*** 1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__from(X) -> cons(mark(X),from(s(X)))
        a__from(X) -> from(X)
        mark(0()) -> 0()
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(from(X)) -> a__from(mark(X))
        mark(nil()) -> nil()
        mark(s(X)) -> s(mark(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__first) = {1,2},
          uargs(a__from) = {1},
          uargs(cons) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [1]                  
          p(a__first) = [1] x1 + [1] x2 + [0]
           p(a__from) = [1] x1 + [0]         
              p(cons) = [1] x1 + [0]         
             p(first) = [1] x1 + [0]         
              p(from) = [0]                  
              p(mark) = [0]                  
               p(nil) = [0]                  
                 p(s) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
        a__first(0(),X) = [1] X + [1]
                        > [0]        
                        = nil()      
        
        
        Following rules are (at-least) weakly oriented:
                 a__first(X1,X2) =  [1] X1 + [1] X2 + [0]      
                                 >= [1] X1 + [0]               
                                 =  first(X1,X2)               
        
        a__first(s(X),cons(Y,Z)) =  [1] X + [1] Y + [0]        
                                 >= [0]                        
                                 =  cons(mark(Y),first(X,Z))   
        
                      a__from(X) =  [1] X + [0]                
                                 >= [0]                        
                                 =  cons(mark(X),from(s(X)))   
        
                      a__from(X) =  [1] X + [0]                
                                 >= [0]                        
                                 =  from(X)                    
        
                       mark(0()) =  [0]                        
                                 >= [1]                        
                                 =  0()                        
        
               mark(cons(X1,X2)) =  [0]                        
                                 >= [0]                        
                                 =  cons(mark(X1),X2)          
        
              mark(first(X1,X2)) =  [0]                        
                                 >= [0]                        
                                 =  a__first(mark(X1),mark(X2))
        
                   mark(from(X)) =  [0]                        
                                 >= [0]                        
                                 =  a__from(mark(X))           
        
                     mark(nil()) =  [0]                        
                                 >= [0]                        
                                 =  nil()                      
        
                      mark(s(X)) =  [0]                        
                                 >= [0]                        
                                 =  s(mark(X))                 
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        a__first(X1,X2) -> first(X1,X2)
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__from(X) -> cons(mark(X),from(s(X)))
        a__from(X) -> from(X)
        mark(0()) -> 0()
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(from(X)) -> a__from(mark(X))
        mark(nil()) -> nil()
        mark(s(X)) -> s(mark(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        a__first(0(),X) -> nil()
      Signature:
        {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__first) = {1,2},
          uargs(a__from) = {1},
          uargs(cons) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [11]                 
          p(a__first) = [1] x1 + [1] x2 + [5]
           p(a__from) = [1] x1 + [0]         
              p(cons) = [1] x1 + [0]         
             p(first) = [1] x1 + [0]         
              p(from) = [0]                  
              p(mark) = [0]                  
               p(nil) = [0]                  
                 p(s) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
                 a__first(X1,X2) = [1] X1 + [1] X2 + [5]   
                                 > [1] X1 + [0]            
                                 = first(X1,X2)            
        
        a__first(s(X),cons(Y,Z)) = [1] X + [1] Y + [5]     
                                 > [0]                     
                                 = cons(mark(Y),first(X,Z))
        
        
        Following rules are (at-least) weakly oriented:
           a__first(0(),X) =  [1] X + [16]               
                           >= [0]                        
                           =  nil()                      
        
                a__from(X) =  [1] X + [0]                
                           >= [0]                        
                           =  cons(mark(X),from(s(X)))   
        
                a__from(X) =  [1] X + [0]                
                           >= [0]                        
                           =  from(X)                    
        
                 mark(0()) =  [0]                        
                           >= [11]                       
                           =  0()                        
        
         mark(cons(X1,X2)) =  [0]                        
                           >= [0]                        
                           =  cons(mark(X1),X2)          
        
        mark(first(X1,X2)) =  [0]                        
                           >= [5]                        
                           =  a__first(mark(X1),mark(X2))
        
