We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { first(X1, X2) -> n__first(X1, X2)
  , first(0(), X) -> nil()
  , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

Arguments of following rules are not normal-forms:

{ first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) }

All above mentioned rules can be savely removed.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { first(X1, X2) -> n__first(X1, X2)
  , first(0(), X) -> nil()
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

Trs: { first(0(), X) -> nil() }

The induced complexity on above rules (modulo remaining rules) is
YES(?,O(n^1)) . These rules are moved into the corresponding weak
component(s).

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(first) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
       [first](x1, x2) = [1] x1 + [1] x2 + [0]
                                              
                   [0] = [1]                  
                                              
                 [nil] = [0]                  
                                              
               [s](x1) = [1] x1 + [0]         
                                              
        [cons](x1, x2) = [0]                  
                                              
    [n__first](x1, x2) = [1] x1 + [1] x2 + [0]
                                              
        [activate](x1) = [1] x1 + [0]         
                                              
            [from](x1) = [1] x1 + [0]         
                                              
         [n__from](x1) = [1] x1 + [0]         
                                              
            [n__s](x1) = [1] x1 + [0]         
  
  The order satisfies the following ordering constraints:
  
                 [first(X1, X2)] =  [1] X1 + [1] X2 + [0]              
                                 >= [1] X1 + [1] X2 + [0]              
                                 =  [n__first(X1, X2)]                 
                                                                       
                 [first(0(), X)] =  [1] X + [1]                        
                                 >  [0]                                
                                 =  [nil()]                            
                                                                       
                          [s(X)] =  [1] X + [0]                        
                                 >= [1] X + [0]                        
                                 =  [n__s(X)]                          
                                                                       
                   [activate(X)] =  [1] X + [0]                        
                                 >= [1] X + [0]                        
                                 =  [X]                                
                                                                       
    [activate(n__first(X1, X2))] =  [1] X1 + [1] X2 + [0]              
                                 >= [1] X1 + [1] X2 + [0]              
                                 =  [first(activate(X1), activate(X2))]
                                                                       
          [activate(n__from(X))] =  [1] X + [0]                        
                                 >= [1] X + [0]                        
                                 =  [from(activate(X))]                
                                                                       
             [activate(n__s(X))] =  [1] X + [0]                        
                                 >= [1] X + [0]                        
                                 =  [s(activate(X))]                   
                                                                       
                       [from(X)] =  [1] X + [0]                        
                                 >= [0]                                
                                 =  [cons(X, n__from(n__s(X)))]        
                                                                       
                       [from(X)] =  [1] X + [0]                        
                                 >= [1] X + [0]                        
                                 =  [n__from(X)]                       
                                                                       

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { first(X1, X2) -> n__first(X1, X2)
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X) }
Weak Trs: { first(0(), X) -> nil() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(first) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

     [first](x1, x2) = [1] x1 + [1] x2 + [1]
                                            
                 [0] = [0]                  
                                            
               [nil] = [0]                  
                                            
             [s](x1) = [1] x1 + [0]         
                                            
      [cons](x1, x2) = [0]                  
                                            
  [n__first](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
      [activate](x1) = [1] x1 + [0]         
                                            
          [from](x1) = [1] x1 + [0]         
                                            
       [n__from](x1) = [1] x1 + [0]         
                                            
          [n__s](x1) = [1] x1 + [0]         

The order satisfies the following ordering constraints:

               [first(X1, X2)] =  [1] X1 + [1] X2 + [1]              
                               >  [1] X1 + [1] X2 + [0]              
                               =  [n__first(X1, X2)]                 
                                                                     
               [first(0(), X)] =  [1] X + [1]                        
                               >  [0]                                
                               =  [nil()]                            
                                                                     
                        [s(X)] =  [1] X + [0]                        
                               >= [1] X + [0]                        
                               =  [n__s(X)]                          
                                                                     
                 [activate(X)] =  [1] X + [0]                        
                               >= [1] X + [0]                        
                               =  [X]                                
                                                                     
  [activate(n__first(X1, X2))] =  [1] X1 + [1] X2 + [0]              
                               ?  [1] X1 + [1] X2 + [1]              
                               =  [first(activate(X1), activate(X2))]
                                                                     
        [activate(n__from(X))] =  [1] X + [0]                        
                               >= [1] X + [0]                        
                               =  [from(activate(X))]                
                                                                     
           [activate(n__s(X))] =  [1] X + [0]                        
                               >= [1] X + [0]                        
                               =  [s(activate(X))]                   
                                                                     
                     [from(X)] =  [1] X + [0]                        
                               >= [0]                                
                               =  [cons(X, n__from(n__s(X)))]        
                                                                     
                     [from(X)] =  [1] X + [0]                        
                               >= [1] X + [0]                        
                               =  [n__from(X)]                       
                                                                     

