*** 1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: a__first(X1,X2) -> first(X1,X2) a__first(0(),X) -> nil() a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) a__from(X) -> cons(mark(X),from(s(X))) a__from(X) -> from(X) mark(0()) -> 0() mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(nil()) -> nil() mark(s(X)) -> s(mark(X)) Weak DP Rules: Weak TRS Rules: Signature: {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1} Obligation: Innermost basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(a__first) = {1,2}, uargs(a__from) = {1}, uargs(cons) = {1}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [1] p(a__first) = [1] x1 + [1] x2 + [0] p(a__from) = [1] x1 + [0] p(cons) = [1] x1 + [0] p(first) = [1] x1 + [0] p(from) = [0] p(mark) = [0] p(nil) = [0] p(s) = [1] x1 + [0] Following rules are strictly oriented: a__first(0(),X) = [1] X + [1] > [0] = nil() Following rules are (at-least) weakly oriented: a__first(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [0] = first(X1,X2) a__first(s(X),cons(Y,Z)) = [1] X + [1] Y + [0] >= [0] = cons(mark(Y),first(X,Z)) a__from(X) = [1] X + [0] >= [0] = cons(mark(X),from(s(X))) a__from(X) = [1] X + [0] >= [0] = from(X) mark(0()) = [0] >= [1] = 0() mark(cons(X1,X2)) = [0] >= [0] = cons(mark(X1),X2) mark(first(X1,X2)) = [0] >= [0] = a__first(mark(X1),mark(X2)) mark(from(X)) = [0] >= [0] = a__from(mark(X)) mark(nil()) = [0] >= [0] = nil() mark(s(X)) = [0] >= [0] = s(mark(X)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: a__first(X1,X2) -> first(X1,X2) a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) a__from(X) -> cons(mark(X),from(s(X))) a__from(X) -> from(X) mark(0()) -> 0() mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(nil()) -> nil() mark(s(X)) -> s(mark(X)) Weak DP Rules: Weak TRS Rules: a__first(0(),X) -> nil() Signature: {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1} Obligation: Innermost basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(a__first) = {1,2}, uargs(a__from) = {1}, uargs(cons) = {1}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [11] p(a__first) = [1] x1 + [1] x2 + [5] p(a__from) = [1] x1 + [0] p(cons) = [1] x1 + [0] p(first) = [1] x1 + [0] p(from) = [0] p(mark) = [0] p(nil) = [0] p(s) = [1] x1 + [0] Following rules are strictly oriented: a__first(X1,X2) = [1] X1 + [1] X2 + [5] > [1] X1 + [0] = first(X1,X2) a__first(s(X),cons(Y,Z)) = [1] X + [1] Y + [5] > [0] = cons(mark(Y),first(X,Z)) Following rules are (at-least) weakly oriented: a__first(0(),X) = [1] X + [16] >= [0] = nil() a__from(X) = [1] X + [0] >= [0] = cons(mark(X),from(s(X))) a__from(X) = [1] X + [0] >= [0] = from(X) mark(0()) = [0] >= [11] = 0() mark(cons(X1,X2)) = [0] >= [0] = cons(mark(X1),X2) mark(first(X1,X2)) = [0] >= [5] = a__first(mark(X1),mark(X2)) mark(from(X)) = [0] >= [0] = a__from(mark(X)) mark(nil()) = [0] >= [0] = nil() mark(s(X)) = [0] >= [0] = s(mark(X)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: a__from(X) -> cons(mark(X),from(s(X))) a__from(X) -> from(X) mark(0()) -> 0() mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(nil()) -> nil() mark(s(X)) -> s(mark(X)) Weak DP Rules: Weak TRS Rules: a__first(X1,X2) -> first(X1,X2) a__first(0(),X) -> nil() a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) Signature: {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1} Obligation: Innermost basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(a__first) = {1,2}, uargs(a__from) = {1}, uargs(cons) = {1}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(a__first) = [1] x1 + [1] x2 + [0] p(a__from) = [1] x1 + [1] p(cons) = [1] x1 + [6] p(first) = [1] x1 + [0] p(from) = [0] p(mark) = [0] p(nil) = [0] p(s) = [1] x1 + [0] Following rules are strictly oriented: a__from(X) = [1] X + [1] > [0] = from(X) Following rules are (at-least) weakly oriented: a__first(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [0] = first(X1,X2) a__first(0(),X) = [1] X + [0] >= [0] = nil() a__first(s(X),cons(Y,Z)) = [1] X + [1] Y + [6] >= [6] = cons(mark(Y),first(X,Z)) a__from(X) = [1] X + [1] >= [6] = cons(mark(X),from(s(X))) mark(0()) = [0] >= [0] = 0() mark(cons(X1,X2)) = [0] >= [6] = cons(mark(X1),X2) mark(first(X1,X2)) = [0] >= [0] = a__first(mark(X1),mark(X2)) mark(from(X)) = [0] >= [1] = a__from(mark(X)) mark(nil()) = [0] >= [0] = nil() mark(s(X)) = [0] >= [0] = s(mark(X)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: a__from(X) -> cons(mark(X),from(s(X))) mark(0()) -> 0() mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(nil()) -> nil() mark(s(X)) -> s(mark(X)) Weak DP Rules: Weak TRS Rules: a__first(X1,X2) -> first(X1,X2) a__first(0(),X) -> nil() a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) a__from(X) -> from(X) Signature: {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1} Obligation: Innermost basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(a__first) = {1,2}, uargs(a__from) = {1}, uargs(cons) = {1}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(a__first) = [1] x1 + [1] x2 + [0] p(a__from) = [1] x1 + [1] p(cons) = [1] x1 + [0] p(first) = [1] x1 + [0] p(from) = [1] p(mark) = [0] p(nil) = [0] p(s) = [1] x1 + [0] Following rules are strictly oriented: a__from(X) = [1] X + [1] > [0] = cons(mark(X),from(s(X))) Following rules are (at-least) weakly oriented: a__first(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [0] = first(X1,X2) a__first(0(),X) = [1] X + [0] >= [0] = nil() a__first(s(X),cons(Y,Z)) = [1] X + [1] Y + [0] >= [0] = cons(mark(Y),first(X,Z)) a__from(X) = [1] X + [1] >= [1] = from(X) mark(0()) = [0] >= [0] = 0() mark(cons(X1,X2)) = [0] >= [0] = cons(mark(X1),X2) mark(first(X1,X2)) = [0] >= [0] = a__first(mark(X1),mark(X2)) mark(from(X)) = [0] >= [1] = a__from(mark(X)) mark(nil()) = [0] >= [0] = nil() mark(s(X)) = [0] >= [0] = s(mark(X)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: mark(0()) -> 0() mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(nil()) -> nil() mark(s(X)) -> s(mark(X)) Weak DP Rules: Weak TRS Rules: a__first(X1,X2) -> first(X1,X2) a__first(0(),X) -> nil() a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) a__from(X) -> cons(mark(X),from(s(X))) a__from(X) -> from(X) Signature: {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1} Obligation: Innermost basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(a__first) = {1,2}, uargs(a__from) = {1}, uargs(cons) = {1}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [14] p(a__first) = [1] x1 + [1] x2 + [3] p(a__from) = [1] x1 + [6] p(cons) = [1] x1 + [5] p(first) = [1] x1 + [0] p(from) = [6] p(mark) = [1] p(nil) = [0] p(s) = [1] x1 + [15] Following rules are strictly oriented: mark(nil()) = [1] > [0] = nil() Following rules are (at-least) weakly oriented: a__first(X1,X2) = [1] X1 + [1] X2 + [3] >= [1] X1 + [0] = first(X1,X2) a__first(0(),X) = [1] X + [17] >= [0] = nil() a__first(s(X),cons(Y,Z)) = [1] X + [1] Y + [23] >= [6] = cons(mark(Y),first(X,Z)) a__from(X) = [1] X + [6] >= [6] = cons(mark(X),from(s(X))) a__from(X) = [1] X + [6] >= [6] = from(X) mark(0()) = [1] >= [14] = 