             mark(from(X)) =  [0]                        
                           >= [0]                        
                           =  a__from(mark(X))           
        
               mark(nil()) =  [0]                        
                           >= [0]                        
                           =  nil()                      
        
                mark(s(X)) =  [0]                        
                           >= [0]                        
                           =  s(mark(X))                 
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        a__from(X) -> cons(mark(X),from(s(X)))
        a__from(X) -> from(X)
        mark(0()) -> 0()
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(from(X)) -> a__from(mark(X))
        mark(nil()) -> nil()
        mark(s(X)) -> s(mark(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
      Signature:
        {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__first) = {1,2},
          uargs(a__from) = {1},
          uargs(cons) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
          p(a__first) = [1] x1 + [1] x2 + [0]
           p(a__from) = [1] x1 + [1]         
              p(cons) = [1] x1 + [6]         
             p(first) = [1] x1 + [0]         
              p(from) = [0]                  
              p(mark) = [0]                  
               p(nil) = [0]                  
                 p(s) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
        a__from(X) = [1] X + [1]
                   > [0]        
                   = from(X)    
        
        
        Following rules are (at-least) weakly oriented:
                 a__first(X1,X2) =  [1] X1 + [1] X2 + [0]      
                                 >= [1] X1 + [0]               
                                 =  first(X1,X2)               
        
                 a__first(0(),X) =  [1] X + [0]                
                                 >= [0]                        
                                 =  nil()                      
        
        a__first(s(X),cons(Y,Z)) =  [1] X + [1] Y + [6]        
                                 >= [6]                        
                                 =  cons(mark(Y),first(X,Z))   
        
                      a__from(X) =  [1] X + [1]                
                                 >= [6]                        
                                 =  cons(mark(X),from(s(X)))   
        
                       mark(0()) =  [0]                        
                                 >= [0]                        
                                 =  0()                        
        
               mark(cons(X1,X2)) =  [0]                        
                                 >= [6]                        
                                 =  cons(mark(X1),X2)          
        
              mark(first(X1,X2)) =  [0]                        
                                 >= [0]                        
                                 =  a__first(mark(X1),mark(X2))
        
                   mark(from(X)) =  [0]                        
                                 >= [1]                        
                                 =  a__from(mark(X))           
        
                     mark(nil()) =  [0]                        
                                 >= [0]                        
                                 =  nil()                      
        
                      mark(s(X)) =  [0]                        
                                 >= [0]                        
                                 =  s(mark(X))                 
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        a__from(X) -> cons(mark(X),from(s(X)))
        mark(0()) -> 0()
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(from(X)) -> a__from(mark(X))
        mark(nil()) -> nil()
        mark(s(X)) -> s(mark(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__from(X) -> from(X)
      Signature:
        {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__first) = {1,2},
          uargs(a__from) = {1},
          uargs(cons) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
          p(a__first) = [1] x1 + [1] x2 + [0]
           p(a__from) = [1] x1 + [1]         
              p(cons) = [1] x1 + [0]         
             p(first) = [1] x1 + [0]         
              p(from) = [1]                  
              p(mark) = [0]                  
               p(nil) = [0]                  
                 p(s) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
        a__from(X) = [1] X + [1]             
                   > [0]                     
                   = cons(mark(X),from(s(X)))
        
        
        Following rules are (at-least) weakly oriented:
                 a__first(X1,X2) =  [1] X1 + [1] X2 + [0]      
                                 >= [1] X1 + [0]               
                                 =  first(X1,X2)               
        
                 a__first(0(),X) =  [1] X + [0]                
                                 >= [0]                        
                                 =  nil()                      
        
        a__first(s(X),cons(Y,Z)) =  [1] X + [1] Y + [0]        
                                 >= [0]                        
                                 =  cons(mark(Y),first(X,Z))   
        
                      a__from(X) =  [1] X + [1]                
                                 >= [1]                        
                                 =  from(X)                    
        
                       mark(0()) =  [0]                        
                                 >= [0]                        
                                 =  0()                        
        
               mark(cons(X1,X2)) =  [0]                        
                                 >= [0]                        
                                 =  cons(mark(X1),X2)          
        
