*** 1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
a__c() -> a__f(g(c()))
a__c() -> c()
a__f(X) -> f(X)
a__f(g(X)) -> g(X)
mark(c()) -> a__c()
mark(f(X)) -> a__f(X)
mark(g(X)) -> g(X)
Weak DP Rules:
Weak TRS Rules:
Signature:
{a__c/0,a__f/1,mark/1} / {c/0,f/1,g/1}
Obligation:
Innermost
basic terms: {a__c,a__f,mark}/{c,f,g}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
a__c#() -> c_1(a__f#(g(c())))
a__c#() -> c_2()
a__f#(X) -> c_3()
a__f#(g(X)) -> c_4()
mark#(c()) -> c_5(a__c#())
mark#(f(X)) -> c_6(a__f#(X))
mark#(g(X)) -> c_7()
Weak DPs
and mark the set of starting terms.
*** 1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
a__c#() -> c_1(a__f#(g(c())))
a__c#() -> c_2()
a__f#(X) -> c_3()
a__f#(g(X)) -> c_4()
mark#(c()) -> c_5(a__c#())
mark#(f(X)) -> c_6(a__f#(X))
mark#(g(X)) -> c_7()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
a__c() -> a__f(g(c()))
a__c() -> c()
a__f(X) -> f(X)
a__f(g(X)) -> g(X)
mark(c()) -> a__c()
mark(f(X)) -> a__f(X)
mark(g(X)) -> g(X)
Signature:
{a__c/0,a__f/1,mark/1,a__c#/0,a__f#/1,mark#/1} / {c/0,f/1,g/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0}
Obligation:
Innermost
basic terms: {a__c#,a__f#,mark#}/{c,f,g}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
a__c#() -> c_1(a__f#(g(c())))
a__c#() -> c_2()
a__f#(X) -> c_3()
a__f#(g(X)) -> c_4()
mark#(c()) -> c_5(a__c#())
mark#(f(X)) -> c_6(a__f#(X))
mark#(g(X)) -> c_7()
*** 1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
a__c#() -> c_1(a__f#(g(c())))
a__c#() -> c_2()
a__f#(X) -> c_3()
a__f#(g(X)) -> c_4()
mark#(c()) -> c_5(a__c#())
mark#(f(X)) -> c_6(a__f#(X))
mark#(g(X)) -> c_7()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{a__c/0,a__f/1,mark/1,a__c#/0,a__f#/1,mark#/1} / {c/0,f/1,g/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0}
Obligation:
Innermost
basic terms: {a__c#,a__f#,mark#}/{c,f,g}
Applied Processor:
Trivial
Proof:
Consider the dependency graph
1:S:a__c#() -> c_1(a__f#(g(c())))
-->_1 a__f#(g(X)) -> c_4():4
-->_1 a__f#(X) -> c_3():3
2:S:a__c#() -> c_2()
3:S:a__f#(X) -> c_3()
4:S:a__f#(g(X)) -> c_4()
5:S:mark#(c()) -> c_5(a__c#())
-->_1 a__c#() -> c_2():2
-->_1 a__c#() -> c_1(a__f#(g(c()))):1
6:S:mark#(f(X)) -> c_6(a__f#(X))
-->_1 a__f#(g(X)) -> c_4():4
-->_1 a__f#(X) -> c_3():3
7:S:mark#(g(X)) -> c_7()
The dependency graph contains no loops, we remove all dependency pairs.
*** 1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{a__c/0,a__f/1,mark/1,a__c#/0,a__f#/1,mark#/1} / {c/0,f/1,g/1,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/0}
Obligation:
Innermost
basic terms: {a__c#,a__f#,mark#}/{c,f,g}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).