0() mark(cons(X1,X2)) = [1] >= [6] = cons(mark(X1),X2) mark(first(X1,X2)) = [1] >= [5] = a__first(mark(X1),mark(X2)) mark(from(X)) = [1] >= [7] = a__from(mark(X)) mark(s(X)) = [1] >= [16] = s(mark(X)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: mark(0()) -> 0() mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(s(X)) -> s(mark(X)) Weak DP Rules: Weak TRS Rules: a__first(X1,X2) -> first(X1,X2) a__first(0(),X) -> nil() a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) a__from(X) -> cons(mark(X),from(s(X))) a__from(X) -> from(X) mark(nil()) -> nil() Signature: {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1} Obligation: Innermost basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(a__first) = {1,2}, uargs(a__from) = {1}, uargs(cons) = {1}, uargs(s) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(a__first) = [1] x1 + [1] x2 + [14] p(a__from) = [1] x1 + [6] p(cons) = [1] x1 + [5] p(first) = [1] x1 + [1] p(from) = [6] p(mark) = [1] p(nil) = [1] p(s) = [1] x1 + [0] Following rules are strictly oriented: mark(0()) = [1] > [0] = 0() Following rules are (at-least) weakly oriented: a__first(X1,X2) = [1] X1 + [1] X2 + [14] >= [1] X1 + [1] = first(X1,X2) a__first(0(),X) = [1] X + [14] >= [1] = nil() a__first(s(X),cons(Y,Z)) = [1] X + [1] Y + [19] >= [6] = cons(mark(Y),first(X,Z)) a__from(X) = [1] X + [6] >= [6] = cons(mark(X),from(s(X))) a__from(X) = [1] X + [6] >= [6] = from(X) mark(cons(X1,X2)) = [1] >= [6] = cons(mark(X1),X2) mark(first(X1,X2)) = [1] >= [16] = a__first(mark(X1),mark(X2)) mark(from(X)) = [1] >= [7] = a__from(mark(X)) mark(nil()) = [1] >= [1] = nil() mark(s(X)) = [1] >= [1] = s(mark(X)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(s(X)) -> s(mark(X)) Weak DP Rules: Weak TRS Rules: a__first(X1,X2) -> first(X1,X2) a__first(0(),X) -> nil() a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) a__from(X) -> cons(mark(X),from(s(X))) a__from(X) -> from(X) mark(0()) -> 0() mark(nil()) -> nil() Signature: {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1} Obligation: Innermost basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s} Applied Processor: NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(a__first) = {1,2}, uargs(a__from) = {1}, uargs(cons) = {1}, uargs(s) = {1} Following symbols are considered usable: {a__first,a__from,mark} TcT has computed the following interpretation: p(0) = [0] [0] p(a__first) = [1 0] x1 + [1 2] x2 + [1] [0 1] [0 1] [4] p(a__from) = [1 2] x1 + [4] [0 1] [4] p(cons) = [1 1] x1 + [0] [0 1] [0] p(first) = [1 0] x1 + [1 2] x2 + [0] [0 1] [0 1] [4] p(from) = [1 2] x1 + [0] [0 1] [4] p(mark) = [1 1] x1 + [0] [0 1] [0] p(nil) = [0] [0] p(s) = [1 0] x1 + [0] [0 1] [0] Following rules are strictly oriented: mark(first(X1,X2)) = [1 1] X1 + [1 3] X2 + [4] [0 1] [0 1] [4] > [1 1] X1 + [1 3] X2 + [1] [0 1] [0 1] [4] = a__first(mark(X1),mark(X2)) Following rules are (at-least) weakly oriented: a__first(X1,X2) = [1 0] X1 + [1 2] X2 + [1] [0 1] [0 1] [4] >= [1 0] X1 + [1 2] X2 + [0] [0 1] [0 1] [4] = first(X1,X2) a__first(0(),X) = [1 2] X + [1] [0 1] [4] >= [0] [0] = nil() a__first(s(X),cons(Y,Z)) = [1 0] X + [1 3] Y + [1] [0 1] [0 1] [4] >= [1 2] Y + [0] [0 1] [0] = cons(mark(Y),first(X,Z)) a__from(X) = [1 2] X + [4] [0 1] [4] >= [1 2] X + [0] [0 1] [0] = cons(mark(X),from(s(X))) a__from(X) = [1 2] X + [4] [0 1] [4] >= [1 2] X + [0] [0 1] [4] = from(X) mark(0()) = [0] [0] >= [0] [0] = 0() mark(cons(X1,X2)) = [1 2] X1 + [0] [0 1] [0] >= [1 2] X1 + [0] [0 1] [0] = cons(mark(X1),X2) mark(from(X)) = [1 3] X + [4] [0 1] [4] >= [1 3] X + [4] [0 