              mark(first(X1,X2)) =  [0]                        
                                 >= [0]                        
                                 =  a__first(mark(X1),mark(X2))
        
                   mark(from(X)) =  [0]                        
                                 >= [1]                        
                                 =  a__from(mark(X))           
        
                     mark(nil()) =  [0]                        
                                 >= [0]                        
                                 =  nil()                      
        
                      mark(s(X)) =  [0]                        
                                 >= [0]                        
                                 =  s(mark(X))                 
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        mark(0()) -> 0()
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(from(X)) -> a__from(mark(X))
        mark(nil()) -> nil()
        mark(s(X)) -> s(mark(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__from(X) -> cons(mark(X),from(s(X)))
        a__from(X) -> from(X)
      Signature:
        {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__first) = {1,2},
          uargs(a__from) = {1},
          uargs(cons) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [14]                 
          p(a__first) = [1] x1 + [1] x2 + [3]
           p(a__from) = [1] x1 + [6]         
              p(cons) = [1] x1 + [5]         
             p(first) = [1] x1 + [0]         
              p(from) = [6]                  
              p(mark) = [1]                  
               p(nil) = [0]                  
                 p(s) = [1] x1 + [15]        
        
        Following rules are strictly oriented:
        mark(nil()) = [1]  
                    > [0]  
                    = nil()
        
        
        Following rules are (at-least) weakly oriented:
                 a__first(X1,X2) =  [1] X1 + [1] X2 + [3]      
                                 >= [1] X1 + [0]               
                                 =  first(X1,X2)               
        
                 a__first(0(),X) =  [1] X + [17]               
                                 >= [0]                        
                                 =  nil()                      
        
        a__first(s(X),cons(Y,Z)) =  [1] X + [1] Y + [23]       
                                 >= [6]                        
                                 =  cons(mark(Y),first(X,Z))   
        
                      a__from(X) =  [1] X + [6]                
                                 >= [6]                        
                                 =  cons(mark(X),from(s(X)))   
        
                      a__from(X) =  [1] X + [6]                
                                 >= [6]                        
                                 =  from(X)                    
        
                       mark(0()) =  [1]                        
                                 >= [14]                       
                                 =  0()                        
        
               mark(cons(X1,X2)) =  [1]                        
                                 >= [6]                        
                                 =  cons(mark(X1),X2)          
        
              mark(first(X1,X2)) =  [1]                        
                                 >= [5]                        
                                 =  a__first(mark(X1),mark(X2))
        
                   mark(from(X)) =  [1]                        
                                 >= [7]                        
                                 =  a__from(mark(X))           
        
                      mark(s(X)) =  [1]                        
                                 >= [16]                       
                                 =  s(mark(X))                 
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        mark(0()) -> 0()
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(from(X)) -> a__from(mark(X))
        mark(s(X)) -> s(mark(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__from(X) -> cons(mark(X),from(s(X)))
        a__from(X) -> from(X)
        mark(nil()) -> nil()
      Signature:
        {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__first) = {1,2},
          uargs(a__from) = {1},
          uargs(cons) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                   
          p(a__first) = [1] x1 + [1] x2 + [14]
           p(a__from) = [1] x1 + [6]          
              p(cons) = [1] x1 + [5]          
             p(first) = [1] x1 + [1]          
              p(from) = [6]                   
              p(mark) = [1]                   
               p(nil) = [1]                   
                 p(s) = [1] x1 + [0]          
        
        Following rules are strictly oriented:
        mark(0()) = [1]
                  > [0]
                  = 0()
        