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X) }
Weak Trs:
  { first(X1, X2) -> n__first(X1, X2)
  , first(0(), X) -> nil() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(first) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

     [first](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
                 [0] = [0]                  
                                            
               [nil] = [0]                  
                                            
             [s](x1) = [1] x1 + [0]         
                                            
      [cons](x1, x2) = [0]                  
                                            
  [n__first](x1, x2) = [1] x1 + [1] x2 + [0]
                                            
      [activate](x1) = [1] x1 + [0]         
                                            
          [from](x1) = [1] x1 + [1]         
                                            
       [n__from](x1) = [1] x1 + [0]         
                                            
          [n__s](x1) = [1] x1 + [0]         

The order satisfies the following ordering constraints:

               [first(X1, X2)] =  [1] X1 + [1] X2 + [0]              
                               >= [1] X1 + [1] X2 + [0]              
                               =  [n__first(X1, X2)]                 
                                                                     
               [first(0(), X)] =  [1] X + [0]                        
                               >= [0]                                
                               =  [nil()]                            
                                                                     
                        [s(X)] =  [1] X + [0]                        
                               >= [1] X + [0]                        
                               =  [n__s(X)]                          
                                                                     
                 [activate(X)] =  [1] X + [0]                        
                               >= [1] X + [0]                        
                               =  [X]                                
                                                                     
  [activate(n__first(X1, X2))] =  [1] X1 + [1] X2 + [0]              
                               >= [1] X1 + [1] X2 + [0]              
                               =  [first(activate(X1), activate(X2))]
                                                                     
        [activate(n__from(X))] =  [1] X + [0]                        
                               ?  [1] X + [1]                        
                               =  [from(activate(X))]                
                                                                     
           [activate(n__s(X))] =  [1] X + [0]                        
                               >= [1] X + [0]                        
                               =  [s(activate(X))]                   
                                                                     
                     [from(X)] =  [1] X + [1]                        
                               >  [0]                                
                               =  [cons(X, n__from(n__s(X)))]        
                                                                     
                     [from(X)] =  [1] X + [1]                        
                               >  [1] X + [0]                        
                               =  [n__from(X)]                       
                                                                     

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X)) }
Weak Trs:
  { first(X1, X2) -> n__first(X1, X2)
  , first(0(), X) -> nil()
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(first) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

     [first](x1, x2) = [1] x1 + [1] x2 + [4]
                                            
                 [0] = [0]                  
                                            
               [nil] = [0]                  
                                            
             [s](x1) = [1] x1 + [4]         
                                            
      [cons](x1, x2) = [0]                  
                                            
  [n__first](x1, x2) = [1] x1 + [1] x2 + [4]
                                            
      [activate](x1) = [1] x1 + [4]         
                                            
          [from](x1) = [1] x1 + [4]         
                                            
       [n__from](x1) = [1] x1 + [0]         
                                            
          [n__s](x1) = [1] x1 + [0]         

The order satisfies the following ordering constraints:

               [first(X1, X2)] =  [1] X1 + [1] X2 + [4]              
                               >= [1] X1 + [1] X2 + [4]              
                               =  [n__first(X1, X2)]                 
                                                                     
               [first(0(), X)] =  [1] X + [4]                        
                               >  [0]                                
                               =  [nil()]                            
                                                                     
                        [s(X)] =  [1] X + [4]                        
                               >  [1] X + [0]                        
                               =  [n__s(X)]                          
                                                                     
                 [activate(X)] =  [1] X + [4]                        
                               >  [1] X + [0]                        
                               =  [X]                                
                                                                     
  [activate(n__first(X1, X2))] =  [1] X1 + [1] X2 + [8]              
                               ?  [1] X1 + [1] X2 + [12]             
                               =  [first(activate(X1), activate(X2))]
                                                                     
        [activate(n__from(X))] =  [1] X + [4]                        
                               ?  [1] X + [8]                        
                               =  [from(activate(X))]                
                                                                     
           [activate(n__s(X))] =  [1] X + [4]                        
                               ?  [1] X + [8]                        
                               =  [s(activate(X))]                   
                                                                     
                     [from(X)] =  [1] X + [4]                        
                               >  [0]                                
                               =  [cons(X, n__from(n__s(X)))]        
                                                                     
                     [from(X)] =  [1] X + [4]                        
                               >  [1] X + [0]                        
                               =  [n__from(X)]                       
                                                                     

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X)) }
Weak Trs:
  { first(X1, X2) -> n__first(X1, X2)
  , first(0(), X) -> nil()
  , s(X) -> n__s(X)
  , activate(X) -> X
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

Trs:
  { activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
  , activate(n__from(X)) -> from(activate(X)) }

The induced complexity on above rules (modulo remaining rules) is
YES(?,O(n^1)) . These rules are moved into the corresponding weak
component(s).