1] [4] = a__from(mark(X)) mark(nil()) = [0] [0] >= [0] [0] = nil() mark(s(X)) = [1 1] X + [0] [0 1] [0] >= [1 1] X + [0] [0 1] [0] = s(mark(X)) *** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(from(X)) -> a__from(mark(X)) mark(s(X)) -> s(mark(X)) Weak DP Rules: Weak TRS Rules: a__first(X1,X2) -> first(X1,X2) a__first(0(),X) -> nil() a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) a__from(X) -> cons(mark(X),from(s(X))) a__from(X) -> from(X) mark(0()) -> 0() mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) mark(nil()) -> nil() Signature: {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1} Obligation: Innermost basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s} Applied Processor: NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(a__first) = {1,2}, uargs(a__from) = {1}, uargs(cons) = {1}, uargs(s) = {1} Following symbols are considered usable: {a__first,a__from,mark} TcT has computed the following interpretation: p(0) = [1] [1] p(a__first) = [1 0] x1 + [1 1] x2 + [0] [0 1] [0 1] [0] p(a__from) = [1 1] x1 + [0] [0 1] [0] p(cons) = [1 0] x1 + [0] [0 1] [0] p(first) = [1 0] x1 + [1 1] x2 + [0] [0 1] [0 1] [0] p(from) = [1 1] x1 + [0] [0 1] [0] p(mark) = [1 1] x1 + [0] [0 1] [0] p(nil) = [0] [1] p(s) = [1 0] x1 + [0] [0 1] [2] Following rules are strictly oriented: mark(s(X)) = [1 1] X + [2] [0 1] [2] > [1 1] X + [0] [0 1] [2] = s(mark(X)) Following rules are (at-least) weakly oriented: a__first(X1,X2) = [1 0] X1 + [1 1] X2 + [0] [0 1] [0 1] [0] >= [1 0] X1 + [1 1] X2 + [0] [0 1] [0 1] [0] = first(X1,X2) a__first(0(),X) = [1 1] X + [1] [0 1] [1] >= [0] [1] = nil() a__first(s(X),cons(Y,Z)) = [1 0] X + [1 1] Y + [0] [0 1] [0 1] [2] >= [1 1] Y + [0] [0 1] [0] = cons(mark(Y),first(X,Z)) a__from(X) = [1 1] X + [0] [0 1] [0] >= [1 1] X + [0] [0 1] [0] = cons(mark(X),from(s(X))) a__from(X) = [1 1] X + [0] [0 1] [0] >= [1 1] X + [0] [0 1] [0] = from(X) mark(0()) = [2] [1] >= [1] [1] = 0() mark(cons(X1,X2)) = [1 1] X1 + [0] [0 1] [0] >= [1 1] X1 + [0] [0 1] [0] = cons(mark(X1),X2) mark(first(X1,X2)) = [1 1] X1 + [1 2] X2 + [0] [0 1] [0 1] [0] >= [1 1] X1 + [1 2] X2 + [0] [0 1] [0 1] [0] = a__first(mark(X1),mark(X2)) mark(from(X)) = [1 2] X + [0] [0 1] [0] >= [1 2] X + [0] [0 1] [0] = a__from(mark(X)) mark(nil()) = [1] [1] >= [0] [1] = nil() *** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(from(X)) -> a__from(mark(X)) Weak DP Rules: Weak TRS Rules: a__first(X1,X2) -> first(X1,X2) a__first(0(),X) -> nil() a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) a__from(X) -> cons(mark(X),from(s(X))) a__from(X) -> from(X) mark(0()) -> 0() mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) mark(nil()) -> nil() mark(s(X)) -> s(mark(X)) Signature: {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1} Obligation: Innermost basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s} Applied Processor: NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(a__first) = {1,2}, uargs(a__from) = {1}, uargs(cons) = {1}, uargs(s) = {1} Following symbols are considered usable: {a__first,a__from,mark} TcT has computed the following interpretation: p(0) = [0] [0] p(a__first) = [1 5] x1 + [1 1] x2 + [3] [0 1] [0 1] [5] p(a__from) = [1 1] x1 + [0] [0 1] [4] p(cons) = [1 0] x1 + [0] [0 1] [0] p(first) = [1 5] x1 + [1 1] x2 + [3] [0 1] [0 1] [5] p(from) = [1 1] x1 + [0] [0 1] [4] p(mark) = [1 1] x1 + [0] [0 1] [0] p(nil) = [0] [0] p(s) = [1 0] x1 + [1] [0 1] [0] Following rules are strictly oriented: mark(from(X)) = [1 2] X + [4] [0 1] [4] > [1 2] X + [0] [0 1] [4] = a__from(mark(X)) Following rules