        
        Following rules are (at-least) weakly oriented:
                 a__first(X1,X2) =  [1] X1 + [1] X2 + [14]     
                                 >= [1] X1 + [1]               
                                 =  first(X1,X2)               
        
                 a__first(0(),X) =  [1] X + [14]               
                                 >= [1]                        
                                 =  nil()                      
        
        a__first(s(X),cons(Y,Z)) =  [1] X + [1] Y + [19]       
                                 >= [6]                        
                                 =  cons(mark(Y),first(X,Z))   
        
                      a__from(X) =  [1] X + [6]                
                                 >= [6]                        
                                 =  cons(mark(X),from(s(X)))   
        
                      a__from(X) =  [1] X + [6]                
                                 >= [6]                        
                                 =  from(X)                    
        
               mark(cons(X1,X2)) =  [1]                        
                                 >= [6]                        
                                 =  cons(mark(X1),X2)          
        
              mark(first(X1,X2)) =  [1]                        
                                 >= [16]                       
                                 =  a__first(mark(X1),mark(X2))
        
                   mark(from(X)) =  [1]                        
                                 >= [7]                        
                                 =  a__from(mark(X))           
        
                     mark(nil()) =  [1]                        
                                 >= [1]                        
                                 =  nil()                      
        
                      mark(s(X)) =  [1]                        
                                 >= [1]                        
                                 =  s(mark(X))                 
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(from(X)) -> a__from(mark(X))
        mark(s(X)) -> s(mark(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__from(X) -> cons(mark(X),from(s(X)))
        a__from(X) -> from(X)
        mark(0()) -> 0()
        mark(nil()) -> nil()
      Signature:
        {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(a__first) = {1,2},
        uargs(a__from) = {1},
        uargs(cons) = {1},
        uargs(s) = {1}
      
      Following symbols are considered usable:
        {a__first,a__from,mark}
      TcT has computed the following interpretation:
               p(0) = [0]                      
                      [0]                      
        p(a__first) = [1 0] x1 + [1 2] x2 + [1]
                      [0 1]      [0 1]      [4]
         p(a__from) = [1 2] x1 + [4]           
                      [0 1]      [4]           
            p(cons) = [1 1] x1 + [0]           
                      [0 1]      [0]           
           p(first) = [1 0] x1 + [1 2] x2 + [0]
                      [0 1]      [0 1]      [4]
            p(from) = [1 2] x1 + [0]           
                      [0 1]      [4]           
            p(mark) = [1 1] x1 + [0]           
                      [0 1]      [0]           
             p(nil) = [0]                      
                      [0]                      
               p(s) = [1 0] x1 + [0]           
                      [0 1]      [0]           
      
      Following rules are strictly oriented:
      mark(first(X1,X2)) = [1 1] X1 + [1 3] X2 + [4]  
                           [0 1]      [0 1]      [4]  
                         > [1 1] X1 + [1 3] X2 + [1]  
                           [0 1]      [0 1]      [4]  
                         = a__first(mark(X1),mark(X2))
      
      
      Following rules are (at-least) weakly oriented:
               a__first(X1,X2) =  [1 0] X1 + [1 2] X2 + [1]
                                  [0 1]      [0 1]      [4]
                               >= [1 0] X1 + [1 2] X2 + [0]
                                  [0 1]      [0 1]      [4]
                               =  first(X1,X2)             
      
               a__first(0(),X) =  [1 2] X + [1]            
                                  [0 1]     [4]            
                               >= [0]                      
                                  [0]                      
                               =  nil()                    
      
      a__first(s(X),cons(Y,Z)) =  [1 0] X + [1 3] Y + [1]  
                                  [0 1]     [0 1]     [4]  
                               >= [1 2] Y + [0]            
                                  [0 1]     [0]            
                               =  cons(mark(Y),first(X,Z)) 
      
                    a__from(X) =  [1 2] X + [4]            
                                  [0 1]     [4]            
                               >= [1 2] X + [0]            
                                  [0 1]     [0]            
                               =  cons(mark(X),from(s(X))) 
      
                    a__from(X) =  [1 2] X + [4]            
                                  [0 1]     [4]            
                               >= [1 2] X + [0]            
                                  [0 1]     [4]            
                               =  from(X)                  
      
                     mark(0()) =  [0]                      
                                  [0]                      
                               >= [0]                      
                                  [0]                      
                               =  0()                      
      
             mark(cons(X1,X2)) =  [1 2] X1 + [0]           
                                  [0 1]      [0]           
                               >= [1 2] X1 + [0]           
                                  [0 1]      [0]           
                               =  cons(mark(X1),X2)        
      
