(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__from(X) → cons(mark(X), from(s(X)))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(0) → 0
mark(nil) → nil
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__first(X1, X2) → first(X1, X2)
a__from(X) → from(X)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
a__first(0', X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__from(X) → cons(mark(X), from(s(X)))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(0') → 0'
mark(nil) → nil
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__first(X1, X2) → first(X1, X2)
a__from(X) → from(X)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
a__first(0', X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__from(X) → cons(mark(X), from(s(X)))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(from(X)) → a__from(mark(X))
mark(0') → 0'
mark(nil) → nil
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__first(X1, X2) → first(X1, X2)
a__from(X) → from(X)
Types:
a__first :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
0' :: 0':nil:s:cons:first:from
nil :: 0':nil:s:cons:first:from
s :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
cons :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
mark :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
first :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
a__from :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
from :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
hole_0':nil:s:cons:first:from1_0 :: 0':nil:s:cons:first:from
gen_0':nil:s:cons:first:from2_0 :: Nat → 0':nil:s:cons:first:from
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
mark,
a__fromThey will be analysed ascendingly in the following order:
mark = a__from
(6) Obligation:
Innermost TRS:
Rules:
a__first(
0',
X) →
nila__first(
s(
X),
cons(
Y,
Z)) →
cons(
mark(
Y),
first(
X,
Z))
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
mark(
first(
X1,
X2)) →
a__first(
mark(
X1),
mark(
X2))
mark(
from(
X)) →
a__from(
mark(
X))
mark(
0') →
0'mark(
nil) →
nilmark(
s(
X)) →
s(
mark(
X))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
a__first(
X1,
X2) →
first(
X1,
X2)
a__from(
X) →
from(
X)
Types:
a__first :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
0' :: 0':nil:s:cons:first:from
nil :: 0':nil:s:cons:first:from
s :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
cons :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
mark :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
first :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
a__from :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
from :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
hole_0':nil:s:cons:first:from1_0 :: 0':nil:s:cons:first:from
gen_0':nil:s:cons:first:from2_0 :: Nat → 0':nil:s:cons:first:from
Generator Equations:
gen_0':nil:s:cons:first:from2_0(0) ⇔ 0'
gen_0':nil:s:cons:first:from2_0(+(x, 1)) ⇔ s(gen_0':nil:s:cons:first:from2_0(x))
The following defined symbols remain to be analysed:
a__from, mark
They will be analysed ascendingly in the following order:
mark = a__from
(7) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__from.
(8) Obligation:
Innermost TRS:
Rules:
a__first(
0',
X) →
nila__first(
s(
X),
cons(
Y,
Z)) →
cons(
mark(
Y),
first(
X,
Z))
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
mark(
first(
X1,
X2)) →
a__first(
mark(
X1),
mark(
X2))
mark(
from(
X)) →
a__from(
mark(
X))
mark(
0') →
0'mark(
nil) →
nilmark(
s(
X)) →
s(
mark(
X))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
a__first(
X1,
X2) →
first(
X1,
X2)
a__from(
X) →
from(
X)
Types:
a__first :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
0' :: 0':nil:s:cons:first:from
nil :: 0':nil:s:cons:first:from
s :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
cons :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
mark :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
first :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
a__from :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
from :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
hole_0':nil:s:cons:first:from1_0 :: 0':nil:s:cons:first:from
gen_0':nil:s:cons:first:from2_0 :: Nat → 0':nil:s:cons:first:from
Generator Equations:
gen_0':nil:s:cons:first:from2_0(0) ⇔ 0'
gen_0':nil:s:cons:first:from2_0(+(x, 1)) ⇔ s(gen_0':nil:s:cons:first:from2_0(x))
The following defined symbols remain to be analysed:
mark
They will be analysed ascendingly in the following order:
mark = a__from
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
mark(
gen_0':nil:s:cons:first:from2_0(
n12691_0)) →
gen_0':nil:s:cons:first:from2_0(
n12691_0), rt ∈ Ω(1 + n12691
0)
Induction Base:
mark(gen_0':nil:s:cons:first:from2_0(0)) →RΩ(1)
0'
Induction Step:
mark(gen_0':nil:s:cons:first:from2_0(+(n12691_0, 1))) →RΩ(1)
s(mark(gen_0':nil:s:cons:first:from2_0(n12691_0))) →IH
s(gen_0':nil:s:cons:first:from2_0(c12692_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
a__first(
0',
X) →
nila__first(
s(
X),
cons(
Y,
Z)) →
cons(
mark(
Y),
first(
X,
Z))
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
mark(
first(
X1,
X2)) →
a__first(
mark(
X1),
mark(
X2))
mark(
from(
X)) →
a__from(
mark(
X))
mark(
0') →
0'mark(
nil) →
nilmark(
s(
X)) →
s(
mark(
X))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
a__first(
X1,
X2) →
first(
X1,
X2)
a__from(
X) →
from(
X)
Types:
a__first :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
0' :: 0':nil:s:cons:first:from
nil :: 0':nil:s:cons:first:from
s :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
cons :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
mark :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
first :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
a__from :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
from :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
hole_0':nil:s:cons:first:from1_0 :: 0':nil:s:cons:first:from
gen_0':nil:s:cons:first:from2_0 :: Nat → 0':nil:s:cons:first:from
Lemmas:
mark(gen_0':nil:s:cons:first:from2_0(n12691_0)) → gen_0':nil:s:cons:first:from2_0(n12691_0), rt ∈ Ω(1 + n126910)
Generator Equations:
gen_0':nil:s:cons:first:from2_0(0) ⇔ 0'
gen_0':nil:s:cons:first:from2_0(+(x, 1)) ⇔ s(gen_0':nil:s:cons:first:from2_0(x))
The following defined symbols remain to be analysed:
a__from
They will be analysed ascendingly in the following order:
mark = a__from
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__from.
