X)) -> s(activate(X))
          , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
          , take(X1, X2) -> n__take(X1, X2)
          , take(0(), XS) -> nil()
          , s(X) -> n__s(X) }
        StartTerms: basic terms
        Strategy: innermost
      
      Overall, the transformation results in the following sub-problem(s):
      
      Generated new problems:
      -----------------------
      R) Strict DPs: { take^#(0(), XS) -> c_10() }
         Weak DPs:
           { activate^#(n__take(X1, X2)) ->
             c_8(take^#(activate(X1), activate(X2)))
           , take^#(X1, X2) -> c_9() }
         Weak Trs:
           { from(X) -> cons(X, n__from(n__s(X)))
           , from(X) -> n__from(X)
           , activate(X) -> X
           , activate(n__from(X)) -> from(activate(X))
           , activate(n__s(X)) -> s(activate(X))
           , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
           , take(X1, X2) -> n__take(X1, X2)
           , take(0(), XS) -> nil()
           , s(X) -> n__s(X) }
         StartTerms: basic terms
         Strategy: innermost
         
         This problem was proven YES(O(1),O(1)).
      
      S) Strict DPs: { take^#(X1, X2) -> c_9() }
         Weak DPs:
           { activate^#(n__take(X1, X2)) ->
             c_8(take^#(activate(X1), activate(X2)))
           , take^#(0(), XS) -> c_10() }
         Weak Trs:
           { from(X) -> cons(X, n__from(n__s(X)))
           , from(X) -> n__from(X)
           , activate(X) -> X
           , activate(n__from(X)) -> from(activate(X))
           , activate(n__s(X)) -> s(activate(X))
           , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
           , take(X1, X2) -> n__take(X1, X2)
           , take(0(), XS) -> nil()
           , s(X) -> n__s(X) }
         StartTerms: basic terms
         Strategy: innermost
         
         This problem was proven YES(O(1),O(1)).
      
      
      Proofs for generated problems:
      ------------------------------
      R) We are left with following problem, upon which TcT provides the
         certificate YES(O(1),O(1)).
         
         Strict DPs: { take^#(0(), XS) -> c_10() }
         Weak DPs:
           { activate^#(n__take(X1, X2)) ->
             c_8(take^#(activate(X1), activate(X2)))
           , take^#(X1, X2) -> c_9() }
         Weak Trs:
           { from(X) -> cons(X, n__from(n__s(X)))
           , from(X) -> n__from(X)
           , activate(X) -> X
           , activate(n__from(X)) -> from(activate(X))
           , activate(n__s(X)) -> s(activate(X))
           , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
           , take(X1, X2) -> n__take(X1, X2)
           , take(0(), XS) -> nil()
           , s(X) -> n__s(X) }
         Obligation:
           innermost runtime complexity
         Answer:
           YES(O(1),O(1))
         
         The following weak DPs constitute a sub-graph of the DG that is
         closed under successors. The DPs are removed.
         
         { take^#(X1, X2) -> c_9() }
         
         We are left with following problem, upon which TcT provides the
         certificate YES(O(1),O(1)).
         
         Strict DPs: { take^#(0(), XS) -> c_10() }
         Weak DPs:
           { activate^#(n__take(X1, X2)) ->
             c_8(take^#(activate(X1), activate(X2))) }
         Weak Trs:
           { from(X) -> cons(X, n__from(n__s(X)))
           , from(X) -> n__from(X)
           , activate(X) -> X
           , activate(n__from(X)) -> from(activate(X))
           , activate(n__s(X)) -> s(activate(X))
           , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
           , take(X1, X2) -> n__take(X1, X2)
           , take(0(), XS) -> nil()
           , s(X) -> n__s(X) }
         Obligation:
           innermost runtime complexity
         Answer:
           YES(O(1),O(1))
         
         The dependency graph contains no loops, we remove all dependency
         pairs.
         
         We are left with following problem, upon which TcT provides the
         certificate YES(O(1),O(1)).
         
         Weak Trs:
           { from(X) -> cons(X, n__from(n__s(X)))
           , from(X) -> n__from(X)
           , activate(X) -> X
           , activate(n__from(X)) -> from(activate(X))
           , activate(n__s(X)) -> s(activate(X))
           , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
           , take(X1, X2) -> n__take(X1, X2)
           , take(0(), XS) -> nil()
           , s(X) -> n__s(X) }
         Obligation:
           innermost runtime complexity
         Answer:
           YES(O(1),O(1))
         
         No rule is usable, rules are removed from the input problem.
         
         We are left with following problem, upon which TcT provides the
         certificate YES(O(1),O(1)).
         
         Rules: Empty
         Obligation:
           innermost runtime complexity
         Answer:
           YES(O(1),O(1))
         
         Empty rules are trivially bounded
      
      S) We are left with following problem, upon which TcT provides the
         certificate YES(O(1),O(1)).
         
         Strict DPs: { take^#(X1, X2) -> c_9() }
         Weak DPs:
           { activate^#(n__take(X1, X2)) ->
             c_8(take^#(activate(X1), activate(X2)))
           , take^#(0(), XS) -> c_10() }
         Weak Trs:
           { from(X) -> cons(X, n__from(n__s(X)))
           , from(X) -> n__from(X)
           , activate(X) -> X
           , activate(n__from(X)) -> from(activate(X))
           , activate(n__s(X)) -> s(activate(X))
           , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
           , take(X1, X2) -> n__take(X1, X2)
           , take(0(), XS) -> nil()
           , s(X) -> n__s(X) }
         Obligation:
           innermost runtime complexity
         Answer:
           YES(O(1),O(1))
         
         The following weak DPs constitute a sub-graph of the DG that is
         closed under successors. The DPs are removed.
         
         { take^#(0(), XS) -> c_10() }
         
         We are left with following problem, upon which TcT provides the
         certificate YES(O(1),O(1)).
         
         Strict DPs: { take^#(X1, X2) -> c_9() }
         Weak DPs:
           { activate^#(n__take(X1, X2)) ->
             c_8(take^#(activate(X1), activate(X2))) }
         Weak Trs:
           { from(X) -> cons(X, n__from(n__s(X)))
           , from(X) -> n__from(X)
           , activate(X) -> X
           , activate(n__from(X)) -> from(activate(X))
           , activate(n__s(X)) -> s(activate(X))
           , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
           , take(X1, X2) -> n__take(X1, X2)
           , take(0(), XS) -> nil()
           , s(X) -> n__s(X) }
         Obligation:
           innermost runtime complexity
         Answer:
           YES(O(1),O(1))
         
         The dependency graph contains no loops, we remove all dependency
         pairs.
         
         We are left with following problem, upon which TcT provides the
         certificate YES(O(1),O(1)).
         
         Weak Trs:
           { from(X) -> cons(X, n__from(n__s(X)))
           , from(X) -> n__from(X)
           , activate(X) -> X
           , activate(n__from(X)) -> from(activate(X))
           , activate(n__s(X)) -> s(activate(X))
           , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
           , take(X1, X2) -> n__take(X1, X2)
           , take(0(), XS) -> nil()
           , s(X) -> n__s(X) }
         Obligation:
           innermost runtime complexity
         Answer:
           YES(O(1),O(1))
         
         No rule is usable, rules are removed from the input problem.
         
         We are left with following problem, upon which TcT provides the
         certificate YES(O(1),O(1)).
         
         Rules: Empty
         Obligation:
           innermost runtime complexity
         Answer:
           YES(O(1),O(1))
         
         Empty rules are trivially bounded
      
   


Hurray, we answered YES(O(1),O(n^1))