                 mark(from(X)) =  [1 3] X + [4]            
                                  [0 1]     [4]            
                               >= [1 3] X + [4]            
                                  [0 1]     [4]            
                               =  a__from(mark(X))         
      
                   mark(nil()) =  [0]                      
                                  [0]                      
                               >= [0]                      
                                  [0]                      
                               =  nil()                    
      
                    mark(s(X)) =  [1 1] X + [0]            
                                  [0 1]     [0]            
                               >= [1 1] X + [0]            
                                  [0 1]     [0]            
                               =  s(mark(X))               
      
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(from(X)) -> a__from(mark(X))
        mark(s(X)) -> s(mark(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__from(X) -> cons(mark(X),from(s(X)))
        a__from(X) -> from(X)
        mark(0()) -> 0()
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(nil()) -> nil()
      Signature:
        {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(a__first) = {1,2},
        uargs(a__from) = {1},
        uargs(cons) = {1},
        uargs(s) = {1}
      
      Following symbols are considered usable:
        {a__first,a__from,mark}
      TcT has computed the following interpretation:
               p(0) = [1]                      
                      [1]                      
        p(a__first) = [1 0] x1 + [1 1] x2 + [0]
                      [0 1]      [0 1]      [0]
         p(a__from) = [1 1] x1 + [0]           
                      [0 1]      [0]           
            p(cons) = [1 0] x1 + [0]           
                      [0 1]      [0]           
           p(first) = [1 0] x1 + [1 1] x2 + [0]
                      [0 1]      [0 1]      [0]
            p(from) = [1 1] x1 + [0]           
                      [0 1]      [0]           
            p(mark) = [1 1] x1 + [0]           
                      [0 1]      [0]           
             p(nil) = [0]                      
                      [1]                      
               p(s) = [1 0] x1 + [0]           
                      [0 1]      [2]           
      
      Following rules are strictly oriented:
      mark(s(X)) = [1 1] X + [2]
                   [0 1]     [2]
                 > [1 1] X + [0]
                   [0 1]     [2]
                 = s(mark(X))   
      
      
      Following rules are (at-least) weakly oriented:
               a__first(X1,X2) =  [1 0] X1 + [1 1] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               >= [1 0] X1 + [1 1] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               =  first(X1,X2)               
      
               a__first(0(),X) =  [1 1] X + [1]              
                                  [0 1]     [1]              
                               >= [0]                        
                                  [1]                        
                               =  nil()                      
      
      a__first(s(X),cons(Y,Z)) =  [1 0] X + [1 1] Y + [0]    
                                  [0 1]     [0 1]     [2]    
                               >= [1 1] Y + [0]              
                                  [0 1]     [0]              
                               =  cons(mark(Y),first(X,Z))   
      
                    a__from(X) =  [1 1] X + [0]              
                                  [0 1]     [0]              
                               >= [1 1] X + [0]              
                                  [0 1]     [0]              
                               =  cons(mark(X),from(s(X)))   
      
                    a__from(X) =  [1 1] X + [0]              
                                  [0 1]     [0]              
                               >= [1 1] X + [0]              
                                  [0 1]     [0]              
                               =  from(X)                    
      
                     mark(0()) =  [2]                        
                                  [1]                        
                               >= [1]                        
                                  [1]                        
                               =  0()                        
      
             mark(cons(X1,X2)) =  [1 1] X1 + [0]             
                                  [0 1]      [0]             
                               >= [1 1] X1 + [0]             
                                  [0 1]      [0]             
                               =  cons(mark(X1),X2)          
      
            mark(first(X1,X2)) =  [1 1] X1 + [1 2] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               >= [1 1] X1 + [1 2] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               =  a__first(mark(X1),mark(X2))
      
                 mark(from(X)) =  [1 2] X + [0]              
                                  [0 1]     [0]              
                               >= [1 2] X + [0]              
                                  [0 1]     [0]              
                               =  a__from(mark(X))           
      
                   mark(nil()) =  [1]                        
                                  [1]                        
                               >= [0]                        
                                  [1]                        
                               =  nil()                      
      
*** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(from(X)) -> a__from(mark(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__from(X) -> cons(mark(X),from(s(X)))
        a__from(X) -> from(X)
        mark(0()) -> 0()
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(nil()) -> nil()
        mark(s(X)) -> s(mark(X))
      Signature:
        {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(a__first) = {1,2},
        uargs(a__from) = {1},
        uargs(cons) = {1},
        uargs(s) = {1}
      
      Following symbols are considered usable:
        {a__first,a__from,mark}
      TcT has computed the following interpretation:
               p(0) = [0]                      
                      [0]                      
        p(a__first) = [1 5] x1 + [1 1] x2 + [3]
                      [0 1]      [0 1]      [5]
         p(a__from) = [1 1] x1 + [0]           
                      [0 1]      [4]           
            p(cons) = [1 0] x1 + [0]           
                      [0 1]      [0]           
           p(first) = [1 5] x1 + [1 1] x2 + [3]
                      [0 1]      [0 1]      [5]
            p(from) = [1 1] x1 + [0]           
                      [0 1]      [4]           
            p(mark) = [1 1] x1 + [0]           
                      [0 1]      [0]           
             p(nil) = [0]                      
                      [0]                      
               p(s) = [1 0] x1 + [1]           
                      [0 1]      [0]           
      
      Following rules are strictly oriented:
      mark(from(X)) = [1 2] X + [4]   
                      [0 1]     [4]   
                    > [1 2] X + [0]   
                      [0 1]     [4]   
                    = a__from(mark(X))
      
      
      Following rules are (at-least) weakly oriented:
               a__first(X1,X2) =  [1 5] X1 + [1 1] X2 + [3]  
                                  [0 1]      [0 1]      [5]  
                               >= [1 5] X1 + [1 1] X2 + [3]  
                                  [0 1]      [0 1]      [5]  
                               =  first(X1,X2)               
      
               a__first(0(),X) =  [1 1] X + [3]              
                                  [0 1]     [5]              
                               >= [0]                        
                                  [0]                        
                               =  nil()                      
      
      a__first(s(X),cons(Y,Z)) =  [1 5] X + [1 1] Y + [4]    
                                  [0 1]     [0 1]     [5]    
                               >= [1 1] Y + [0]              
                                  [0 1]     [0]              
                               =  cons(mark(Y),first(X,Z))   
      
                    a__from(X) =  [1 1] X + [0]              
                                  [0 1]     [4]              
                               >= [1 1] X + [0]              
                                  [0 1]     [0]              
                               =  cons(mark(X),from(s(X)))   
      
                    a__from(X) =  [1 1] X + [0]              
                                  [0 1]     [4]              
                               >= [1 1] X + [0]              
                                  [0 1]     [4]              
                               =  from(X)                    
      
                     mark(0()) =  [0]                        
                                  [0]                        
                               >= [0]                        
                                  [0]                        
                               =  0()                        
      
             mark(cons(X1,X2)) =  [1 1] X1 + [0]             
                                  [0 1]      [0]             
                               >= [1 1] X1 + [0]             
                                  [0 1]      [0]             
                               =  cons(mark(X1),X2)          
      
            mark(first(X1,X2)) =  [1 6] X1 + [1 2] X2 + [8]  
                                  [0 1]      [0 1]      [5]  
                               >= [1 6] X1 + [1 2] X2 + [3]  
                                  [0 1]      [0 1]      [5]  
                               =  a__first(mark(X1),mark(X2))
      
                   mark(nil()) =  [0]                        
                                  [0]                        
                               >= [0]                        
                                  [0]                        
                               =  nil()                      
      
                    mark(s(X)) =  [1 1] X + [1]              
                                  [0 1]     [0]              
                               >= [1 1] X + [1]              
                                  [0 1]     [0]              
                               =  s(mark(X))                 
      