(13) Obligation:
Innermost TRS:
Rules:
a__first(
0',
X) →
nila__first(
s(
X),
cons(
Y,
Z)) →
cons(
mark(
Y),
first(
X,
Z))
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
mark(
first(
X1,
X2)) →
a__first(
mark(
X1),
mark(
X2))
mark(
from(
X)) →
a__from(
mark(
X))
mark(
0') →
0'mark(
nil) →
nilmark(
s(
X)) →
s(
mark(
X))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
a__first(
X1,
X2) →
first(
X1,
X2)
a__from(
X) →
from(
X)
Types:
a__first :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
0' :: 0':nil:s:cons:first:from
nil :: 0':nil:s:cons:first:from
s :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
cons :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
mark :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
first :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
a__from :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
from :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
hole_0':nil:s:cons:first:from1_0 :: 0':nil:s:cons:first:from
gen_0':nil:s:cons:first:from2_0 :: Nat → 0':nil:s:cons:first:from
Lemmas:
mark(gen_0':nil:s:cons:first:from2_0(n12691_0)) → gen_0':nil:s:cons:first:from2_0(n12691_0), rt ∈ Ω(1 + n126910)
Generator Equations:
gen_0':nil:s:cons:first:from2_0(0) ⇔ 0'
gen_0':nil:s:cons:first:from2_0(+(x, 1)) ⇔ s(gen_0':nil:s:cons:first:from2_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_0':nil:s:cons:first:from2_0(n12691_0)) → gen_0':nil:s:cons:first:from2_0(n12691_0), rt ∈ Ω(1 + n126910)
(15) BOUNDS(n^1, INF)
(16) Obligation:
Innermost TRS:
Rules:
a__first(
0',
X) →
nila__first(
s(
X),
cons(
Y,
Z)) →
cons(
mark(
Y),
first(
X,
Z))
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
mark(
first(
X1,
X2)) →
a__first(
mark(
X1),
mark(
X2))
mark(
from(
X)) →
a__from(
mark(
X))
mark(
0') →
0'mark(
nil) →
nilmark(
s(
X)) →
s(
mark(
X))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
a__first(
X1,
X2) →
first(
X1,
X2)
a__from(
X) →
from(
X)
Types:
a__first :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
0' :: 0':nil:s:cons:first:from
nil :: 0':nil:s:cons:first:from
s :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
cons :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
mark :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
first :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
a__from :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
from :: 0':nil:s:cons:first:from → 0':nil:s:cons:first:from
hole_0':nil:s:cons:first:from1_0 :: 0':nil:s:cons:first:from
gen_0':nil:s:cons:first:from2_0 :: Nat → 0':nil:s:cons:first:from
Lemmas:
mark(gen_0':nil:s:cons:first:from2_0(n12691_0)) → gen_0':nil:s:cons:first:from2_0(n12691_0), rt ∈ Ω(1 + n126910)
Generator Equations:
gen_0':nil:s:cons:first:from2_0(0) ⇔ 0'
gen_0':nil:s:cons:first:from2_0(+(x, 1)) ⇔ s(gen_0':nil:s:cons:first:from2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_0':nil:s:cons:first:from2_0(n12691_0)) → gen_0':nil:s:cons:first:from2_0(n12691_0), rt ∈ Ω(1 + n126910)
(18) BOUNDS(n^1, INF)