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(first) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
       [first](x1, x2) = [1] x1 + [1] x2 + [1]
                                              
                   [0] = [0]                  
                                              
                 [nil] = [0]                  
                                              
               [s](x1) = [1] x1 + [0]         
                                              
        [cons](x1, x2) = [0]                  
                                              
    [n__first](x1, x2) = [1] x1 + [1] x2 + [1]
                                              
        [activate](x1) = [4] x1 + [1]         
                                              
            [from](x1) = [1] x1 + [7]         
                                              
         [n__from](x1) = [1] x1 + [2]         
                                              
            [n__s](x1) = [1] x1 + [0]         
  
  The order satisfies the following ordering constraints:
  
                 [first(X1, X2)] =  [1] X1 + [1] X2 + [1]              
                                 >= [1] X1 + [1] X2 + [1]              
                                 =  [n__first(X1, X2)]                 
                                                                       
                 [first(0(), X)] =  [1] X + [1]                        
                                 >  [0]                                
                                 =  [nil()]                            
                                                                       
                          [s(X)] =  [1] X + [0]                        
                                 >= [1] X + [0]                        
                                 =  [n__s(X)]                          
                                                                       
                   [activate(X)] =  [4] X + [1]                        
                                 >  [1] X + [0]                        
                                 =  [X]                                
                                                                       
    [activate(n__first(X1, X2))] =  [4] X1 + [4] X2 + [5]              
                                 >  [4] X1 + [4] X2 + [3]              
                                 =  [first(activate(X1), activate(X2))]
                                                                       
          [activate(n__from(X))] =  [4] X + [9]                        
                                 >  [4] X + [8]                        
                                 =  [from(activate(X))]                
                                                                       
             [activate(n__s(X))] =  [4] X + [1]                        
                                 >= [4] X + [1]                        
                                 =  [s(activate(X))]                   
                                                                       
                       [from(X)] =  [1] X + [7]                        
                                 >  [0]                                
                                 =  [cons(X, n__from(n__s(X)))]        
                                                                       
                       [from(X)] =  [1] X + [7]                        
                                 >  [1] X + [2]                        
                                 =  [n__from(X)]                       
                                                                       

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs: { activate(n__s(X)) -> s(activate(X)) }
Weak Trs:
  { first(X1, X2) -> n__first(X1, X2)
  , first(0(), X) -> nil()
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
  , activate(n__from(X)) -> from(activate(X))
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

Trs: { activate(n__s(X)) -> s(activate(X)) }

The induced complexity on above rules (modulo remaining rules) is
YES(?,O(n^1)) . These rules are moved into the corresponding weak
component(s).

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(first) = {1, 2}, Uargs(s) = {1}, Uargs(from) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
       [first](x1, x2) = [1] x1 + [1] x2 + [0]
                                              
                   [0] = [0]                  
                                              
                 [nil] = [0]                  
                                              
               [s](x1) = [1] x1 + [3]         
                                              
        [cons](x1, x2) = [0]                  
                                              
    [n__first](x1, x2) = [1] x1 + [1] x2 + [0]
                                              
        [activate](x1) = [2] x1 + [0]         
                                              
            [from](x1) = [1] x1 + [0]         
                                              
         [n__from](x1) = [1] x1 + [0]         
                                              
            [n__s](x1) = [1] x1 + [2]         
  
  The order satisfies the following ordering constraints:
  
                 [first(X1, X2)] =  [1] X1 + [1] X2 + [0]              
                                 >= [1] X1 + [1] X2 + [0]              
                                 =  [n__first(X1, X2)]                 
                                                                       
                 [first(0(), X)] =  [1] X + [0]                        
                                 >= [0]                                
                                 =  [nil()]                            
                                                                       
                          [s(X)] =  [1] X + [3]                        
                                 >  [1] X + [2]                        
                                 =  [n__s(X)]                          
                                                                       
                   [activate(X)] =  [2] X + [0]                        
                                 >= [1] X + [0]                        
                                 =  [X]                                
                                                                       
    [activate(n__first(X1, X2))] =  [2] X1 + [2] X2 + [0]              
                                 >= [2] X1 + [2] X2 + [0]              
                                 =  [first(activate(X1), activate(X2))]
                                                                       
          [activate(n__from(X))] =  [2] X + [0]                        
                                 >= [2] X + [0]                        
                                 =  [from(activate(X))]                
                                                                       
             [activate(n__s(X))] =  [2] X + [4]                        
                                 >  [2] X + [3]                        
                                 =  [s(activate(X))]                   
                                                                       
                       [from(X)] =  [1] X + [0]                        
                                 >= [0]                                
                                 =  [cons(X, n__from(n__s(X)))]        
                                                                       
                       [from(X)] =  [1] X + [0]                        
                                 >= [1] X + [0]                        
                                 =  [n__from(X)]                       
                                                                       

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak Trs:
  { first(X1, X2) -> n__first(X1, X2)
  , first(0(), X) -> nil()
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^1))