are (at-least) weakly oriented: a__first(X1,X2) = [1 5] X1 + [1 1] X2 + [3] [0 1] [0 1] [5] >= [1 5] X1 + [1 1] X2 + [3] [0 1] [0 1] [5] = first(X1,X2) a__first(0(),X) = [1 1] X + [3] [0 1] [5] >= [0] [0] = nil() a__first(s(X),cons(Y,Z)) = [1 5] X + [1 1] Y + [4] [0 1] [0 1] [5] >= [1 1] Y + [0] [0 1] [0] = cons(mark(Y),first(X,Z)) a__from(X) = [1 1] X + [0] [0 1] [4] >= [1 1] X + [0] [0 1] [0] = cons(mark(X),from(s(X))) a__from(X) = [1 1] X + [0] [0 1] [4] >= [1 1] X + [0] [0 1] [4] = from(X) mark(0()) = [0] [0] >= [0] [0] = 0() mark(cons(X1,X2)) = [1 1] X1 + [0] [0 1] [0] >= [1 1] X1 + [0] [0 1] [0] = cons(mark(X1),X2) mark(first(X1,X2)) = [1 6] X1 + [1 2] X2 + [8] [0 1] [0 1] [5] >= [1 6] X1 + [1 2] X2 + [3] [0 1] [0 1] [5] = a__first(mark(X1),mark(X2)) mark(nil()) = [0] [0] >= [0] [0] = nil() mark(s(X)) = [1 1] X + [1] [0 1] [0] >= [1 1] X + [1] [0 1] [0] = s(mark(X)) *** 1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: mark(cons(X1,X2)) -> cons(mark(X1),X2) Weak DP Rules: Weak TRS Rules: a__first(X1,X2) -> first(X1,X2) a__first(0(),X) -> nil() a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) a__from(X) -> cons(mark(X),from(s(X))) a__from(X) -> from(X) mark(0()) -> 0() mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(nil()) -> nil() mark(s(X)) -> s(mark(X)) Signature: {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1} Obligation: Innermost basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s} Applied Processor: NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(a__first) = {1,2}, uargs(a__from) = {1}, uargs(cons) = {1}, uargs(s) = {1} Following symbols are considered usable: {a__first,a__from,mark} TcT has computed the following interpretation: p(0) = [4] [0] p(a__first) = [1 5] x1 + [1 2] x2 + [1] [0 1] [0 1] [0] p(a__from) = [1 1] x1 + [4] [0 1] [4] p(cons) = [1 0] x1 + [4] [0 1] [4] p(first) = [1 5] x1 + [1 2] x2 + [1] [0 1] [0 1] [0] p(from) = [1 1] x1 + [4] [0 1] [4] p(mark) = [1 1] x1 + [0] [0 1] [0] p(nil) = [5] [0] p(s) = [1 0] x1 + [0] [0 1] [0] Following rules are strictly oriented: mark(cons(X1,X2)) = [1 1] X1 + [8] [0 1] [4] > [1 1] X1 + [4] [0 1] [4] = cons(mark(X1),X2) Following rules are (at-least) weakly oriented: a__first(X1,X2) = [1 5] X1 + [1 2] X2 + [1] [0 1] [0 1] [0] >= [1 5] X1 + [1 2] X2 + [1] [0 1] [0 1] [0] = first(X1,X2) a__first(0(),X) = [1 2] X + [5] [0 1] [0] >= [5] [0] = nil() a__first(s(X),cons(Y,Z)) = [1 5] X + [1 2] Y + [13] [0 1] [0 1] [4] >= [1 1] Y + [4] [0 1] [4] = cons(mark(Y),first(X,Z)) a__from(X) = [1 1] X + [4] [0 1] [4] >= [1 1] X + [4] [0 1] [4] = cons(mark(X),from(s(X))) a__from(X) = [1 1] X + [4] [0 1] [4] >= [1 1] X + [4] [0 1] [4] = from(X) mark(0()) = [4] [0] >= [4] [0] = 0() mark(first(X1,X2)) = [1 6] X1 + [1 3] X2 + [1] [0 1] [0 1] [0] >= [1 6] X1 + [1 3] X2 + [1] [0 1] [0 1] [0] = a__first(mark(X1),mark(X2)) mark(from(X)) = [1 2] X + [8] [0 1] [4] >= [1 2] X + [4] [0 1] [4] = a__from(mark(X)) mark(nil()) = [5] [0] >= [5] [0] = nil() mark(s(X)) = [1 1] X + [0] [0 1] [0] >= [1 1] X + [0] [0 1] [0] = s(mark(X)) *** 1.1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: a__first(X1,X2) -> first(X1,X2) a__first(0(),X) -> nil() a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) a__from(X) -> cons(mark(X),from(s(X))) a__from(X) -> from(X) mark(0()) -> 0() mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(nil()) -> nil() mark(s(X)) -> s(mark(X)) Signature: {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1} Obligation: Innermost basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).