*** 1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
      Weak DP Rules:
        
      Weak TRS Rules:
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__from(X) -> cons(mark(X),from(s(X)))
        a__from(X) -> from(X)
        mark(0()) -> 0()
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(from(X)) -> a__from(mark(X))
        mark(nil()) -> nil()
        mark(s(X)) -> s(mark(X))
      Signature:
        {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(a__first) = {1,2},
        uargs(a__from) = {1},
        uargs(cons) = {1},
        uargs(s) = {1}
      
      Following symbols are considered usable:
        {a__first,a__from,mark}
      TcT has computed the following interpretation:
               p(0) = [4]                      
                      [0]                      
        p(a__first) = [1 5] x1 + [1 2] x2 + [1]
                      [0 1]      [0 1]      [0]
         p(a__from) = [1 1] x1 + [4]           
                      [0 1]      [4]           
            p(cons) = [1 0] x1 + [4]           
                      [0 1]      [4]           
           p(first) = [1 5] x1 + [1 2] x2 + [1]
                      [0 1]      [0 1]      [0]
            p(from) = [1 1] x1 + [4]           
                      [0 1]      [4]           
            p(mark) = [1 1] x1 + [0]           
                      [0 1]      [0]           
             p(nil) = [5]                      
                      [0]                      
               p(s) = [1 0] x1 + [0]           
                      [0 1]      [0]           
      
      Following rules are strictly oriented:
      mark(cons(X1,X2)) = [1 1] X1 + [8]   
                          [0 1]      [4]   
                        > [1 1] X1 + [4]   
                          [0 1]      [4]   
                        = cons(mark(X1),X2)
      
      
      Following rules are (at-least) weakly oriented:
               a__first(X1,X2) =  [1 5] X1 + [1 2] X2 + [1]  
                                  [0 1]      [0 1]      [0]  
                               >= [1 5] X1 + [1 2] X2 + [1]  
                                  [0 1]      [0 1]      [0]  
                               =  first(X1,X2)               
      
               a__first(0(),X) =  [1 2] X + [5]              
                                  [0 1]     [0]              
                               >= [5]                        
                                  [0]                        
                               =  nil()                      
      
      a__first(s(X),cons(Y,Z)) =  [1 5] X + [1 2] Y + [13]   
                                  [0 1]     [0 1]     [4]    
                               >= [1 1] Y + [4]              
                                  [0 1]     [4]              
                               =  cons(mark(Y),first(X,Z))   
      
                    a__from(X) =  [1 1] X + [4]              
                                  [0 1]     [4]              
                               >= [1 1] X + [4]              
                                  [0 1]     [4]              
                               =  cons(mark(X),from(s(X)))   
      
                    a__from(X) =  [1 1] X + [4]              
                                  [0 1]     [4]              
                               >= [1 1] X + [4]              
                                  [0 1]     [4]              
                               =  from(X)                    
      
                     mark(0()) =  [4]                        
                                  [0]                        
                               >= [4]                        
                                  [0]                        
                               =  0()                        
      
            mark(first(X1,X2)) =  [1 6] X1 + [1 3] X2 + [1]  
                                  [0 1]      [0 1]      [0]  
                               >= [1 6] X1 + [1 3] X2 + [1]  
                                  [0 1]      [0 1]      [0]  
                               =  a__first(mark(X1),mark(X2))
      
                 mark(from(X)) =  [1 2] X + [8]              
                                  [0 1]     [4]              
                               >= [1 2] X + [4]              
                                  [0 1]     [4]              
                               =  a__from(mark(X))           
      
                   mark(nil()) =  [5]                        
                                  [0]                        
                               >= [5]                        
                                  [0]                        
                               =  nil()                      
      
                    mark(s(X)) =  [1 1] X + [0]              
                                  [0 1]     [0]              
                               >= [1 1] X + [0]              
                                  [0 1]     [0]              
                               =  s(mark(X))                 
      
*** 1.1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__from(X) -> cons(mark(X),from(s(X)))
        a__from(X) -> from(X)
        mark(0()) -> 0()
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(from(X)) -> a__from(mark(X))
        mark(nil()) -> nil()
        mark(s(X)) -> s(mark(X))
      Signature:
        {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {a__first,a__from,mark}/{0,cons,first,from,nil,s}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).